Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: stabilityai/stable-diffusion-xl-base-1.0
|
4 |
+
tags:
|
5 |
+
- art
|
6 |
+
- t2i-adapter
|
7 |
+
- stable-diffusion
|
8 |
+
- image-to-image
|
9 |
+
---
|
10 |
+
|
11 |
+
# T2I-Adapter-SDXL - Depth-MiDaS
|
12 |
+
|
13 |
+
T2I Adapter is a network providing additional conditioning to stable diffusion. Each t2i checkpoint takes a different type of conditioning as input and is used with a specific base stable diffusion checkpoint.
|
14 |
+
|
15 |
+
This checkpoint provides conditioning on canny for the StableDiffusionXL checkpoint.
|
16 |
+
|
17 |
+
## Model Details
|
18 |
+
- **Developed by:** T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models
|
19 |
+
- **Model type:** Diffusion-based text-to-image generation model
|
20 |
+
- **Language(s):** English
|
21 |
+
- **License:** Apache 2.0
|
22 |
+
- **Resources for more information:** [GitHub Repository](https://github.com/TencentARC/T2I-Adapter), [Paper](https://arxiv.org/abs/2302.08453).
|
23 |
+
- **Cite as:**
|
24 |
+
|
25 |
+
@misc{
|
26 |
+
title={T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models},
|
27 |
+
author={Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, Xiaohu Qie},
|
28 |
+
year={2023},
|
29 |
+
eprint={2302.08453},
|
30 |
+
archivePrefix={arXiv},
|
31 |
+
primaryClass={cs.CV}
|
32 |
+
}
|
33 |
+
|
34 |
+
### Checkpoints
|
35 |
+
|
36 |
+
| Model Name | Control Image Overview| Control Image Example | Generated Image Example |
|
37 |
+
|---|---|---|---|
|
38 |
+
|[Adapter/t2iadapter_canny_sdxlv1](https://huggingface.co/Adapter/t2iadapter_canny_sdxlv1)<br/> *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href=""><img width="64" style="margin:0;padding:0;" src=""/></a>|<a href=""><img width="64" src=""/></a>|
|
39 |
+
|[Adapter/t2iadapter_sketch_sdxlv1](https://huggingface.co/Adapter/t2iadapter_sketch_sdxlv1)<br/> *Trained with [PidiNet](https://github.com/zhuoinoulu/pidinet) edge detection* | A hand-drawn monochrome image with white outlines on a black background.|<a href=""><img width="64" style="margin:0;padding:0;" src=""/></a>|<a href=""><img width="64" src=""/></a>|
|
40 |
+
|[Adapter/t2iadapter_depth_sdxlv1](https://huggingface.co/Adapter/t2iadapter_depth_sdxlv1)<br/> *Trained with Midas depth estimation* | A grayscale image with black representing deep areas and white representing shallow areas.|<a href=""><img width="64" src=""/></a>|<a href=""><img width="64" src=""/></a>|
|
41 |
+
|[Adapter/t2iadapter_openpose_sdxlv1](https://huggingface.co/Adapter/t2iadapter_openpose_sdxlv1)<br/> *Trained with OpenPose bone image* | A [OpenPose bone](https://github.com/CMU-Perceptual-Computing-Lab/openpose) image.|<a href=""><img width="64" src=""/></a>|<a href=""><img width="64" src=""/></a>|
|
42 |
+
|
43 |
+
|
44 |
+
## Example
|
45 |
+
|
46 |
+
To get started, first install the required dependencies:
|
47 |
+
|
48 |
+
```bash
|
49 |
+
pip install git+https://github.com/huggingface/diffusers.git@t2iadapterxl # for now
|
50 |
+
pip install git+https://github.com/patrickvonplaten/controlnet_aux.git # for conditioning models and detectors
|
51 |
+
pip install transformers accelerate safetensors
|
52 |
+
```
|
53 |
+
|
54 |
+
1. Images are first downloaded into the appropriate *control image* format.
|
55 |
+
2. The *control image* and *prompt* are passed to the [`StableDiffusionXLAdapterPipeline`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py#L125).
|
56 |
+
|
57 |
+
Let's have a look at a simple example using the [Canny Adapter](https://huggingface.co/Adapter/t2iadapter_canny_sdxlv1).
|
58 |
+
|
59 |
+
```py
|
60 |
+
from diffusers import StableDiffusionXLAdapterPipeline, T2IAdapter, EulerAncestralDiscreteScheduler
|
61 |
+
from diffusers.utils import load_image, make_image_grid
|
62 |
+
from controlnet_aux.zoe import MidasDetector
|
63 |
+
|
64 |
+
# load adapter
|
65 |
+
adapter = T2IAdapter.from_pretrained(
|
66 |
+
"Adapter/t2i-adapter-depth-midas-sdxl-1.0", torch_dtype=torch.float16, varient="fp16"
|
67 |
+
).to("cuda")
|
68 |
+
|
69 |
+
# load euler_a scheduler
|
70 |
+
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
|
71 |
+
euler_a = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
72 |
+
vae= AutoencoderKL.from_pretrained(
|
73 |
+
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
74 |
+
)
|
75 |
+
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
|
76 |
+
model_id, vae=vae, adapter=adapter, scheduler=euler_a, torch_dtype=torch.float16, variant="fp16",
|
77 |
+
).to("cuda")
|
78 |
+
pipe.enable_xformers_memory_efficient_attention()
|
79 |
+
|
80 |
+
|
81 |
+
midas_depth = MidasDetector.from_pretrained(
|
82 |
+
"valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large"
|
83 |
+
).to("cuda")
|
84 |
+
|
85 |
+
|
86 |
+
url = "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/test_imgs/cyber.png"
|
87 |
+
image = load_image(url)
|
88 |
+
image = midas_depth(
|
89 |
+
image, detect_resolution=512, image_resolution=1024
|
90 |
+
).resize((896, 1152))
|
91 |
+
|
92 |
+
prompt = "a robot, mount fuji in the background, 4k photo, highly detailed"
|
93 |
+
negative_prompt = "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured"
|
94 |
+
|
95 |
+
gen_images = pipe(
|
96 |
+
prompt=prompt,
|
97 |
+
negative_prompt=negative_prompt,
|
98 |
+
image=image,
|
99 |
+
num_inference_steps=30,
|
100 |
+
adapter_conditioning_scale=1,
|
101 |
+
cond_tau=1
|
102 |
+
).images
|
103 |
+
gen_images[0]
|
104 |
+
```
|