HunyuanDiT
Diffusers
Safetensors
English
Chinese
File size: 28,793 Bytes
a89a7db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d33a946
a89a7db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d33a946
a89a7db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
<!-- ## **HunyuanDiT** -->

<p align="center">
  <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/logo.png"  height=100>
</p>

# Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding

<div align="center">
  <a href="https://github.com/Tencent/HunyuanDiT"><img src="https://img.shields.io/static/v1?label=Hunyuan-DiT Code&message=Github&color=blue&logo=github-pages"></a> &ensp;
  <a href="https://dit.hunyuan.tencent.com"><img src="https://img.shields.io/static/v1?label=Project%20Page&message=Github&color=blue&logo=github-pages"></a> &ensp;
  <a href="https://arxiv.org/abs/2405.08748"><img src="https://img.shields.io/static/v1?label=Tech Report&message=Arxiv:HunYuan-DiT&color=red&logo=arxiv"></a> &ensp;
  <a href="https://arxiv.org/abs/2403.08857"><img src="https://img.shields.io/static/v1?label=Paper&message=Arxiv:DialogGen&color=red&logo=arxiv"></a> &ensp;
  <a href="https://huggingface.co/Tencent-Hunyuan/HunyuanDiT"><img src="https://img.shields.io/static/v1?label=Hunyuan-DiT&message=HuggingFace&color=yellow"></a> &ensp;
  <a href="https://hunyuan.tencent.com/bot/chat"><img src="https://img.shields.io/static/v1?label=Hunyuan Bot&message=Web&color=green"></a> &ensp;
  <a href="https://huggingface.co/spaces/Tencent-Hunyuan/HunyuanDiT"><img src="https://img.shields.io/static/v1?label=Hunyuan-DiT Demo&message=HuggingFace&color=yellow"></a> &ensp;
</div>

-----

This repo contains PyTorch model definitions, pre-trained weights and inference/sampling code for our paper exploring Hunyuan-DiT. You can find more visualizations on our [project page](https://dit.hunyuan.tencent.com/).

> [**Hunyuan-DiT: A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding**](https://arxiv.org/abs/2405.08748) <br>

> [**DialogGen: Multi-modal Interactive Dialogue System for Multi-turn Text-to-Image Generation**](https://arxiv.org/abs/2403.08857) <br>

## ๐Ÿ”ฅ๐Ÿ”ฅ๐Ÿ”ฅ News!!
* Jun 13, 2024: :zap: HYDiT-v1.1 version is released, which mitigates the issue of image oversaturation and alleviates the watermark issue. Please check [HunyuanDiT-v1.1 ](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1) and 
[Distillation-v1.1](https://huggingface.co/Tencent-Hunyuan/Distillation-v1.1) for more details.
* Jun 13, 2024: :truck: The training code is released, offering [full-parameter training](#full-parameter-training) and [LoRA training](#lora).
* Jun 06, 2024: :tada: Hunyuan-DiT is now available in ComfyUI. Please check [ComfyUI](#using-comfyui) for more details.
* Jun 06, 2024: ๐Ÿš€ We introduce Distillation version for Hunyuan-DiT acceleration, which achieves **50%** acceleration on NVIDIA GPUs. Please check [Distillation](https://huggingface.co/Tencent-Hunyuan/Distillation) for more details.
* Jun 05, 2024: ๐Ÿค— Hunyuan-DiT is now available in ๐Ÿค— Diffusers! Please check the [example](#using--diffusers) below.
* Jun 04, 2024: :globe_with_meridians: Support Tencent Cloud links to download the pretrained models! Please check the [links](#-download-pretrained-models) below.
* May 22, 2024: ๐Ÿš€ We introduce TensorRT version for Hunyuan-DiT acceleration, which achieves **47%** acceleration on NVIDIA GPUs. Please check [TensorRT-libs](https://huggingface.co/Tencent-Hunyuan/TensorRT-libs) for instructions.
* May 22, 2024: ๐Ÿ’ฌ We support demo running multi-turn text2image generation now. Please check the [script](#using-gradio) below.

## ๐Ÿค– Try it on the web

Welcome to our web-based [**Tencent Hunyuan Bot**](https://hunyuan.tencent.com/bot/chat), where you can explore our innovative products! Just input the suggested prompts below or any other **imaginative prompts containing drawing-related keywords** to activate the Hunyuan text-to-image generation feature.  Unleash your creativity and create any picture you desire, **all for free!**

You can use simple prompts similar to natural language text

> ็”ปไธ€ๅช็ฉฟ็€่ฅฟ่ฃ…็š„็Œช
>

> draw a pig in a suit
>

> ็”Ÿๆˆไธ€ๅน…็”ป๏ผŒ่ต›ๅšๆœ‹ๅ…‹้ฃŽ๏ผŒ่ท‘่ฝฆ
> 

> generate a painting, cyberpunk style, sports car

or multi-turn language interactions to create the picture. 

> ็”ปไธ€ไธชๆœจๅˆถ็š„้ธŸ
>

> draw a wooden bird
>

> ๅ˜ๆˆ็Žป็’ƒ็š„
>

> turn into glass

## ๐Ÿ“‘ Open-source Plan

- Hunyuan-DiT (Text-to-Image Model)
  - [x] Inference 
  - [x] Checkpoints 
  - [x] Distillation Version
  - [x] TensorRT Version
  - [x] Training
  - [x] Lora
  - [ ] Controlnet (Pose, Canny, Depth, Tile)
  - [ ] IP-adapter
  - [ ] Hunyuan-DiT-XL checkpoints (0.7B model)
  - [ ] Caption model (Re-caption the raw image-text pairs)
- [DialogGen](https://github.com/Centaurusalpha/DialogGen) (Prompt Enhancement Model)
  - [x] Inference
- [X] Web Demo (Gradio) 
- [x] Multi-turn T2I Demo (Gradio)
- [X] Cli Demo 
- [X] ComfyUI
- [X] Diffusers
- [ ] WebUI


## Contents
- [Hunyuan-DiT](#hunyuan-dit--a-powerful-multi-resolution-diffusion-transformer-with-fine-grained-chinese-understanding)
  - [Abstract](#abstract)
  - [๐ŸŽ‰ Hunyuan-DiT Key Features](#-hunyuan-dit-key-features)
    - [Chinese-English Bilingual DiT Architecture](#chinese-english-bilingual-dit-architecture)
    - [Multi-turn Text2Image Generation](#multi-turn-text2image-generation)
  - [๐Ÿ“ˆ Comparisons](#-comparisons)
  - [๐ŸŽฅ Visualization](#-visualization)
  - [๐Ÿ“œ Requirements](#-requirements)
  - [๐Ÿ›  Dependencies and Installation](#%EF%B8%8F-dependencies-and-installation)
  - [๐Ÿงฑ Download Pretrained Models](#-download-pretrained-models)
  - [:truck: Training](#truck-training)
    - [Data Preparation](#data-preparation)
    - [Full Parameter Training](#full-parameter-training)
    - [LoRA](#lora)
  - [๐Ÿ”‘ Inference](#-inference)
    - [Using Gradio](#using-gradio)
    - [Using Diffusers](#using--diffusers)
    - [Using Command Line](#using-command-line)
    - [More Configurations](#more-configurations)
    - [Using ComfyUI](#using-comfyui)
  - [๐Ÿš€ Acceleration (for Linux)](#-acceleration-for-linux)
  - [๐Ÿ”— BibTeX](#-bibtex)

## **Abstract**

We present Hunyuan-DiT, a text-to-image diffusion transformer with fine-grained understanding of both English and Chinese. To construct Hunyuan-DiT, we carefully designed the transformer structure, text encoder, and positional encoding. We also build from scratch a whole data pipeline to update and evaluate data for iterative model optimization. For fine-grained language understanding, we train a Multimodal Large Language Model to refine the captions of the images. Finally, Hunyuan-DiT can perform multi-round multi-modal dialogue with users, generating and refining images according to the context.
Through our carefully designed holistic human evaluation protocol with more than 50 professional human evaluators, Hunyuan-DiT sets a new state-of-the-art in Chinese-to-image generation compared with other open-source models.


## ๐ŸŽ‰ **Hunyuan-DiT Key Features**
### **Chinese-English Bilingual DiT Architecture**
Hunyuan-DiT is a diffusion model in the latent space, as depicted in figure below. Following the Latent Diffusion Model, we use a pre-trained Variational Autoencoder (VAE) to compress the images into low-dimensional latent spaces and train a diffusion model to learn the data distribution with diffusion models. Our diffusion model is parameterized with a transformer. To encode the text prompts, we leverage a combination of pre-trained bilingual (English and Chinese) CLIP and multilingual T5 encoder.
<p align="center">
  <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/framework.png"  height=450>
</p>

### Multi-turn Text2Image Generation
Understanding natural language instructions and performing multi-turn interaction with users are important for a
text-to-image system. It can help build a dynamic and iterative creation process that bring the userโ€™s idea into reality
step by step. In this section, we will detail how we empower Hunyuan-DiT with the ability to perform multi-round
conversations and image generation. We train MLLM to understand the multi-round user dialogue
and output the new text prompt for image generation.
<p align="center">
  <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/mllm.png"  height=300>
</p>

## ๐Ÿ“ˆ Comparisons
In order to comprehensively compare the generation capabilities of HunyuanDiT and other models, we constructed a 4-dimensional test set, including Text-Image Consistency, Excluding AI Artifacts, Subject Clarity, Aesthetic. More than 50 professional evaluators performs the evaluation.

<p align="center">
<table> 
<thead> 
<tr> 
    <th rowspan="2">Model</th> <th rowspan="2">Open Source</th> <th>Text-Image Consistency (%)</th> <th>Excluding AI Artifacts (%)</th> <th>Subject Clarity (%)</th> <th rowspan="2">Aesthetics (%)</th> <th rowspan="2">Overall (%)</th> 

</tr> 

</thead> 

<tbody> 

<tr> 

    <td>SDXL</td> <td> โœ” </td> <td>64.3</td> <td>60.6</td> <td>91.1</td> <td>76.3</td> <td>42.7</td> 

</tr> 

<tr> 

    <td>PixArt-ฮฑ</td> <td> โœ”</td> <td>68.3</td> <td>60.9</td> <td>93.2</td> <td>77.5</td> <td>45.5</td> 

</tr> 

<tr> 

    <td>Playground 2.5</td> <td>โœ”</td> <td>71.9</td> <td>70.8</td> <td>94.9</td> <td>83.3</td> <td>54.3</td> 

</tr> 


<tr> 
    <td>SD 3</td> <td>&#10008</td> <td>77.1</td> <td>69.3</td> <td>94.6</td> <td>82.5</td> <td>56.7</td> 

    

</tr> 

<tr> 

    <td>MidJourney v6</td><td>&#10008</td> <td>73.5</td> <td>80.2</td> <td>93.5</td> <td>87.2</td> <td>63.3</td> 

</tr> 

<tr> 

    <td>DALL-E 3</td><td>&#10008</td> <td>83.9</td> <td>80.3</td> <td>96.5</td> <td>89.4</td> <td>71.0</td> 

</tr> 

<tr style="font-weight: bold; background-color: #f2f2f2;"> 

    <td>Hunyuan-DiT</td><td>โœ”</td> <td>74.2</td> <td>74.3</td> <td>95.4</td> <td>86.6</td> <td>59.0</td> 

</tr>

</tbody>

</table>

</p>


## ๐ŸŽฅ Visualization

* **Chinese Elements**
<p align="center">
  <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/chinese elements understanding.png"  height=220>
</p>

* **Long Text Input**


<p align="center">
  <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/long text understanding.png"  height=310>
</p>

* **Multi-turn Text2Image Generation**

https://github.com/Tencent/tencent.github.io/assets/27557933/94b4dcc3-104d-44e1-8bb2-dc55108763d1



---

## ๐Ÿ“œ Requirements

This repo consists of DialogGen (a prompt enhancement model) and Hunyuan-DiT (a text-to-image model).

The following table shows the requirements for running the models (batch size = 1):

|          Model          | --load-4bit (DialogGen) | GPU Peak Memory |       GPU       |
|:-----------------------:|:-----------------------:|:---------------:|:---------------:|
| DialogGen + Hunyuan-DiT |            โœ˜            |       32G       |      A100       |
| DialogGen + Hunyuan-DiT |            โœ”            |       22G       |      A100       |
|       Hunyuan-DiT       |            -            |       11G       |      A100       |
|       Hunyuan-DiT       |            -            |       14G       | RTX3090/RTX4090 |

* An NVIDIA GPU with CUDA support is required. 
  * We have tested V100 and A100 GPUs.
  * **Minimum**: The minimum GPU memory required is 11GB.
  * **Recommended**: We recommend using a GPU with 32GB of memory for better generation quality.
* Tested operating system: Linux

## ๐Ÿ› ๏ธ Dependencies and Installation

Begin by cloning the repository:
```shell

git clone https://github.com/tencent/HunyuanDiT

cd HunyuanDiT

```

### Installation Guide for Linux

We provide an `environment.yml` file for setting up a Conda environment.
Conda's installation instructions are available [here](https://docs.anaconda.com/free/miniconda/index.html).

```shell

# 1. Prepare conda environment

conda env create -f environment.yml



# 2. Activate the environment

conda activate HunyuanDiT



# 3. Install pip dependencies

python -m pip install -r requirements.txt



# 4. (Optional) Install flash attention v2 for acceleration (requires CUDA 11.6 or above)

python -m pip install git+https://github.com/Dao-AILab/flash-attention.git@v2.1.2.post3

```

## ๐Ÿงฑ Download Pretrained Models
To download the model, first install the huggingface-cli. (Detailed instructions are available [here](https://huggingface.co/docs/huggingface_hub/guides/cli).)

```shell

python -m pip install "huggingface_hub[cli]"

```

Then download the model using the following commands:

```shell

# Create a directory named 'ckpts' where the model will be saved, fulfilling the prerequisites for running the demo.

mkdir ckpts

# Use the huggingface-cli tool to download the model.

# The download time may vary from 10 minutes to 1 hour depending on network conditions.

huggingface-cli download Tencent-Hunyuan/HunyuanDiT --local-dir ./ckpts

```

<details>
<summary>๐Ÿ’กTips for using huggingface-cli (network problem)</summary>

##### 1. Using HF-Mirror

If you encounter slow download speeds in China, you can try a mirror to speed up the download process. For example,

```shell

HF_ENDPOINT=https://hf-mirror.com huggingface-cli download Tencent-Hunyuan/HunyuanDiT --local-dir ./ckpts

```

##### 2. Resume Download

`huggingface-cli` supports resuming downloads. If the download is interrupted, you can just rerun the download 
command to resume the download process.

Note: If an `No such file or directory: 'ckpts/.huggingface/.gitignore.lock'` like error occurs during the download 
process, you can ignore the error and rerun the download command.

</details>

---

All models will be automatically downloaded. For more information about the model, visit the Hugging Face repository [here](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT).

|       Model        | #Params |                                      Huggingface Download URL                                           |                                      Tencent Cloud Download URL                                 |
|:------------------:|:-------:|:-------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:|
|        mT5         |  1.6B   |               [mT5](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/mt5)                |               [mT5](https://dit.hunyuan.tencent.com/download/HunyuanDiT/mt5.zip)                |
|        CLIP        |  350M   |        [CLIP](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/clip_text_encoder)        |        [CLIP](https://dit.hunyuan.tencent.com/download/HunyuanDiT/clip_text_encoder.zip)        |
|      Tokenizer     |  -      |     [Tokenizer](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/tokenizer)              |      [Tokenizer](https://dit.hunyuan.tencent.com/download/HunyuanDiT/tokenizer.zip)             |
|     DialogGen      |  7.0B   |           [DialogGen](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/dialoggen)            |           [DialogGen](https://dit.hunyuan.tencent.com/download/HunyuanDiT/dialoggen.zip)        |
| sdxl-vae-fp16-fix  |   83M   | [sdxl-vae-fp16-fix](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/sdxl-vae-fp16-fix)  | [sdxl-vae-fp16-fix](https://dit.hunyuan.tencent.com/download/HunyuanDiT/sdxl-vae-fp16-fix.zip)  |
|    Hunyuan-DiT     |  1.5B   |          [Hunyuan-DiT](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/model)           |          [Hunyuan-DiT](https://dit.hunyuan.tencent.com/download/HunyuanDiT/model.zip)           |
|    Data demo       |  -      |                                    -                                                                    |      [Data demo](https://dit.hunyuan.tencent.com/download/HunyuanDiT/data_demo.zip)             |

## :truck: Training

### Data Preparation

  Refer to the commands below to prepare the training data. 
  
  1. Install dependencies
  
      We offer an efficient data management library, named IndexKits, supporting the management of reading hundreds of millions of data during training, see more in [docs](./IndexKits/README.md).

      ```shell

      # 1 Install dependencies

      cd HunyuanDiT

      pip install -e ./IndexKits

     ```

  2. Data download 

  

     Feel free to download the [data demo](https://dit.hunyuan.tencent.com/download/HunyuanDiT/data_demo.zip).

     ```shell

     # 2 Data download

     wget -O ./dataset/data_demo.zip https://dit.hunyuan.tencent.com/download/HunyuanDiT/data_demo.zip

     unzip ./dataset/data_demo.zip -d ./dataset

     mkdir ./dataset/porcelain/arrows ./dataset/porcelain/jsons

     ```

  3. Data conversion 

  

     Create a CSV file for training data with the fields listed in the table below.

    

     |    Fields       | Required  |  Description     |   Example   |

     |:---------------:| :------:  |:----------------:|:-----------:|

     |   `image_path`  | Required  |  image path               |     `./dataset/porcelain/images/0.png`        | 

     |   `text_zh`     | Required  |    text               |  ้’่Šฑ็“ท้ฃŽๆ ผ๏ผŒไธ€ๅช่“่‰ฒ็š„้ธŸๅ„ฟ็ซ™ๅœจ่“่‰ฒ็š„่Šฑ็“ถไธŠ๏ผŒๅ‘จๅ›ด็‚น็ผ€็€็™ฝ่‰ฒ่Šฑๆœต๏ผŒ่ƒŒๆ™ฏๆ˜ฏ็™ฝ่‰ฒ | 

     |   `md5`         | Optional  |    image md5 (Message Digest Algorithm 5)  |    `d41d8cd98f00b204e9800998ecf8427e`         | 

     |   `width`       | Optional  |    image width    |     `1024 `       | 

     |   `height`      | Optional  |    image height   |    ` 1024 `       | 

     

     > โš ๏ธ Optional fields like MD5, width, and height can be omitted. If omitted, the script below will automatically calculate them. This process can be time-consuming when dealing with large-scale training data.

  

     We utilize [Arrow](https://github.com/apache/arrow) for training data format, offering a standard and efficient in-memory data representation. A conversion script is provided to transform CSV files into Arrow format.

     ```shell  

     # 3 Data conversion 

     python ./hydit/data_loader/csv2arrow.py ./dataset/porcelain/csvfile/image_text.csv ./dataset/porcelain/arrows

     ```

  

  4. Data Selection and Configuration File Creation 

     

      We configure the training data through YAML files. In these files, you can set up standard data processing strategies for filtering, copying, deduplicating, and more regarding the training data. For more details, see [docs](IndexKits/docs/MakeDataset.md).

  

      For a sample file, please refer to [file](./dataset/yamls/porcelain.yaml). For a full parameter configuration file, see [file](./IndexKits/docs/MakeDataset.md).

  

     

  5. Create training data index file using YAML file.

    

     ```shell

      # Single Resolution Data Preparation

      cd /HunyuanDiT

      idk base -c dataset/yamls/porcelain.yaml -t dataset/porcelain/jsons/porcelain.json

   

      # Multi Resolution Data Preparation     

      idk multireso -c dataset/yamls/porcelain_mt.yaml -t dataset/porcelain/jsons/porcelain_mt.json

      ```

   

  The directory structure for `porcelain` dataset is:


  ```shell

   cd ./dataset

  

   porcelain

      โ”œโ”€โ”€images/  (image files)

      โ”‚  โ”œโ”€โ”€0.png

      โ”‚  โ”œโ”€โ”€1.png

      โ”‚  โ”œโ”€โ”€......

      โ”œโ”€โ”€csvfile/  (csv files containing text-image pairs)

      โ”‚  โ”œโ”€โ”€image_text.csv

      โ”œโ”€โ”€arrows/  (arrow files containing all necessary training data)

      โ”‚  โ”œโ”€โ”€00000.arrow

      โ”‚  โ”œโ”€โ”€00001.arrow

      โ”‚  โ”œโ”€โ”€......

      โ”œโ”€โ”€jsons/  (final training data index files which read data from arrow files during training)

      โ”‚  โ”œโ”€โ”€porcelain.json

      โ”‚  โ”œโ”€โ”€porcelain_mt.json

   ```

### Full-parameter Training
 
  To leverage DeepSpeed in training, you have the flexibility to control **single-node** / **multi-node** training by adjusting parameters such as `--hostfile` and `--master_addr`. For more details, see [link](https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node).

  ```shell

  # Single Resolution Data Preparation

  PYTHONPATH=./ sh hydit/train.sh --index-file dataset/porcelain/jsons/porcelain.json

  

  # Multi Resolution Data Preparation

  PYTHONPATH=./ sh hydit/train.sh --index-file dataset/porcelain/jsons/porcelain.json --multireso --reso-step 64

  ```

### LoRA

We provide training and inference scripts for LoRA, detailed in the [guidances](./lora/README.md). 


## ๐Ÿ”‘ Inference

### Using Gradio

Make sure the conda environment is activated before running the following command.

```shell

# By default, we start a Chinese UI.

python app/hydit_app.py



# Using Flash Attention for acceleration.

python app/hydit_app.py --infer-mode fa



# You can disable the enhancement model if the GPU memory is insufficient.

# The enhancement will be unavailable until you restart the app without the `--no-enhance` flag. 

python app/hydit_app.py --no-enhance



# Start with English UI

python app/hydit_app.py --lang en



# Start a multi-turn T2I generation UI. 

# If your GPU memory is less than 32GB, use '--load-4bit' to enable 4-bit quantization, which requires at least 22GB of memory.

python app/multiTurnT2I_app.py

```
Then the demo can be accessed through http://0.0.0.0:443. It should be noted that the 0.0.0.0 here needs to be X.X.X.X with your server IP.

### Using ๐Ÿค— Diffusers

Please install PyTorch version 2.0 or higher in advance to satisfy the requirements of the specified version of the diffusers library.  

Install ๐Ÿค— diffusers, ensuring that the version is at least 0.28.1:

```shell

pip install git+https://github.com/huggingface/diffusers.git

```
or
```shell

pip install diffusers

```

You can generate images with both Chinese and English prompts using the following Python script:
```py

import torch

from diffusers import HunyuanDiTPipeline



pipe = HunyuanDiTPipeline.from_pretrained("Tencent-Hunyuan/HunyuanDiT-Diffusers", torch_dtype=torch.float16)

pipe.to("cuda")



# You may also use English prompt as HunyuanDiT supports both English and Chinese

# prompt = "An astronaut riding a horse"

prompt = "ไธ€ไธชๅฎ‡่ˆชๅ‘˜ๅœจ้ช‘้ฉฌ"

image = pipe(prompt).images[0]

```
You can use our distilled model to generate images even faster:

```py

import torch

from diffusers import HunyuanDiTPipeline



pipe = HunyuanDiTPipeline.from_pretrained("Tencent-Hunyuan/HunyuanDiT-Diffusers-Distilled", torch_dtype=torch.float16)

pipe.to("cuda")



# You may also use English prompt as HunyuanDiT supports both English and Chinese

# prompt = "An astronaut riding a horse"

prompt = "ไธ€ไธชๅฎ‡่ˆชๅ‘˜ๅœจ้ช‘้ฉฌ"

image = pipe(prompt, num_inference_steps=25).images[0]

```
More details can be found in [HunyuanDiT-Diffusers-Distilled](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-Diffusers-Distilled)

### Using Command Line

We provide several commands to quick start: 

```shell

# Prompt Enhancement + Text-to-Image. Torch mode

python sample_t2i.py --prompt "ๆธ”่ˆŸๅ”ฑๆ™š"



# Only Text-to-Image. Torch mode

python sample_t2i.py --prompt "ๆธ”่ˆŸๅ”ฑๆ™š" --no-enhance



# Only Text-to-Image. Flash Attention mode

python sample_t2i.py --infer-mode fa --prompt "ๆธ”่ˆŸๅ”ฑๆ™š"



# Generate an image with other image sizes.

python sample_t2i.py --prompt "ๆธ”่ˆŸๅ”ฑๆ™š" --image-size 1280 768



# Prompt Enhancement + Text-to-Image. DialogGen loads with 4-bit quantization, but it may loss performance.

python sample_t2i.py --prompt "ๆธ”่ˆŸๅ”ฑๆ™š"  --load-4bit



```

More example prompts can be found in [example_prompts.txt](example_prompts.txt)

### More Configurations

We list some more useful configurations for easy usage:

|    Argument     |  Default  |                     Description                     |
|:---------------:|:---------:|:---------------------------------------------------:|
|   `--prompt`    |   None    |        The text prompt for image generation         |
| `--image-size`  | 1024 1024 |           The size of the generated image           |
|    `--seed`     |    42     |        The random seed for generating images        |
| `--infer-steps` |    100    |          The number of steps for sampling           |
|  `--negative`   |     -     |      The negative prompt for image generation       |
| `--infer-mode`  |   torch   |       The inference mode (torch, fa, or trt)        |
|   `--sampler`   |   ddpm    |    The diffusion sampler (ddpm, ddim, or dpmms)     |
| `--no-enhance`  |   False   |        Disable the prompt enhancement model         |
| `--model-root`  |   ckpts   |     The root directory of the model checkpoints     |
|  `--load-key`   |    ema    | Load the student model or EMA model (ema or module) |
|  `--load-4bit`  |   Fasle   |     Load DialogGen model with 4bit quantization     |

### Using ComfyUI

We provide several commands to quick start: 

```shell

# Download comfyui code

git clone https://github.com/comfyanonymous/ComfyUI.git



# Install torch, torchvision, torchaudio

pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu117



# Install Comfyui essential python package

cd ComfyUI

pip install -r requirements.txt



# ComfyUI has been successfully installed!



# Download model weight as before or link the existing model folder to ComfyUI.

python -m pip install "huggingface_hub[cli]"

mkdir models/hunyuan

huggingface-cli download Tencent-Hunyuan/HunyuanDiT --local-dir ./models/hunyuan/ckpts



# Move to the ComfyUI custom_nodes folder and copy comfyui-hydit folder from HunyuanDiT Repo.

cd custom_nodes

cp -r ${HunyuanDiT}/comfyui-hydit ./

cd comfyui-hydit



# Install some essential python Package.

pip install -r requirements.txt



# Our tool has been successfully installed!



# Go to ComfyUI main folder

cd ../..

# Run the ComfyUI Lauch command

python main.py --listen --port 80



# Running ComfyUI successfully!

```
More details can be found in [ComfyUI README](comfyui-hydit/README.md)

## ๐Ÿš€ Acceleration (for Linux)

- We provide TensorRT version of HunyuanDiT for inference acceleration (faster than flash attention).
See [Tencent-Hunyuan/TensorRT-libs](https://huggingface.co/Tencent-Hunyuan/TensorRT-libs) for more details.

- We provide Distillation version of HunyuanDiT for inference acceleration.
See [Tencent-Hunyuan/Distillation](https://huggingface.co/Tencent-Hunyuan/Distillation) for more details.

## ๐Ÿ”— BibTeX
If you find [Hunyuan-DiT](https://arxiv.org/abs/2405.08748) or [DialogGen](https://arxiv.org/abs/2403.08857) useful for your research and applications, please cite using this BibTeX:

```BibTeX

@misc{li2024hunyuandit,

      title={Hunyuan-DiT: A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding}, 

      author={Zhimin Li and Jianwei Zhang and Qin Lin and Jiangfeng Xiong and Yanxin Long and Xinchi Deng and Yingfang Zhang and Xingchao Liu and Minbin Huang and Zedong Xiao and Dayou Chen and Jiajun He and Jiahao Li and Wenyue Li and Chen Zhang and Rongwei Quan and Jianxiang Lu and Jiabin Huang and Xiaoyan Yuan and Xiaoxiao Zheng and Yixuan Li and Jihong Zhang and Chao Zhang and Meng Chen and Jie Liu and Zheng Fang and Weiyan Wang and Jinbao Xue and Yangyu Tao and Jianchen Zhu and Kai Liu and Sihuan Lin and Yifu Sun and Yun Li and Dongdong Wang and Mingtao Chen and Zhichao Hu and Xiao Xiao and Yan Chen and Yuhong Liu and Wei Liu and Di Wang and Yong Yang and Jie Jiang and Qinglin Lu},

      year={2024},

      eprint={2405.08748},

      archivePrefix={arXiv},

      primaryClass={cs.CV}

}



@article{huang2024dialoggen,

  title={DialogGen: Multi-modal Interactive Dialogue System for Multi-turn Text-to-Image Generation},

  author={Huang, Minbin and Long, Yanxin and Deng, Xinchi and Chu, Ruihang and Xiong, Jiangfeng and Liang, Xiaodan and Cheng, Hong and Lu, Qinglin and Liu, Wei},

  journal={arXiv preprint arXiv:2403.08857},

  year={2024}

}

```

## Start History

<a href="https://star-history.com/#Tencent/HunyuanDiT&Date">
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=Tencent/HunyuanDiT&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=Tencent/HunyuanDiT&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=Tencent/HunyuanDiT&type=Date" />
 </picture>
</a>