Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: hunyuan-dit
|
3 |
+
license: other
|
4 |
+
license_name: tencent-hunyuan-community
|
5 |
+
license_link: https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/blob/main/LICENSE.txt
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
- zh
|
9 |
+
---
|
10 |
+
|
11 |
+
## Hunyuan-Captioner
|
12 |
+
Hunyuan-Captioner meets the need of text-to-image techniques by maintaining a high degree of image-text consistency. It can generate high-quality image descriptions from a variety of angles, including object description, objects relationships, background information, image style, etc. Our code is based on [LLaVA](https://github.com/haotian-liu/LLaVA) implementation.
|
13 |
+
|
14 |
+
### Instructions
|
15 |
+
a. Install dependencies
|
16 |
+
|
17 |
+
The dependencies and installation are basically the same as the [**base model**](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1).
|
18 |
+
|
19 |
+
b. Data download
|
20 |
+
```shell
|
21 |
+
cd HunyuanDiT
|
22 |
+
wget -O ./dataset/data_demo.zip https://dit.hunyuan.tencent.com/download/HunyuanDiT/data_demo.zip
|
23 |
+
unzip ./dataset/data_demo.zip -d ./dataset
|
24 |
+
mkdir ./dataset/porcelain/arrows ./dataset/porcelain/jsons
|
25 |
+
```
|
26 |
+
|
27 |
+
c. Model download
|
28 |
+
```shell
|
29 |
+
# Use the huggingface-cli tool to download the model.
|
30 |
+
huggingface-cli download Tencent-Hunyuan/HunyuanCaptioner --local-dir ./ckpts/captioner
|
31 |
+
```
|
32 |
+
|
33 |
+
|
34 |
+
### Inference
|
35 |
+
|
36 |
+
Current supported prompts:
|
37 |
+
|
38 |
+
| Target | Prompt |
|
39 |
+
| --- | --- |
|
40 |
+
| Caption in Chinese | 描述这张图片 |
|
41 |
+
| Caption in Chinese with tags | 根据提示词“{}”,描述这张图片 |
|
42 |
+
| Caption in English | Please describe the content of this image |
|
43 |
+
| | |
|
44 |
+
|
45 |
+
|
46 |
+
a. Single picture inference in Chinese
|
47 |
+
|
48 |
+
```bash
|
49 |
+
python mllm/caption_demo.py --mode "caption_zh" --image_file "mllm/images/demo1.png" --model_path "./ckpts/captioner"
|
50 |
+
```
|
51 |
+
|
52 |
+
b. Single picture inference with tag in Chinese
|
53 |
+
|
54 |
+
```bash
|
55 |
+
python mllm/caption_demo.py --mode "insert_content" --content "宫保鸡丁" --image_file "mllm/images/demo2.png" --model_path "./ckpts/captioner"
|
56 |
+
```
|
57 |
+
|
58 |
+
c. Single picture inference in English
|
59 |
+
|
60 |
+
```bash
|
61 |
+
python mllm/caption_demo.py --mode "caption_en" --image_file "mllm/images/demo3.png" --model_path "./ckpts/captioner"
|
62 |
+
```
|
63 |
+
|
64 |
+
d. Multiple pictures inference in Chinese
|
65 |
+
|
66 |
+
```bash
|
67 |
+
### Convert multiple pictures to csv file.
|
68 |
+
python mllm/make_csv.py --img_dir "mllm/images" --input_file "mllm/images/demo.csv"
|
69 |
+
|
70 |
+
### Multiple pictures inference
|
71 |
+
python mllm/caption_demo.py --mode "caption_zh" --input_file "mllm/images/demo.csv" --output_file "mllm/images/demo_res.csv" --model_path "./ckpts/captioner"
|
72 |
+
```
|
73 |
+
|
74 |
+
(Optional) To convert the output csv file to Arrow format, please refer to
|
75 |
+
[Data Preparation #3](https://github.com/Tencent/HunyuanDiT?tab=readme-ov-file#data-preparation) for detailed instructions.
|
76 |
+
|
77 |
+
|
78 |
+
### Gradio
|
79 |
+
To launch a Gradio demo locally, please run the following commands one by one. For more detailed instructions, please refer to [LLaVA](https://github.com/haotian-liu/LLaVA).
|
80 |
+
```bash
|
81 |
+
cd mllm
|
82 |
+
python -m llava.serve.controller --host 0.0.0.0 --port 10000
|
83 |
+
|
84 |
+
python -m llava.serve.gradio_web_server --controller http://0.0.0.0:10000 --model-list-mode reload --port 443
|
85 |
+
|
86 |
+
python -m llava.serve.model_worker --host 0.0.0.0 --controller http://0.0.0.0:10000 --port 40000 --worker http://0.0.0.0:40000 --model-path "./ckpts/captioner" --model-name LlavaMistral
|
87 |
+
```
|
88 |
+
Then the demo can be accessed through http://0.0.0.0:443. It should be noted that the 0.0.0.0 here needs to be X.X.X.X with your server IP.
|