--- license: other license_name: tencent-hunyuan-community license_link: https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/blob/main/LICENSE.txt language: - en --- ## Using HunyuanDiT IP-Adapter ### Instructions The dependencies and installation are basically the same as the base model, and we use the module weights for training. Download the model using the following commands: ```bash cd HunyuanDiT # Use the huggingface-cli tool to download the model. # We recommend using module weights as the base model for IP-Adapter inference, as our provided pretrained weights are trained on them. huggingface-cli download Tencent-Hunyuan/IP-Adapter/ipa.pt --local-dir ./ckpts/t2i/model huggingface-cli download Tencent-Hunyuan/IP-Adapter/clip_img_encoder.pt --local-dir ./ckpts/t2i/model/clip_img_encoder # Quick start python3 sample_ipadapter.py --infer-mode fa --ref-image-path ipadapter/input/tiger.png --i-scale 1.0 --prompt 一只老虎在海洋中游泳,背景是海洋。构图方式是居中构图,呈现了动漫风格和文化,营造了平静的氛围。 --infer-steps 100 --is-ipa True --load-key module ``` Examples of ref input and IP-Adapter results are as follows:
Ref Input
Image 0 Image 1 Image 2
IP-Adapter Output
一只老虎在奔跑。
(A tiger running.)
一个卡通美女,抱着一只小猪。
(A cartoon beauty holding a little pig.)
一片紫色薰衣草地。
(A purple lavender field.)
Image 3 Image 4 Image 5
一只老虎在看书。
(A tiger is reading a book.)
一个卡通美女,穿着绿色衣服。
(A cartoon beauty wearing green clothes.)
一片紫色薰衣草地,有一只可爱的小狗。
(A purple lavender field with a cute puppy.)
Image 3 Image 4 Image 5
一只老虎在咆哮。
(A tiger is roaring.)
一个卡通美女,戴着墨镜。
(A cartoon beauty wearing sunglasses.)
水墨风格,一片紫色薰衣草地。
(Ink style. A purple lavender field.)
Image 3 Image 4 Image 5
### Training We provide base model weights for IP-Adapter training, you can use `module` weights for IP-Adapter training. Here is an example, we load the `module` weights into the main model and conduct IP-Adapter training. If apply multiple resolution training, you need to add the `--multireso` and `--reso-step 64` parameter. ```bash task_flag="IP_Adapter" # the task flag is used to identify folders. # checkpoint root for resume index_file=path/to/your/index_file results_dir=./log_EXP # save root for results batch_size=1 # training batch size image_size=1024 # training image resolution grad_accu_steps=1 # gradient accumulation warmup_num_steps=0 # warm-up steps lr=0.0001 # learning rate ckpt_every=10 # create a ckpt every a few steps. ckpt_latest_every=10000 # create a ckpt named `latest.pt` every a few steps. ckpt_every_n_epoch=2 # create a ckpt every a few epochs. epochs=8 # total training epochs PYTHONPATH=. \ sh $(dirname "$0")/run_g_ipadapter.sh \ --task-flag ${task_flag} \ --noise-schedule scaled_linear --beta-start 0.00085 --beta-end 0.018 \ --predict-type v_prediction \ --multireso \ --reso-step 64 \ --uncond-p 0.22 \ --uncond-p-t5 0.22\ --uncond-p-img 0.05\ --index-file ${index_file} \ --random-flip \ --lr ${lr} \ --batch-size ${batch_size} \ --image-size ${image_size} \ --global-seed 999 \ --grad-accu-steps ${grad_accu_steps} \ --warmup-num-steps ${warmup_num_steps} \ --use-flash-attn \ --use-fp16 \ --extra-fp16 \ --results-dir ${results_dir} \ --resume\ --resume-module-root ckpts/t2i/model/pytorch_model_module.pt \ --epochs ${epochs} \ --ckpt-every ${ckpt_every} \ --ckpt-latest-every ${ckpt_latest_every} \ --ckpt-every-n-epoch ${ckpt_every_n_epoch} \ --log-every 10 \ --deepspeed \ --use-zero-stage 2 \ --gradient-checkpointing \ --no-strict \ --training-parts ipadapter \ --is-ipa True \ --resume-ipa True \ --resume-ipa-root ckpts/t2i/model/ipa.pt \ "$@" ``` Recommended parameter settings | Parameter | Description | Recommended Parameter Value | Note| |:---------------:|:---------:|:---------------------------------------------------:|:--:| | `--batch-size` | Training batch size | 1 | Depends on GPU memory| | `--grad-accu-steps` | Size of gradient accumulation | 2 | - | | `--lr` | Learning rate | 0.0001 | - | | `--training-parts` | be trained parameters when training IP-Adapter | ipadapter | - | | `--is-ipa` | training IP-Adapter or not | True | - | | `--resume-ipa-root` | resume ipa model or not when training | ipa model path | - | ### Inference Use the following command line for inference. a. Use the parameter float i-scale to specify the weight of IP-Adapter reference image. The bigger parameter indicates more relativity to reference image. ```bash python3 sample_ipadapter.py --infer-mode fa --ref-image-path ipadapter/input/beach.png --i-scale 1.0 --prompt 一只老虎在海洋中游泳,背景是海洋。构图方式是居中构图,呈现了动漫风格和文化,营造了平静的氛围。 --infer-steps 100 --is-ipa True --load-key module ```