Text Generation
Transformers
PyTorch
Telugu
English
llama
conversational
text-generation-inference
Inference Endpoints
File size: 8,546 Bytes
5c5a9ce
 
 
 
7c7cb05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c5a9ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8e2895
 
 
5c5a9ce
 
 
 
 
 
 
 
 
 
 
b8e2895
 
 
5c5a9ce
 
 
 
 
 
b8e2895
5c5a9ce
 
 
 
b8e2895
5c5a9ce
 
b8e2895
 
5c5a9ce
 
b8e2895
 
 
 
 
 
 
 
 
 
 
 
5c5a9ce
 
 
b8e2895
 
 
 
 
 
 
 
 
 
5c5a9ce
 
b8e2895
 
 
 
 
5c5a9ce
 
 
 
 
 
7c7cb05
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
---
language:
- te
- en
license: llama2
datasets:
- Telugu-LLM-Labs/yahma_alpaca_cleaned_telugu_filtered_and_romanized
- Telugu-LLM-Labs/teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized
model-index:
- name: Telugu-Llama2-7B-v0-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 53.58
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 78.33
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 47.63
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 43.26
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 73.95
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 20.39
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct
      name: Open LLM Leaderboard
---
# Telugu-Llama2-7B-v0-Instruct


This model is based on [Telugu-Llama2-7B-v0-Base](https://huggingface.co/Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Base) and hase been finetuned on instruction datasets:
  1. [yahma_alpaca_cleaned_telugu_filtered_and_romanized](https://huggingface.co/datasets/Telugu-LLM-Labs/yahma_alpaca_cleaned_telugu_filtered_and_romanized)
  2. [teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized](https://huggingface.co/datasets/Telugu-LLM-Labs/teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized)

# Input Text Format

```
### Instruction: {instruction}

### Input: {input}

## Response: {response}
```

# Usage

## With Romanized Telugu

```python3
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model_name = "Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct"

tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="right")
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)

instruction = "Krindi samaacharam prakaram google app eppudu release ayyindi?"
input ="Google News is a news aggregator service developed by Google. It presents a continuous flow of links to articles organized from thousands of publishers and magazines. Google News is available as an app on Android, iOS, and the Web. Google released a beta version in September 2002 and the official app in January 2006."

text = f"""Instruction: {instruction} \nInput: {input} \nResponse:"""

encodings = tokenizer(text, padding=True, return_tensors="pt")
encodings = encodings.to(device)

with torch.inference_mode():
    outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=500)

output = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)
```

### Sample Output:

```
1. September 2002 Google released a beta version of Google News.
2. January 2006 Google released the official version of Google News.
```

## With Native Telugu

```python3
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model_name = "Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct"

tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="right")
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)

instruction = "కింది వచనాన్ని సంగ్రహించండి"
input="గూగుల్ వార్తలు అనేది గూగుల్ ద్వారా అభివృద్ధి చేయబడిన వార్తా అగ్రిగేటర్ సేవ. ఇది వేలకొద్దీ ప్రచురణకర్తలు మరియు మ్యాగజైన్‌ల నుండి నిర్వహించబడిన కథనాలకు నిరంతర లింక్‌లను అందిస్తుంది. గూగుల్ వార్తలు Android, iOS మరియు వెబ్‌లో యాప్‌గా అందుబాటులో ఉన్నాయి. గూగుల్ సెప్టెంబరు 2002లో బీటా వెర్షన్‌ను మరియు జనవరి 2006లో అధికారిక యాప్‌ను విడుదల చేసింది."

text = f"""Instruction: {instruction} \nInput: {input} \nResponse:"""

encodings = tokenizer(text, padding=True, return_tensors="pt")
encodings = encodings.to(device)

with torch.inference_mode():
    outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=500)

output = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)
```

### Sample Output:

1. గూగుల్ వార్తలు అనేది గూగుల్ ద్వారా అభివృద్ధి చేయబడిన వార్తా అగ్రిగేటర్ సేవ, వేలకొద్దీ ప్రచురణకర్తలు మరియు మ్యాగజైన్‌ల నుండి నిర్వహించబడిన కథనాలకు నిరంతర లింక్‌లను అందిస్తుంది.
2. గూగుల్ సెప్టెంబరు 2002లో బీటా వెర్షన్ మరియు జనవరి 2006లో అధికారిక యాప్ ను విడుదల చేసింది.

# Developers:

The model is a collaborative effort by [Ravi Theja](https://twitter.com/ravithejads) and [Ramsri Goutham](https://twitter.com/ramsri_goutham). Feel free to DM either of us if you have any questions.

# Note:

The model is quite sensitive to parameters and inputs and is not yet ready for production. It remains in the experimental phase, and we recommend using it accordingly.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Telugu-LLM-Labs__Telugu-Llama2-7B-v0-Instruct)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |52.86|
|AI2 Reasoning Challenge (25-Shot)|53.58|
|HellaSwag (10-Shot)              |78.33|
|MMLU (5-Shot)                    |47.63|
|TruthfulQA (0-shot)              |43.26|
|Winogrande (5-shot)              |73.95|
|GSM8k (5-shot)                   |20.39|