File size: 8,546 Bytes
5c5a9ce 7c7cb05 5c5a9ce b8e2895 5c5a9ce b8e2895 5c5a9ce b8e2895 5c5a9ce b8e2895 5c5a9ce b8e2895 5c5a9ce b8e2895 5c5a9ce b8e2895 5c5a9ce b8e2895 5c5a9ce 7c7cb05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
---
language:
- te
- en
license: llama2
datasets:
- Telugu-LLM-Labs/yahma_alpaca_cleaned_telugu_filtered_and_romanized
- Telugu-LLM-Labs/teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized
model-index:
- name: Telugu-Llama2-7B-v0-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 53.58
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 78.33
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.63
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 43.26
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 73.95
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 20.39
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct
name: Open LLM Leaderboard
---
# Telugu-Llama2-7B-v0-Instruct
This model is based on [Telugu-Llama2-7B-v0-Base](https://huggingface.co/Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Base) and hase been finetuned on instruction datasets:
1. [yahma_alpaca_cleaned_telugu_filtered_and_romanized](https://huggingface.co/datasets/Telugu-LLM-Labs/yahma_alpaca_cleaned_telugu_filtered_and_romanized)
2. [teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized](https://huggingface.co/datasets/Telugu-LLM-Labs/teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized)
# Input Text Format
```
### Instruction: {instruction}
### Input: {input}
## Response: {response}
```
# Usage
## With Romanized Telugu
```python3
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_name = "Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="right")
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
instruction = "Krindi samaacharam prakaram google app eppudu release ayyindi?"
input ="Google News is a news aggregator service developed by Google. It presents a continuous flow of links to articles organized from thousands of publishers and magazines. Google News is available as an app on Android, iOS, and the Web. Google released a beta version in September 2002 and the official app in January 2006."
text = f"""Instruction: {instruction} \nInput: {input} \nResponse:"""
encodings = tokenizer(text, padding=True, return_tensors="pt")
encodings = encodings.to(device)
with torch.inference_mode():
outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=500)
output = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)
```
### Sample Output:
```
1. September 2002 Google released a beta version of Google News.
2. January 2006 Google released the official version of Google News.
```
## With Native Telugu
```python3
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_name = "Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="right")
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
instruction = "కింది వచనాన్ని సంగ్రహించండి"
input="గూగుల్ వార్తలు అనేది గూగుల్ ద్వారా అభివృద్ధి చేయబడిన వార్తా అగ్రిగేటర్ సేవ. ఇది వేలకొద్దీ ప్రచురణకర్తలు మరియు మ్యాగజైన్ల నుండి నిర్వహించబడిన కథనాలకు నిరంతర లింక్లను అందిస్తుంది. గూగుల్ వార్తలు Android, iOS మరియు వెబ్లో యాప్గా అందుబాటులో ఉన్నాయి. గూగుల్ సెప్టెంబరు 2002లో బీటా వెర్షన్ను మరియు జనవరి 2006లో అధికారిక యాప్ను విడుదల చేసింది."
text = f"""Instruction: {instruction} \nInput: {input} \nResponse:"""
encodings = tokenizer(text, padding=True, return_tensors="pt")
encodings = encodings.to(device)
with torch.inference_mode():
outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=500)
output = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)
```
### Sample Output:
1. గూగుల్ వార్తలు అనేది గూగుల్ ద్వారా అభివృద్ధి చేయబడిన వార్తా అగ్రిగేటర్ సేవ, వేలకొద్దీ ప్రచురణకర్తలు మరియు మ్యాగజైన్ల నుండి నిర్వహించబడిన కథనాలకు నిరంతర లింక్లను అందిస్తుంది.
2. గూగుల్ సెప్టెంబరు 2002లో బీటా వెర్షన్ మరియు జనవరి 2006లో అధికారిక యాప్ ను విడుదల చేసింది.
# Developers:
The model is a collaborative effort by [Ravi Theja](https://twitter.com/ravithejads) and [Ramsri Goutham](https://twitter.com/ramsri_goutham). Feel free to DM either of us if you have any questions.
# Note:
The model is quite sensitive to parameters and inputs and is not yet ready for production. It remains in the experimental phase, and we recommend using it accordingly.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Telugu-LLM-Labs__Telugu-Llama2-7B-v0-Instruct)
| Metric |Value|
|---------------------------------|----:|
|Avg. |52.86|
|AI2 Reasoning Challenge (25-Shot)|53.58|
|HellaSwag (10-Shot) |78.33|
|MMLU (5-Shot) |47.63|
|TruthfulQA (0-shot) |43.26|
|Winogrande (5-shot) |73.95|
|GSM8k (5-shot) |20.39|
|