File size: 9,778 Bytes
a50a5cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TELECHAT configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
TELECHAT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
}
class TELECHATConfig(PretrainedConfig):
"""
xxxxxx
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50257):
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`].
n_positions (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
n_embd (`int`, *optional*, defaults to 768):
Dimensionality of the embeddings and hidden states.
n_layer (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
n_inner (`int`, *optional*, defaults to None):
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
activation_function (`str`, *optional*, defaults to `"gelu"`):
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`int`, *optional*, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon to use in the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
summary_type (`string`, *optional*, defaults to `"cls_index"`):
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
[`TFGPT2DoubleHeadsModel`].
Has to be one of the following options:
- `"last"`: Take the last token hidden state (like XLNet).
- `"first"`: Take the first token hidden state (like BERT).
- `"mean"`: Take the mean of all tokens hidden states.
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
- `"attn"`: Not implemented now, use multi-head attention.
summary_use_proj (`bool`, *optional*, defaults to `True`):
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
[`TFGPT2DoubleHeadsModel`].
Whether or not to add a projection after the vector extraction.
summary_activation (`str`, *optional*):
Argument used when doing sequence summary. Used in for the multiple choice head in
[`GPT2DoubleHeadsModel`].
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
[`TFGPT2DoubleHeadsModel`].
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
summary_first_dropout (`float`, *optional*, defaults to 0.1):
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
[`TFGPT2DoubleHeadsModel`].
The dropout ratio to be used after the projection and activation.
scale_attn_weights (`bool`, *optional*, defaults to `True`):
Scale attention weights by dividing by sqrt(hidden_size)..
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
Whether to additionally scale attention weights by `1 / layer_idx + 1`.
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
dot-product/softmax to float() when training with mixed precision.
Example:
```python
>>> from transformers import GPT2Config, GPT2Model
>>> # Initializing a GPT2 configuration
>>> configuration = GPT2Config()
>>> # Initializing a model (with random weights) from the configuration
>>> model = GPT2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "telechat"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=80000,
n_positions=1024,
n_embd=768,
n_layer=12,
n_head=12,
n_inner=None,
activation_function="gelu_new",
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
summary_type="cls_index",
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
scale_attn_weights=True,
use_cache=True,
bos_token_id=None,
eos_token_id=None,
sep_token_id=None,
pad_token_id=None,
unk_token_id=None,
scale_attn_by_inverse_layer_idx=False,
reorder_and_upcast_attn=False,
relative_encoding=None,
rotary_theta=10000,
rotary_use_xpos=True,
rotary_xpos_scale_base=512,
use_mup=False,
mup_scale_factor=1.0,
output_mult=1.0,
input_mult=1.0,
mup_base_width=256,
enable_flash_attn=True,
use_RMSNorm=False,
add_bias_linear=True,
**kwargs,
):
self.vocab_size = vocab_size
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.n_inner = n_inner
self.activation_function = activation_function
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_first_dropout = summary_first_dropout
self.summary_proj_to_labels = summary_proj_to_labels
self.scale_attn_weights = scale_attn_weights
self.use_cache = use_cache
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
self.reorder_and_upcast_attn = reorder_and_upcast_attn
self.relative_encoding = relative_encoding
self.use_RMSNorm = use_RMSNorm
self.add_bias_linear = add_bias_linear
# for rotary
self.rotary_theta = rotary_theta
self.rotary_use_xpos = rotary_use_xpos
self.rotary_xpos_scale_base = rotary_xpos_scale_base
# for mup
self.use_mup = use_mup
self.mup_scale_factor = mup_scale_factor
self.output_mult = output_mult
self.input_mult = input_mult
self.mup_base_width = mup_base_width
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.unk_token_id = unk_token_id
self.sep_token_id = sep_token_id
self.pad_token_id = pad_token_id
self.enable_flash_attn = enable_flash_attn
self.architectures = ["TELECHAT"]
self.auto_map = {
"AutoConfig": "configuration_telechat.TELECHATConfig",
"AutoModel": "modeling_telechat.TELECHAT",
"AutoModelForCausalLM": "modeling_telechat.TELECHAT"
}
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, sep_token_id = sep_token_id, pad_token_id = pad_token_id, **kwargs)
|