English
Zhiminli commited on
Commit
fb5c6d1
·
verified ·
1 Parent(s): 03fba25

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ asset/output/canny.jpg filter=lfs diff=lfs merge=lfs -text
37
+ asset/output/depth.jpg filter=lfs diff=lfs merge=lfs -text
38
+ asset/output/pose.jpg filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,5 +1,157 @@
1
- ---
2
- license: other
3
- license_name: tencent-hunyuan-community
4
- license_link: LICENSE
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ## Using HunyuanDiT ControlNet
3
+
4
+
5
+ ### Instructions
6
+
7
+ The dependencies and installation are basically the same as the [**base model**](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1).
8
+
9
+ We provide three types of ControlNet weights for you to test: canny, depth and pose ControlNet.
10
+
11
+ Download the model using the following commands:
12
+
13
+ ```bash
14
+ cd HunyuanDiT
15
+ # Use the huggingface-cli tool to download the model.
16
+ huggingface-cli download Tencent-Hunyuan/HYDiT-ControlNet --local-dir ./ckpts/t2i/controlnet
17
+
18
+ # Quick start
19
+ python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control_type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition_image_path controlnet/asset/input/canny.jpg --control_weight 1.0
20
+ ```
21
+
22
+ Examples of condition input and ControlNet results are as follows:
23
+ <table>
24
+ <tr>
25
+ <td colspan="3" align="center">Condition Input</td>
26
+ </tr>
27
+
28
+ <tr>
29
+ <td align="center">Canny ControlNet </td>
30
+ <td align="center">Depth ControlNet </td>
31
+ <td align="center">Pose ControlNet </td>
32
+ </tr>
33
+
34
+ <tr>
35
+ <td align="center">在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围<br>(At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere.) </td>
36
+ <td align="center">在茂密的森林中,一只黑白相间的熊猫静静地坐在绿树红花中,周围是山川和海洋。背景是白天的森林,光线充足<br>(In the dense forest, a black and white panda sits quietly in green trees and red flowers, surrounded by mountains, rivers, and the ocean. The background is the forest in a bright environment.) </td>
37
+ <td align="center">一位亚洲女性,身穿绿色上衣,戴着紫色头巾和紫色围巾,站在黑板前。背景是黑板。照片采用近景、平视和居中构图的方式呈现真实摄影风格<br>(An Asian woman, dressed in a green top, wearing a purple headscarf and a purple scarf, stands in front of a blackboard. The background is the blackboard. The photo is presented in a close-up, eye-level, and centered composition, adopting a realistic photographic style) </td>
38
+ </tr>
39
+
40
+ <tr>
41
+ <td align="center"><img src="asset/input/canny.jpg" alt="Image 0" width="200"/></td>
42
+ <td align="center"><img src="asset/input/depth.jpg" alt="Image 1" width="200"/></td>
43
+ <td align="center"><img src="asset/input/pose.jpg" alt="Image 2" width="200"/></td>
44
+
45
+ </tr>
46
+
47
+ <tr>
48
+ <td colspan="3" align="center">ControlNet Output</td>
49
+ </tr>
50
+
51
+ <tr>
52
+ <td align="center"><img src="asset/output/canny.jpg" alt="Image 3" width="200"/></td>
53
+ <td align="center"><img src="asset/output/depth.jpg" alt="Image 4" width="200"/></td>
54
+ <td align="center"><img src="asset/output/pose.jpg" alt="Image 5" width="200"/></td>
55
+ </tr>
56
+
57
+
58
+ </table>
59
+
60
+
61
+ ### Training
62
+
63
+ We utilize [**DWPose**](https://github.com/IDEA-Research/DWPose) for pose extraction. Please follow their guidelines to download the checkpoints and save them to `hydit/annotator/ckpts` directory. Additionally, ensure that you install the related dependencies.
64
+ ```bash
65
+ pip install matplotlib
66
+ pip install onnxruntime_gpu
67
+ ```
68
+
69
+
70
+ We provide three types of weights for ControlNet training, `ema`, `module` and `distill`, and you can choose according to the actual effects. By default, we use `distill` weights.
71
+
72
+ Here is an example, we load the `distill` weights into the main model and conduct ControlNet training.
73
+
74
+ If you want to load the `module` weights into the main model, just remove the `--ema-to-module` parameter.
75
+
76
+ If apply multiple resolution training, you need to add the `--multireso` and `--reso-step 64` parameter.
77
+
78
+ ```bash
79
+ task_flag="canny_controlnet" # task flag is used to identify folders.
80
+ control_type=canny
81
+ resume=./ckpts/t2i/model/ # checkpoint root for resume
82
+ index_file=path/to/your/index_file
83
+ results_dir=./log_EXP # save root for results
84
+ batch_size=1 # training batch size
85
+ image_size=1024 # training image resolution
86
+ grad_accu_steps=2 # gradient accumulation
87
+ warmup_num_steps=0 # warm-up steps
88
+ lr=0.0001 # learning rate
89
+ ckpt_every=10000 # create a ckpt every a few steps.
90
+ ckpt_latest_every=5000 # create a ckpt named `latest.pt` every a few steps.
91
+
92
+
93
+ sh $(dirname "$0")/run_g_controlnet.sh \
94
+ --task-flag ${task_flag} \
95
+ --control_type ${control_type} \
96
+ --noise-schedule scaled_linear --beta-start 0.00085 --beta-end 0.03 \
97
+ --predict-type v_prediction \
98
+ --multireso \
99
+ --reso-step 64 \
100
+ --ema-to-module \
101
+ --uncond-p 0.44 \
102
+ --uncond-p-t5 0.44 \
103
+ --index-file ${index_file} \
104
+ --random-flip \
105
+ --lr ${lr} \
106
+ --batch-size ${batch_size} \
107
+ --image-size ${image_size} \
108
+ --global-seed 999 \
109
+ --grad-accu-steps ${grad_accu_steps} \
110
+ --warmup-num-steps ${warmup_num_steps} \
111
+ --use-flash-attn \
112
+ --use-fp16 \
113
+ --use-ema \
114
+ --ema-dtype fp32 \
115
+ --results-dir ${results_dir} \
116
+ --resume-split \
117
+ --resume ${resume} \
118
+ --ckpt-every ${ckpt_every} \
119
+ --ckpt-latest-every ${ckpt_latest_every} \
120
+ --log-every 10 \
121
+ --deepspeed \
122
+ --deepspeed-optimizer \
123
+ --use-zero-stage 2 \
124
+ "$@"
125
+ ```
126
+
127
+ Recommended parameter settings
128
+
129
+ | Parameter | Description | Recommended Parameter Value | Note|
130
+ |:---------------:|:---------:|:---------------------------------------------------:|:--:|
131
+ | `--batch_size` | Training batch size | 1 | Depends on GPU memory|
132
+ | `--grad-accu-steps` | Size of gradient accumulation | 2 | - |
133
+ | `--lr` | Learning rate | 0.0001 | - |
134
+ | `--control_type` | ControlNet condition type, support 3 types now (canny, depth and pose) | / | - |
135
+
136
+
137
+ ### Inference
138
+ You can use the following command line for inference.
139
+
140
+ a. Using canny ControlNet during inference
141
+
142
+ ```bash
143
+ python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control_type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition_image_path controlnet/asset/input/canny.jpg --control_weight 1.0
144
+ ```
145
+
146
+ b. Using pose ControlNet during inference
147
+
148
+ ```bash
149
+ python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control_type depth --prompt "在茂密的森林中,一只黑白相间的熊猫静静地坐在绿树红花中,周围是山川和海洋。背景是白天的森林,光线充足" --condition_image_path controlnet/asset/input/depth.jpg --control_weight 1.0
150
+ ```
151
+
152
+ c. Using depth ControlNet during inference
153
+
154
+ ```bash
155
+ python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control_type pose --prompt "一位亚洲女性,身穿绿色上衣,戴着紫色头巾和紫色围巾,站在黑板前。背景是黑板。照片采用近景、平视和居中构图的方式呈现真实摄影风格" --condition_image_path controlnet/asset/input/pose.jpg --control_weight 1.0
156
+ ```
157
+
asset/input/canny.jpg ADDED
asset/input/depth.jpg ADDED
asset/input/pose.jpg ADDED
asset/output/canny.jpg ADDED

Git LFS Details

  • SHA256: 2ff3a257bef9fde60ceca29f0c48247b4528f547a50b3c2613102f1a4436f253
  • Pointer size: 132 Bytes
  • Size of remote file: 1.55 MB
asset/output/depth.jpg ADDED

Git LFS Details

  • SHA256: 84421e3457eada3bf53cc0ea4ed04f17828d555b3fb811fdde79830615e11233
  • Pointer size: 132 Bytes
  • Size of remote file: 1.75 MB
asset/output/pose.jpg ADDED

Git LFS Details

  • SHA256: 7c855336d18036771e3747f2e618927678fad4ad14e25c58986dc769a8eb0151
  • Pointer size: 132 Bytes
  • Size of remote file: 1.05 MB
pytorch_model_canny_distill.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fb880bde25340eeaa81ddbf712592130a13f5871c652c82cc5498ec33636c04
3
+ size 1668467911
pytorch_model_depth_distill.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aadb71b7dd3e4d2bf8444713a67975a8129cc8f034d6085c4da5fc00b9ced22a
3
+ size 1668467911
pytorch_model_pose_distill.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4baea7edb7004f841ac2347aff9b44190460d61dfd79b984c6e7195cdfa7ff23
3
+ size 1668467883