--- language: - en license: apache-2.0 datasets: - HuggingFaceTB/cosmopedia - EleutherAI/proof-pile-2 - bigcode/the-stack-dedup - math-ai/AutoMathText metrics: - accuracy - code_eval model-index: - name: Mistral_Pro_8B_v0.1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 62.2 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TencentARC/Mistral_Pro_8B_v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.13 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TencentARC/Mistral_Pro_8B_v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 61.74 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TencentARC/Mistral_Pro_8B_v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 49.32 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TencentARC/Mistral_Pro_8B_v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 76.8 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TencentARC/Mistral_Pro_8B_v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 34.19 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TencentARC/Mistral_Pro_8B_v0.1 name: Open LLM Leaderboard --- # Mistral-Pro-8B Model Card ## Model Description Mistral-Pro is a progressive version of the original [Mistral](https://huggingface.co/mistralai/Mistral-7B-v0.1) model, enhanced by the addition of Transformer blocks. It specializes in integrating both general language understanding and domain-specific knowledge, particularly in programming and mathematics. ## Development and Training Developed by Tencent's ARC Lab, Mistral-Pro is an 8 billion parameter model. It's an expansion of Mistral-7B, further trained on code and math corpora. ## Intended Use This model is designed for a wide range of NLP tasks, with a focus on programming, mathematics, and general language tasks. It suits scenarios requiring integration of natural and programming languages. ## Performance Mistral_Pro_8B_v0.1 showcases superior performance on a range of benchmarks. It enhances the code and math performance of Mistral. Furthermore, it matches the performance of the recently dominant model, [Gemma](https://huggingface.co/google/gemma-7b). ### Overall Performance on Languages, math and code tasks | Model | ARC | Hellaswag | MMLU | TruthfulQA | Winogrande | GSM8K | HumanEval | | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | | Gemma-7B | 61.9 | 82.2 | 64.6 | 44.8 | 79.0 | 50.9 | 32.3 | | Mistral-7B | 60.8 | 83.3 | 62.7 | 42.6 | 78.0 | 39.2 | 28.7 | | Mistral_Pro_8B_v0.1 | 63.2 | 82.6 | 60.6 | 48.3 | 78.9 | 50.6 | 32.9 | ## Limitations While Mistral-Pro addresses some limitations of previous models in the series, it may still encounter challenges specific to highly specialized domains or tasks. ## Ethical Considerations Users should be aware of potential biases in the model and use it responsibly, considering its impact on various applications. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TencentARC__Mistral_Pro_8B_v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |61.06| |AI2 Reasoning Challenge (25-Shot)|62.20| |HellaSwag (10-Shot) |82.13| |MMLU (5-Shot) |61.74| |TruthfulQA (0-shot) |49.32| |Winogrande (5-shot) |76.80| |GSM8k (5-shot) |34.19|