File size: 34,877 Bytes
a7e1bab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841

# coding=utf-8
# Copyright 2022 HuggingFace Inc. team and BigScience workshop.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.

# Copyright (c) 2021 EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.




"""PyTorch TELECHAT model."""

import warnings
from typing import Optional, Tuple, Union

import torch
import math
from torch import nn
import torch.utils.checkpoint
from torch.nn import functional as F
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
from transformers.modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

from .configuration_telechat import TelechatConfig

logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "telechat"
_CONFIG_FOR_DOC = "TelechatConfig"

TELECHAT_PRETRAINED_MODEL_ARCHIVE_LIST = []

try:
    from einops import rearrange
except ImportError:
    rearrange = None

use_flash_attn = True
try:
    from flash_attn.flash_attn_interface import flash_attn_unpadded_func
except ImportError:
    try:
        from flash_attn.flash_attn_interface import flash_attn_varlen_func as flash_attn_unpadded_func
    except ImportError:
        flash_attn_unpadded_func = None



class RotaryEmbedding(torch.nn.Module):
    # Extracted from: https://github.com/EleutherAI/gpt-neox
    def __init__(self, dim ,config, base=10000, precision=torch.half):
        super().__init__()
        self.config = config
        self.dim = dim
        self.base = base
        self.inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float().half() / dim)).cuda()
        self.max_seq_len_cached = None
        self.cos_cached = None
        self.sin_cached = None
        self.precision = precision

    def get_mscale(self,scale=1):
        if scale <= 1:
            return 1.0
        return 0.1 * math.log(scale) + 1.0

    def get_ntk_alpha(self, true_seq_len):
        context_value = math.log(true_seq_len / self.config.base_seqlen, 2) + 1
        # ntk_alpha = 2 ** context_value - 1
        ntk_alpha = 2 ** math.ceil(context_value) - 1
        ntk_alpha = max(ntk_alpha, 1)
        return ntk_alpha

    def forward(self, x, seq_dim=0, seq_len=None):
        if seq_len is None:
            seq_len = x.shape[seq_dim]
        seq_len = max(seq_len, self.config.training_seqlen)
        ntk_alpha = self.get_ntk_alpha(seq_len)
        self.mscale = float(self.get_mscale(seq_len / self.config.training_seqlen))
        if True:
            base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
            self.inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, device=x.device).float( )/ self.dim ))
            self.max_seq_len_cached = seq_len
            t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
            freqs = torch.einsum('i,j->ij', t, self.inv_freq)
            # Different from paper, but it uses a different permutation in order to obtain the same calculation
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            if self.precision == torch.bfloat16:
                emb = emb.float()
            # [sx, 1 (b * np), hn]
            self.cos_cached = self.mscale *emb.cos()[:, None, :].half()
            self.sin_cached = self.mscale *emb.sin()[:, None, :].half()
            if self.precision == torch.bfloat16:
                self.cos_cached = self.cos_cached.bfloat16()
                self.sin_cached = self.sin_cached.bfloat16()
        return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]



# rotary pos emb helpers:
def rotate_half(x):
    x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
    return torch.cat((-x2, x1), dim=x1.ndim - 1)  # dim=-1 triggers a bug in earlier torch versions

def apply_rotary_pos_emb_torch(q, k, cos, sin, offset: int = 0):  # jitting fails with bf16
    cos, sin = cos[offset:q.shape[0] + offset, ...], sin[offset:q.shape[0] + offset, ...]
    return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)


class MixedFusedRMSNorm(nn.Module):
    # Extracted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
    def __init__(self, hidden_size, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


class FlashSelfAttention(torch.nn.Module):
    # Extracted from https://github.com/microsoft/Megatron-DeepSpeed/blob/main/megatron/model/transformer.py
    """Implement the scaled dot product attention with softmax.

    Arguments

    ---------

        softmax_scale: The temperature to use for the softmax attention.

                      (default: 1/sqrt(d_keys) where d_keys is computed at

                      runtime)

        attention_dropout: The dropout rate to apply to the attention

                           (default: 0.0)

    """

    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,

                 device=None, dtype=None):
        super().__init__()
        assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
                                                      'e.g., with pip install flash-attn')
        assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

    def forward(self, q, k, v):
        """Implements the multihead softmax attention.

        Arguments

        ---------

            q, k, v: The tensor containing the query, key, and value. (B, S, H, D)

        """
        assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
        assert all((i.is_cuda for i in (q, k, v)))

        batch_size, seqlen_q = q.shape[0], q.shape[1]
        seqlen_k = k.shape[1]

        q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
        cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
                                    device=q.device)
        self.training = False
        if self.training:
            # during training q,k,v always have same seqlen
            assert seqlen_k == seqlen_q

            is_causal = self.causal
            cu_seqlens_k = cu_seqlens_q
            dropout_p = self.dropout_p
        else:
            # turn off FA causal mask after first inference autoregressive iteration
            # only on first autoregressive step q,k,v have same seqlen
            is_causal = seqlen_q == seqlen_k
            cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
                                        device=q.device)
            dropout_p = 0

        output = flash_attn_unpadded_func(
            q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
            dropout_p=dropout_p,
            softmax_scale=self.softmax_scale, causal=is_causal
        )

        output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
        return output



def _make_causal_mask(

        input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int

) -> torch.BoolTensor:
    """

    Make causal mask used for self-attention.

    """
    batch_size, target_length = input_ids_shape
    mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
    # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
    seq_ids = torch.arange(target_length, device=device)
    mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]

    if past_key_values_length > 0:
        mask[:, :past_key_values_length] = False

    expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
    return expanded_mask


def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
    """

    Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.

    """
    batch_size, src_length = mask.shape
    tgt_length = tgt_length if tgt_length is not None else src_length

    expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
    return expanded_mask.expand(batch_size, 1, tgt_length, src_length)



def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
    """

    Dropout add function



    Args:

        x (`torch.tensor`, *required*):

            input tensor

        residual (`torch.tensor`, *required*):

            residual tensor

        prob (`float`, *required*):

            dropout probability

        training (`bool`, *required*):

            training mode

    """
    out = F.dropout(x, p=prob, training=training)
    out = residual + out
    return out


def telechat_gelu_forward(x: torch.Tensor) -> torch.Tensor:
    """

    Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to

    make the model jitable.



    Args:

        x (`torch.tensor`, *required*):

            input hidden states

    """
    return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))


def telechat_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
    """

    gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) +

    0.3989423 * x * torch.exp(-0.5 * x * x)



    Args:

        g (`torch.tensor`, *required*):

            gradient output tensor

        x (`torch.tensor`, *required*):

            input tensor

    """
    x = x[0]  # x is a tuple of 1 element, needs to unpack it first
    tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
    # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
    ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
    return ff * g


class GeLUFunction(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input: torch.Tensor) -> torch.Tensor:
        ctx.save_for_backward(input)
        return telechat_gelu_forward(input)

    @staticmethod
    def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
        input = ctx.saved_tensors
        tmp = telechat_gelu_back(grad_output, input)
        return tmp


class TelechatGelu(nn.Module):
    """

    TelechatBiasGelu wrapper function that make use of the simple function on inference mode to make the model

    torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly

    copied from Megatron-DeepSpeed code and adapted for our needs



    See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329

    """

    def __init__(self):
        super().__init__()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.training:
            return GeLUFunction.apply(x)
        else:
            return telechat_gelu_forward(x)


class TelechatAttention(nn.Module):
    def __init__(self, config: TelechatConfig ,layer_idx):
        super().__init__()
        self.kv_cache = None
        self.layer_idx = layer_idx

        self.hidden_size = config.hidden_size
        self.num_heads = config.n_head
        self.head_dim = self.hidden_size // self.num_heads
        self.split_size = self.hidden_size
        self.hidden_dropout = config.hidden_dropout
        self.config = config

        if self.head_dim * self.num_heads != self.hidden_size:
            raise ValueError(
                f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
                f" {self.num_heads})."
            )

        # Layer-wise attention scaling
        self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
        self.beta = 1.0

        self.num_key_value_heads = self.num_heads
        kv_projection_size = self.head_dim * self.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.query = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
        self.key_value = nn.Linear(self.hidden_size, kv_projection_size * 2, bias=False)
        self.dense = nn.Linear(self.hidden_size, self.hidden_size)
        self.attention_dropout = nn.Dropout(config.attention_dropout)
        self.rotary_emb = RotaryEmbedding(self.head_dim ,config=config)

        self.core_attention_flash = FlashSelfAttention(
            causal=True, attention_dropout=config.attention_dropout
        )

        self.last_key_layer = None
        #logn_list = [math.log(i, 4096) if i > 4096 else 1 for i in range(1, 32768)]
        #self.logn_tensor = torch.tensor(logn_list)[None, :, None, None].half().cuda()


    def repeat_kv(self, hidden_states, n_rep):
        slen, batch, num_key_value_heads_per_partition, head_dim = hidden_states.shape
        if n_rep == 1:
            return hidden_states
        hidden_states = hidden_states[:, :, :, None, :].expand(slen, batch, num_key_value_heads_per_partition, n_rep,
                                                               head_dim)
        return hidden_states.reshape(slen, batch, num_key_value_heads_per_partition * n_rep, head_dim)

    def split_tensor_along_last_dim(self,

                                    tensor: torch.Tensor,

                                    num_partitions: int,

                                    contiguous_split_chunks: bool = False,

                                    ):

        # Get the size and dimension.
        last_dim = tensor.dim() - 1
        last_dim_size = tensor.size()[last_dim] // num_partitions
        # Split.
        tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
        # Note: torch.split does not create contiguous tensors by default.
        if contiguous_split_chunks:
            return tuple(chunk.contiguous() for chunk in tensor_list)

        return tensor_list

    def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
        batch_size_and_num_heads, seq_length, _ = x.shape
        batch_size = batch_size_and_num_heads // self.num_heads
        x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
        x = x.permute(0, 2, 1, 3)
        return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)

    def forward(

            self,

            hidden_states: torch.Tensor,

            residual: torch.Tensor,

            attention_mask: torch.Tensor,

            layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,

            use_cache: bool = False,

            output_attentions: bool = False,

    ):
        hidden_states = hidden_states.transpose(1, 0)
        query_layer = self.query(hidden_states)
        new_tensor_shape = query_layer.size()[:-1] + \
                           (self.num_heads,
                            self.head_dim)
        query_layer = query_layer.view(*new_tensor_shape)

        mixed_kv_layer = self.key_value(hidden_states)
        new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                           (self.num_key_value_heads,
                            2 * self.head_dim)
        mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)
        (key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_kv_layer, 2)

        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
                       key_layer.size(0))

        query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
        key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)

        apply_rotary_fn = apply_rotary_pos_emb_torch

        seq_len = key_layer.shape[0]
        offset = 0

        if  use_cache and layer_past != None:
            past_key, past_value  = layer_past
            offset = past_key.shape[0]
            seq_len += offset

        cos, sin = self.rotary_emb(value_layer, seq_len=seq_len)

        query_layer, key_layer = apply_rotary_fn(query_layer, key_layer, cos, sin, offset=offset)
        if use_cache:
            if layer_past != None:
                past_key, past_value = layer_past
                key_layer = torch.cat((past_key, key_layer[-1, ...].unsqueeze(0)) ,dim=0)
                value_layer = torch.cat((past_value ,value_layer[-1 ,...].unsqueeze(0)) ,dim = 0)
            layer_past = key_layer ,value_layer
        s, bz, head, dim = value_layer.shape
        s_key = key_layer.shape[0]
        s_query = query_layer.shape[0]
        query_layer = query_layer.reshape((s_query, bz, head, dim))
        key_layer = key_layer.reshape((s_key, bz, head, dim))


        if self.config.flash_attn:
            q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous() for x in
                       (query_layer, key_layer, value_layer)]
            context_layer = self.core_attention_flash(q, k, v)
            context_layer = rearrange(context_layer, 'b s h d -> b s (h d)').contiguous()
        else:
            ##[sq, b, np, hn] -> [sq, b * np, hn]
            query_layer = query_layer.reshape(s_query ,bz * self.num_heads, dim)
            # [sk, b, np, hn] -> [sk, b * np, hn]
            key_layer = key_layer.reshape(s_key, bz * self.num_heads, dim)
            matmul_result = self.inv_norm_factor * torch.einsum('bik,bkj->bij', query_layer.transpose(0, 1), key_layer.transpose(0, 1).transpose(1, 2))

            attention_scores = matmul_result.view(bz, self.num_heads, s_query, s_key)

            input_dtype = attention_scores.dtype
            if input_dtype == torch.float16:
                attention_scores = attention_scores.to(torch.float)
            attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
            attention_probs = F.softmax(attn_weights, dim=-1).to(input_dtype)  ##dtype = torch.float32
            attention_probs = self.attention_dropout(attention_probs)
            attention_probs_reshaped = attention_probs.view(bz * self.num_heads, s_query, s_key)

            value_layer = value_layer.reshape(s_key ,bz * self.num_heads, dim)
            context_layer = torch.bmm(attention_probs_reshaped, value_layer.transpose(0, 1))
            context_layer = self._merge_heads(context_layer)

        output_tensor = self.dense(context_layer)

        output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training)
        present = None
        outputs = (output_tensor, present)
        if output_attentions:
            outputs += (attention_probs,)

        return output_tensor, layer_past

class TelechatMLP(nn.Module):
    def __init__(self, config: TelechatConfig):
        super().__init__()
        hidden_size = config.hidden_size
        self.gate_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False)
        self.up_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False)
        self.down_proj = nn.Linear(config.ffn_hidden_size, hidden_size, bias=True)
        self.hidden_dropout = config.hidden_dropout

    def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
        intermediate_output = self.down_proj(F.silu(self.gate_proj(hidden_states)) * self.up_proj(hidden_states))
        output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)
        return output


class TelechatBlock(nn.Module):
    def __init__(self, config: TelechatConfig ,layer_idx):
        super().__init__()
        hidden_size = config.hidden_size

        self.input_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon)
        self.num_heads = config.n_head
        self.layer_idx = layer_idx
        self.self_attention = TelechatAttention(config ,layer_idx)
        self.post_attention_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon)

        self.mlp = TelechatMLP(config)

        self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
        self.hidden_dropout = config.hidden_dropout

    def forward(

            self,

            hidden_states: torch.Tensor,

            attention_mask: torch.Tensor,

            layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,

            use_cache: bool = False,

            output_attentions: bool = False,

    ):
        layernorm_output = self.input_layernorm(hidden_states)
        if self.apply_residual_connection_post_layernorm:
            residual = layernorm_output
        else:
            residual = hidden_states

        attn_outputs = self.self_attention(
            layernorm_output,
            residual,
            layer_past=layer_past,
            attention_mask=attention_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )

        attention_output = attn_outputs[0]
        outputs = attn_outputs[1:]
        layernorm_output = self.post_attention_layernorm(attention_output)

        if self.apply_residual_connection_post_layernorm:
            residual = layernorm_output
        else:
            residual = attention_output
        output = self.mlp(layernorm_output, residual)

        if use_cache:
            outputs = (output,) + outputs
        else:
            outputs = (output,) + outputs[1:]

        return outputs


class TelechatPreTrainedModel(PreTrainedModel):
    config_class = TelechatConfig
    base_model_prefix = "transformer"
    supports_gradient_checkpointing = True
    _no_split_modules = ["TelechatBlock"]
    _skip_keys_device_placement = "past_key_values"

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module: nn.Module):
        """Initialize the weights."""
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()

        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
        if isinstance(module, TelechatModel):
            module.gradient_checkpointing = value


class TelechatModel(TelechatPreTrainedModel):
    def __init__(self, config: TelechatConfig):
        super().__init__(config)

        self.embed_dim = config.hidden_size
        self.num_heads = config.n_head
        self.config = config
        self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
        if self.config.embed_layernorm:
            self.word_embeddings_layernorm = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon)

        self.h = nn.ModuleList([TelechatBlock(config ,_) for _ in range(config.num_hidden_layers)])
        self.ln_f = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon)
        self.gradient_checkpointing = False
        self.post_init()


    def get_input_embeddings(self):
        return self.word_embeddings

    def _prepare_attn_mask(

            self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int

    ) -> torch.BoolTensor:
        combined_attention_mask = None
        device = attention_mask.device
        _, src_length = input_shape

        if src_length > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape, device=device, past_key_values_length=past_key_values_length
            )
        expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
        combined_attention_mask = (
            expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
        )

        return combined_attention_mask

    def set_input_embeddings(self, new_embeddings: torch.Tensor):
        self.word_embeddings = new_embeddings

    def forward(

            self,

            input_ids: Optional[torch.LongTensor] = None,

            past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,

            attention_mask: Optional[torch.Tensor] = None,

            inputs_embeds: Optional[torch.LongTensor] = None,

            use_cache: Optional[bool] = None,

            output_attentions: Optional[bool] = None,

            output_hidden_states: Optional[bool] = None,

            return_dict: Optional[bool] = None,

            **deprecated_arguments,

    ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict


        if input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape

        if past_key_values is None:
            past_key_values = tuple([None] * len(self.h))


        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        hidden_states = inputs_embeds

        if self.config.embed_layernorm:
            hidden_states = self.word_embeddings_layernorm(inputs_embeds)

        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None

        if self.gradient_checkpointing and self.training:
            if use_cache:
                use_cache = False

        seq_length_with_past = seq_length
        past_key_values_length = 0
        if past_key_values[0] is not None:
            past_key_values_length = past_key_values[0][0].shape[2]
            seq_length_with_past = seq_length_with_past + past_key_values_length
        if attention_mask is None:
            attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
        else:
            attention_mask = attention_mask.to(hidden_states.device)
        causal_mask = self._prepare_attn_mask(
            attention_mask,
            input_shape=(batch_size, seq_length),
            past_key_values_length=past_key_values_length,
        )

        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)

                    return custom_forward

                outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    causal_mask,
                    layer_past,
                )
            else:
                outputs = block(
                    hidden_states,
                    layer_past=layer_past,
                    attention_mask=causal_mask,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )

            hidden_states = outputs[0]
            if use_cache is True:
                presents = presents + (outputs[1],)

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
        hidden_states = self.ln_f(hidden_states)
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)
        if not return_dict:
            return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


class TelechatForCausalLM(TelechatPreTrainedModel):
    # _tied_weights_keys = ["lm_head.weight"]
    _keys_to_ignore_on_load_missing = [ r"lm_head.weight"]
    def __init__(self, config: TelechatConfig):
        super().__init__(config)
        self.transformer = TelechatModel(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings: torch.Tensor):
        self.lm_head = new_embeddings

    def prepare_inputs_for_generation(

            self,

            input_ids: torch.LongTensor,

            past_key_values: Optional[torch.Tensor] = None,

            attention_mask: Optional[torch.Tensor] = None,

            inputs_embeds: Optional[torch.Tensor] = None,

            **kwargs,

    ) -> dict:
        if past_key_values:
            input_ids = input_ids[:, -1].unsqueeze(-1)
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
            }
        )
        return model_inputs

    def forward(

            self,

            input_ids: Optional[torch.LongTensor] = None,

            past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,

            attention_mask: Optional[torch.Tensor] = None,

            inputs_embeds: Optional[torch.Tensor] = None,

            labels: Optional[torch.Tensor] = None,

            use_cache: Optional[bool] = None,

            output_attentions: Optional[bool] = None,

            output_hidden_states: Optional[bool] = None,

            return_dict: Optional[bool] = None,

            **deprecated_arguments,

    ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        lm_logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            labels = labels.to(lm_logits.device)
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            batch_size, seq_length, vocab_size = shift_logits.shape
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
            )

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )