TeslaYang123 nielsr HF staff commited on
Commit
e53113b
·
verified ·
1 Parent(s): d88b4d5

Add Model Card and Metadata (#1)

Browse files

- Add Model Card and Metadata (66b25cf4b5bcd480c08eba6f12de396831f42dc6)


Co-authored-by: Niels Rogge <nielsr@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +43 -2
README.md CHANGED
@@ -1,2 +1,43 @@
1
- Here are the official checkpoints for [ICLR2025] [CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes](https://arxiv.org/pdf/2411.00771).
2
- Feel free to visit our [code release](https://github.com/DekuLiuTesla/CityGaussian) and our [project page](https://dekuliutesla.github.io/CityGaussianV2).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: image-to-3d
3
+ license: cc-by-nc-sa-4.0
4
+ ---
5
+
6
+ # CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes
7
+
8
+ This model, presented in [CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes](https://arxiv.org/pdf/2411.00771), offers efficient and high-fidelity 3D reconstruction of large-scale scenes. It addresses challenges in geometric accuracy and scalability by utilizing a decomposed-gradient-based densification and depth regression technique, along with an elongation filter to mitigate Gaussian count explosion. CityGaussianV2 achieves significant improvements in speed, memory usage, and visual quality compared to previous methods.
9
+
10
+ <p align="center">
11
+ <img width="460" height="300" src="assets/demo.gif">
12
+ </p>
13
+
14
+ Project page: [https://dekuliutesla.github.io/CityGaussianV2/](https://dekuliutesla.github.io/CityGaussianV2/)
15
+
16
+ Code: [https://github.com/DekuLiuTesla/CityGaussian](https://github.com/DekuLiuTesla/CityGaussian)
17
+
18
+ **Checkpoints:** Checkpoints are available via Baidu Netdisk and Hugging Face (links provided in the original README).
19
+
20
+
21
+ ## Citation
22
+ ```latex
23
+ @misc{liu2024citygaussianv2efficientgeometricallyaccurate,
24
+ title={CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes},
25
+ author={Yang Liu and Chuanchen Luo and Zhongkai Mao and Junran Peng and Zhaoxiang Zhang},
26
+ year={2024},
27
+ eprint={2411.00771},
28
+ archivePrefix={arXiv},
29
+ primaryClass={cs.CV},
30
+ url={https://arxiv.org/abs/2411.00771},
31
+ }
32
+ ```
33
+
34
+ ```latex
35
+ @inproceedings{liu2025citygaussian,
36
+ title={Citygaussian: Real-time high-quality large-scale scene rendering with gaussians},
37
+ author={Liu, Yang and Luo, Chuanchen and Fan, Lue and Wang, Naiyan and Peng, Junran and Zhang, Zhaoxiang},
38
+ booktitle={European Conference on Computer Vision},
39
+ pages={265--282},
40
+ year={2025},
41
+ organization={Springer}
42
+ }
43
+ ```