File size: 3,197 Bytes
4c1ef54
 
 
 
 
 
22dfe7b
4c1ef54
 
 
22dfe7b
4c1ef54
 
 
 
 
 
22dfe7b
4c1ef54
 
 
 
 
 
11fd234
4c1ef54
 
 
 
 
 
 
 
 
0c551ce
11fd234
4c1ef54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11fd234
4c1ef54
 
 
 
 
0c551ce
 
4c1ef54
 
 
 
 
0c551ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c1ef54
 
 
 
22dfe7b
4c1ef54
 
22dfe7b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan-v2
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan-v2
      config: all
      split: train
      args: all
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.82
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilhubert-finetuned-gtzan

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7819
- Accuracy: 0.82

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.3
- num_epochs: 25

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.286         | 1.0   | 113  | 2.2792          | 0.26     |
| 2.1863        | 2.0   | 226  | 2.1408          | 0.34     |
| 1.9386        | 3.0   | 339  | 1.8744          | 0.48     |
| 1.6908        | 4.0   | 452  | 1.6502          | 0.57     |
| 1.5259        | 5.0   | 565  | 1.4149          | 0.72     |
| 1.1279        | 6.0   | 678  | 1.2700          | 0.62     |
| 1.2204        | 7.0   | 791  | 0.9902          | 0.75     |
| 0.861         | 8.0   | 904  | 0.8020          | 0.8      |
| 0.8153        | 9.0   | 1017 | 0.7291          | 0.8      |
| 0.3983        | 10.0  | 1130 | 0.7304          | 0.8      |
| 0.2209        | 11.0  | 1243 | 0.6960          | 0.79     |
| 0.2523        | 12.0  | 1356 | 0.5783          | 0.83     |
| 0.1267        | 13.0  | 1469 | 0.5613          | 0.83     |
| 0.0468        | 14.0  | 1582 | 0.7976          | 0.8      |
| 0.025         | 15.0  | 1695 | 0.8478          | 0.81     |
| 0.0158        | 16.0  | 1808 | 0.7448          | 0.8      |
| 0.0706        | 17.0  | 1921 | 0.7183          | 0.83     |
| 0.0096        | 18.0  | 2034 | 0.7532          | 0.82     |
| 0.0076        | 19.0  | 2147 | 0.7907          | 0.81     |
| 0.0354        | 20.0  | 2260 | 0.7120          | 0.83     |
| 0.0063        | 21.0  | 2373 | 0.7525          | 0.83     |
| 0.0055        | 22.0  | 2486 | 0.7647          | 0.82     |
| 0.0049        | 23.0  | 2599 | 0.7945          | 0.82     |
| 0.0048        | 24.0  | 2712 | 0.7982          | 0.82     |
| 0.0321        | 25.0  | 2825 | 0.7819          | 0.82     |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1