{ "ctfidf_model": { "bm25_weighting": false, "reduce_frequent_words": false }, "vectorizer_model": { "params": { "analyzer": "word", "binary": false, "decode_error": "strict", "encoding": "utf-8", "input": "content", "lowercase": true, "max_df": 1.0, "max_features": null, "min_df": 2, "ngram_range": [ 1, 5 ], "stop_words": "english", "strip_accents": null, "token_pattern": "(?u)\\b\\w\\w+\\b", "vocabulary": null }, "vocab": { "generating": 37859, "fake": 33756, "online": 67974, "reviews": 84288, "using": 101270, "neural": 66211, "language": 49122, "models": 61701, "human": 42061, "machinebased": 57766, "detection": 24253, "advanced": 3671, "nlms": 66703, "widely": 103710, "used": 100726, "sequence": 86643, "generation": 37998, "tasks": 94326, "able": 1820, "produce": 75601, "fluent": 35472, "meaningful": 58707, "sentences": 86539, "generate": 37366, "attack": 8158, "review": 84241, "systems": 93381, "influence": 45344, "buying": 11709, "decisions": 22610, "perform": 70812, "attacks": 8201, "necessary": 65866, "experts": 32401, "train": 97728, "tailored": 93772, "lm": 57069, "specific": 89659, "topic": 97498, "work": 103968, "threat": 96874, "model": 60449, "built": 11657, "just": 48217, "combining": 16002, "publicly": 77962, "available": 9006, "lms": 57094, "produced": 75669, "fool": 35714, "humans": 42566, "machines": 57782, "particular": 70391, "use": 100458, "gpt2": 39248, "nlm": 66702, "large": 51381, "number": 67326, "highquality": 41736, "based": 9426, "desired": 23997, "sentiment": 86578, "bert": 10497, "text": 96066, "classifier": 14818, "accuracy": 2173, "96": 1448, "filter": 34469, "undesired": 99938, "sentiments": 86613, "words": 103945, "modified": 64636, "samples": 85098, "like": 54048, "training": 97936, "data": 20933, "generated": 37648, "learned": 52978, "distribution": 25931, "subjective": 91951, "evaluation": 30496, "80": 1316, "participants": 70358, "demonstrated": 23226, "simple": 88164, "method": 59181, "written": 104509, "people": 70731, "showed": 87385, "tended": 95741, "distinguish": 25892, "randomly": 79120, "countermeasures": 20002, "grover": 40634, "gltr": 39027, "openai": 68140, "detector": 24381, "difficult": 25277, "accurately": 2437, "detect": 24206, "making": 58081, "machine": 57681, "translation": 98679, "demonstrate": 23009, "effectiveness": 27485, "pretrained": 74227, "various": 102340, "natural": 65544, "processing": 75451, "finetuning": 35002, "suffers": 92323, "catastrophic": 12585, "forgetting": 35751, "applied": 6599, "resourcerich": 82996, "introduce": 47391, "concerted": 17718, "framework": 36011, "key": 48266, "integrate": 46655, "nmt": 66843, "proposed": 77169, "consists": 18326, "techniques": 95467, "asymptotic": 8142, "distillation": 25808, "ensure": 29437, "retain": 83935, "previous": 74659, "knowledge": 48408, "dynamic": 26907, "switching": 93107, "gate": 37020, "avoid": 9196, "strategy": 90858, "adjust": 3584, "learning": 53006, "paces": 69449, "according": 2143, "scheduled": 85506, "policy": 72531, "experiments": 32095, "gains": 36856, "bleu": 11166, "score": 85687, "wmt14": 103880, "englishgerman": 29123, "pair": 69467, "surpasses": 92921, "stateoftheart": 90301, "pretraining": 74506, "aided": 4642, "14": 304, "task": 93915, "40": 903, "millions": 60045, "base": 9396, "significantly": 87871, "improves": 44009, "transformer": 98483, "big": 10982, "code": 15115, "downloaded": 26679, "release": 81344, "strategies": 90788, "social": 88841, "impacts": 43278, "range": 79133, "beneficial": 10435, "uses": 101210, "assist": 8013, "prose": 77324, "poetry": 72472, "programming": 75874, "analyze": 5741, "dataset": 21795, "biases": 10909, "flexibility": 35424, "generative": 38522, "capabilities": 11818, "raise": 79054, "misuse": 60235, "concerns": 17671, "report": 81957, "discusses": 25704, "openais": 68185, "related": 81182, "staged": 90128, "allows": 5188, "time": 96926, "releases": 81420, "conduct": 17819, "risk": 84488, "benefit": 10439, "analyses": 5391, "sizes": 88542, "increased": 44788, "ongoing": 67962, "research": 82468, "provides": 77639, "recommendations": 80657, "better": 10673, "coordination": 19505, "responsible": 83337, "publication": 77955, "ai": 4286, "grounded": 40567, "conversation": 19312, "guided": 40755, "commonsense": 16207, "graphs": 40432, "conversations": 19408, "naturally": 65789, "evolve": 31040, "concepts": 17617, "multihop": 64915, "paper": 69580, "presents": 74111, "new": 66320, "leverages": 53775, "explicitly": 32541, "flows": 35460, "grounding": 40584, "concept": 17597, "space": 89438, "represents": 82174, "potential": 72977, "flow": 35457, "relations": 81263, "traverse": 98794, "graph": 40360, "attentions": 8397, "moving": 64809, "directions": 25455, "order": 68684, "semantic": 86288, "informative": 45679, "responses": 83169, "reddit": 80742, "knowledgeaware": 48819, "70": 1208, "fewer": 34186, "parameters": 70162, "confirming": 18047, "advantage": 3920, "explicit": 32524, "modeling": 61621, "structures": 91189, "source": 89338, "codes": 15620, "attending": 8274, "entities": 29531, "understanding": 99662, "recent": 80165, "progress": 75965, "nlp": 66704, "witnessed": 103860, "development": 24601, "largescale": 52482, "gpt": 39172, "xlnet": 104562, "et": 30036, "al": 4858, "2017": 521, "end": 28815, "achieved": 2606, "results": 83450, "approaching": 7228, "performance": 70948, "demonstrates": 23361, "power": 73363, "stacked": 90106, "selfattention": 86197, "architecture": 7329, "paired": 69476, "sufficient": 92331, "layers": 52740, "require": 82222, "complex": 16908, "reasoning": 79750, "surfacelevel": 92885, "cues": 20578, "gap": 36908, "2018": 522, "recently": 80444, "possible": 72889, "inject": 45815, "syntactic": 93164, "structure": 91124, "supervised": 92692, "conjecture": 18079, "similar": 88048, "injection": 45821, "coreference": 19551, "information": 45388, "existing": 31646, "improve": 43659, "problems": 75107, "lambada": 49092, "2016": 520, "trained": 97792, "scratch": 85803, "auxiliary": 8982, "supervision": 92751, "outperforms": 69013, "largest": 52585, "setting": 86976, "containing": 18528, "tiny": 97094, "fraction": 35998, "compared": 16502, "thorough": 96816, "analysis": 5415, "different": 24989, "variants": 102253, "architectures": 7387, "configurations": 18032, "suggesting": 92404, "future": 36690, "applying": 6676, "paraphrasing": 70313, "shown": 87431, "extremely": 33384, "adept": 3564, "achieve": 2473, "downstream": 26682, "classification": 14718, "question": 78567, "answering": 6073, "aid": 4636, "present": 73927, "useful": 100939, "technique": 95428, "variety": 102286, "texts": 96539, "subjects": 91963, "approach": 6704, "capable": 12217, "paraphrases": 70311, "sentence": 86489, "level": 53643, "longer": 57359, "spans": 89506, "paragraphs": 70071, "needing": 66027, "break": 11379, "smaller": 88739, "chunks": 14624, "bloom": 11210, "meets": 58973, "extend": 32925, "idea": 42780, "word": 103887, "pieces": 72105, "opaque": 68038, "ids": 42953, "hash": 41105, "functions": 36521, "map": 58333, "id": 42776, "multiple": 65131, "tokens": 97175, "similarly": 88156, "multilayer": 64933, "obtain": 67639, "high": 41371, "outperform": 68915, "size": 88452, "degree": 22903, "larger": 52428, "sampled": 85093, "softmax": 88969, "computational": 17431, "budget": 11549, "observation": 67553, "important": 43485, "remove": 81862, "ambiguity": 5309, "input": 45872, "believe": 10032, "alternative": 5259, "solving": 89213, "vocabulary": 103194, "cooking": 19482, "recipe": 80574, "interests": 47168, "automatic": 8754, "recipes": 80579, "growing": 40639, "steadily": 90574, "past": 70562, "years": 104585, "thanks": 96712, "novel": 67080, "modes": 64625, "generations": 38514, "instruction": 46304, "given": 38852, "title": 97104, "ingredients": 45712, "ingredient": 45711, "instructions": 46470, "backend": 9262, "module": 64657, "comprises": 17381, "finetuned": 34861, "users": 101071, "conveniently": 19270, "inspect": 46147, "quality": 78216, "contents": 18716, "store": 90736, "reference": 80927, "accessed": 2094, "trec": 98814, "cast": 12568, "2019": 524, "conversational": 19342, "assistance": 8024, "track": 97618, "overview": 69427, "facilitate": 33480, "seeking": 86070, "create": 20142, "reusable": 84126, "test": 95858, "collection": 15889, "search": 85849, "document": 26199, "corpus": 19593, "passages": 70546, "answer": 5983, "retrieval": 83956, "car": 12383, "microsoft": 59997, "reading": 79518, "comprehension": 17147, "marco": 58353, "datasets": 22128, "dialogues": 24922, "30": 739, "50": 1008, "average": 9123, "10": 94, "questions": 78761, "long": 57297, "relevance": 81425, "assessments": 7983, "provided": 77602, "topics": 97525, "20": 480, "year": 104582, "21": 589, "groups": 40619, "submitted": 91979, "total": 97557, "65": 1156, "runs": 84957, "varying": 102641, "methods": 59505, "query": 78519, "ranking": 79261, "include": 44226, "traditional": 97651, "feature": 33957, "enhanced": 29223, "common": 16127, "theme": 96726, "bertbased": 10569, "reranking": 82454, "leading": 52836, "employed": 28419, "expansion": 31880, "rewriting": 84392, "manually": 58286, "resolved": 82942, "utterances": 102054, "35": 820, "relative": 81288, "improvement": 43869, "manual": 58253, "rewrites": 84391, "best": 10586, "reformulation": 81028, "sequencetosequence": 86690, "empirical": 28308, "study": 91466, "plms": 72404, "leverage": 53707, "address": 3356, "strong": 91001, "independence": 44934, "assumption": 8121, "objective": 67488, "maximum": 58646, "likelihood": 54244, "estimation": 30020, "benchmarks": 10304, "taskoriented": 94315, "dialogue": 24843, "evaluate": 30126, "indomain": 45120, "validate": 102088, "outdomain": 68860, "examining": 31142, "numbers": 67400, "texttotext": 96638, "transfer": 98393, "t5": 93614, "achieves": 2695, "propose": 76921, "challenge": 12849, "situation": 88442, "real": 79536, "person": 71870, "currently": 20803, "facing": 33553, "helpful": 41290, "advice": 4026, "tests": 96032, "fundamental": 36527, "aspect": 7753, "ability": 1582, "resolve": 82937, "openended": 68255, "situations": 88444, "communicating": 16252, "todays": 97118, "struggle": 91205, "multibillion": 64875, "parameter": 70093, "examples": 31183, "writes": 104463, "humanwritten": 42662, "cases": 12505, "gpt3": 39386, "does": 26275, "worse": 104439, "low": 57495, "reveals": 84201, "errors": 29801, "hard": 40972, "spot": 90026, "outside": 69265, "showing": 87408, "room": 84827, "italian": 48025, "impressive": 43571, "improvements": 43954, "mainly": 57843, "english": 29048, "develop": 24432, "provide": 77395, "means": 58722, "humanbased": 42450, "assessment": 7936, "calculating": 11738, "perplexity": 71853, "genres": 38771, "ii": 42968, "profiling": 75813, "writing": 104464, "characteristics": 13327, "production": 75731, "sort": 89297, "version": 102803, "shorter": 87330, "performed": 71751, "completion": 16895, "output": 69139, "judged": 48178, "closer": 15040, "original": 68756, "simpler": 88250, "baseline": 9762, "scale": 85248, "dialog": 24820, "oriented": 68753, "agents": 4159, "chatbots": 13427, "aim": 4683, "engaging": 28920, "user": 100966, "typically": 99282, "exhibit": 31499, "inconsistent": 44547, "personality": 71894, "addresses": 3507, "issues": 47965, "controlling": 19256, "persona": 71871, "conditioning": 17808, "prior": 74838, "target": 93852, "actor": 3009, "doing": 26340, "utilize": 101927, "abstract": 1926, "patterns": 70622, "persons": 71939, "speech": 89938, "emulate": 28517, "introduces": 47513, "control": 19193, "augmented": 8562, "conditions": 17813, "multiturn": 65379, "actors": 3011, "accompanying": 2129, "procedure": 75248, "months": 64735, "worth": 104448, "comments": 16066, "scaling": 85318, "117m": 210, "83b": 1356, "yields": 104658, "held": 41226, "increasing": 44816, "yielded": 104651, "evaluations": 30832, "measure": 58729, "preference": 73791, "terms": 95787, "realism": 79560, "31": 772, "37": 862, "style": 91904, "matching": 58513, "42": 935, "grammar": 40325, "content": 18582, "29": 710, "coherency": 15775, "32": 779, "conditionally": 17800, "trials": 98865, "identify": 42840, "positive": 72818, "trends": 98854, "conditional": 17786, "outline": 68866, "steps": 90674, "datatotext": 22470, "pretrain": 74220, "finetune": 34813, "indicate": 44977, "form": 35766, "enables": 28573, "endtoend": 28869, "pipelined": 72178, "importantly": 43547, "leads": 52887, "generalization": 37240, "evidenced": 31001, "outofdomain": 68884, "sets": 86955, "hope": 41944, "serves": 86790, "prevalent": 74634, "sense": 86435, "world": 104398, "investigating": 47760, "adapterbased": 3116, "transformers": 98598, "following": 35666, "major": 57919, "success": 92182, "focused": 35570, "injecting": 45820, "structured": 91154, "external": 33175, "resources": 82998, "hand": 40893, "joint": 48147, "adding": 3163, "objectives": 67515, "primary": 74794, "prohibitively": 76037, "computationally": 17491, "expensive": 31905, "posthoc": 72950, "lead": 52791, "distributional": 25956, "investigate": 47613, "complementing": 16860, "conceptual": 17642, "conceptnet": 17616, "corresponding": 19787, "open": 68040, "mind": 60059, "respectively": 83052, "adapter": 3109, "overall": 69274, "glue": 39028, "benchmark": 10060, "inconclusive": 44542, "picture": 72100, "deeper": 22810, "substantially": 92115, "1520": 338, "points": 72490, "inference": 45206, "type": 99200, "sourced": 89397, "summarization": 92513, "covid19": 20102, "medical": 58860, "articles": 7557, "pandemic": 69573, "urgency": 100404, "community": 16297, "accelerating": 2014, "growth": 40679, "literature": 54641, "result": 83385, "released": 81392, "scholarly": 85535, "calling": 11779, "approaches": 7097, "help": 41232, "bridging": 11446, "researchers": 82833, "rapidly": 79338, "publications": 77958, "advances": 3861, "solve": 89160, "performing": 71775, "rouge": 84856, "scores": 85745, "visual": 103049, "inspection": 46151, "abstractive": 1945, "comprehensive": 17191, "keywords": 48368, "extracted": 33250, "providing": 77728, "succinct": 92295, "summaries": 92488, "fewshot": 34207, "aims": 4775, "reformulate": 81025, "concise": 17719, "fully": 36437, "specified": 89906, "effectively": 27390, "handled": 40941, "rules": 84934, "selfsupervised": 86265, "weak": 103427, "amounts": 5336, "ad": 3024, "hoc": 41875, "sessions": 86830, "rewrite": 84388, "queries": 78469, "weakly": 103444, "rewriter": 84389, "12": 218, "limited": 54382, "zeroshot": 104720, "gives": 38987, "comparable": 16362, "reveal": 84131, "syntax": 93191, "learns": 53495, "capture": 12342, "context": 18721, "dependencies": 23533, "involve": 47822, "group": 40605, "references": 80954, "unsupervised": 100300, "paraphrase": 70308, "proven": 77375, "powerful": 73419, "notable": 66993, "capability": 12145, "formulated": 35869, "grammatically": 40347, "consistent": 18250, "phrase": 72056, "completions": 16907, "labelled": 48930, "examine": 31092, "compare": 16446, "effect": 27232, "augmentation": 8522, "good": 39103, "diverse": 25978, "hold": 41881, "observed": 67602, "semantics": 86378, "unclear": 99396, "grasp": 40454, "incorporate": 44660, "changing": 13302, "inserting": 46032, "storage": 90732, "simply": 88284, "signal": 87639, "existence": 31643, "tokenizer": 97168, "additional": 3219, "entity": 29556, "prediction": 73676, "solely": 89053, "signals": 87642, "packed": 69454, "observe": 67571, "improved": 43829, "factual": 33620, "correctness": 19727, "probing": 74977, "hidden": 41344, "representations": 82086, "edge": 27077, "kalm": 48241, "serve": 86755, "dropin": 26866, "replacement": 81930, "improving": 44094, "questionanswering": 78730, "taskrelated": 94324, "autocomplete": 8638, "poisoning": 72520, "vulnerabilities": 103253, "autocompletion": 8640, "integral": 46654, "modern": 64590, "editors": 27118, "ides": 42945, "latest": 52650, "public": 77903, "opensource": 68308, "repositories": 82021, "suggest": 92346, "likely": 54251, "statically": 90538, "feasible": 33952, "current": 20652, "vulnerable": 103275, "files": 34459, "directly": 25481, "attacker": 8196, "suggestions": 92422, "attackerchosen": 8197, "contexts": 18891, "example": 31151, "teach": 95332, "insecure": 46027, "mode": 60448, "aes": 4044, "encryption": 28812, "ssltls": 90075, "protocol": 77352, "iteration": 48043, "count": 19978, "targeted": 93897, "poisoned": 72519, "repo": 81956, "developer": 24538, "quantify": 78388, "efficacy": 27626, "untargeted": 100323, "pythia": 78091, "defenses": 22853, "largely": 52402, "ineffective": 45172, "deep": 22746, "subword": 92175, "units": 100106, "morphologically": 64754, "rich": 84406, "asr": 7797, "particularly": 70429, "complexity": 17032, "makes": 58044, "apply": 6650, "single": 88343, "pass": 70528, "studies": 91359, "considerable": 18148, "network": 66126, "transferred": 98449, "ngrams": 66673, "general": 37101, "hungarian": 42693, "center": 12727, "transformergenerated": 98596, "works": 104344, "isolating": 47920, "languages": 51225, "causes": 12697, "explosion": 32879, "called": 11771, "subwordbased": 92177, "statistically": 90560, "derived": 23650, "bpe": 11350, "statistical": 90543, "tokenizers": 97169, "wer": 103614, "greatly": 40519, "reducing": 80856, "memory": 59007, "requirements": 82333, "finally": 34505, "recognition": 80585, "oov": 68036, "compression": 17351, "survey": 93018, "fields": 34417, "ir": 47889, "tremendous": 98835, "recurrent": 80720, "networks": 66168, "rnns": 84584, "gated": 37021, "shortterm": 87336, "120": 227, "bidirectional": 10968, "encoder": 28686, "24": 632, "94": 1431, "multitask": 65346, "73": 1236, "134": 273, "95": 1437, "tnlg": 97113, "98": 1461, "gshard": 40686, "63": 1143, "humongous": 42680, "applications": 6397, "demand": 22963, "small": 88664, "response": 83117, "times": 97066, "types": 99217, "pruning": 77848, "quantization": 78438, "sharing": 87204, "tensor": 95762, "decomposition": 22697, "enable": 28534, "deployment": 23591, "industry": 45162, "critical": 20300, "need": 65894, "building": 11618, "efficient": 27733, "published": 78005, "area": 7415, "organizes": 68749, "plethora": 72398, "coherent": 15776, "story": 90751, "comparative": 16416, "short": 87269, "grading": 40310, "asag": 7697, "process": 75263, "student": 91241, "answers": 6169, "implemented": 43346, "mapping": 58341, "facet": 33470, "conventional": 19272, "embeddings": 28073, "extracting": 33260, "features": 33983, "elmo": 28018, "assess": 7817, "efficiency": 27658, "cosine": 19821, "similarity": 88126, "correlation": 19765, "measurements": 58761, "outperformed": 68974, "briefly": 11454, "conclude": 17727, "poor": 72589, "black": 11119, "box": 11347, "white": 103628, "discover": 25594, "strategic": 90779, "adversarial": 3968, "rely": 81566, "knowing": 48406, "underlying": 99486, "attributes": 8450, "focuses": 35597, "discovering": 25609, "set": 86831, "probes": 74975, "subdomains": 91928, "explored": 32766, "image": 43014, "classifiers": 14830, "focus": 35500, "exploring": 32831, "commonly": 16186, "deployed": 23562, "popular": 72612, "libraries": 53951, "levels": 53685, "fine": 34776, "tuning": 99012, "distinguishable": 25899, "diversity": 26135, "outputs": 69205, "implies": 43432, "needed": 66008, "successfully": 92268, "classify": 14839, "attribution": 8463, "domain": 26345, "measuring": 58771, "massive": 58443, "covers": 20092, "57": 1086, "including": 44261, "elementary": 27962, "mathematics": 58599, "history": 41867, "computer": 17522, "science": 85559, "law": 52699, "attain": 8242, "possess": 72850, "extensive": 32989, "problem": 74988, "near": 65837, "random": 79098, "chance": 13263, "percentage": 70772, "substantial": 92053, "reach": 79464, "expertlevel": 32397, "frequently": 36378, "know": 48403, "wrong": 104529, "nearrandom": 65863, "socially": 88924, "morality": 64748, "comprehensively": 17318, "evaluating": 30392, "breadth": 11377, "depth": 23631, "academic": 1969, "professional": 75753, "shortcomings": 87321, "semeval2020": 86402, "linguistic": 54553, "phenomenon": 72025, "occur": 67708, "multilingual": 64939, "speakers": 89591, "share": 87181, "communication": 16253, "little": 54672, "especially": 29853, "ernie": 29750, "tested": 95969, "surprisingly": 92996, "furthermore": 36573, "1st": 478, "place": 72214, "competition": 16777, "emphasis": 28279, "selection": 86149, "describes": 23669, "designed": 23868, "team": 95379, "media": 58825, "asked": 7726, "suggestion": 92420, "automated": 8669, "design": 23745, "investigation": 47781, "excellent": 31345, "xlmroberta": 104561, "roberta": 84594, "albert": 4888, "combine": 15968, "pointwise": 72516, "regression": 81097, "loss": 57457, "pairwise": 69529, "close": 14972, "final": 34480, "metric": 59857, "engineering": 28941, "highest": 41540, "ranks": 79284, "kinds": 48388, "metrics": 59873, "radicalization": 79022, "risks": 84505, "expand": 31866, "abuse": 1962, "assessing": 7903, "experimenting": 32094, "prompts": 76645, "representative": 82136, "narrative": 65494, "interaction": 46993, "radical": 79021, "ideologies": 42943, "significant": 87658, "predecessor": 73627, "gpt3s": 39732, "strength": 90946, "emulates": 28522, "interactive": 47085, "informational": 45674, "influential": 45369, "utilized": 101961, "individuals": 45108, "violent": 102933, "behaviors": 9999, "measures": 58762, "possibility": 72871, "unregulated": 100241, "technology": 95636, "recruitment": 80711, "absence": 1900, "safeguards": 84998, "successful": 92257, "requires": 82356, "experimentation": 32087, "stakeholders": 90143, "policymaking": 72557, "governments": 39170, "begin": 9939, "investing": 47804, "soon": 89271, "norms": 66987, "educational": 27191, "initiatives": 45813, "influx": 45372, "machinegenerated": 57768, "disinformation": 25751, "propaganda": 76877, "mitigation": 60308, "effective": 27257, "partnerships": 70521, "government": 39168, "civil": 14656, "society": 88938, "limitations": 54294, "reexamine": 80917, "tradeoff": 97636, "noncausal": 66882, "masked": 58426, "extension": 32980, "batch": 9895, "length": 53581, "attention": 8276, "recurrence": 80717, "computation": 17412, "suffer": 92303, "struggles": 91234, "loosely": 57437, "constrained": 18374, "textual": 96653, "gpt23": 39371, "sim": 88047, "efficiently": 27840, "argue": 7456, "reduce": 80758, "entire": 29512, "sample": 85081, "speculate": 89931, "modify": 64639, "causal": 12645, "retriever": 84093, "jointly": 48159, "goes": 39088, "way": 103340, "toxic": 97581, "despite": 24017, "scarcity": 85372, "hampered": 40888, "extreme": 33376, "labeled": 48902, "synthetic": 93247, "seed": 86054, "systematic": 93313, "impact": 43184, "ranging": 79227, "shallow": 87166, "logistic": 57281, "scarce": 85369, "comparably": 16415, "combination": 15945, "discuss": 25649, "interplay": 47263, "overhead": 69386, "inform": 45376, "choice": 14583, "constraints": 18390, "rhetorical": 84402, "capacities": 12278, "abilities": 1489, "discourse": 25582, "papers": 69993, "analyzed": 5788, "aspects": 7764, "encoded": 28676, "date": 22474, "intersentential": 47330, "quantitatively": 78423, "evaluates": 30372, "rhetoric": 84401, "encode": 28673, "theory": 96756, "revealing": 84195, "richer": 84428, "intermediate": 47202, "layer": 52715, "addition": 3172, "apparently": 6302, "explanation": 32460, "drawing": 26805, "philosophy": 72037, "shows": 87559, "avenue": 9105, "quantifying": 78396, "augmenting": 8590, "recommend": 80639, "software": 88976, "developers": 24543, "reuse": 84127, "saves": 85218, "effort": 27867, "accumulated": 2169, "represent": 82028, "repeated": 81908, "functionalities": 36508, "candidates": 11812, "exploratory": 32614, "rapid": 79287, "introduced": 47500, "predict": 73643, "clone": 14968, "probabilistic": 74947, "nature": 65798, "logic": 57241, "editing": 27091, "closely": 15019, "predicted": 73667, "evaluated": 30310, "recommendation": 80641, "come": 16027, "settings": 87034, "challenging": 13143, "ask": 7709, "tries": 98873, "news": 66607, "article": 7530, "background": 9263, "reasons": 80095, "things": 96787, "occurring": 67713, "datadriven": 21783, "19k": 462, "elicited": 27993, "highlevel": 41557, "readers": 79507, "engage": 28905, "series": 86720, "pragmatic": 73580, "seek": 86061, "reasonable": 79734, "highlight": 41571, "importance": 43438, "vernacular": 102780, "transformerbased": 98553, "encouraged": 28799, "african": 4092, "american": 5324, "traditionally": 97715, "oral": 68677, "historically": 41865, "developed": 24491, "dominant": 26658, "varieties": 102285, "standard": 90155, "corpora": 19565, "availability": 8994, "creating": 20210, "parallel": 70072, "tweet": 99149, "pairs": 69480, "classifications": 14815, "negative": 66052, "generally": 37319, "increases": 44802, "occurrences": 67712, "additionally": 3269, "contextual": 18932, "rigor": 84445, "converting": 19448, "point": 72475, "view": 102912, "messages": 59121, "spoken": 90014, "virtual": 102936, "assistants": 8047, "quite": 78988, "literal": 54638, "says": 85224, "tell": 95676, "bob": 11238, "love": 57494, "extract": 33220, "message": 59118, "send": 86429, "contact": 18507, "named": 65463, "properly": 76891, "allow": 5159, "voice": 103205, "convert": 19440, "deliver": 22936, "rulebased": 84923, "integrates": 46694, "linear": 54518, "partofspeech": 70522, "tagging": 93764, "parsing": 70335, "transformation": 98464, "investigated": 47716, "lstms": 57655, "copynet": 19526, "gauge": 37033, "naturalness": 65795, "faithfulness": 33751, "automatically": 8838, "chose": 14611, "plus": 72463, "meteor": 59172, "separately": 86628, "achieving": 2813, "slight": 88628, "638": 1150, "830": 1350, "159": 348, "composed": 17102, "crowdsourced": 20454, "start": 90252, "family": 33843, "claim": 14661, "argument": 7465, "timely": 97063, "considering": 18207, "dissemination": 25793, "pipeline": 72139, "claims": 14673, "explore": 32623, "produces": 75690, "veracity": 102719, "array": 7505, "complement": 16851, "substance": 92051, "documentlevel": 26238, "excel": 31328, "realworld": 79634, "scenarios": 85399, "fit": 35336, "sentencelevel": 86533, "fairly": 33729, "wellstudied": 103608, "addressed": 3502, "coherently": 15792, "dietary": 24959, "restriction": 83376, "constraint": 18384, "remaining": 81642, "goal": 39041, "attuned": 8467, "substantive": 92145, "stylistic": 91917, "distractions": 25915, "distractor": 25916, "filtering": 34472, "field": 34340, "education": 27125, "semantically": 86363, "correct": 19658, "educationally": 27225, "relevant": 81443, "active": 2988, "distractors": 25919, "incorrect": 44725, "options": 68671, "receives": 80158, "missed": 60198, "opportunity": 68516, "lot": 57485, "race": 79002, "select": 86118, "answered": 6072, "presumably": 74211, "make": 57959, "earlier": 26958, "dg": 24779, "conducted": 17934, "confirmed": 18045, "qa": 78117, "simplification": 88263, "ts": 98978, "transform": 98455, "easier": 27000, "understand": 99592, "broadly": 11524, "accessible": 2101, "wide": 103639, "domains": 26484, "healthcare": 41183, "preserved": 74185, "instead": 46242, "semiautomated": 86406, "writer": 104460, "simplifying": 88280, "faster": 33901, "higher": 41483, "application": 6333, "consisting": 18315, "aligned": 5014, "wikipedia": 103810, "simplified": 88273, "incorporated": 44676, "617": 1133, "absolute": 1907, "individual": 45076, "ensemble": 29417, "combines": 15987, "resulting": 83423, "contextualized": 18961, "representation": 82046, "clusters": 15084, "clustering": 15083, "tokenlevel": 97172, "shares": 87203, "similarities": 88124, "collections": 15913, "unlike": 100162, "polysemy": 72585, "organizing": 68750, "documents": 26241, "token": 97124, "cluster": 15080, "reliable": 81514, "lda": 52787, "maintaining": 57879, "local": 57192, "analyzing": 5800, "behavior": 9957, "established": 29980, "adhoc": 3580, "wellunderstood": 103612, "pitfalls": 72186, "includes": 44245, "diagnostic": 24801, "styles": 91916, "factuality": 33647, "sensitivity": 86471, "value": 102178, "insights": 46051, "factors": 33585, "contribute": 19117, "unintended": 100061, "confirm": 18039, "wisdom": 103851, "exact": 31064, "term": 95771, "overlap": 69393, "surprising": 92982, "colbert": 15803, "biased": 10901, "factually": 33657, "vary": 102635, "appear": 6304, "variations": 102265, "iterative": 48053, "maximizes": 58643, "completeness": 16887, "leveraging": 53816, "fluency": 35462, "items": 48036, "trivial": 98900, "templates": 95696, "iteratively": 48071, "fusion": 36677, "filtered": 34471, "heuristic": 41337, "reranked": 82450, "offtheshelf": 67886, "webnlg": 103503, "cleaned": 14873, "e2e": 26953, "caveats": 12714, "benefits": 10465, "formulation": 35873, "opens": 68292, "adaptation": 3065, "generaldomain": 37204, "semisupervised": 86423, "lowresource": 57612, "indonesian": 45131, "informal": 45383, "formal": 35790, "daily": 20897, "deviations": 24756, "spelling": 89993, "build": 11578, "counterpart": 20003, "artificial": 7586, "dealing": 22512, "alternatively": 5280, "finedtuned": 34780, "equally": 29683, "costs": 19920, "resource": 82953, "findings": 34637, "promising": 76143, "step": 90609, "representing": 82171, "predicting": 73670, "exemplars": 31472, "longstanding": 57401, "essential": 29933, "role": 84753, "encouraging": 28803, "confront": 18064, "favoring": 33933, "generic": 38747, "utterance": 102053, "retrain": 83947, "extended": 32951, "template": 95690, "masking": 58436, "firstorder": 35330, "irrelevant": 47899, "utilizing": 101999, "pos": 72734, "changed": 13278, "competitive": 16786, "baselines": 9814, "preservation": 74181, "prevent": 74644, "referred": 80963, "secondorder": 85970, "utilizes": 101976, "bernoulli": 10496, "visibility": 102951, "paraphrased": 70309, "testing": 95991, "adjusting": 3588, "scaleup": 85317, "alternatives": 5281, "equivalent": 29707, "preserving": 74190, "chinese": 14535, "175": 399, "billion": 11013, "drew": 26833, "capacity": 12282, "primarily": 74774, "technical": 95396, "26": 669, "essay": 29928, "cloze": 15070, "interfaces": 47183, "notoriously": 67074, "recast": 80128, "interface": 47169, "apis": 6289, "programs": 75940, "altering": 5253, "hyperparameters": 42724, "paradigm": 70018, "specialized": 89616, "npi": 67308, "manipulating": 58220, "activations": 2986, "permanent": 71837, "changes": 13283, "weights": 103540, "allowing": 5169, "repurpose": 82208, "construction": 18462, "algorithm": 4899, "function": 36483, "autoregressive": 8949, "noun": 67076, "aversion": 9192, "offensive": 67722, "controlled": 19244, "deterministic": 24419, "uncertainty": 99384, "surprisal": 92977, "exploiting": 32577, "humor": 42681, "studied": 91352, "actual": 3013, "mechanism": 58790, "distinct": 25853, "components": 17081, "setup": 87106, "special": 89600, "relationship": 81276, "inspired": 46166, "developing": 24567, "disrupting": 25782, "audience": 8472, "expectations": 31889, "increasingly": 44864, "feed": 34058, "calculate": 11734, "values": 102203, "conducting": 17994, "semeval": 86401, "2021": 534, "telling": 95677, "classifying": 14842, "spam": 89475, "vital": 103163, "service": 86804, "product": 75720, "opinion": 68471, "manipulate": 58215, "deliberately": 22929, "perception": 70778, "exists": 31859, "unlabeled": 100142, "tripadvisor": 98892, "learners": 52998, "brown": 11536, "2020": 530, "remarkable": 81728, "naturallanguage": 65787, "prompt": 76229, "demonstrations": 23467, "practical": 73491, "scenario": 85387, "suite": 92467, "complementary": 16855, "annotated": 5857, "promptbased": 76454, "automating": 8907, "refined": 80980, "dynamically": 26941, "selectively": 86182, "incorporating": 44688, "dramatically": 26783, "procedures": 75257, "11": 183, "minimal": 60077, "assumptions": 8122, "expertise": 32381, "constitutes": 18367, "taskagnostic": 94299, "event": 30914, "sequences": 86674, "schema": 85513, "temporal": 95706, "relationships": 81280, "events": 30928, "ordering": 68719, "sorting": 89299, "occurred": 67710, "infilling": 45337, "bartbased": 9392, "temporality": 95724, "cooccurrence": 19478, "meaning": 58697, "flexibly": 35434, "denoising": 23493, "autoencoder": 8642, "shuffle": 87625, "delete": 22923, "attempt": 8253, "recover": 80700, "teaches": 95358, "inferences": 45324, "incomplete": 44537, "access": 2053, "outperforming": 68988, "pointer": 72487, "temporally": 95725, "pile": 72109, "crossdomain": 20405, "825": 1343, "constructed": 18440, "22": 604, "subsets": 92046, "newly": 66585, "derive": 23645, "sources": 89402, "untuned": 100330, "conversely": 19435, "raw": 79447, "cc": 12715, "indepth": 44940, "potentially": 73326, "concerning": 17668, "prospective": 77329, "polyjuice": 72581, "counterfactuals": 19998, "explaining": 32457, "counterfactual": 19991, "labor": 48959, "instantiate": 46236, "perturbations": 71990, "substitutions": 92156, "generalpurpose": 37340, "generator": 38733, "perturbation": 71987, "locations": 57231, "realistic": 79561, "turn": 99127, "annotation": 5882, "supporting": 92850, "error": 29765, "easily": 27006, "email": 28036, "composition": 17111, "behaviour": 10017, "native": 65535, "nonnative": 66929, "writers": 104461, "multiword": 65402, "choices": 14598, "regarding": 81042, "compares": 16664, "vs": 103239, "ideation": 42800, "emerging": 28213, "editor": 27116, "prototype": 77360, "emails": 28037, "phrases": 72058, "implications": 43362, "vision": 102958, "replacing": 81936, "revisiting": 84315, "linformer": 54549, "googles": 39146, "deploying": 23575, "costly": 19906, "remained": 81639, "apart": 6261, "restricting": 83374, "userfriendliness": 101058, "main": 57811, "bottleneck": 11320, "quadratic": 78172, "respect": 83039, "facebooks": 33456, "approximated": 7266, "lowrank": 57596, "matrix": 58615, "finding": 34619, "depends": 23546, "projection": 76058, "dimension": 25382, "acts": 3012, "hyperparameter": 42719, "affects": 4063, "timeconsuming": 97041, "independent": 44936, "images": 43080, "audios": 8500, "platform": 72302, "managed": 58182, "unstructured": 100290, "tool": 97259, "business": 11699, "quickly": 78981, "deploy": 23558, "ready": 79531, "hosted": 41989, "environment": 29611, "involvement": 47831, "scientists": 85673, "fast": 33887, "implementation": 43322, "workflow": 104313, "relies": 81552, "incremental": 44924, "labeling": 48922, "experience": 31932, "reallife": 79593, "insurance": 46646, "empirically": 28370, "algorithms": 4953, "ideal": 42790, "societal": 88927, "october": 67718, "stanford": 90240, "institute": 46262, "humancentered": 42453, "intelligence": 46795, "universities": 100120, "surrounding": 93011, "dense": 23501, "meeting": 58969, "took": 97256, "house": 42008, "came": 11788, "backgrounds": 9274, "linguistics": 54609, "political": 72561, "communications": 16290, "cyber": 20879, "discussion": 25716, "centered": 12729, "effects": 27598, "widespread": 103775, "detailed": 24148, "summary": 92594, "organized": 68747, "themes": 96727, "1bit": 469, "adam": 3028, "adams": 3031, "convergence": 19304, "speed": 89977, "scalable": 85234, "careful": 12398, "optimization": 68583, "rooted": 84846, "standpoint": 90235, "commodity": 16123, "tcp": 95328, "interconnects": 47135, "offer": 67733, "bandwidth": 9329, "offers": 67820, "robust": 84638, "compensation": 16760, "basic": 9872, "optimizers": 68650, "sgd": 87161, "momentum": 64701, "linearly": 54542, "dependent": 23540, "gradients": 40307, "nonlinear": 66920, "gradientbased": 40301, "reduces": 80822, "volume": 103212, "scalability": 85228, "uncompressed": 99411, "variance": 102247, "stable": 90089, "warmup": 103314, "phase": 72010, "fixed": 35354, "precondition": 73623, "rest": 83360, "256": 660, "gpus": 40273, "33times": 811, "throughput": 96903, "bertlarge": 10574, "29times": 715, "squad": 90062, "theoretical": 96731, "drafting": 26776, "engineers": 29038, "extent": 33155, "feasibility": 33941, "incoming": 44534, "disciplines": 25562, "second": 85916, "ways": 103409, "tackle": 93711, "challenges": 12947, "encountered": 28777, "economic": 27054, "viability": 102841, "solution": 89071, "analysing": 5413, "market": 58392, "technically": 95426, "economically": 27061, "lmbased": 57088, "obstacle": 67633, "lack": 48975, "usually": 101865, "instances": 46221, "augments": 8606, "ones": 67922, "category": 12632, "iii": 42980, "proposing": 77284, "pairing": 69479, "noise": 66854, "cycle": 20887, "consistency": 18227, "sure": 92879, "correctly": 19714, "reconstructed": 80684, "having": 41114, "seq2seq": 86636, "annotations": 5921, "boost": 11266, "establishing": 29997, "prevailing": 74625, "fail": 33668, "sufficiently": 92343, "probe": 74967, "case": 12453, "0shot": 92, "described": 23662, "locating": 57228, "metalearning": 59151, "motivates": 64784, "rethinking": 83945, "emphasizing": 28298, "usefulness": 100959, "lens": 53622, "narratives": 65501, "cultural": 20587, "anchors": 5828, "nuanced": 67314, "intentions": 46966, "deconstruction": 22707, "producing": 75703, "verdict": 102734, "informed": 45689, "encompassing": 28762, "seeds": 86058, "interacting": 46988, "calibrate": 11752, "numerous": 67412, "contains": 18543, "unstable": 100289, "format": 35815, "cause": 12685, "instability": 46198, "arises": 7481, "bias": 10824, "certain": 12746, "placed": 72217, "mitigate": 60250, "estimate": 30006, "asking": 7739, "calibration": 11761, "uniform": 100048, "gpt2s": 39380, "300": 755, "examplebased": 31182, "onthefly": 68020, "unseen": 100258, "incredible": 44919, "outofdistribution": 68877, "underexplored": 99440, "unknown": 100136, "generates": 37824, "unique": 100070, "conditioned": 17802, "labels": 48937, "unrestricted": 100250, "characterize": 13339, "intuitively": 47586, "signature": 87650, "maps": 58347, "spanned": 89492, "multisource": 65321, "infusing": 45705, "learn": 52930, "understood": 99912, "neighboring": 66104, "infuse": 45702, "ambiguous": 5313, "projects": 76067, "homogeneous": 41934, "aligns": 5124, "position": 72798, "selective": 86181, "implement": 43314, "knowledgeinfused": 48829, "wordnet": 103942, "subtasks": 92162, "domainspecific": 26611, "qnli": 78171, "mnli": 60417, "android": 5834, "apps": 7286, "descriptions": 23691, "functional": 36497, "specifications": 89897, "impractical": 43564, "overcome": 69345, "limitation": 54278, "transforming": 98645, "compiled": 16841, "abstraction": 1943, "details": 24193, "synthesis": 93202, "generalizes": 37310, "app": 6299, "handling": 40943, "noisy": 66867, "highly": 41678, "coupling": 20023, "demo": 22983, "notebook": 67051, "video": 102877, "surface": 92880, "probability": 74956, "right": 84432, "radford": 79014, "selecting": 86139, "string": 90991, "problematic": 75104, "forms": 35846, "compete": 16762, "mass": 58438, "pc": 70670, "finite": 35305, "lowers": 57583, "strings": 90996, "valid": 102082, "mutual": 65429, "scoring": 85787, "compensates": 16758, "option": 68668, "proportional": 76915, "priori": 74874, "calibrated": 11754, "uncalibrated": 99381, "crosswords": 20450, "wordplay": 103944, "puzzles": 78086, "crossword": 20448, "uk": 99331, "advancing": 3901, "compositional": 17113, "clues": 15078, "read": 79495, "adversarially": 4008, "parts": 70525, "definition": 22873, "cipher": 14631, "requiring": 82424, "characterlevel": 13351, "manipulations": 58227, "expert": 32347, "creative": 20251, "contributions": 19175, "humanlike": 42518, "nonneural": 66932, "contribution": 19167, "curriculum": 20825, "unscrambling": 100257, "split": 90010, "metalinguistic": 59154, "systematicity": 93377, "perturbing": 71993, "exhibits": 31596, "partially": 70349, "curricular": 20824, "considerably": 18173, "bestperforming": 10664, "fails": 33700, "generalize": 37290, "remain": 81610, "unsolved": 100285, "innovation": 45843, "pangualpha": 69576, "hundreds": 42684, "billions": 11034, "performances": 71732, "incontext": 44557, "practice": 73542, "200": 502, "2048": 573, "processors": 75599, "parallelism": 70088, "composes": 17107, "dimensions": 25388, "optimizer": 68647, "enhance": 29128, "collect": 15857, "scales": 85302, "broad": 11479, "experimental": 31984, "superior": 92630, "accounting": 2166, "agreement": 4277, "phenomena": 72022, "similaritybased": 88155, "interference": 47192, "advance": 3658, "subjectverb": 91968, "pronoun": 76868, "computed": 17519, "specifically": 89775, "verb": 102721, "predicts": 73774, "ungrammatical": 99994, "matches": 58504, "participating": 70385, "relation": 81231, "evidence": 30966, "metaanalyses": 59141, "indexed": 44968, "entropy": 29603, "diffuse": 25334, "presence": 73917, "contrast": 19063, "attentional": 8388, "entirely": 29525, "unreasonable": 100238, "heuristics": 41341, "russian": 84966, "superglue": 92624, "leaderboards": 52834, "seen": 86080, "incentives": 44210, "fair": 33723, "comparison": 16702, "driven": 26839, "worlds": 104425, "teams": 95387, "collaborate": 15811, "claimed": 14666, "featured": 33980, "exploit": 32559, "contain": 18509, "artifacts": 7582, "rankings": 79282, "leaderboard": 52831, "notorious": 67073, "simplest": 88257, "sota": 89300, "nlu": 66832, "alexnet": 4895, "cv": 20877, "analogies": 5378, "play": 72329, "central": 12731, "recognize": 80623, "eye": 33408, "seeing": 86059, "ear": 26957, "hearing": 41201, "analogical": 5376, "proportions": 76918, "shape": 87174, "identifying": 42911, "received": 80133, "era": 29715, "obtained": 67665, "sensitive": 86453, "embedding": 28049, "seemingly": 86077, "hallucinated": 40816, "facts": 33611, "inherently": 45749, "remedies": 81853, "alleviates": 5139, "reward": 84364, "utility": 101887, "attentively": 8399, "mixtureofexperts": 60360, "moe": 64687, "synergistically": 93151, "bart": 9381, "rewarding": 84381, "formality": 35804, "boosts": 11300, "rewards": 84382, "core": 19533, "outlier": 68864, "remarkably": 81840, "contrary": 19058, "encoders": 28738, "fragile": 36003, "removal": 81861, "00001": 1, "affected": 4058, "component": 17073, "layernorm": 52739, "outliers": 68865, "normalization": 66972, "emerge": 28121, "early": 26967, "consistently": 18279, "dimensional": 25384, "disabling": 25535, "degrades": 22898, "mlm": 60399, "bertfamily": 10573, "electra": 27945, "bugs": 11568, "commercial": 16070, "cyberphysical": 20882, "cps": 20111, "codebase": 15574, "lines": 54546, "complete": 16863, "promise": 76108, "needs": 66032, "adapts": 3150, "mined": 60069, "closest": 15050, "competitor": 16831, "superset": 92689, "hinglish": 41849, "understudied": 99915, "translating": 98671, "monolingual": 64709, "codemixed": 15614, "hindi": 41844, "encoderdecoder": 28716, "mt5": 64842, "mbart": 58660, "paucity": 70642, "bilingual": 11004, "distributed": 25923, "adopt": 3604, "gold": 39093, "backtranslation": 9282, "equivalence": 29706, "1267": 245, "official": 67871, "shared": 87190, "detoxification": 24420, "combat": 15941, "kind": 48386, "instance": 46203, "solved": 89206, "performs": 71796, "corrections": 19711, "timedial": 97059, "everyday": 30954, "dialogs": 24841, "remains": 81644, "introducing": 47539, "formulate": 35862, "multiplechoice": 65285, "11k": 215, "carefully": 12405, "curated": 20626, "23": 622, "reason": 79721, "motivating": 64787, "blooms": 11224, "taxonomy": 95314, "lots": 57488, "helps": 41303, "educators": 27227, "children": 14523, "categorizing": 12630, "skills": 88589, "proximal": 77830, "targeting": 93910, "manner": 58228, "intensive": 46947, "computing": 17556, "involved": 47827, "decoding": 22660, "accelerate": 2004, "cache": 11728, "detecting": 24233, "asynchronous": 8143, "io": 47880, "optimizations": 68625, "applicable": 6328, "49x": 993, "gain": 36807, "easy": 27028, "oneline": 67919, "change": 13266, "plans": 72289, "operations": 68456, "industries": 45160, "finance": 34580, "banking": 9336, "characterized": 13343, "repetitive": 81915, "sequential": 86702, "workflows": 104318, "rarely": 79359, "formally": 35811, "exist": 31640, "describing": 23673, "employees": 28438, "company": 16360, "plan": 72233, "extraction": 33276, "leveraged": 53770, "generalized": 37305, "initial": 45761, "state": 90263, "art": 7518, "adapting": 3120, "palms": 69567, "harmful": 41024, "undesirable": 99933, "crafting": 20128, "reflects": 81020, "predetermined": 73637, "quantitative": 78399, "adherence": 3577, "toxicity": 97595, "qualitative": 78185, "associated": 8075, "add": 3154, "compromising": 17408, "integrity": 46786, "costeffective": 19892, "grown": 40676, "leaps": 52929, "bounds": 11344, "limit": 54272, "utilization": 101905, "deal": 22509, "inheritance": 45754, "taskspecific": 95277, "toolkit": 97345, "198": 456, "tens": 95752, "gpu": 40249, "cost": 19832, "acceptance": 2046, "coding": 15686, "snippet": 88833, "support": 92785, "positions": 72816, "flexible": 35428, "triggered": 98877, "precision": 73605, "invalid": 47587, "incompatible": 44536, "draw": 26796, "merits": 59116, "offset": 67884, "defects": 22838, "conducts": 18003, "simulation": 88322, "display": 25766, "falsepositive": 33824, "scheme": 85522, "priority": 74883, "reorder": 81881, "regardless": 81079, "frequency": 36373, "styled": 91915, "yield": 104629, "increase": 44747, "top1": 97488, "top5": 97493, "taking": 93828, "account": 2159, "saving": 85219, "list": 54624, "browsing": 11541, "coder": 15616, "whats": 103622, "measurement": 58756, "summer": 92609, "areas": 7436, "clear": 14878, "interested": 47146, "bring": 11458, "scientific": 85623, "experimented": 32093, "unfortunately": 99983, "limits": 54490, "offered": 67779, "unaware": 99376, "retaining": 83938, "unpredictable": 100233, "reliably": 81531, "indistinguishable": 45068, "scrutinizing": 85831, "grammatical": 40333, "fact": 33556, "reported": 81998, "crowdsourcing": 20460, "machineauthored": 57765, "humanauthored": 42444, "harder": 40993, "poses": 72763, "crowd": 20451, "identified": 42821, "laypeople": 52778, "categories": 12601, "redundancy": 80912, "incoherence": 44530, "rounds": 84876, "predefined": 73629, "ontology": 68024, "isolate": 47917, "decodingtime": 22682, "quantifies": 78387, "measurable": 58728, "gaps": 36988, "authored": 8619, "fourteen": 35990, "unveils": 100337, "rationales": 79435, "math": 58542, "differences": 24971, "perceived": 70759, "material": 58531, "web": 103474, "predictions": 73732, "library": 53952, "receive": 80131, "scholars": 85541, "highlights": 41646, "45": 959, "caricatures": 12429, "interesting": 47150, "perspectives": 71964, "visions": 103044, "demonstration": 23457, "reflect": 81001, "forecast": 35730, "ideas": 42795, "today": 97117, "log": 57234, "consider": 18130, "maria": 58375, "spanish": 89485, "robertabase": 84614, "robertalarge": 84617, "gpt2large": 39374, "arguably": 7454, "presented": 74089, "proficient": 75807, "clean": 14868, "deduplicated": 22741, "135": 275, "archive": 7410, "crawled": 20137, "national": 65525, "assessed": 7884, "extractive": 33345, "created": 20189, "ex": 31060, "novo": 67306, "turning": 99131, "tables": 93693, "semistructured": 86418, "endowing": 28861, "ample": 5362, "known": 48839, "paragraph": 70068, "16": 357, "conjunction": 18083, "sampling": 85150, "lacking": 49070, "picard": 72095, "fictional": 34334, "star": 90244, "communicates": 16251, "metaphorical": 59162, "assembles": 7808, "dictionary": 24949, "novels": 67288, "construct": 18411, "456": 964, "76": 1254, "block": 11195, "mlperf": 60403, "pervasive": 71997, "workload": 104340, "likes": 54269, "switch": 93103, "stem": 90597, "categorical": 12600, "industrial": 45149, "terabytes": 95770, "mention": 59096, "prohibitive": 76030, "overheads": 69392, "slower": 88657, "gaining": 36847, "traction": 97632, "orders": 68720, "magnitude": 57802, "reduction": 80896, "usage": 100424, "boosting": 11286, "execution": 31450, "randomized": 79116, "1000": 137, "compressed": 17340, "auc": 8469, "required": 82303, "optimal": 68558, "greedy": 40536, "span": 89478, "passage": 70542, "guarantee": 40695, "probable": 74965, "actually": 3017, "adhere": 3576, "properties": 76892, "optimality": 68577, "finds": 34775, "converges": 19310, "introduction": 47553, "grows": 40678, "resorting": 82951, "dilemma": 25378, "great": 40462, "wallclock": 103301, "rate": 79365, "brittle": 11477, "socalled": 88840, "rates": 79412, "failed": 33694, "replicating": 81951, "gradient": 40289, "lengths": 53615, "beginning": 9943, "indicating": 45038, "8x": 1395, "4x": 1005, "wall": 103299, "22x": 620, "125m": 240, "40x": 927, "retains": 83942, "99": 1464, "10x": 179, "diverges": 25976, "lower": 57549, "opportunities": 68485, "foundation": 35911, "undergoing": 99459, "shift": 87251, "rise": 84466, "dalle": 20907, "adaptable": 3062, "underscore": 99540, "critically": 20373, "character": 13314, "robotics": 84631, "security": 85997, "inequity": 45180, "environmental": 29630, "legal": 53550, "ethical": 30056, "considerations": 18182, "emergent": 28189, "incentivizes": 44213, "homogenization": 41935, "demands": 22974, "caution": 12703, "inherited": 45755, "adapted": 3104, "impending": 43301, "interdisciplinary": 47139, "collaboration": 15817, "commensurate": 16061, "fundamentally": 36561, "sociotechnical": 88957, "intermediatetask": 47225, "supplementary": 92772, "finetunes": 34995, "involving": 47862, "orthogonal": 68831, "discrimination": 25636, "synthesized": 93234, "want": 103309, "laborintensive": 48966, "pseudo": 77862, "decent": 22563, "immense": 43168, "lowcost": 57541, "labeler": 48920, "nlg": 66684, "methodology": 59482, "generalizable": 37237, "far": 33863, "predictability": 73664, "judgements": 48183, "predictable": 73665, "elicit": 27982, "difficulty": 25318, "notably": 67022, "brain": 11356, "argued": 7463, "upcoming": 100345, "studying": 91899, "valuable": 102141, "stimuli": 90713, "modulate": 64653, "difference": 24962, "versus": 102833, "exclusively": 31428, "preceding": 73587, "contemporary": 18572, "match": 58484, "suggests": 92433, "predictive": 73755, "processes": 75426, "statistics": 90569, "previously": 74744, "thought": 96846, "hyperclova": 42713, "korean": 48867, "nonenglish": 66891, "sized": 88539, "variant": 102249, "82b": 1345, "tokenization": 97164, "configuration": 18029, "integrated": 46673, "prototyping": 77365, "nonexperts": 66904, "ml": 60367, "studio": 91464, "lastly": 52606, "inhouse": 45759, "tremendously": 98843, "numerical": 67403, "preserve": 74183, "predecessors": 73628, "minimum": 60123, "reasonably": 79742, "interpolation": 47266, "extrapolation": 33374, "incrementally": 44926, "unconstrained": 99416, "sql": 90059, "rendering": 81873, "constraining": 18382, "decoders": 22657, "rejecting": 81174, "spider": 90002, "cosql": 19831, "texttosql": 96634, "transforms": 98650, "passable": 70541, "solutions": 89126, "constructing": 18455, "syntactically": 93187, "sound": 89330, "adapt": 3033, "encourages": 28800, "partial": 70344, "enriched": 29410, "eventually": 30942, "preliminary": 73854, "truthfulqa": 98967, "mimic": 60050, "falsehoods": 33821, "truthful": 98957, "817": 1336, "38": 867, "health": 41153, "politics": 72576, "crafted": 20125, "falsely": 33822, "false": 33804, "belief": 10025, "misconception": 60166, "imitating": 43160, "t5based": 93661, "58": 1096, "misconceptions": 60167, "deceive": 22559, "contrasts": 19116, "expected": 31890, "truthfulness": 98961, "imitation": 43162, "pertaining": 71981, "financial": 34592, "andor": 5831, "scope": 85676, "upstream": 100384, "follows": 35706, "aside": 7708, "matters": 58627, "protocols": 77356, "operate": 68440, "differently": 25273, "compute": 17501, "regions": 81090, "adopted": 3612, "t5base": 93658, "t5large": 93664, "100": 121, "checkpoints": 14491, "raft": 79031, "completing": 16890, "textbased": 96491, "reserved": 82906, "dont": 26664, "mirrors": 60155, "classes": 14704, "nonexpert": 66901, "reflecting": 81015, "f1": 33413, "exceed": 31313, "011": 11, "translate": 98661, "collaborative": 15835, "storytelling": 90760, "narrators": 65509, "stories": 90743, "plot": 72441, "progression": 76020, "scenes": 85503, "agent": 4114, "partner": 70518, "longform": 57375, "spontaneous": 90023, "narration": 65493, "live": 54694, "audiences": 8474, "theatre": 96717, "surveyed": 93054, "members": 58985, "performers": 71774, "narrator": 65508, "responded": 83108, "positively": 72838, "indicated": 45024, "characters": 13352, "scene": 85495, "expressed": 32905, "enthusiasm": 29510, "testbed": 95963, "names": 65487, "overfitting": 69378, "contextualizing": 18970, "predominant": 73776, "gender": 37087, "racial": 79006, "contextualization": 18959, "predominantly": 73778, "female": 34175, "nonwhite": 66966, "frequent": 36376, "infrequent": 45700, "spearmans": 89599, "selfsimilarity": 86264, "763": 1259, "kernel": 48263, "alignment": 5052, "cka": 14658, "702": 1215, "492": 988, "minority": 60139, "unpleasantness": 100221, "undergo": 99457, "uncommon": 99409, "overfit": 69377, "ptlms": 77898, "school": 85544, "book": 11253, "closed": 14983, "stimulate": 90708, "instructional": 46420, "introductory": 47563, "college": 15922, "textbook": 96504, "collegelevel": 15926, "sciences": 85620, "humanities": 42500, "truefalse": 98917, "statements": 90287, "authors": 8630, "chapters": 13313, "textbooks": 96505, "blind": 11185, "balanced": 9309, "boolq": 11262, "ptlm": 77897, "exam": 31076, "t5s": 93666, "minor": 60133, "56": 1081, "misunderstood": 60234, "60": 1112, "taken": 93800, "openbook": 68228, "retrieve": 84067, "amplification": 5365, "translations": 98756, "amplify": 5368, "distilled": 25835, "discarding": 25553, "repeatedly": 81909, "inputs": 45981, "ensuring": 29471, "cycleconsistency": 20888, "swapping": 93091, "roles": 84816, "attaining": 8247, "421": 936, "kronecker": 48874, "attracted": 8408, "attributed": 8444, "huge": 42030, "100m": 153, "overparameterized": 69414, "devices": 24761, "mitigated": 60286, "compressing": 17348, "compress": 17335, "mappings": 58346, "initialized": 45795, "decomposed": 22689, "undergone": 99462, "light": 53993, "portion": 72721, "distilgpt2": 25804, "decoderbased": 22636, "encoderbased": 28714, "tinybert": 97097, "distilbert": 25803, "distilroberta": 25851, "employ": 28388, "truncation": 98925, "distillationbased": 25833, "cleaning": 14875, "emerged": 28124, "splits": 90011, "tuned": 98999, "t5xl": 93671, "ablation": 1804, "minimization": 60109, "allure": 5218, "led": 53516, "efforts": 27889, "comparatively": 16443, "sam": 85078, "flatter": 35417, "minima": 60076, "trivia": 98899, "tydiqa": 99199, "believed": 10049, "supposedly": 92873, "algorithmic": 4940, "intended": 46930, "encompass": 28749, "clip": 14952, "technologies": 95621, "harm": 41020, "speaking": 89595, "section": 85978, "33": 797, "uniquely": 100092, "wellsuited": 103609, "stated": 90284, "substitution": 92155, "artificially": 7683, "advent": 3950, "replace": 81920, "confidentiality": 18026, "explainability": 32437, "carried": 12435, "webrelated": 103507, "preprocessing": 73905, "bagofword": 9294, "gigantic": 38826, "serving": 86820, "starting": 90257, "pain": 69465, "persist": 71862, "grow": 40635, "bigger": 10997, "175b": 404, "default": 22830, "sensible": 86450, "functionality": 36509, "resourceconstrained": 82981, "environments": 29639, "parameterefficient": 70136, "sparsity": 89556, "weight": 103522, "updates": 100358, "dubbed": 26895, "enforcing": 28904, "sparsityaware": 89567, "resourceefficient": 82988, "sparse": 89525, "unified": 100006, "investigations": 47801, "backbones": 9253, "dozens": 26762, "25": 650, "flops": 35450, "05": 39, "trainable": 97789, "underpin": 99531, "contributed": 19134, "advancements": 3795, "quadratically": 78179, "extends": 32972, "childrens": 14528, "blockwise": 11206, "enhancement": 29260, "residual": 82917, "internal": 47226, "blocks": 11202, "sequentially": 86714, "lets": 53636, "runtime": 84959, "depending": 23542, "modularize": 64651, "accommodate": 2124, "incurring": 44928, "added": 3159, "degradation": 22885, "copy": 19519, "novelty": 67289, "raven": 79445, "copying": 19525, "abstractions": 1944, "tease": 95391, "possibilities": 72865, "focusing": 35621, "lstm": 57647, "transformerxl": 98642, "modelgenerated": 61616, "humangenerated": 42485, "largerscale": 52480, "wellformed": 103588, "selfcontradictory": 86210, "da": 20895, "binary": 11049, "irrespective": 47907, "ngram": 66668, "fuse": 36672, "bow": 11345, "cnn": 15088, "gru": 40684, "erniegram": 29756, "inability": 44178, "strictly": 90978, "disambiguation": 25546, "dramatic": 26781, "contextaware": 18881, "regard": 81038, "networkbased": 66166, "cwes": 20878, "ctrl": 20571, "lexical": 53913, "knearest": 48399, "neighbor": 66101, "knn": 48401, "butterfly": 11705, "ideally": 42793, "slow": 88653, "sparsifying": 89555, "searching": 85912, "mask": 58421, "discrete": 25627, "matrices": 58612, "insight": 46040, "optimize": 68627, "continuous": 19024, "products": 75747, "hardware": 40997, "flat": 35413, "pattern": 70614, "sparsify": 89554, "mlp": 60401, "3x": 901, "speeds": 89985, "favorable": 33930, "tradeoffs": 97642, "imagenet": 43077, "wikitext103": 103819, "25x": 667, "medium": 58945, "drop": 26862, "jigsaw": 48134, "meet": 58959, "program": 75828, "codex": 15654, "programmer": 75866, "intent": 46952, "developments": 24737, "mixture": 60348, "optimism": 68581, "optimistic": 68582, "productivity": 75741, "cautionary": 12708, "guarantees": 40702, "suggested": 92399, "augment": 8511, "postprocessing": 72956, "feedback": 34059, "experiences": 31947, "synthesizing": 93241, "python": 78094, "pandas": 69572, "api": 6263, "multimodal": 65025, "explores": 32793, "90": 1399, "indistribution": 45073, "advantages": 3934, "initialization": 45792, "logical": 57249, "logically": 57276, "entailed": 29492, "table": 93676, "fidelity": 34339, "annotating": 5881, "abundant": 1961, "unpaired": 100215, "lg": 53941, "dual": 26888, "description": 23675, "extra": 33209, "margin": 58355, "crosslingual": 20416, "exceedingly": 31321, "alleviate": 5130, "replaced": 81927, "static": 90527, "covering": 20068, "french": 36366, "german": 38803, "damaging": 20919, "glam": 38992, "generalist": 37218, "sparsely": 89547, "activated": 2970, "trillion": 98880, "approximately": 7267, "7x": 1314, "consumes": 18503, "13": 256, "energy": 28896, "half": 40800, "oneshot": 67943, "prompted": 76472, "formulating": 35871, "canonical": 11816, "casts": 12571, "risen": 84482, "prominence": 76085, "prove": 77367, "hypothesis": 42732, "smcalflow": 88821, "hierarchical": 41360, "heterogeneous": 41332, "transferring": 98451, "continuing": 19021, "overlapping": 69394, "tree": 98817, "node": 66849, "combined": 15976, "frozen": 36399, "avoiding": 9206, "unrelated": 100242, "represented": 82163, "websites": 103513, "c4": 11725, "heldout": 41227, "averaging": 9191, "paths": 70590, "marginal": 58367, "webgpt": 103502, "navigate": 65821, "eli5": 27981, "cloning": 14970, "rejection": 81175, "preferences": 73812, "preferred": 73833, "demonstrators": 23487, "69": 1194, "dominated": 26661, "limiting": 54484, "75": 1244, "74": 1240, "4shot": 1001, "54": 1063, "flores101": 35454, "171": 397, "182": 430, "surpassing": 92950, "prompting": 76495, "hate": 41107, "gopher": 39158, "modelling": 61692, "intelligent": 46914, "harnessing": 41083, "152": 337, "majority": 57944, "factchecking": 33567, "identification": 42808, "mathematical": 58568, "holistic": 41915, "intersection": 47321, "safety": 85003, "harms": 41058, "blackbox": 11125, "ptms": 77900, "lmaas": 57087, "unavailable": 99373, "accessing": 2119, "proposes": 77266, "prepended": 73896, "derivativefree": 23643, "optimizing": 68657, "highdimensional": 41478, "intractable": 47357, "subspace": 92049, "intrinsic": 47384, "dimensionality": 25385, "counterparts": 20004, "dedicated": 22723, "paradigms": 70060, "opt": 68528, "simplicity": 88261, "keyphrases": 48357, "moss": 64760, "prominent": 76086, "concern": 17658, "students": 91277, "cheat": 14469, "assignments": 8004, "exams": 31303, "bypassing": 11717, "tools": 97348, "gptj": 40217, "wang": 103304, "triggering": 98878, "2000": 503, "plagiarism": 72223, "holds": 41897, "tells": 95678, "try": 98971, "algorithmically": 4950, "lamda": 49094, "137b": 280, "enabling": 28623, "consult": 18489, "involves": 47834, "preventing": 74650, "unfair": 99972, "illustrative": 43009, "candidate": 11797, "translator": 98760, "calculator": 11748, "groundedness": 40583, "merely": 59106, "plausible": 72322, "helpfulness": 41298, "necessitates": 65882, "establish": 29964, "resonate": 82948, "interactions": 47041, "cloud": 15056, "infrastructure": 45698, "optimizes": 68653, "secures": 85994, "failure": 33708, "preferable": 73789, "whitebox": 103629, "infrastructures": 45699, "tune": 98994, "querying": 78554, "bounded": 11340, "calls": 11781, "budgets": 11551, "transferability": 98440, "explanations": 32477, "fairness": 33730, "receiving": 80159, "interpreted": 47300, "line": 54511, "regularization": 81111, "safe": 84981, "hints": 41853, "fairer": 33728, "deepspeed": 22826, "megatron": 58975, "megatronturing": 58977, "530b": 1059, "accuracies": 2171, "highperformance": 41724, "nvidia": 67450, "monolithic": 64717, "mtnlg": 64853, "530": 1058, "3d": 887, "curation": 20641, "observations": 67561, "exhibited": 31569, "zero": 104696, "establishes": 29991, "offline": 67873, "reinforcement": 81139, "rl": 84545, "tackling": 93746, "perspective": 71940, "look": 57419, "games": 36896, "36x": 861, "brings": 11469, "potentials": 73356, "inspires": 46192, "completely": 16883, "distributions": 25963, "differ": 24961, "tediously": 95671, "summarize": 92577, "d1": 20894, "true": 98907, "rerank": 82449, "checking": 14481, "verifier": 102762, "curie": 20648, "13b": 282, "reaches": 79476, "61": 1128, "davinci": 22481, "shifts": 87263, "debug": 22542, "shortcuts": 87327, "label": 48887, "cotraining": 19973, "mitchell": 60249, "1998": 461, "probabilities": 74954, "t0": 93605, "sanh": 85178, "soft": 88963, "vectors": 102707, "update": 100346, "fullysupervised": 36480, "malicious": 58153, "diffusion": 25335, "practices": 73558, "publishing": 78014, "comprised": 17380, "hybrid": 42701, "abstracts": 1954, "comparing": 16669, "distinguishing": 25902, "ethics": 30096, "engagement": 28915, "determining": 24418, "military": 60023, "unit": 100095, "executing": 31445, "planners": 72248, "gptseries": 40244, "addressing": 3525, "harness": 41066, "diagrams": 24814, "latent": 52628, "organization": 68739, "physical": 72060, "distance": 25796, "spaces": 89473, "concrete": 17771, "subordinate": 91996, "commanders": 16052, "highrisk": 41810, "determine": 24404, "trajectory": 98378, "suitable": 92456, "enhancing": 29301, "guide": 40726, "correlate": 19753, "strongly": 91105, "concentrates": 17594, "huggingface": 42057, "systematically": 93358, "51": 1038, "families": 33830, "28": 696, "niche": 66675, "status": 90570, "heavytail": 41219, "ht": 42016, "exhibiting": 31593, "stronger": 91085, "correlations": 19780, "formulations": 35875, "relying": 81600, "pl": 72212, "spectral": 89917, "exponential": 32884, "exp": 31865, "enabled": 28566, "extremescale": 33403, "unexplored": 99961, "marks": 58410, "object": 67467, "playing": 72362, "enormous": 29391, "norm": 66967, "raters": 79409, "restricted": 83371, "lists": 54633, "arbitrary": 7315, "probed": 74974, "objects": 67535, "relatedness": 81228, "membership": 58987, "partitioning": 70514, "facets": 33472, "interpretable": 47284, "drastically": 26791, "expanding": 31873, "psychological": 77875, "maximizing": 58644, "01": 10, "drastic": 26789, "adambased": 3030, "nonlinearity": 66923, "individually": 45106, "approximating": 7279, "states": 90516, "estimates": 30015, "adaptivity": 3149, "simultaneously": 88341, "smooth": 88825, "nonconvex": 66886, "bertbase": 10566, "128": 247, "87": 1376, "2times": 732, "enjoying": 29383, "validation": 102118, "surprise": 92979, "purpose": 78032, "counterintuitive": 20000, "property": 76910, "unusual": 100331, "embodied": 28102, "laws": 52708, "appearance": 6307, "drives": 26852, "qualities": 78215, "anticipate": 6238, "consequences": 18114, "illustrate": 42994, "unpredictability": 100232, "conflicting": 18053, "motivations": 64793, "hinder": 41826, "interventions": 47344, "intend": 46929, "policymakers": 72556, "regulate": 81119, "care": 12392, "academics": 2002, "critique": 20386, "simulations": 88334, "automate": 8657, "logistics": 57283, "functionally": 36513, "inventory": 47606, "verbal": 102722, "convincing": 19465, "variables": 102245, "door": 26667, "consideration": 18179, "thinking": 96797, "capturing": 12378, "failures": 33718, "cognitive": 15731, "outputting": 69263, "class": 14689, "write": 104454, "working": 104324, "asses": 7816, "reliability": 81486, "erroneous": 29760, "hypothesize": 42741, "inspiration": 46153, "deviation": 24755, "rational": 79431, "judgement": 48181, "motivation": 64789, "hypotheses": 42728, "predictably": 73666, "framed": 36009, "adjusts": 3592, "highimpact": 41556, "incorrectly": 44744, "deleting": 22924, "behave": 9953, "energybased": 28899, "inferencing": 45329, "super": 92615, "swift": 93095, "trend": 98844, "incur": 44927, "choose": 14603, "lightweight": 54030, "separate": 86626, "fixedsize": 35362, "desirable": 23989, "lose": 57453, "heavy": 41216, "accurate": 2388, "decision": 22576, "routes": 84885, "agnostic": 4270, "architectural": 7326, "reassembling": 80099, "modules": 64671, "retraining": 83949, "encoderonly": 28732, "verified": 102758, "wmt": 103879, "computations": 17499, "speedup": 89987, "32times": 796, "materials": 58534, "prompttuning": 76855, "hypernetworks": 42717, "learnable": 52976, "hypernetwork": 42715, "global": 39007, "memories": 58994, "attend": 8272, "014": 14, "follow": 35641, "untruthful": 100329, "aligning": 5036, "instructgpt": 46283, "100x": 155, "reductions": 80910, "mistakes": 60211, "direction": 25443, "discovered": 25604, "maximal": 58633, "mup": 65406, "indirectly": 45060, "fullsized": 36433, "verify": 102766, "resnet": 82928, "13m": 302, "350m": 838, "67b": 1187, "pytorch": 78115, "pip": 72137, "install": 46202, "doesnt": 26337, "inferred": 45333, "redundant": 80913, "cue": 20577, "onion": 67973, "convey": 19457, "invariant": 47597, "crucially": 20549, "considered": 18192, "prototypical": 77364, "nonprototypical": 66939, "swap": 93090, "arguments": 7473, "crucial": 20466, "defining": 22870, "gradientfree": 40305, "editbased": 27089, "aimed": 4746, "interpretation": 47291, "demanding": 22970, "apibased": 6285, "takes": 93814, "returns": 84124, "edited": 27090, "430": 944, "flant5": 35389, "kshot": 48875, "purely": 78029, "qualitatively": 78212, "edits": 27119, "simplify": 88279, "incoherent": 44531, "nonetheless": 66896, "illustrated": 43001, "memorize": 59001, "reproduce": 82187, "contextually": 18973, "verbatim": 102730, "extensively": 33145, "memorization": 58997, "degrees": 22914, "homogeneity": 41933, "scraped": 85799, "informing": 45695, "owners": 69442, "exacerbate": 31061, "raising": 79087, "indiscriminately": 45063, "pursuing": 78062, "personal": 71877, "doubt": 26675, "practicality": 73540, "missioncritical": 60207, "urge": 100402, "discussions": 25731, "competitionlevel": 16781, "alphacode": 5243, "ubiquitous": 99317, "problemsolving": 75225, "programmers": 75868, "independently": 44938, "productive": 75739, "innovations": 45847, "poorly": 72601, "simulated": 88311, "competitions": 16785, "codeforces": 15596, "5000": 1027, "followed": 35659, "submissions": 91973, "manipulated": 58217, "mislead": 60183, "reader": 79505, "posing": 72789, "detects": 24393, "mentioned": 59097, "exploits": 32582, "convolutional": 19469, "modular": 64644, "employing": 28439, "modularity": 64650, "zhou": 104892, "internet": 47246, "applies": 6647, "blenderbot": 11163, "chen": 14510, "opendomain": 68232, "knowledgegrounded": 48827, "engagingness": 28926, "topical": 97522, "topicality": 97523, "vastly": 102693, "inducing": 45140, "anomalies": 5976, "deliberate": 22926, "dl": 26179, "delivered": 22940, "discriminating": 25635, "cognitively": 15758, "healthy": 41199, "alzheimers": 5290, "disease": 25734, "fitting": 35342, "degraded": 22897, "ratio": 79427, "impaired": 43290, "theft": 96718, "demonstrating": 23420, "induction": 45141, "inner": 45836, "workings": 104335, "dementia": 22982, "continually": 18998, "milestones": 60021, "issue": 47923, "unfamiliar": 99976, "innovative": 45848, "employs": 28468, "initially": 45799, "subsequently": 92020, "enriches": 29411, "feedforward": 34161, "promoting": 76222, "unveiling": 100335, "reverseengineering": 84237, "operation": 68449, "ffn": 34330, "additive": 3355, "humaninterpretable": 42495, "exit": 31861, "rule": 84922, "positional": 72807, "encodings": 28748, "encoding": 28744, "acquire": 2900, "implicit": 43411, "notion": 67069, "compensating": 16759, "missing": 60199, "infer": 45196, "awareness": 9215, "positioning": 72815, "benefited": 10462, "complicated": 17064, "distribute": 25920, "supercomputer": 92618, "tpus": 97611, "bottlenecks": 11330, "reproducible": 82200, "ease": 26996, "simplifies": 88277, "taskbased": 94305, "creation": 20236, "pipelines": 72181, "gptlike": 40228, "decoderonly": 22640, "expressive": 32920, "fourier": 35988, "adoption": 3628, "unfavorable": 99977, "tractable": 97631, "approximate": 7261, "parameterized": 70160, "analytical": 5727, "unlock": 100196, "speeding": 89983, "vit": 103159, "2x": 734, "pde": 70672, "mri": 64829, "reconstruction": 80686, "reverse": 84232, "sparsification": 89552, "openwebtext": 68437, "optimized": 68639, "record": 80692, "proofofconcept": 76875, "approximation": 7280, "palm": 69541, "pathways": 70594, "540billion": 1070, "densely": 23513, "tpu": 97609, "pods": 72468, "continued": 19011, "540b": 1065, "breakthrough": 11394, "multistep": 65325, "bigbench": 10992, "discontinuous": 25571, "steeply": 90582, "scaled": 85301, "infused": 45704, "recalling": 80119, "tend": 95731, "hallucinatory": 40884, "knowledgeintensive": 48831, "modifying": 64642, "normally": 66983, "modification": 64633, "maintain": 57868, "trie": 98871, "continuously": 19039, "seven": 87115, "confirms": 18048, "exposure": 32897, "enabler": 28572, "stateofart": 90298, "calculates": 11737, "subset": 92037, "correlates": 19761, "determined": 24416, "inconsequential": 44543, "pruned": 77843, "threshold": 96899, "subsequent": 92009, "formulates": 35870, "differentiable": 25261, "regularizer": 81114, "backpropagation": 9279, "analytically": 5737, "cooptimize": 19501, "striking": 90987, "balance": 9299, "devise": 24768, "bitlevel": 11116, "termination": 95782, "microarchitectural": 59987, "43": 943, "19x": 463, "39x": 877, "keeping": 48253, "virtually": 102947, "intact": 46651, "02": 17, "twitter": 99158, "attentionbased": 8390, "allowed": 5168, "encounter": 28772, "difficulties": 25313, "everchanging": 30943, "stream": 90933, "plays": 72373, "severe": 87128, "nuances": 67320, "lost": 57484, "face": 33431, "tweets": 99150, "devoted": 24776, "spreading": 90041, "misinformation": 60171, "mbert": 58663, "visualize": 103143, "spreads": 90044, "wildly": 103824, "platforms": 72311, "communities": 16293, "opening": 68273, "fashion": 33884, "definitions": 22876, "bpm": 11352, "posed": 72756, "devised": 24769, "restoration": 83367, "textbfextraction": 96502, "simulates": 88319, "omitted": 67909, "identifies": 42835, "nongenerative": 66911, "reception": 80571, "messaging": 59132, "respond": 83097, "organizations": 68741, "perceptions": 70798, "crisis": 20283, "centers": 12730, "prevention": 74653, "relating": 81230, "vaccines": 102075, "guidance": 40713, "gptneox20b": 40238, "freely": 36353, "openly": 68285, "permissive": 71839, "license": 53959, "submission": 91971, "languageunderstanding": 51379, "knowledgebased": 48821, "reasoner": 79745, "fiveshot": 35345, "fairseq": 33745, "mgpt": 59982, "colossal": 15934, "frameworks": 36323, "parallelize": 70091, "par": 70006, "xglm": 104549, "facebook": 33454, "countries": 20016, "nations": 65534, "thoroughly": 96835, "preparation": 73889, "versions": 102817, "covered": 20066, "spectre": 89918, "xl": 104556, "supernaturalinstructions": 92684, "declarative": 22618, "1600": 369, "expertwritten": 32426, "rigorous": 84446, "benchmarking": 10282, "crosstask": 20444, "tkinstruct": 97108, "plain": 72227, "instructionfollowing": 46439, "mixedinitiative": 60330, "clarifying": 14685, "simulator": 88336, "session": 86828, "inline": 45834, "asks": 7748, "acquisition": 2925, "gpt2based": 39372, "singleturn": 88427, "mixed": 60323, "codeswitching": 15645, "occurs": 67714, "popularity": 72693, "roman": 84824, "script": 85819, "ner": 66107, "outlined": 68870, "intervention": 47337, "spurred": 90056, "interpreting": 47304, "behavioral": 9993, "salience": 85068, "finegrained": 34781, "backbone": 9241, "interprets": 47311, "debugging": 22543, "inspecting": 46149, "varies": 102276, "heavily": 41210, "necessarily": 65864, "emergence": 28159, "measured": 58752, "imply": 43433, "comparisons": 16733, "conveys": 19462, "threestep": 96897, "condition": 17785, "refinements": 80990, "refinement": 80983, "maximize": 58639, "chosen": 14612, "roughly": 84871, "humanlevel": 42510, "contrastive": 19096, "moderatelysized": 64580, "generality": 37227, "views": 102921, "appending": 6314, "15": 320, "vector": 102696, "idioms": 42948, "figurative": 34451, "cultures": 20609, "pose": 72736, "mt": 64834, "idiomatic": 42947, "expression": 32915, "macro": 57788, "experiment": 31958, "dialogpt": 24839, "idiom": 42946, "hub": 42028, "cheaper": 14465, "icl": 42753, "feeding": 34164, "incurs": 44930, "peft": 70703, "rigorously": 84460, "relatively": 81306, "tfew": 96709, "modifications": 64634, "superhuman": 92627, "knows": 48861, "resolution": 82931, "witness": 103859, "llms": 55386, "annotate": 5852, "qabased": 78160, "promptengineering": 76491, "discern": 25554, "gptneo": 40230, "return": 84120, "mentions": 59101, "teacher": 95338, "pedagogical": 70683, "blender": 11162, "teachers": 95350, "designing": 23971, "muchneeded": 64855, "reports": 82005, "run": 84945, "simulate": 88302, "speak": 89587, "builds": 11655, "judgments": 48192, "bayesian": 9910, "uptake": 100390, "quantifiably": 78383, "delta": 22947, "075": 63, "093": 85, "polish": 72558, "initializing": 45797, "plbart": 72393, "inputoutput": 45975, "fits": 35339, "compile": 16836, "define": 22861, "657": 1165, "executionbased": 31467, "viable": 102846, "searches": 85910, "kl": 48393, "penalties": 70721, "viewed": 102916, "penalize": 70718, "offensiveness": 67732, "harmfulness": 41047, "treating": 98800, "updating": 100360, "maximise": 58636, "captures": 12374, "observing": 67631, "flawed": 35419, "collapse": 15854, "degenerate": 22881, "constrains": 18383, "stay": 90571, "kullbackleibler": 48876, "divergence": 25969, "variational": 102259, "posterior": 72943, "conform": 18056, "insightful": 46048, "explains": 32459, "avoids": 9208, "derivation": 23640, "happens": 40966, "parametric": 70302, "adequate": 3569, "typing": 99310, "emotion": 28247, "treat": 98796, "cardinality": 12390, "combinatorial": 15965, "prepending": 73898, "factorization": 33584, "endows": 28863, "gets": 38816, "owing": 69438, "route": 84878, "expressing": 32914, "strengths": 90951, "decompose": 22685, "symbolic": 93119, "humanintheloop": 42496, "alternate": 5256, "path": 70584, "glms": 39006, "reformulating": 81027, "questionanswer": 78722, "generators": 38741, "glm": 39003, "allinone": 5147, "taskindependent": 94313, "synonym": 93160, "consequently": 18118, "yielding": 104655, "lowquality": 57592, "condense": 17781, "inherent": 45713, "reformulates": 81026, "granularity": 40359, "reconstruct": 80682, "deberta": 22533, "fewglue": 34204, "conll03": 18086, "transfers": 98454, "contextfree": 18888, "grammars": 40332, "varied": 102271, "regimes": 81086, "supports": 92867, "surpass": 92905, "decipher": 22574, "connection": 18098, "decades": 22556, "essence": 29932, "storing": 90748, "operationalize": 68455, "principle": 74824, "consist": 18226, "overcoming": 69365, "experimentally": 32084, "competitors": 16832, "entrance": 29599, "examination": 31085, "authoritative": 8626, "china": 14531, "116": 206, "mark": 58379, "150": 332, "gaokao": 36905, "2022": 535, "happened": 40964, "days": 22501, "ago": 4271, "108": 169, "humancomputer": 42458, "turing": 99121, "computers": 17554, "79": 1272, "decrease": 22713, "mean": 58689, "median": 58856, "ratios": 79443, "136": 277, "36": 851, "127": 246, "27": 682, "nonprogrammers": 66938, "synergy": 93156, "repositorylevel": 82027, "github": 38834, "copilot": 19512, "proposals": 76920, "repository": 82024, "imports": 43555, "parent": 70316, "llm": 54926, "singleline": 88418, "google": 39132, "archives": 7411, "oracle": 68673, "proposal": 76919, "entertainment": 29509, "occasionally": 67701, "supplemented": 92774, "pronunciation": 76871, "crawling": 20139, "stage": 90112, "retrievalbased": 84059, "chatgpt": 13469, "chatglm": 13465, "psychology": 77887, "decisionmaking": 22590, "deliberation": 22931, "battery": 9904, "solves": 89212, "multiarmed": 64871, "bandit": 9328, "signatures": 87651, "modelbased": 61605, "astray": 8132, "directed": 25438, "exploration": 32585, "enrich": 29404, "pave": 70644, "motion": 64763, "forecasting": 35731, "impairment": 43291, "severity": 87138, "neurological": 66303, "disorder": 25755, "observable": 67551, "symptoms": 93142, "movement": 64800, "posture": 72973, "diagnosed": 24787, "motor": 64795, "impairments": 43292, "rating": 79421, "recordings": 80696, "nonintrusive": 66914, "monitoring": 64708, "hinders": 41841, "clinical": 14906, "movements": 64801, "076": 64, "079": 68, "recall": 80105, "universal": 100111, "chronological": 14618, "stored": 90740, "contained": 18525, "correlated": 19758, "presenting": 74106, "acquired": 2912, "stages": 90129, "morphology": 64756, "inconsistently": 44556, "compatible": 16744, "lemmatization": 53578, "grouping": 40616, "analysed": 5390, "item": 48031, "stemming": 90606, "realtime": 79621, "regular": 81106, "basis": 9892, "weekly": 103517, "highlighting": 41623, "uptodate": 100393, "tends": 95748, "outdated": 68857, "retrieved": 84075, "unanswerable": 99365, "communicate": 16248, "spur": 90048, "knowledgedriven": 48825, "checked": 14478, "exploited": 32575, "injected": 45819, "modifies": 64638, "twostage": 99175, "superiority": 92674, "codebases": 15579, "exceeds": 31322, "synthesize": 93228, "misused": 60246, "uncover": 99421, "hazards": 41130, "impose": 43557, "politically": 72573, "determines": 24417, "expressivity": 32923, "specification": 89894, "execute": 31433, "bank": 9335, "remember": 81856, "regards": 81082, "keyvalue": 48361, "knowledgeable": 48816, "slots": 88650, "salient": 85072, "ssm": 90076, "fix": 35347, "influenced": 45361, "mounting": 64797, "closedbook": 14991, "degrade": 22893, "interpretability": 47273, "keys": 48359, "humanreadable": 42562, "powered": 73404, "day": 22499, "shed": 87211, "recruited": 80709, "amateur": 5298, "negatively": 66071, "opinions": 68477, "align": 4989, "misalign": 60157, "interact": 46971, "abstracted": 1941, "criteria": 20285, "usual": 101864, "distraction": 25914, "movie": 64803, "debiased": 22535, "associate": 8074, "muslims": 65421, "preregistered": 73907, "replication": 81952, "attempts": 8265, "weakest": 103443, "instruct": 46271, "eliminate": 27999, "muslim": 65420, "nonviolent": 66964, "resulted": 83419, "individualized": 45102, "steer": 90583, "away": 9224, "stereotypes": 90702, "revealed": 84184, "debiasing": 22536, "higherorder": 41536, "schemas": 85519, "associations": 8111, "deepminds": 22824, "widelyused": 103753, "llmassisted": 55327, "differs": 25275, "usability": 100418, "compilation": 16834, "ought": 68837, "spreadsheets": 90046, "arise": 7475, "enduser": 28893, "fictitious": 34337, "passwords": 70561, "inserted": 46031, "databases": 21775, "password": 70560, "breaches": 11375, "assumes": 8119, "attackers": 8198, "utterly": 102058, "personally": 71924, "identifiable": 42805, "pii": 72108, "secure": 85984, "trustworthy": 98946, "authentication": 8616, "bar": 9341, "pilot": 72112, "authentic": 8612, "tweaking": 99147, "think": 96789, "customized": 20854, "customizing": 20859, "pursuit": 78063, "overwhelming": 69436, "encourage": 28781, "unconventional": 99420, "replicate": 81945, "subject": 91939, "te": 95331, "distortions": 25911, "simulating": 88320, "carry": 12438, "wellestablished": 103585, "classic": 14709, "psycholinguistic": 77872, "ultimatum": 99347, "game": 36880, "garden": 37001, "milgram": 60022, "shock": 87266, "replicated": 81948, "hyperaccuracy": 42711, "distortion": 25910, "gpt4": 39737, "affect": 4048, "arts": 7691, "summarisation": 92509, "vast": 102663, "quantity": 78435, "originally": 68822, "implements": 43358, "variable": 102238, "device": 24757, "factor": 33575, "indicates": 45028, "won": 103885, "lmkbc": 57091, "364": 857, "timeintensive": 97060, "barrier": 9376, "entry": 29605, "modest": 64629, "lab": 48886, "practitioners": 73572, "analytics": 5738, "explainable": 32444, "body": 11240, "initiate": 45804, "elevate": 27975, "retention": 83943, "overarching": 69344, "concerned": 17667, "internals": 47241, "neglected": 66079, "evidencebased": 30998, "infancy": 45190, "cuttingedge": 20867, "transparent": 98777, "unifies": 100047, "integrating": 46707, "practically": 73541, "programme": 75864, "bloom176b": 11222, "opt175b": 68549, "download": 26678, "highend": 41481, "affordably": 4077, "offloading": 67881, "innate": 45835, "logits": 57285, "collaboratively": 15849, "joining": 48146, "parties": 70511, "running": 84952, "consumer": 18496, "approx": 7259, "natively": 65543, "exposes": 32893, "served": 86786, "custom": 20837, "extensions": 32988, "attribute": 8435, "beliefs": 10030, "biological": 11080, "endowment": 28862, "child": 14519, "mental": 59082, "exposed": 32891, "quantities": 78434, "implied": 43431, "explain": 32428, "lifetime": 53989, "mechanisms": 58812, "documentation": 26225, "automation": 8916, "206": 577, "112": 199, "warrants": 103328, "smart": 88813, "home": 41927, "manners": 58251, "chatbot": 13398, "collected": 15872, "firstofitskind": 35328, "prone": 76859, "fed": 34045, "worryingly": 104437, "nontoxic": 66959, "trigger": 98874, "manuallycrafted": 58318, "defense": 22849, "affecting": 4059, "mitigating": 60294, "hurt": 42697, "confident": 18022, "auditing": 8505, "consciousness": 18110, "workshops": 104396, "discussed": 25696, "theories": 96753, "conscious": 18109, "appendix": 6315, "outlines": 68872, "workshop": 104395, "talks": 93841, "bringing": 11464, "forward": 35885, "engineer": 28936, "provoked": 77824, "flurry": 35489, "commentary": 16064, "press": 74203, "debate": 22520, "old": 67901, "everlarger": 30953, "schedules": 85508, "concurrently": 17778, "schedule": 85505, "androids": 5837, "caption": 12318, "contest": 18719, "really": 79600, "winning": 103836, "funny": 36571, "encapsulate": 28668, "progressively": 76025, "sophisticated": 89274, "elements": 27965, "captions": 12335, "inclusion": 44522, "indirect": 45057, "culture": 20607, "languageonly": 51220, "challenged": 12946, "multifaceted": 64905, "fall": 33776, "groundtruth": 40596, "descriptors": 23742, "headtohead": 41151, "linguist": 54551, "slot": 88647, "alexatm": 4894, "10shot": 176, "intents": 46967, "19": 441, "ic": 42750, "st": 90080, "catalog": 12577, "resampling": 82464, "multidomain": 64903, "project": 76042, "chess": 14515, "bertstyle": 10583, "successive": 92290, "gptstyle": 40245, "eval": 30124, "dfx": 24778, "lowlatency": 57587, "services": 86811, "datacenters": 21779, "characteristic": 13326, "latency": 52620, "caused": 12693, "acceleration": 2025, "executes": 31443, "dataflow": 21787, "simultaneous": 88339, "cores": 19555, "xilinx": 104553, "alveo": 5288, "u280": 99316, "fpgas": 35996, "channels": 13309, "hbm": 41132, "v100": 102062, "workloads": 104341, "wellbeing": 103577, "mechanical": 58785, "turk": 99125, "largelanguage": 52397, "hci": 41134, "designers": 23967, "brief": 11450, "talk": 93837, "manage": 58178, "mood": 64738, "factorial": 33581, "945": 1436, "initialize": 45794, "identity": 42941, "proliferation": 76075, "highstakes": 41817, "medicine": 58930, "burgeoning": 11692, "transparency": 98766, "greater": 40502, "1000x": 148, "instantiations": 46241, "decoupled": 22709, "textclassification": 96507, "6billion": 1204, "fmri": 35493, "interpretations": 47297, "reproducing": 82203, "moral": 64739, "tendencies": 95742, "investigates": 47727, "united": 100101, "broader": 11508, "termed": 95780, "gpt335": 39565, "foundations": 35985, "mimics": 60058, "liberal": 53949, "conservative": 18129, "longshort": 57398, "pronounced": 76869, "personas": 71928, "recurring": 80729, "stuck": 91240, "executions": 31468, "commands": 16054, "exemplified": 31476, "accompanied": 2128, "reporting": 82002, "typical": 99277, "direct": 25407, "2013": 517, "naively": 65462, "memorise": 58995, "continue": 19002, "perceptually": 70807, "cooccurrences": 19480, "responds": 83116, "publics": 78002, "climate": 14903, "lives": 54697, "matter": 58624, "appraisal": 6700, "equity": 29704, "powering": 73478, "autonomous": 8926, "driving": 26853, "subgroups": 91938, "lacks": 49078, "systemic": 93378, "populations": 72714, "loop": 57430, "democracy": 22987, "humanai": 42426, "subpopulations": 91999, "20000": 505, "ethnicity": 30099, "attitudes": 8404, "chat": 13357, "divides": 26173, "expressions": 32917, "keyword": 48365, "extrinsic": 33404, "metadata": 59145, "labelling": 48935, "transcripts": 98390, "unidirectional": 100000, "sap": 85182, "lin": 54508, "glm130b": 39005, "130": 266, "unveil": 100332, "course": 20024, "unexpected": 99957, "spikes": 90004, "stability": 90081, "resultant": 83417, "outperformance": 68973, "titan": 97103, "int4": 46649, "post": 72931, "3090": 766, "24g": 643, "2080": 579, "ti": 96909, "affordable": 4076, "logs": 57287, "lessons": 53632, "opensourced": 68415, "highperforming": 41731, "augmentations": 8560, "nonparametric": 66933, "protein": 77347, "alphafold": 5246, "showcasing": 87371, "underpinning": 99532, "treatment": 98803, "interestingly": 47161, "breaking": 11385, "binding": 11062, "dominating": 26663, "robustness": 84695, "trainingfree": 98359, "neuralsymbolic": 66294, "coverage": 20055, "adopts": 3650, "parser": 70331, "exemplar": 31471, "answerable": 6071, "versatile": 102783, "proper": 76888, "wikitablequestions": 103817, "tabfact": 93675, "note": 67049, "thousands": 96867, "arxiv": 7694, "theses": 96785, "105": 166, "53": 1057, "acc": 2003, "clarity": 14687, "425": 939, "coherence": 15766, "385": 869, "66": 1171, "f1score": 33423, "html": 42017, "exceptional": 31362, "webpage": 103504, "webbased": 103500, "navigation": 65827, "pages": 69461, "miniwob": 60132, "promote": 76212, "analogy": 5381, "analogous": 5379, "aka": 4855, "aeg": 4042, "precise": 73592, "imperative": 43302, "temperature": 95680, "14k": 317, "decaying": 22558, "pertoken": 71985, "kernelbased": 48264, "substitutes": 92151, "sports": 90025, "schemata": 85520, "predicates": 73642, "disambiguate": 25543, "datascarce": 21793, "handful": 40912, "amenable": 5322, "optional": 68669, "possibly": 72929, "triples": 98895, "reduced": 80811, "dart": 20930, "shifting": 87262, "nextevent": 66655, "straightforward": 90763, "typology": 99315, "beam": 9921, "hybrids": 42709, "costaccuracy": 19889, "serialize": 86718, "nodes": 66853, "edges": 27082, "serialized": 86719, "deviate": 24752, "hindering": 41835, "frame": 36008, "reasoners": 79746, "valuealigned": 102200, "command": 16051, "distills": 25850, "inclusivity": 44527, "commercialized": 16101, "vaguely": 102080, "defined": 22866, "correspond": 19784, "wellrecognized": 103604, "generalizability": 37229, "balances": 9314, "demographic": 22999, "calibrates": 11758, "chains": 12847, "appropriate": 7234, "smallerscale": 88801, "processed": 75422, "scripts": 85824, "sheds": 87231, "anchor": 5825, "determinations": 24403, "wages": 103289, "surveys": 93056, "enrolled": 29415, "deemed": 22743, "job": 48135, "respondents": 83110, "unrealistic": 100237, "influences": 45364, "albeit": 4884, "upward": 100396, "bot": 11314, "perceives": 70768, "proportion": 76914, "adhering": 3578, "noted": 67053, "variability": 102236, "bots": 11318, "mandarin": 58200, "grouped": 40612, "acceptability": 2039, "assign": 7996, "acceptable": 2040, "blimp": 11184, "transformations": 98466, "naturallyoccurring": 65794, "linguistannotated": 54552, "18": 422, "xlm": 104558, "697": 1198, "narrow": 65510, "9000": 1407, "rationale": 79433, "connecting": 18093, "unlikely": 100193, "memorized": 59002, "humanevaluated": 42481, "leaving": 53510, "mcqa": 58681, "lag": 49080, "assigned": 7999, "symbol": 93115, "mitigates": 60289, "symbols": 93137, "mcsb": 58683, "closes": 15045, "underestimated": 99437, "forgetful": 35750, "revolutionized": 84338, "selected": 86131, "prevents": 74656, "distant": 25799, "hot": 41993, "cold": 15804, "magic": 57799, "save": 85215, "optimally": 68578, "creativity": 20266, "operators": 68470, "humaneval": 42470, "leetcode": 53543, "tight": 96918, "dependency": 23537, "perfectly": 70811, "steganography": 90596, "secret": 85973, "innocuous": 45841, "party": 70527, "realize": 79587, "informationtheoretic": 45678, "induced": 45137, "perfect": 70808, "arithmetic": 7485, "adaptive": 3142, "aggregate": 4251, "conversing": 19436, "cs1": 20561, "june": 48207, "free": 36335, "plugin": 72452, "powers": 73482, "courses": 20033, "taught": 95309, "resolving": 82944, "166": 378, "activity": 3006, "promotes": 76220, "skill": 88581, "semiparametric": 86414, "fullyparametric": 36479, "zerofewshot": 104713, "evolving": 31046, "empowers": 28512, "knowledgerich": 48838, "causality": 12680, "adaptively": 3147, "selects": 86184, "retrieves": 84099, "selector": 86183, "router": 84883, "assignment": 8003, "770m": 1265, "hypothetical": 42748, "smallscale": 88805, "insufficient": 46641, "decompositionbased": 22704, "torque": 97555, "hotpotqa": 41995, "strategyqa": 90929, "tabular": 93702, "stock": 90724, "json": 48174, "lookup": 57428, "newspaper": 66650, "infographics": 45373, "wild": 103822, "circuit": 14635, "mechanistic": 58820, "seeks": 86073, "strokes": 91000, "bridge": 11416, "encompasses": 28753, "heads": 41147, "estimating": 30017, "carbon": 12384, "footprint": 35716, "176b": 414, "comes": 16035, "life": 53979, "emitted": 28243, "247": 640, "consumption": 18505, "equipment": 29693, "manufacturing": 58325, "operational": 68452, "emissions": 28241, "endpoint": 28864, "precisely": 73603, "understandable": 99661, "llmgenerated": 55370, "snippets": 88834, "linebyline": 54544, "appeared": 6309, "classrooms": 14849, "subquestions": 92002, "decomposer": 22691, "concatenate": 17582, "conciseness": 17726, "overlooked": 69403, "annotators": 5963, "setups": 87112, "roundtrip": 84877, "strongest": 91098, "lies": 53973, "requests": 82219, "priming": 74819, "exercises": 31491, "humancreated": 42463, "openaccess": 68135, "kept": 48261, "democratizing": 22994, "roots": 84847, "comprising": 17391, "46": 967, "59": 1101, "targets": 93912, "multidimensional": 64890, "slices": 88623, "lowlevel": 57588, "pareto": 70317, "frontier": 36393, "mfu": 59981, "fastertransformer": 33914, "multiquery": 65312, "head": 41136, "int8": 46650, "controllable": 19234, "breakthroughs": 11400, "internalize": 47238, "interacts": 47125, "precedence": 73585, "taskrelevant": 94325, "conflicts": 18054, "ignore": 42962, "undertake": 99920, "aforementioned": 4083, "controllability": 19232, "aware": 9212, "strengthen": 90947, "showcases": 87368, "facilitation": 33550, "comprehending": 17139, "anomalous": 5977, "continuation": 19000, "xlmr": 104559, "harry": 41099, "potter": 73361, "complexities": 17031, "empower": 28488, "guiding": 40773, "ui": 99326, "smartphone": 88819, "myriad": 65440, "stepbystep": 90666, "overlaying": 69396, "tutorial": 99138, "phone": 72044, "tutorials": 99139, "retrieving": 84105, "macros": 57796, "executed": 31442, "ondevice": 67914, "crossmodal": 20431, "48": 979, "drops": 26871, "ood": 68029, "evolves": 31044, "codegen": 15598, "scan": 85361, "geoquery": 38796, "decreasing": 22721, "customerfacing": 20848, "maskbased": 58425, "misaligned": 60158, "handcrafted": 40905, "hijacking": 41825, "leaking": 52921, "illintentioned": 42987, "stochastic": 90719, "longtail": 57404, "wave": 103337, "llmpowered": 55380, "ramifications": 79094, "qualify": 78184, "justify": 48230, "sentience": 86577, "wider": 103764, "tendency": 95743, "anthropomorphic": 6236, "moment": 64699, "selfconsistency": 86205, "macaw": 57679, "yes": 104624, "sparrow": 89524, "bird": 11110, "correction": 19695, "nli": 66692, "instantiates": 46239, "accounts": 2167, "isolation": 47921, "compatibility": 16743, "weighted": 103532, "solver": 89208, "vqa": 103228, "converge": 19302, "truth": 98950, "corrected": 19691, "handle": 40917, "spanning": 89493, "actions": 2959, "density": 23516, "verification": 102737, "distantlysupervised": 25802, "sari": 85186, "118": 211, "links": 54620, "transition": 98655, "833": 1352, "conll": 18085, "685": 1190, "arabic": 7300, "41": 929, "743": 1241, "f1scores": 33424, "curious": 20651, "questionasking": 78753, "curiositydriven": 20650, "said": 85065, "aged": 4108, "gpt3generated": 39730, "affords": 4081, "specialists": 89612, "landscape": 49102, "realtoxicityprompts": 79632, "17": 391, "executable": 31430, "benefiting": 10463, "radar": 79013, "trick": 98867, "countermeasure": 20001, "synthesizes": 93240, "codebleu": 15584, "1972": 455, "codegpt": 15606, "codet5": 15648, "pass1": 70535, "reinstate": 81170, "implicate": 43359, "sarcasm": 85184, "irony": 47895, "peoples": 70750, "meanings": 58721, "participated": 70382, "ranked": 79251, "onesentence": 67942, "multilabel": 64926, "sentencepair": 86538, "impossible": 43562, "2023s": 568, "mpt": 64822, "minimally": 60106, "implausible": 43313, "laptop": 51380, "followup": 35708, "plausibility": 72321, "passive": 70556, "constructions": 18483, "synonymous": 93162, "mirror": 60150, "judgment": 48188, "iv": 48088, "dominate": 26660, "chunk": 14620, "helped": 41289, "planning": 72249, "obtaining": 67681, "automata": 8656, "constructs": 18487, "automaton": 8924, "sends": 86431, "fills": 34467, "userdefined": 101057, "accordingly": 2157, "refine": 80972, "outcomes": 68842, "counterexamples": 19990, "crossing": 20412, "road": 84586, "highlyspecialized": 41722, "multiparty": 65124, "conditionals": 17801, "force": 35724, "propositions": 77291, "drawn": 26815, "override": 69418, "appears": 6311, "impacted": 43273, "associative": 8112, "routing": 84891, "price": 74769, "formidable": 35843, "root": 84841, "convenient": 19269, "layerwise": 52766, "dropping": 26870, "125x": 243, "rent": 81879, "azure": 9232, "bigscience": 11003, "initiative": 45811, "culminated": 20583, "multidisciplinary": 64896, "collaborations": 15833, "governance": 39164, "participatory": 70389, "participant": 70356, "did": 24950, "inception": 44215, "reused": 84128, "decouple": 22708, "attractive": 8432, "datahungry": 21789, "regime": 81084, "sunk": 92614, "checkpoint": 14487, "deception": 22566, "revisits": 84316, "compelling": 16752, "1950": 452, "proves": 77389, "undetectable": 99943, "judge": 48176, "mechanics": 58788, "readability": 79498, "delivery": 22945, "displays": 25772, "truly": 98920, "thoughts": 96862, "unanswered": 99367, "advancement": 3762, "credibility": 20273, "disparate": 25758, "underrepresentation": 99534, "drug": 26873, "discovery": 25611, "revolutionize": 84332, "offering": 67780, "aibased": 4624, "drawbacks": 26803, "reviewed": 84280, "obstacles": 67636, "integration": 46750, "pharmaceutical": 72006, "realizing": 79591, "gpt35": 39567, "manuscript": 58326, "striving": 90999, "selfprompting": 86250, "implicitly": 43426, "invoked": 47818, "concretely": 17774, "unacceptable": 99358, "mismatch": 60193, "raises": 79073, "violations": 102931, "grammaticality": 40346, "worsen": 104444, "violated": 102926, "amplified": 5366, "explained": 32454, "uniformly": 100052, "spread": 90034, "opt66b": 68552, "removed": 81866, "decline": 22621, "unimportant": 100059, "primitive": 74820, "prefix": 73842, "reinforcing": 81168, "undertrained": 99927, "inductive": 45144, "selfimitation": 86235, "win": 103827, "intellectual": 46792, "generics": 38759, "birds": 11111, "fly": 35491, "west": 103616, "breaks": 11390, "dependence": 23532, "unnatural": 100211, "inferencetime": 45326, "eliciting": 27995, "fourth": 35991, "expanded": 31872, "rephrase": 81917, "rivals": 84544, "manuallycurated": 58319, "diversification": 26131, "discriminate": 25633, "burden": 11687, "capitalizes": 12316, "discriminative": 25637, "kbqa": 48247, "humanlanguage": 42507, "languagebased": 51211, "defines": 22869, "firstperson": 35331, "thirdparty": 96812, "notions": 67071, "ownership": 69443, "cover": 20044, "metaphor": 59161, "labs": 48973, "jurassic1": 48214, "diverge": 25968, "repurposing": 82211, "referencebased": 80945, "falls": 33797, "referencefree": 80949, "reliance": 81541, "methodologies": 59474, "repurposed": 82209, "bertscore": 10581, "summeval": 92610, "excels": 31358, "competes": 16773, "evaluators": 30898, "surrounds": 93017, "shell": 87249, "statement": 90286, "fragments": 36007, "violation": 102930, "satisfaction": 85193, "removing": 81868, "inconsistencies": 44544, "pictures": 72102, "pay": 70662, "tone": 97253, "polite": 72560, "10k": 173, "100k": 151, "wish": 103854, "provoke": 77823, "uncharted": 99394, "customize": 20853, "docstrings": 26194, "perturbed": 71992, "alter": 5249, "worstcase": 104447, "mbpp": 58672, "incoder": 44528, "annotator": 5962, "wonder": 103886, "soda": 88962, "millionscale": 60049, "standing": 90234, "distill": 25805, "exceptionally": 31391, "spectrum": 89920, "cosmo": 19825, "godel": 39087, "koala": 48863, "vicuna": 102858, "distinction": 25885, "differential": 25263, "bridges": 11444, "subtle": 92165, "annotates": 5880, "guessing": 40711, "spurious": 90052, "solicit": 89062, "incidental": 44219, "pivot": 72196, "instructs": 46631, "contrastively": 19114, "contriever": 19192, "encodes": 28742, "neighborhood": 66102, "ground": 40553, "retrievers": 84097, "ko": 48862, "interleaving": 47198, "chainofthought": 12814, "promptingbased": 76638, "cot": 19942, "onestep": 67956, "retrieveandread": 84074, "depend": 23526, "interleaves": 47197, "musique": 65419, "iirc": 42983, "flant5large": 35404, "hallucination": 40824, "titles": 97107, "30k": 769, "venues": 102718, "humorous": 42683, "26k": 681, "slightly": 88634, "clearly": 14890, "underperform": 99526, "suboptimal": 91989, "textdavinci003": 96514, "commongen": 16185, "rerankers": 82452, "faithful": 33746, "formalize": 35806, "causally": 12683, "figure": 34454, "deletion": 22925, "negation": 66048, "interventionbased": 47343, "innerworkings": 45840, "unfaithfulness": 99975, "adequately": 3571, "predictors": 73773, "aggregating": 4254, "embodying": 28117, "entropybased": 29604, "predictor": 73772, "informativeness": 45688, "calculated": 11736, "selfpaced": 86247, "eyetracking": 33410, "659": 1167, "ms": 64831, "282": 700, "durations": 26903, "death": 22518, "shortform": 87333, "physics": 72077, "coming": 16048, "revolution": 84317, "essays": 29930, "seconds": 85972, "davinci003": 22490, "firstclass": 35314, "grades": 40288, "university": 100124, "marked": 58382, "markers": 58390, "71": 1227, "pm": 72464, "awarded": 9211, "returned": 84121, "grammarly": 40331, "turnitin": 99132, "mlps": 60405, "meta": 59134, "instructiontuning": 46610, "bench": 10059, "consolidated": 18348, "prepare": 73892, "generalizations": 37289, "opt30b": 68551, "30b": 767, "instructiontuned": 46581, "formats": 35836, "promptsource": 76853, "flan": 35383, "unifiedskg": 100046, "poorer": 72600, "loglinear": 57286, "compensatory": 16761, "modals": 60447, "propensity": 76886, "composing": 17109, "retrievalaugmented": 84039, "rm": 84581, "retrievethenread": 84103, "rms": 84582, "dsp": 26882, "passing": 70551, "express": 32903, "bootstrap": 11306, "delivering": 22941, "839": 1355, "vanilla": 102226, "selfask": 86195, "nearly": 65850, "jurisdictions": 48216, "sit": 88437, "applicant": 6331, "completes": 16889, "postsecondary": 72968, "testtakers": 96063, "weeks": 103518, "investment": 47806, "capital": 12314, "expect": 31886, "gpt35s": 39692, "headline": 41144, "503": 1031, "excess": 31393, "88": 1382, "interpret": 47267, "nascent": 65522, "proprietary": 77292, "fuzzing": 36802, "deeplearning": 22819, "hardly": 40994, "satisfy": 85206, "syntaxsemantics": 93201, "autoregressively": 8980, "invoking": 47820, "intricate": 47361, "mutate": 65424, "generationbased": 38512, "mutationbased": 65427, "sparsegpt": 89546, "gptfamily": 40213, "hours": 42000, "negligible": 66087, "ignored": 42965, "solvers": 89209, "reversals": 84231, "deductive": 22734, "innovatively": 45870, "questioner": 78755, "guess": 40709, "sixteen": 88446, "emotions": 28269, "arrive": 7514, "deductively": 22740, "inventions": 47603, "designs": 23981, "neuroscience": 66311, "tsar2022": 98980, "frustratingly": 36414, "beating": 9930, "competing": 16774, "portuguese": 72727, "detailing": 24192, "spend": 89995, "discussing": 25710, "worker": 104311, "economy": 27064, "workers": 104312, "private": 74921, "readiness": 79517, "certified": 12790, "regulation": 81125, "reg": 81037, "blueprints": 11230, "144": 312, "absent": 1905, "calculation": 11740, "576": 1094, "821": 1341, "rising": 84485, "textdavinci001": 96511, "creates": 20209, "arbitrarily": 7311, "exactly": 31074, "programmed": 75865, "artistic": 7689, "revolutionizing": 84357, "sectors": 85981, "transformed": 98481, "creatively": 20265, "dalle2": 20914, "flamingo": 35381, "audio": 8475, "audiolm": 8499, "galactica": 36879, "explorer": 32792, "population": 72713, "begins": 9948, "validated": 102107, "manifold": 58213, "investors": 47810, "instructionbased": 46428, "t5small": 93667, "3rd": 898, "translated": 98667, "profit": 75814, "lexicons": 53938, "estimator": 30034, "rank": 79244, "treatments": 98810, "treated": 98799, "formula": 35856, "degenerates": 22883, "spearman": 89597, "achievable": 2472, "1986": 457, "1988": 458, "trivially": 98902, "fresh": 36386, "departing": 23521, "laboratory": 48964, "hiring": 41857, "faces": 33464, "applicants": 6332, "realized": 79589, "garnered": 37006, "worry": 104434, "hc3": 41133, "chatgpts": 14417, "chatgptgenerated": 14400, "volumes": 103218, "financially": 34617, "batches": 9901, "theoretically": 96749, "inverse": 47607, "5x": 1111, "chatbased": 13392, "site": 88438, "stabilize": 90086, "discoveries": 25607, "mmr": 60416, "multihead": 64913, "self": 86190, "corroborate": 19812, "infusion": 45706, "adopting": 3622, "usercentric": 101056, "computeraided": 17549, "persuasiveness": 71979, "memorability": 58992, "empathy": 28277, "balancing": 9315, "stylized": 91919, "segment": 86102, "perceive": 70757, "restaurant": 83363, "visits": 103048, "prerequisite": 73911, "ends": 28866, "boundaries": 11334, "gptderived": 40211, "consensus": 18112, "cognition": 15729, "elucidate": 28022, "principles": 74828, "exaranker": 31312, "ranker": 79255, "rankers": 79257, "querydocument": 78550, "thousand": 96865, "requested": 82217, "selfreported": 86261, "healthrelated": 41197, "pioneering": 72126, "clinically": 14947, "usergenerated": 101064, "mining": 60124, "actionable": 2956, "humanannotated": 42436, "happening": 40965, "organic": 68734, "sword": 93108, "dangers": 20924, "campaigns": 11793, "realm": 79604, "contributes": 19135, "academia": 1966, "multitude": 65377, "defacto": 22828, "harvesting": 41104, "weave": 103472, "understandings": 99910, "conceptualizes": 17654, "smoothly": 88828, "confidently": 18027, "logics": 57280, "successor": 92293, "nontrivial": 66960, "enriching": 29413, "reality": 79579, "stepping": 90672, "truthtelling": 98970, "listeners": 54629, "desire": 23996, "navigating": 65825, "choosing": 14607, "weighing": 103521, "pros": 77322, "cons": 18108, "fulfill": 36423, "displayed": 25770, "intuitive": 47581, "workinprogress": 104338, "visually": 103149, "red": 80735, "teaming": 95383, "jailbreaking": 48100, "businesses": 11704, "prejudice": 73851, "accountable": 2164, "educate": 27122, "responsibly": 83357, "refers": 80968, "dec": 22553, "15th": 354, "accordance": 2141, "viewpoints": 102919, "unimodal": 100056, "parsers": 70332, "susceptible": 93065, "literacy": 54637, "testbeds": 95964, "publiclyavailable": 78001, "eighteen": 27931, "examines": 31136, "nexttoken": 66659, "succeeds": 92181, "descriptive": 23738, "loads": 57191, "sums": 92612, "testable": 95961, "rows": 84897, "diagnosis": 24792, "conceived": 17590, "suited": 92483, "equivalently": 29712, "suffering": 92322, "fscore": 36417, "disorders": 25757, "sensory": 86486, "modalities": 60429, "perceptual": 70806, "recovered": 80703, "bound": 11332, "psychophysical": 77893, "recovering": 80704, "wellknown": 103591, "color": 15930, "wheel": 103623, "pitch": 72184, "cotrained": 19972, "modality": 60444, "replicates": 81949, "crosslinguistic": 20430, "variation": 102257, "illuminating": 42991, "scheduling": 85509, "pool": 72586, "outofthebox": 68901, "tracks": 97630, "embody": 28116, "threads": 96873, "visualization": 103135, "iterations": 48045, "curate": 20619, "proximity": 77835, "books": 11258, "225": 617, "boolean": 11259, "gptscore": 40243, "highcaliber": 41475, "arduous": 7412, "80m": 1329, "desires": 24015, "caught": 12644, "schools": 85557, "sparked": 89511, "fears": 33940, "originality": 68821, "manifest": 58206, "check": 14471, "shortcut": 87326, "institutions": 46266, "advise": 4029, "chatgpt3": 14365, "assistant": 8035, "scored": 85742, "gpts": 40239, "authenticity": 8617, "grade": 40279, "239": 629, "duration": 26902, "996": 1466, "jaccard": 48089, "index": 44967, "recognized": 80625, "aigenerated": 4662, "conclusions": 17760, "highprecision": 41733, "fixing": 35366, "buggy": 11562, "tutor": 99136, "llmsbased": 57063, "tunable": 98993, "giving": 38989, "decide": 22569, "virtue": 102948, "prevalently": 74643, "nl": 66679, "inconsistency": 44545, "incompleteness": 44541, "assurance": 8124, "tedious": 95668, "overlook": 69398, "pressures": 74210, "getting": 38817, "instant": 46234, "localizes": 57221, "901": 1408, "extracts": 33358, "842": 1361, "bottlenecked": 11329, "longrange": 57394, "8k": 1391, "boundary": 11338, "12k": 252, "manyshot": 58331, "extending": 32960, "16k": 387, "upper": 100375, "plenty": 72397, "motivated": 64773, "weaknesses": 103454, "kgs": 48378, "captured": 12371, "kg": 48372, "supported": 92846, "database": 21767, "engine": 28929, "qas": 78162, "debut": 22551, "selfcorrect": 86211, "geometries": 38792, "connect": 18090, "mae": 57798, "dispersion": 25764, "factoring": 33583, "algebra": 4897, "frontiers": 36398, "reevaluate": 80914, "allocate": 5148, "authoring": 8624, "hint": 41850, "tutoring": 99140, "tutors": 99143, "77": 1263, "passed": 70549, "checks": 14498, "ceiling": 12720, "pretest": 74216, "replicability": 81942, "professionals": 75768, "collecting": 15883, "accept": 2038, "letter": 53640, "crosslayer": 20414, "embedded": 28042, "manager": 58192, "frames": 36010, "quantified": 78385, "allocation": 5153, "schemes": 85531, "updated": 100353, "gained": 36819, "scraping": 85802, "stack": 90102, "overflow": 69381, "adjusted": 3587, "motivate": 64767, "massively": 58474, "push": 78069, "84": 1357, "constant": 18357, "44": 954, "553": 1078, "cqa": 20119, "freedom": 36343, "mix": 60319, "protection": 77341, "approval": 7257, "nonspecialists": 66952, "reviewing": 84284, "helm": 41231, "strict": 90976, "nonfactoid": 66907, "hallucinations": 40855, "neurosymbolic": 66312, "iterated": 48041, "miscommunication": 60165, "instructors": 46627, "barriers": 9378, "miss": 60197, "office": 67870, "pace": 69446, "redefine": 80747, "aiaugmented": 4623, "discipline": 25561, "teaching": 95359, "ta": 93674, "policies": 72528, "envisioned": 29663, "tas": 93914, "gpt3based": 39721, "methodical": 59467, "triple": 98894, "birthday": 11114, "country": 20017, "satisfactory": 85198, "page": 69459, "located": 57226, "jack": 48090, "trades": 97647, "master": 58477, "examined": 31129, "stance": 90149, "49k": 992, "personalize": 71903, "personalization": 71900, "imposed": 43558, "trainers": 97935, "infeasible": 45192, "datastore": 22469, "misleading": 60187, "directional": 25453, "stimulus": 90714, "act": 2931, "instancespecific": 46233, "sidesteps": 87634, "multiwoz": 65403, "enhances": 29274, "instructgpts": 46296, "humancrafted": 42462, "induce": 45135, "shedding": 87225, "gathered": 37026, "evenly": 30912, "mutations": 65428, "safetycritical": 85061, "advglue": 4025, "anli": 5849, "astounding": 8130, "definitive": 22877, "drive": 26838, "evolution": 31014, "generalizing": 37313, "analagous": 5375, "adult": 3656, "learner": 52997, "compositionality": 17117, "advantageous": 3933, "avenues": 9110, "highthroughput": 41822, "bard": 9343, "unprecedented": 100222, "everincreasing": 30950, "coupled": 20021, "shortages": 87316, "pressing": 74204, "geared": 37047, "multiinput": 64924, "manyfold": 58330, "performant": 71749, "proficiently": 75810, "disentangle": 25741, "dictionaries": 24948, "commitment": 16115, "plugandplay": 72445, "revises": 84304, "sacrificing": 84976, "naturalsounding": 65797, "staffers": 90111, "legislators": 53574, "constituent": 18364, "reply": 81955, "satisfied": 85204, "drafts": 26777, "wrote": 104535, "agency": 4111, "dr": 26770, "hear": 41200, "consumers": 18502, "detriment": 24424, "mwp": 65435, "commercially": 16102, "mwps": 65436, "requirement": 82328, "failing": 33695, "unknowns": 100141, "noting": 67068, "subtraction": 92171, "characterization": 13338, "aipowered": 4835, "historical": 41859, "highlighted": 41618, "privacy": 74886, "spiking": 90005, "energyefficient": 28900, "lags": 49085, "receptance": 80566, "rwkv": 84973, "activation": 2975, "45m": 966, "20x": 587, "llama": 54705, "7b": 1276, "65b": 1168, "trillions": 98887, "inaccessible": 44182, "llama13b": 54810, "llama65b": 54889, "palm540b": 69565, "rectification": 80712, "normal": 66969, "pushed": 78072, "restrictive": 83378, "elimination": 28015, "ultimately": 99340, "selections": 86180, "uncertain": 99382, "servers": 86789, "fuzzy": 36803, "hugging": 42053, "humanbot": 42452, "softwareintensive": 89047, "deals": 22515, "daunting": 22479, "unifying": 100054, "intellect": 46791, "patterndriven": 70620, "sketch": 88573, "blueprint": 11229, "guides": 40767, "inherits": 45757, "standardized": 90219, "impede": 43297, "blockchain": 11199, "quantum": 78457, "architects": 7325, "disruptive": 25785, "refining": 80994, "novice": 67300, "architect": 7323, "oversight": 69422, "116k": 207, "encounters": 28779, "intimacy": 47354, "2023": 549, "secondbest": 85965, "pearsons": 70680, "humanlabeled": 42505, "stabilizes": 90087, "noticeable": 67061, "heading": 41142, "storm": 90750, "fastest": 33915, "midjourney": 60006, "notoriety": 67072, "sites": 88439, "populate": 72711, "intriguing": 47376, "generalised": 37215, "entailment": 29493, "presupposition": 74213, "plm": 72399, "neglecting": 66081, "compose": 17100, "hallmarks": 40808, "distinguishes": 25901, "saw": 85221, "adventures": 3967, "129": 250, "prolific": 76081, "informs": 45697, "draft": 26771, "timing": 97093, "strategically": 90786, "convention": 19271, "british": 11476, "conventions": 19301, "correcting": 19693, "somewhat": 89266, "cards": 12391, "humanmade": 42556, "indiscriminate": 45061, "guidelines": 40762, "transferable": 98445, "threedimensional": 96888, "accountability": 2163, "trace": 97613, "accepted": 2051, "questionnaire": 78758, "machinereadable": 57780, "composite": 17110, "international": 47242, "formed": 35842, "researching": 82898, "undertaking": 99925, "putting": 78082, "undertaken": 99923, "assemble": 7805, "openscience": 68304, "opencollaboration": 68231, "thereof": 96783, "genre": 38770, "slovenian": 88651, "underresourced": 99537, "questioning": 78757, "laborious": 48969, "aigc": 4654, "gan": 36903, "secrets": 85977, "gai": 36805, "belong": 10053, "digital": 25352, "music": 65409, "multimodality": 65113, "eyes": 33409, "tiktok": 96923, "waves": 103339, "lecturers": 53514, "february": 34044, "videos": 102894, "tagged": 93762, "collectively": 15918, "250": 652, "million": 60024, "promoted": 76219, "detectors": 24385, "clips": 14965, "nonsensical": 66949, "unfaithful": 99974, "engineered": 28938, "inaccurate": 44186, "chatgpt4": 14376, "purposeful": 78054, "cooling": 19485, "metallic": 59156, "glasses": 38998, "chitchat": 14582, "guaranteed": 40698, "prioritize": 74878, "pseudolabels": 77865, "reject": 81172, "proxies": 77829, "ab": 1482, "10000": 144, "chai": 12795, "translates": 98670, "6b": 1200, "realise": 79559, "illustrating": 43004, "proliferate": 76072, "greenhouse": 40544, "gas": 37019, "societies": 88937, "1500": 333, "co2e": 15093, "displacement": 25765, "legality": 53569, "rebound": 80102, "substitute": 92148, "activities": 3003, "emission": 28240, "trustworthiness": 98938, "symmetric": 93138, "transitive": 98660, "ascertain": 7698, "ultimate": 99337, "proactive": 74943, "prioritization": 74877, "mobile": 60418, "stores": 90742, "proactively": 74945, "renders": 81874, "votes": 103225, "window": 103830, "posts": 72962, "imbalance": 43146, "phases": 72018, "radius": 79030, "neighbors": 66106, "experienced": 31944, "workplace": 104343, "englishlanguage": 29124, "posting": 72952, "graduate": 40317, "svms": 93088, "accomplish": 2132, "gpt35based": 39690, "gpt35turbo": 39694, "welldesigned": 103582, "wording": 103939, "mimicking": 60056, "instructed": 46280, "pressure": 74208, "accessibility": 2098, "detected": 24231, "converted": 19446, "neurips": 66295, "logicbased": 57278, "asp": 7752, "restaurants": 83365, "interactively": 47123, "request": 82214, "computes": 17555, "goaldirected": 39079, "realistically": 79577, "converse": 19433, "alexa": 4893, "siri": 88436, "disfluencies": 25745, "revisions": 84308, "contacts": 18508, "lowdata": 57543, "participate": 70381, "undergraduate": 99469, "sheet": 87244, "graded": 40285, "alongside": 5221, "narrowly": 65516, "205": 575, "succeed": 92179, "structurally": 91123, "homework": 41931, "inadequate": 44195, "brought": 11529, "reaching": 79480, "arising": 7484, "rubric": 84917, "occupations": 67706, "workforce": 104323, "timeline": 97061, "projected": 76056, "jobs": 48140, "completed": 16881, "tooling": 97343, "47": 975, "traits": 98371, "abundance": 1960, "codedavinci002": 15593, "textdavinci002": 96512, "gradually": 40316, "rlhf": 84564, "compromises": 17406, "massivetext": 58476, "wrt": 104536, "representational": 82080, "reflexion": 81022, "compilers": 16847, "trialanderror": 98863, "reinforce": 81136, "verbally": 102729, "reflective": 81019, "episodic": 29670, "buffer": 11552, "scalar": 85247, "freeform": 36344, "internally": 47240, "obtains": 67685, "91": 1412, "incorporation": 44724, "gpt4s": 40173, "delves": 22954, "potent": 72975, "confidence": 18009, "instruments": 46639, "commonsenseqa": 16247, "hans": 40962, "viz": 103173, "reproduces": 82194, "bug": 11553, "avoidance": 9204, "fixes": 35363, "aiming": 4757, "masks": 58437, "navigates": 65824, "topology": 97547, "09": 80, "simpletouse": 88259, "viral": 102935, "headlines": 41145, "glimpse": 39002, "angle": 5843, "transitioning": 98658, "pure": 78027, "impressed": 43568, "unify": 100053, "diversified": 26132, "promptly": 76643, "technological": 95615, "depicts": 23557, "mainstream": 57858, "faced": 33457, "outlook": 68874, "cohesion": 15794, "prominently": 76107, "disadvantage": 25536, "cohmetrix": 15796, "instrument": 46635, "concreteness": 17776, "referential": 80961, "revision": 84306, "facilitated": 33515, "lagged": 49083, "eliminating": 28009, "125": 238, "decoder": 22627, "coarsefine": 15098, "cell": 12723, "prefer": 73787, "responding": 83112, "obscure": 67550, "ais": 4841, "imitate": 43156, "quora": 78997, "forum": 35883, "submit": 91978, "humanistic": 42499, "reaction": 79489, "typologically": 99312, "nonautoregressive": 66879, "sparks": 89519, "contend": 18581, "cohort": 15797, "mastery": 58483, "strikingly": 90989, "agi": 4260, "ahead": 4285, "moves": 64802, "nextword": 66664, "reflections": 81017, "leap": 52926, "trust": 98926, "evident": 31005, "contamination": 18563, "age": 4101, "revisit": 84310, "unsatisfactory": 100255, "nearoptimal": 65859, "evades": 30122, "watermarking": 103335, "stress": 90970, "11b": 213, "reordering": 81882, "gptzero": 40248, "detectgpt": 24232, "703": 1216, "maintained": 57878, "provider": 77635, "looking": 57423, "15m": 353, "t5xxl": 93672, "97": 1455, "talking": 93839, "abortion": 1895, "vague": 102079, "confusing": 18071, "recommended": 80669, "consulting": 18492, "attempting": 8264, "inclined": 44225, "impression": 43569, "attached": 8156, "warning": 103318, "decided": 22570, "hesitant": 41328, "credible": 20275, "bioinformatics": 11076, "endeavor": 28849, "184": 432, "139": 281, "755": 1250, "179": 419, "machinelearning": 57777, "usable": 100423, "south": 89429, "east": 27024, "asian": 7703, "asia": 7702, "sea": 85837, "malay": 58147, "tagalog": 93761, "vietnamese": 102905, "tamil": 93844, "bloomz": 11227, "flant5xxl": 35407, "incapable": 44208, "clauses": 14867, "englishbased": 29116, "meaningless": 58719, "erroneously": 29764, "proficiency": 75775, "unleashing": 100159, "metaverse": 59171, "immersive": 43178, "personalized": 71905, "legitimate": 53576, "defending": 22842, "amid": 5331, "whilst": 103624, "ignited": 42960, "companies": 16352, "bing": 11064, "indication": 45047, "interviews": 47350, "implying": 43435, "tfidf": 96710, "excelling": 31357, "smarter": 88818, "deeply": 22821, "action": 2937, "inferring": 45334, "contextdependent": 18886, "places": 72220, "puts": 78080, "appropriately": 7250, "llmdriven": 55365, "contextawareness": 18884, "attributing": 8462, "tracing": 97617, "visionlanguage": 103019, "725": 1234, "dealt": 22516, "compiler": 16843, "875": 1380, "wireless": 103847, "surge": 92888, "persistent": 71866, "wp": 104452, "multiscale": 65318, "skeleton": 88569, "imposes": 43559, "adjustment": 3589, "server": 86787, "shannon": 87172, "bits": 11117, "realizes": 79590, "upgraded": 100368, "mathematically": 58597, "starts": 90261, "conversion": 19437, "implementing": 43352, "curve": 20832, "overlaps": 69395, "launch": 52690, "suffix": 92345, "arrays": 7512, "forensic": 35742, "crowdworkers": 20464, "refer": 80922, "analyst": 5723, "elicitation": 27991, "analysts": 5724, "regularized": 81113, "convex": 19455, "newton": 66653, "mathbbrn": 58566, "denoted": 23499, "minimize": 60111, "naive": 65458, "let": 53634, "denote": 23498, "entries": 29602, "exponent": 32883, "multiplication": 65298, "2373": 627, "epsilon": 29679, "x0": 104544, "adds": 3559, "mof": 64694, "hindered": 41828, "descendant": 23659, "168": 381, "validity": 102136, "understandability": 99660, "elephant": 27973, "youtube": 104689, "mission": 60206, "angles": 5844, "culturally": 20603, "tied": 96914, "america": 5323, "touching": 97570, "invisible": 47811, "reflection": 81016, "quick": 78977, "tips": 97100, "chatgptgpt4": 14409, "biology": 11083, "curiosity": 20649, "compiling": 16849, "pertinent": 71984, "refactoring": 80921, "staying": 90572, "neuralbased": 66293, "ecosystem": 27066, "connects": 18105, "brainlike": 11359, "subtask": 92161, "knowledgeenhanced": 48826, "explainer": 32456, "unreliable": 100246, "dangerous": 20922, "unable": 99352, "humanunderstandable": 42660, "openbookqa": 68229, "clearer": 14889, "furnish": 36572, "exciting": 31407, "formalizing": 35810, "userfriendly": 101059, "sampleefficient": 85096, "minimizing": 60117, "61b": 1134, "repaired": 81903, "chatting": 14462, "communitys": 16342, "brazilian": 11367, "admission": 3599, "exame": 31080, "nacional": 65454, "ensino": 29433, "medio": 58938, "enem": 28895, "edition": 27114, "httpsgithubcompiresramongpt4enem": 42025, "singular": 88432, "sagemath": 85064, "juxtaposed": 48233, "svd": 93086, "pythonbased": 78114, "cas": 12449, "assisting": 8067, "consolidating": 18350, "mastering": 58479, "confirmation": 18043, "recognizing": 80634, "plausiblesounding": 72327, "newspapers": 66652, "classical": 14713, "commentaries": 16063, "specificity": 89903, "inaccessibility": 44181, "crosscultural": 20400, "incorporates": 44678, "flattening": 35416, "biasing": 10962, "necessity": 65891, "carrying": 12446, "recursively": 80732, "criticizes": 20384, "sl": 88618, "promptings": 76640, "chain": 12796, "selfrefine": 86254, "selffeedback": 86230, "refiner": 80991, "standalone": 90154, "monte": 64725, "carlo": 12430, "formalism": 35803, "humanexpert": 42483, "cpus": 20117, "unsuccessful": 100298, "avoided": 9205, "collaborating": 15815, "theorems": 96729, "formulas": 35859, "fundamentals": 36565, "fe": 33936, "pe": 70676, "structural": 91116, "surveying": 93055, "709": 1219, "462": 969, "editions": 27115, "essentially": 29963, "governed": 39166, "grasping": 40457, "enlarged": 29387, "coined": 15800, "outlet": 68862, "gathering": 37028, "outlets": 68863, "ratings": 79424, "guardrails": 40705, "purposes": 78056, "bertlike": 10576, "bayes": 9908, "lightgbm": 54027, "adaptability": 3056, "theoretic": 96730, "emergency": 28188, "aeb": 4041, "electricity": 27949, "management": 58183, "standardisation": 90215, "highresource": 41801, "partly": 70516, "englishonly": 29125, "330k": 800, "nlibased": 66699, "slotfilling": 88649, "competency": 16770, "surgery": 92900, "inservice": 46036, "indicator": 45051, "resident": 82914, "vignettes": 102923, "surgeon": 92899, "boards": 11235, "board": 11233, "8th": 1392, "percentile": 70777, "april": 7292, "chatgptrelated": 14416, "played": 72355, "194": 450, "endeavors": 28851, "chatdoctor": 13464, "alpaca": 5223, "undoubtedly": 99948, "easytouse": 27039, "adapters": 3117, "placement": 72219, "satisfying": 85209, "ordinary": 68730, "favors": 33934, "prime": 74815, "bugtriggering": 11577, "instructfollowing": 46282, "tensorflow": 95765, "49": 986, "highpriority": 41734, "imagery": 43079, "embraced": 28119, "resemble": 82900, "familiar": 33827, "captioning": 12323, "submitting": 91982, "restrictions": 83377, "meal": 58688, "concludes": 17743, "struggled": 91233, "combinations": 15962, "cook": 19481, "featuring": 34041, "parrot": 70325, "processingnlp": 75596, "accomplished": 2136, "wmt22": 103881, "outstanding": 69269, "seamlessly": 85842, "divide": 26164, "anecdotal": 5838, "intuition": 47579, "validating": 102116, "interrogation": 47320, "recursive": 80731, "populating": 72712, "bases": 9863, "ontologies": 68023, "consuming": 18504, "ainlp": 4834, "nested": 66122, "zsl": 104898, "conforming": 18059, "vocabularies": 103193, "identifiers": 42834, "matched": 58502, "food": 35713, "cellular": 12725, "signaling": 87641, "chemical": 14499, "causation": 12684, "customization": 20852, "package": 69451, "httpsgithubcom": 42022, "coheres": 15793, "distances": 25798, "interrogate": 47318, "identical": 42802, "estimated": 30011, "cohere": 15765, "differentiate": 25268, "misclassify": 60164, "bypass": 11710, "unintentionally": 100064, "evaluative": 30894, "inadvertently": 44200, "exclude": 31420, "tags": 93768, "pivotal": 72198, "facilitating": 33527, "multimedia": 65023, "engines": 29041, "tag": 93760, "elaborate": 27933, "ocr": 67717, "late": 52616, "noticed": 67066, "systemlevel": 93379, "equipped": 29694, "hashtags": 41106, "uncovering": 99427, "water": 103334, "scrutiny": 85832, "withdrawal": 103855, "evaporate": 30909, "cubic": 20574, "annual": 5975, "kingdom": 48392, "wake": 103294, "aging": 4267, "responsibility": 83336, "principled": 74825, "spatialtemporal": 89582, "holistically": 41924, "sustainable": 93077, "adopters": 3621, "customer": 20840, "comprehend": 17124, "orchestrating": 68681, "seamless": 85839, "roll": 84822, "facilitates": 33519, "prepared": 73893, "kaggle": 48240, "showcase": 87351, "vldb": 103176, "attendees": 8273, "orchestrate": 68679, "ideological": 42942, "revised": 84302, "portrait": 72723, "bag": 9292, "merging": 59113, "differentiated": 25270, "mixing": 60337, "corporate": 19592, "highfidelity": 41554, "motivational": 64792, "theorizing": 96755, "ingrained": 45710, "origins": 68829, "equitable": 29703, "thoughtful": 96861, "worldwide": 104432, "mixedmethod": 60331, "assigning": 8002, "pre": 73582, "included": 44239, "instructor": 46625, "p001": 69444, "globe": 39022, "283": 701, "java": 48118, "defects4j": 22839, "llmbased": 55330, "objectoriented": 67532, "worldview": 104431, "realities": 79578, "intertwined": 47332, "paving": 70654, "universally": 100117, "twin": 99156, "groundbreaking": 40559, "realization": 79582, "interconnected": 47132, "effortlessly": 27888, "computerbased": 17551, "aig": 4653, "round": 84873, "went": 103613, "judges": 48185, "appropriateness": 7255, "graders": 40287, "psychometric": 77892, "perceiving": 70769, "intraclass": 47356, "actively": 2998, "scientifically": 85671, "longterm": 57407, "propagation": 76882, "aiding": 4643, "localizing": 57222, "patching": 70581, "localization": 57212, "localized": 57220, "aptitude": 7294, "humansounding": 42656, "classroom": 14846, "assesses": 7897, "quizzes": 78996, "introductorylevel": 47575, "textonly": 96532, "figures": 34455, "handson": 40958, "assembly": 7810, "shortanswer": 87317, "confuse": 18069, "aiassisted": 4617, "protective": 77345, "floods": 35449, "managers": 58194, "lacked": 49069, "evacuation": 30119, "lowest": 57584, "contextspecific": 18931, "rated": 79404, "assistive": 8070, "preparedness": 73894, "disasters": 25551, "structureaware": 91152, "uie": 99330, "linearized": 54541, "posttraining": 72971, "compact": 16344, "trees": 98830, "highorder": 41723, "forests": 35748, "helping": 41301, "endtasks": 28868, "taskadaptive": 94298, "resolves": 82943, "crux": 20552, "agieval": 4263, "humancentric": 42456, "lawyer": 52710, "qualification": 78182, "impressively": 43657, "sat": 85188, "lsat": 57645, "925": 1423, "extraordinary": 33367, "concentrating": 17595, "delivers": 22942, "giant": 38822, "november": 67293, "scholar": 85534, "500": 1023, "mentioning": 59099, "urgently": 100412, "milestone": 60012, "wants": 103310, "say": 85222, "codegenerating": 15603, "infinite": 45339, "naturalistic": 65786, "thinkaloud": 96794, "n24": 65449, "ungrounded": 99996, "framing": 36330, "endusers": 28894, "ctg": 20569, "alike": 5128, "load": 57188, "pedagogically": 70686, "unhelpful": 99998, "taxonomies": 95313, "argumentative": 7471, "brainstorm": 11361, "goals": 39081, "revise": 84300, "organize": 68745, "neglects": 66086, "autonomy": 8945, "sensemaking": 86447, "revising": 84305, "aienabled": 4650, "synchronized": 93144, "argumentation": 7469, "spark": 89509, "akin": 4856, "fostering": 35903, "supplement": 92769, "secondary": 85960, "34b": 818, "clarify": 14684, "recorded": 80694, "trajectories": 98375, "simulators": 88338, "yesno": 104625, "remedy": 81854, "200k": 512, "textbfinstruction": 96503, "instructuie": 46634, "unlocked": 100200, "instructive": 46624, "intertask": 47331, "fullparameter": 36430, "lorabased": 57451, "lora": 57438, "undertook": 99926, "foundational": 35970, "reproduction": 82206, "evolutionary": 31036, "strides": 90981, "llamas": 54904, "markedly": 58389, "ceval": 12791, "llama2": 54812, "dataefficient": 21785, "evergrowing": 30948, "pretrains": 74623, "1m": 475, "kmeans": 48397, "suitability": 92452, "occupy": 67707, "inefficient": 45176, "specialization": 89613, "gisting": 38830, "trains": 98366, "cached": 11730, "llama7b": 54891, "speedups": 89992, "savings": 85220, "characterizing": 13346, "period": 71830, "raised": 79060, "imperceptible": 43305, "underscores": 99557, "strengthening": 90949, "department": 23522, "famous": 33858, "revolutionise": 84324, "impacting": 43277, "intention": 46962, "tam": 93842, "utaut2": 101880, "2008": 511, "humanmachine": 42551, "categorize": 12625, "assessors": 7993, "opposing": 68526, "compromise": 17404, "italys": 48030, "ban": 9321, "analyse": 5384, "8000": 1322, "italy": 48027, "european": 30106, "highfrequency": 41555, "sudden": 92297, "announcement": 5971, "differenceindifferences": 24969, "decreased": 22718, "tor": 97554, "censorship": 12726, "swiftly": 93097, "disruptions": 25784, "hampers": 40891, "chatgptenabled": 14398, "phenomenal": 72024, "unparalleled": 100217, "chatgptlike": 14410, "symbiosis": 93113, "confrontation": 18065, "companion": 16357, "elderly": 27942, "loneliness": 57296, "older": 67904, "chatgptbased": 14393, "companionship": 16359, "feelings": 34170, "acknowledge": 2892, "severely": 87135, "underrepresented": 99535, "geographical": 38784, "africa": 4091, "pet": 72003, "setfit": 86954, "926": 1424, "causing": 12700, "audit": 8503, "ribeiro": 84405, "formation": 35830, "audits": 8510, "robotic": 84624, "goaloriented": 39080, "robots": 84636, "robot": 84618, "specifying": 89915, "conventionally": 19300, "imagine": 43142, "v2": 102065, "expertannotated": 32376, "cskb": 20562, "tackles": 93743, "v1": 102060, "wellaligned": 103575, "phoenix": 72043, "democratize": 22991, "latin": 52688, "nonlatin": 66917, "codebook": 15586, "readily": 79509, "codebooks": 15587, "agreements": 4282, "lay": 52712, "restful": 83366, "standardization": 90217, "freestyle": 36357, "profiles": 75812, "costfree": 19904, "convenience": 19268, "aidriven": 4645, "hype": 42710, "lately": 52619, "processoriented": 75598, "closing": 15051, "kpis": 48873, "announced": 5970, "criticizing": 20385, "remark": 81727, "nondeterministic": 66888, "coders": 15619, "repetitions": 81914, "differentiating": 25271, "website": 103511, "thresholds": 96901, "alterations": 5251, "repeating": 81911, "pooling": 72587, "patternoriented": 70621, "minimising": 60108, "anxiety": 6254, "debates": 22531, "misbehave": 60161, "psychiatry": 77869, "robustly": 84693, "racism": 79011, "ableism": 1892, "communicated": 16250, "authority": 8628, "agree": 4272, "competencies": 16765, "arrived": 7516, "derivations": 23641, "outcome": 68839, "handwritten": 40959, "formative": 35831, "summative": 92608, "flags": 35378, "whos": 103637, "detective": 24380, "mls": 60406, "immediately": 43167, "shots": 87350, "reside": 82913, "theoryofmind": 96776, "tom": 97244, "davinci2": 22493, "davinci3": 22496, "excluding": 31423, "fell": 34172, "supplied": 92778, "rlhftrained": 84579, "exceeded": 31316, "notes": 67054, "diagnoses": 24788, "terminologies": 95785, "specially": 89649, "overconfident": 69370, "plausibly": 72328, "frequencies": 36372, "inversely": 47610, "twice": 99155, "noninvasive": 66915, "continues": 19017, "lexglue": 53911, "templated": 95694, "microf1": 59991, "476": 978, "628": 1141, "ledgar": 53541, "feb": 34042, "publicity": 77961, "licensing": 53964, "examinations": 31091, "connections": 18100, "replies": 81954, "interpersonal": 47261, "dynamics": 26948, "agis": 4268, "pedagogy": 70687, "emphasizes": 28288, "lossless": 57480, "requisite": 82448, "conveyed": 19460, "reconstructive": 80689, "certainty": 12785, "claude": 14850, "weighting": 103539, "von": 103223, "believes": 10050, "passes": 70550, "selfassessment": 86196, "verifying": 102777, "flourishing": 35456, "186": 434, "brains": 11360, "dialoguebased": 24920, "randomness": 79132, "chatllms": 14459, "objectively": 67514, "attains": 8248, "member": 58984, "evaluator": 30895, "emphtext": 28307, "commonlyused": 16204, "firstly": 35318, "delve": 22949, "regularly": 81116, "morris": 64758, "ethicality": 30093, "perceptron": 70804, "llmaugmented": 55329, "acquiring": 2920, "synthetically": 93305, "rare": 79355, "multiclass": 64882, "moderately": 64578, "recording": 80695, "researches": 82897, "coarsetofine": 15101, "monthly": 64734, "month": 64732, "unchanged": 99393, "robertabased": 84616, "colloquial": 15928, "rigour": 84463, "epistemic": 29672, "informationseeking": 45676, "relied": 81550, "querybased": 78549, "syntheticallygenerated": 93309, "oil": 67899, "factory": 33610, "equations": 29688, "governing": 39167, "guardrail": 40704, "fueled": 36421, "conforms": 18060, "monitor": 64706, "enumerate": 29606, "borderline": 11311, "finergrained": 34812, "distinctions": 25886, "resourceintensive": 82992, "distilling": 25843, "sizable": 88450, "faculty": 33666, "staff": 90110, "proceed": 75258, "connectives": 18102, "subpar": 91997, "55": 1076, "68": 1188, "32000": 783, "exponentially": 32887, "posit": 72797, "war": 103311, "lasted": 52605, "activate": 2968, "activates": 2973, "empowering": 28501, "journey": 48171, "selfdirected": 86218, "cater": 12637, "supportive": 92866, "preparing": 73895, "fastpaced": 33918, "aggregates": 4253, "browser": 11540, "playground": 72361, "adversaries": 4009, "poison": 72518, "joe": 48141, "biden": 10967, "edit": 27083, "bagofwords": 9295, "polarity": 72524, "moderate": 64575, "protections": 77344, "testcases": 95966, "begs": 9949, "evalplus": 30125, "catch": 12597, "undetected": 99944, "passk": 70558, "upto": 100392, "insufficiency": 46640, "unleash": 100155, "principal": 74822, "exhaustive": 31494, "widelystudied": 103752, "inspire": 46159, "proposition": 77289, "taskaware": 94304, "heterogeneity": 41331, "secondly": 85966, "grounds": 40595, "bind": 11061, "bm25": 11232, "metaqa": 59165, "webqsp": 103506, "chatgptpowered": 14415, "referencing": 80960, "popup": 72715, "marketplace": 58398, "satisfactorily": 85197, "ed": 27075, "discrepancies": 25623, "trail": 97724, "spite": 90008, "achievements": 2689, "inclination": 44224, "wrongly": 104534, "null": 67325, "remote": 81859, "forces": 35726, "legally": 53570, "compliant": 17062, "workable": 104308, "proof": 76872, "unaffected": 99359, "64": 1151, "intensity": 46946, "sector": 85980, "attitude": 8403, "converged": 19303, "tech": 95393, "implicated": 43360, "agencies": 4110, "foster": 35894, "constructionist": 18476, "singlecase": 88406, "diminished": 25396, "inclusive": 44525, "computeintensive": 17521, "tracking": 97624, "trainingevaluation": 98358, "tailoring": 93793, "refines": 80992, "inferenceonly": 45323, "acting": 2936, "repairing": 81904, "unethical": 99953, "paramount": 70305, "subtly": 92168, "deciding": 22573, "repairs": 81905, "uncovers": 99431, "repair": 81884, "ethically": 30094, "conformal": 18057, "nucleus": 67323, "successively": 92292, "topp": 97548, "chooses": 14606, "smallest": 88804, "cumulative": 20615, "markup": 58415, "codexdavinci002": 15684, "shot": 87342, "promises": 76142, "provision": 77819, "higherlevel": 41534, "785": 1270, "handpicked": 40955, "administering": 3595, "genuine": 38774, "emulating": 28524, "literary": 54639, "philosophers": 72035, "dennett": 23492, "emulation": 28527, "cope": 19508, "entitycentric": 29597, "wikidata": 103807, "broaden": 11504, "wins": 103845, "aiwriting": 4854, "violates": 102927, "copyright": 19527, "harbor": 40971, "workspace": 104397, "temporary": 95728, "manipulation": 58221, "spatial": 89568, "reparameterization": 81906, "constitute": 18366, "hurting": 42698, "selfevaluating": 86226, "weaker": 103436, "exempt": 31486, "stringent": 90994, "acquires": 2918, "fee": 34057, "pricing": 74772, "fees": 34171, "cascade": 12450, "classifies": 14838, "certification": 12787, "employable": 28418, "certifications": 12789, "vocational": 103203, "39": 870, "cybersecurity": 20885, "competence": 16764, "nursing": 67445, "licensed": 53961, "counseling": 19975, "regulatory": 81128, "routine": 84886, "beer": 9937, "emotional": 28253, "babbage": 9234, "turbo": 99114, "extractors": 33356, "codellms": 15612, "codestyle": 15644, "blocking": 11201, "multilevel": 64937, "scheduler": 85507, "arrival": 7513, "join": 48145, "queues": 78976, "offloads": 67882, "host": 41988, "orca": 68678, "tail": 93769, "amazon": 5301, "tesla": 95857, "apple": 6316, "funding": 36569, "experiencing": 31956, "sign": 87637, "unforeseeable": 99981, "englishcentric": 29117, "trying": 98977, "blip": 11190, "multilanguage": 64932, "vln": 103190, "8bit": 1390, "threefold": 96889, "siamese": 87628, "32gb": 791, "sentencebert": 86531, "fraud": 36332, "flair": 35379, "inquiry": 46021, "divided": 26169, "counting": 20015, "ascii": 7699, "providers": 77637, "protect": 77336, "welcome": 103573, "maintenance": 57911, "downtime": 26760, "iot": 47883, "aviation": 9194, "fault": 33922, "evolved": 31043, "singlemodal": 88419, "singletask": 88426, "limiteddata": 54483, "superlarge": 92683, "landmark": 49100, "achievement": 2688, "roadmap": 84590, "cots": 19974, "branch": 11363, "mbcpp": 58662, "ingenious": 45708, "witnessing": 103873, "pushing": 78077, "inevitably": 45184, "detrimental": 24425, "underway": 99931, "scant": 85366, "paid": 69462, "submodular": 91985, "biobert": 11073, "lfqa": 53940, "facto": 33572, "engages": 28919, "recruit": 80708, "325": 786, "475": 977, "contrasting": 19094, "102": 160, "elaborates": 27936, "going": 39090, "4yearolds": 1007, "overcomes": 69364, "flaws": 35422, "pubmedqa": 78021, "slms": 88645, "diversifying": 26134, "slm": 88644, "explorations": 32611, "untapped": 100322, "disclosure": 25568, "fraudulent": 36333, "filters": 34479, "underscoring": 99581, "encapsulating": 28671, "graphical": 40426, "guis": 40786, "nlis": 66700, "gui": 40712, "extensibility": 32978, "wikihow": 103809, "agentlm": 4158, "deduplication": 22742, "subroutines": 92005, "gpt2like": 39376, "9b": 1468, "stackoverflow": 90109, "16gb": 385, "precomputed": 73620, "discursive": 25648, "errorprone": 29799, "closelyrelated": 15038, "normalized": 66977, "plmbased": 72402, "protoqa": 77359, "segmentation": 86105, "craft": 20122, "understands": 99911, "parses": 70334, "conclusion": 17750, "premises": 73886, "compensate": 16757, "triplets": 98898, "triplet": 98896, "premise": 73885, "optionally": 68670, "prune": 77842, "reconstructing": 80685, "rivaling": 84543, "japanese": 48114, "widelyutilized": 103761, "scrutinized": 85828, "questionable": 78720, "urgent": 100405, "das": 20931, "descent": 23660, "uncovered": 99426, "alignments": 5123, "bruteforce": 11542, "shelf": 87248, "faithfully": 33750, "extensible": 32979, "showcased": 87364, "elaborated": 27934, "intending": 46937, "publish": 78003, "indispensable": 45064, "learningbased": 53482, "iterating": 48042, "inputting": 46017, "decode": 22625, "86": 1372, "compound": 17120, "plugins": 72455, "analyzes": 5798, "concealed": 17587, "copes": 19509, "interpreter": 47301, "trendy": 98857, "inevitable": 45182, "occurrence": 67711, "unexpectedly": 99960, "decides": 22572, "revolutionary": 84322, "reshaped": 82909, "hindrance": 41846, "deficiency": 22858, "shortfall": 87332, "sustained": 93081, "permits": 71844, "forget": 35749, "significance": 87653, "accommodating": 2127, "closedsource": 14999, "exemplify": 31484, "heightened": 41221, "emphatic": 28305, "mixtures": 60366, "reweighting": 84386, "proxy": 77836, "distributionally": 25959, "30x": 771, "factoid": 33574, "chances": 13265, "600": 1115, "043": 35, "kendalls": 48260, "tau": 95308, "bunny": 11686, "compounds": 17123, "freetext": 36358, "nouns": 67078, "conceptualization": 17651, "2012": 516, "permanence": 71836, "household": 42009, "deploys": 23624, "virtualhome": 102946, "looks": 57426, "brainstorming": 11362, "codecontests": 15590, "contests": 18720, "plants": 72300, "committing": 16120, "lexicographic": 53935, "thirteen": 96815, "performer": 71773, "flower": 35459, "plant": 72299, "evade": 30120, "spamming": 89477, "equip": 29691, "paraphraser": 70310, "vulnerability": 103268, "evading": 30123, "costefficient": 19900, "memoryhungry": 59079, "expose": 32890, "4bit": 994, "stitch": 90717, "testtime": 96065, "insitu": 46146, "digitalization": 25373, "responsibilities": 83335, "welldefined": 103581, "humanassisted": 42443, "multiagent": 64858, "autonomously": 8943, "overlooking": 69409, "singlestep": 88425, "chainofthoughts": 12845, "se": 85835, "transitioned": 98657, "documented": 26232, "touted": 97573, "testers": 95989, "speculation": 89935, "nonfunctional": 66909, "posits": 72849, "cooperative": 19494, "uploaded": 100373, "cocreated": 15109, "fuelled": 36422, "delegating": 22922, "researcher": 82832, "phd": 72021, "scientist": 85672, "078": 67, "080": 70, "085": 75, "teamwork": 95389, "element": 27960, "advisors": 4034, "justification": 48228, "weigh": 103519, "familiarity": 33829, "advisor": 4033, "justifications": 48229, "trusting": 98936, "contextualised": 18957, "usages": 100455, "senses": 86448, "specialised": 89607, "linguists": 54611, "diachronic": 24784, "wordincontext": 103937, "vnhsge": 103192, "graduation": 40320, "multitasking": 65371, "bingchat": 11070, "contrasted": 19093, "geography": 38786, "chemistry": 14503, "wideranging": 103774, "appealing": 6303, "shifted": 87260, "computeefficient": 17520, "neglect": 66078, "distinguished": 25900, "3b": 878, "epoch": 29676, "till": 96925, "comment": 16062, "rougel": 84865, "codebert": 15580, "disadvantages": 25538, "falcon40b": 33773, "thematic": 96719, "provocation": 77822, "35turbo": 848, "worked": 104310, "reproduced": 82193, "decomposes": 22692, "chrf": 14614, "llmempowered": 55368, "harnesses": 41078, "microbatches": 59989, "llamabased": 54898, "toolkits": 97347, "flashattention": 35411, "nles": 66683, "producers": 75689, "artwork": 7692, "shaping": 87177, "advocating": 4040, "revenue": 84229, "openness": 68290, "timestep": 97092, "nextgeneration": 66657, "computerassisted": 17550, "fiction": 34333, "gptbased": 40203, "neuron": 66305, "commendable": 16059, "impedes": 43299, "memorybound": 59076, "profound": 75817, "necessitating": 65888, "batching": 9902, "concurrent": 17777, "delays": 22920, "contention": 18713, "falling": 33795, "deconstruct": 22706, "fusing": 36676, "eviction": 30965, "11x": 217, "16x": 390, "efficacious": 27625, "landscapes": 49117, "singlegpu": 88413, "automl": 8925, "intricacy": 47360, "envision": 29662, "articulate": 7578, "ambitious": 5318, "datascience": 21794, "cohesive": 15795, "granting": 40354, "granular": 40356, "polyglot": 72579, "encyclopedic": 28813, "metas": 59166, "location": 57229, "wellstructured": 103607, "memoryefficient": 59077, "nontextual": 66958, "cheating": 14470, "explorable": 32584, "genomic": 38767, "sequencing": 86700, "453": 962, "34": 812, "50000": 1028, "summarized": 92584, "gutenberg": 40788, "scenelevel": 85502, "labelers": 48921, "diagnose": 24786, "detectability": 24229, "universitylevel": 100133, "institution": 46264, "aitext": 4853, "mcc": 58679, "grace": 40278, "pathology": 70589, "615": 1131, "trouble": 98904, "affirm": 4069, "zeroscrolls": 104718, "aggregation": 4256, "invite": 47812, "stands": 90236, "solidifying": 89067, "link": 54612, "departure": 23525, "inspirations": 46158, "utilise": 101881, "dollyv2": 26344, "stablevicuna": 90100, "xcopa": 104546, "xwinograd": 104575, "synthesised": 93226, "stopping": 90731, "hallucinates": 40823, "conversationality": 19407, "7bparameter": 1309, "510": 1040, "979": 1460, "550": 1077, "openassistant": 68227, "synonyms": 93163, "exceeding": 31317, "attributable": 8434, "exercise": 31487, "gptgenerated": 40215, "substantiate": 92142, "implementations": 43341, "50x": 1037, "ppo": 73485, "dpo": 26765, "bestofn": 10663, "winrate": 103844, "boom": 11263, "rethink": 83944, "subjectobject": 91962, "unannotated": 99364, "3k": 896, "onetoone": 67960, "teacherstudent": 95356, "scaffolding": 85227, "originating": 68828, "attested": 8402, "indices": 45055, "predicate": 73640, "controls": 19262, "verifiers": 102764, "oracles": 68676, "exhaustively": 31497, "modelagnostic": 61603, "codet": 15647, "13x": 303, "closedended": 14995, "metaevaluation": 59148, "instructing": 46297, "gpt4based": 40166, "opponents": 68484, "advocate": 4035, "devoid": 24775, "reevaluation": 80916, "72": 1233, "respective": 83047, "800": 1321, "hallucinate": 40811, "cad": 11733, "amplifies": 5367, "143": 311, "overriding": 69419, "contradicts": 19057, "conflict": 18051, "selfevaluation": 86227, "abcd": 1486, "satisfies": 85205, "segments": 86114, "plaintext": 72232, "precomputing": 73621, "inexpensive": 45188, "paragraphlevel": 70069, "strive": 90997, "sections": 85979, "preliminarily": 73853, "enjoys": 29384, "embedder": 28048, "hierarchies": 41369, "06": 49, "openworld": 68438, "closedworld": 15018, "considers": 18223, "displaying": 25771, "emerges": 28207, "selfadaptive": 86192, "hallmark": 40807, "categorizes": 12629, "attained": 8246, "unattainable": 99368, "worrying": 104436, "76k": 1262, "privacysensitive": 74920, "sanitization": 85181, "records": 80697, "complying": 17072, "regulations": 81126, "hipaa": 41854, "gdpr": 37046, "letters": 53641, "574": 1093, "nonuniform": 66962, "privacyrelated": 74919, "omission": 67906, "agriculture": 4284, "posted": 72938, "labourintensive": 48972, "controversial": 19263, "divergent": 25974, "tailors": 93796, "lexically": 53933, "csts": 20566, "cornerstone": 19559, "nba": 65830, "player": 72358, "man": 58176, "throws": 96908, "ball": 9320, "air": 4839, "twofold": 99165, "subjectivity": 91960, "applicability": 6317, "epistemological": 29674, "reviewers": 84283, "concluding": 17748, "accelerated": 2010, "unfairness": 99973, "demographics": 23006, "peek": 70691, "multidocument": 64899, "peeking": 70692, "directs": 25530, "queryfocused": 78552, "survival": 93060, "crafter": 20127, "minecraft": 60068, "latex": 52686, "acyclic": 3021, "dag": 20896, "gamerelated": 36895, "traversing": 98795, "topological": 97542, "bed": 9935, "cheaply": 14468, "selfinstruct": 86240, "surprised": 92981, "bridged": 11443, "unwieldy": 100343, "intrigued": 47374, "contradictory": 19056, "prevalence": 74629, "177": 416, "complements": 16862, "352": 840, "longitudinal": 57392, "ld": 52786, "periods": 71834, "it5": 48024, "infants": 45191, "qg": 78165, "ngrambased": 66672, "subspaces": 92050, "15b": 349, "launched": 52698, "assumed": 8118, "blackboxes": 11156, "assuming": 8120, "23x": 631, "primed": 74817, "johnson": 48144, "flanul2": 35408, "preconditions": 73624, "explorationexploitation": 32609, "coded": 15592, "hateful": 41110, "moderation": 64587, "worldly": 104424, "secretly": 85976, "jewish": 48132, "glossary": 39024, "politicians": 72575, "speeches": 89974, "107": 168, "outoforder": 68896, "curse": 20830, "recursion": 80730, "revolutionised": 84329, "astonishing": 8126, "happen": 40963, "irreversible": 47911, "tails": 93797, "disappear": 25547, "autoencoders": 8646, "gaussian": 37038, "portray": 72724, "ubiquity": 99321, "seriously": 86754, "sustain": 93075, "modelsllms": 64570, "referee": 80926, "skew": 88576, "vicuna13b": 102873, "beat": 9929, "tones": 97254, "548": 1075, "misconduct": 60168, "544": 1074, "resistant": 82927, "urging": 100414, "wealth": 103464, "selfknowledge": 86246, "selfaware": 86202, "journal": 48164, "coronavirus": 19564, "mirroring": 60153, "highschool": 41814, "perpetuating": 71851, "originate": 68826, "affective": 4061, "psychosocial": 77894, "newer": 66582, "someday": 89265, "nearest": 65845, "complications": 17069, "narrows": 65518, "hierarchy": 41370, "presentation": 74086, "inquiries": 46019, "comprehended": 17138, "pioneer": 72125, "embodiment": 28115, "negations": 66051, "embeds": 28101, "idiosyncrasies": 42950, "journals": 48170, "contingent": 18986, "reinforces": 81167, "streamline": 90935, "geometry": 38793, "emphasize": 28282, "enhancements": 29271, "existed": 31641, "versatility": 102796, "critiques": 20388, "recipients": 80580, "compel": 16750, "ar": 7296, "acs": 2930, "falcon": 33765, "plentiful": 72396, "genai": 37078, "situate": 88440, "agenda": 4113, "panel": 69575, "conference": 18006, "yang": 104578, "maybe": 58654, "doctors": 26198, "excitement": 31404, "proving": 77817, "undergraduatelevel": 99475, "professors": 75773, "behaviours": 10021, "garner": 37005, "mathematicians": 58598, "takeaways": 93798, "algebraic": 4898, "invaluable": 47592, "aiintegrated": 4682, "takehome": 93799, "artificialintelligence": 7682, "rendered": 81872, "skepticism": 88572, "ainative": 4833, "operating": 68446, "sparking": 89517, "intermediary": 47201, "committed": 16117, "empowered": 28494, "forging": 35763, "rd": 79458, "ensembling": 29429, "crossattention": 20398, "merge": 59108, "topranked": 97551, "capitalizing": 12317, "harvards": 41102, "visualizations": 103140, "rubrics": 84919, "border": 11310, "redesign": 80750, "universe": 100119, "battle": 9906, "followers": 35665, "forbidden": 35722, "lowdimensional": 57547, "sent": 86488, "coach": 15094, "coaching": 15095, "transcript": 98387, "82": 1340, "excessive": 31394, "inaccuracies": 44183, "overconfidence": 69369, "copyrights": 19530, "judiciously": 48201, "charts": 13356, "crawls": 20140, "complemented": 16859, "modestly": 64631, "27b": 693, "megatronlm": 58976, "762m": 1258, "187": 435, "knowledgeguided": 48828, "corner": 19558, "untested": 100324, "welldocumented": 103584, "orion": 68830, "376": 865, "318": 778, "1363": 278, "117": 208, "lexicon": 53936, "divergences": 25973, "walks": 103297, "memorizing": 59006, "walk": 103295, "byproduct": 11718, "nls": 66831, "lambda": 49093, "calculus": 11750, "impeding": 43300, "164": 376, "lingual": 54550, "feel": 34168, "inferior": 45331, "neutral": 66317, "trending": 98853, "multispan": 65322, "biochemistry": 11074, "78": 1268, "2004": 508, "studentgenerated": 91276, "fun": 36482, "hardcoded": 40991, "meaningfulness": 58718, "baby": 9237, "goat": 39086, "sky": 88616, "04": 30, "nonsense": 66948, "warranted": 103325, "instructeval": 46281, "preprocessed": 73903, "renowned": 81877, "bea": 9919, "aspectoriented": 7763, "wellinformed": 103589, "catering": 12643, "119": 212, "superni": 92686, "multi": 64856, "mtl": 64852, "aids": 4648, "prefinetuning": 73841, "judging": 48187, "llmasajudge": 55326, "mtbench": 64847, "arena": 7452, "inadequacy": 44193, "verbosity": 102732, "creators": 20272, "contributing": 19156, "standards": 90230, "obvious": 67697, "controversies": 19266, "unreliability": 100245, "83": 1347, "rose": 84849, "logarithmic": 57240, "geometric": 38787, "588": 1100, "ap": 6257, "gre": 40461, "amc": 5319, "bc": 9917, "bootstrapping": 11308, "justintime": 48232, "codexglue": 15685, "bleu4": 11181, "codellama": 15608, "welltrained": 103611, "greybox": 40547, "expecting": 31896, "gating": 37031, "proved": 77371, "pick": 72096, "afl": 4082, "welltested": 103610, "productively": 75740, "reframed": 81030, "deficits": 22860, "ignorance": 42961, "onedimensional": 67917, "adjacency": 3581, "shapes": 87176, "sounds": 89335, "syllables": 93111, "integer": 46652, "codalab": 15114, "opt27b": 68550, "dialogrpt": 24840, "unintentional": 100063, "selfreinforcement": 86259, "expansive": 31885, "reflected": 81013, "amplifying": 5370, "unconsciously": 99415, "weighed": 103520, "threats": 96883, "advocates": 4039, "richness": 84430, "7000": 1214, "attempted": 8262, "elaborating": 27937, "interpretive": 47310, "crossimpact": 20411, "clusterbased": 15081, "suit": 92450, "deployments": 23623, "bootstrapped": 11307, "scorer": 85744, "costeffectiveness": 19898, "10b": 171, "similarsized": 88162, "telecom": 95672, "partnership": 70520, "846": 1364, "corroborates": 19814, "paves": 70649, "region": 81087, "performancecost": 71731, "automates": 8752, "chinchilla": 14533, "hoffmann": 41877, "h2ogpt": 40792, "unauthorized": 99370, "copyrighted": 19529, "apache": 6258, "licenses": 53962, "hurdles": 42696, "tailor": 93771, "genome": 38766, "expectation": 31887, "shaped": 87175, "organisms": 68738, "connected": 18092, "metabolic": 59143, "morphological": 64752, "organism": 68737, "informally": 45386, "formalized": 35808, "commandline": 16053, "managing": 58196, "67": 1180, "technologys": 95666, "stealing": 90577, "protects": 77346, "litigation": 54671, "touch": 97568, "immediate": 43165, "massachusetts": 58439, "mit": 60247, "procure": 75600, "humanity": 42503, "legislative": 53572, "obfuscation": 67466, "overly": 69412, "selfverification": 86284, "entityrelation": 29598, "friend": 36388, "delphi": 22946, "specialising": 89609, "transformative": 98467, "administrative": 3597, "enormously": 29403, "intelligencebased": 46909, "heated": 41206, "emphasized": 28287, "mature": 58630, "599": 1104, "autograder": 8655, "fuel": 36420, "counts": 20019, "autogpt": 8654, "collated": 15856, "association": 8108, "mayo": 58655, "clinic": 14905, "quantifiable": 78382, "signifies": 88038, "datarich": 21792, "groundwork": 40600, "computerized": 17553, "cat": 12575, "behaves": 9954, "careless": 12428, "pursue": 78060, "therapist": 96781, "prowess": 77826, "languagespecific": 51377, "89": 1387, "homepage": 41929, "belongs": 10056, "peerreviewed": 70700, "nonscientific": 66946, "citations": 14646, "layout": 52773, "additions": 3354, "peer": 70693, "conferences": 18008, "mse": 64833, "scibert": 85558, "safeguarding": 84997, "compliance": 17060, "utmost": 102051, "valuealignment": 102201, "a100s": 1479, "1b": 465, "506": 1032, "555": 1079, "imdb": 43155, "tldr": 97110, "nutrition": 67448, "moderating": 64586, "summarizing": 92588, "engagements": 28918, "anthropics": 6234, "collective": 15914, "meaningmaking": 58720, "twostep": 99192, "disagree": 25540, "calendar": 11751, "coworkers": 20108, "nasa": 65520, "tlx": 97112, "blogs": 11208, "uncompilable": 99410, "unresolved": 100248, "methodologically": 59473, "backed": 9261, "breakdown": 11382, "nonai": 66878, "ring": 84464, "805": 1326, "texttoimage": 96620, "opened": 68250, "langchain": 49120, "nocode": 66848, "embodies": 28114, "agile": 4264, "conveying": 19461, "prioritizing": 74881, "dashboard": 20932, "diagnosing": 24790, "fallacies": 33791, "suites": 92486, "atomic": 8148, "stacking": 90108, "2layer": 727, "phrased": 72057, "spirit": 90007, "tasked": 94308, "formalization": 35805, "comedy": 16034, "stirred": 90716, "classified": 14816, "quarter": 78462, "lean": 52923, "synergistic": 93150, "instancelevel": 46219, "modelers": 61614, "evokes": 31011, "sphere": 90000, "pursuits": 78068, "lenses": 53626, "culminating": 20584, "urban": 100397, "subjected": 91948, "replacements": 81933, "usecases": 100725, "preprints": 73901, "dilemmas": 25380, "exemplary": 31475, "elevation": 27980, "swin": 93101, "inquire": 46018, "credit": 20276, "spawning": 89585, "forth": 35876, "propel": 76883, "successors": 92294, "dualuse": 26894, "weapons": 103466, "turned": 99130, "releasing": 81422, "screening": 85814, "gene": 37100, "shuffling": 87627, "columns": 15940, "sqa": 90058, "header": 41138, "falter": 33825, "pitfall": 72185, "convolutions": 19476, "816": 1335, "809": 1327, "superficial": 92620, "formatting": 35840, "unlearning": 100154, "detoxify": 24422, "alpacalora": 5240, "burdensome": 11690, "hpc": 42013, "assisted": 8064, "umbrella": 99350, "conductor": 18002, "fluid": 35486, "solid": 89064, "administered": 3594, "postgraduate": 72948, "508": 1034, "416": 934, "postcovid": 72936, "dropped": 26869, "factbased": 33564, "covid": 20101, "tale": 93835, "classconditional": 14703, "inherit": 45753, "regional": 81088, "biomedical": 11086, "falters": 33826, "wellmotivated": 103602, "diacritization": 24785, "dialectal": 24817, "underlie": 99479, "applicationspecific": 6598, "mediqachat": 58941, "doctorpatient": 26196, "participation": 70388, "cooperation": 19491, "discerning": 25557, "gauged": 37036, "gpt40": 40161, "stood": 90729, "factcheckers": 33566, "ads": 3655, "advertisement": 4022, "modelfree": 61615, "threestage": 96894, "los": 57452, "intensified": 46942, "practitioner": 73571, "verbs": 102733, "sophistication": 89294, "classifierfree": 14828, "cfg": 12794, "llamafamily": 54902, "contentdriven": 18712, "gpt4all": 40164, "conceptualized": 17653, "confidential": 18024, "unpublished": 100234, "restricts": 83379, "treats": 98811, "corrupted": 19815, "tensortrain": 95768, "331": 801, "taming": 93845, "complicates": 17068, "mutation": 65426, "tame": 93843, "isolates": 47919, "909": 1411, "toy": 97607, "instrumental": 46636, "sole": 89051, "modelpowered": 61700, "dividing": 26174, "spends": 89997, "overreliance": 69415, "middleware": 60005, "affordances": 4079, "templatebased": 95692, "seekers": 86069, "specify": 89911, "susceptibility": 93063, "erodes": 29757, "quantification": 78384, "hurdle": 42695, "roadblock": 84588, "originates": 68827, "representativeness": 82161, "suffice": 92328, "lengthy": 53619, "regrettably": 81105, "equal": 29680, "disregarding": 25780, "inequalities": 45178, "rectify": 80714, "wizardlm": 103876, "llama2chat": 54875, "33b": 809, "ensuing": 29436, "genetics": 38765, "ignoring": 42967, "acknowledging": 2896, "fear": 33938, "appreciation": 6702, "reproducibility": 82195, "abstracting": 1942, "792": 1274, "vietnam": 102904, "skip": 88614, "caching": 11731, "tokenbytoken": 97160, "earlyexit": 26990, "wait": 103290, "stop": 90730, "kv": 48881, "recompute": 80677, "bypasses": 11715, "middle": 60002, "later": 52646, "expenditure": 31902, "reshapes": 82910, "reminiscent": 81858, "necessitate": 65879, "cultivating": 20586, "heralds": 41322, "hoping": 41979, "territory": 95854, "giscience": 38829, "calculators": 11749, "adaptations": 3103, "threatens": 96882, "rests": 83383, "lowerlevel": 57579, "substitutable": 92147, "square": 90065, "sharp": 87209, "transitions": 98659, "labour": 48971, "listing": 54632, "13000": 267, "entirety": 29530, "mock": 60427, "rephrasing": 81919, "cancer": 11794, "patients": 70609, "hosts": 41992, "pegasus": 70716, "desiderata": 23744, "localize": 57219, "intervene": 47336, "circuits": 14638, "mediation": 58858, "poised": 72517, "preprint": 73900, "fulltext": 36435, "cited": 14649, "ast": 8125, "cumbersome": 20612, "compilable": 16833, "methodlevel": 59469, "programlevel": 75859, "interprocedural": 47312, "extendable": 32950, "treesitter": 98834, "gesture": 38812, "counter": 19984, "defaults": 22832, "1950s": 453, "arisen": 7480, "organisations": 68736, "animal": 5845, "turns": 99134, "develops": 24749, "spatiotemporal": 89583, "demos": 23488, "egregious": 27927, "cisco": 14643, "routers": 84884, "6x": 1207, "ending": 28854, "ontologydriven": 68028, "methodological": 59470, "triad": 98858, "ukrainian": 99334, "rehabilitation": 81132, "unmasking": 100207, "profoundly": 75823, "reshaping": 82911, "methodically": 59468, "subtopics": 92169, "duplicated": 26899, "duplicate": 26898, "loading": 57190, "coefficients": 15726, "rsquared": 84907, "sum": 92487, "biggest": 10999, "crop": 20393, "fastgrowing": 33917, "billing": 11012, "screen": 85812, "sr": 90069, "multiissue": 64925, "negotiation": 66095, "negotiators": 66100, "negotiations": 66099, "negotiating": 66094, "reached": 79471, "unsuitable": 100299, "transferlearning": 98448, "dst": 26884, "negated": 66046, "throw": 96907, "guard": 40703, "adversely": 4018, "commodities": 16122, "adversary": 4010, "kgtotext": 48382, "graphtotext": 40451, "goods": 39131, "privately": 74930, "securing": 85995, "forums": 35884, "voting": 103226, "exchange": 31401, "living": 54702, "oneself": 67941, "functioning": 36516, "discovers": 25610, "traceability": 97615, "sotas": 89327, "moderatesized": 64581, "ide": 42779, "builders": 11617, "winwin": 103846, "fortunately": 35882, "competent": 16771, "exception": 31361, "hyperlinks": 42714, "masterkey": 58480, "jailbreak": 48091, "inappropriate": 44203, "undisclosed": 99945, "defensive": 22855, "jailbreaker": 48099, "reverseengineer": 84236, "timesensitive": 97087, "disclosed": 25566, "depicting": 23556, "sensors": 86484, "peak": 70677, "signaltonoise": 87648, "imagetoimage": 43135, "signifying": 88041, "1023": 162, "textural": 96706, "dalles": 20917, "sift": 87635, "origin": 68754, "calculations": 11743, "linking": 54618, "catered": 12642, "weve": 103621, "believable": 10031, "provenance": 77387, "stimulates": 90711, "march": 58351, "willing": 103825, "drifts": 26836, "2chat": 719, "pubmed": 78015, "keywordbased": 48367, "clinicians": 14951, "biomedicine": 11108, "genomics": 38769, "diseases": 25740, "genetic": 38760, "partners": 70519, "sensibility": 86449, "transcriptions": 98389, "embrace": 28118, "traffic": 97721, "banned": 9339, "week": 103516, "deposited": 23625, "16000": 370, "nomenclature": 66876, "constellation": 18363, "atlas": 8146, "clouds": 15069, "plots": 72442, "bad": 9286, "forensics": 35744, "anomaly": 5979, "incident": 44217, "circumstances": 14639, "kernels": 48265, "convolution": 19468, "688": 1192, "223": 615, "gemm": 37075, "positives": 72846, "911": 1413, "pharmacist": 72008, "pharmacists": 72009, "comprehensible": 17146, "patient": 70600, "medication": 58928, "icu": 42775, "north": 66991, "hospital": 41985, "verbalizer": 102727, "verbalize": 102726, "priors": 74884, "extents": 33174, "verbalizers": 102728, "encountering": 28778, "phrasing": 72059, "stackexchange": 90107, "posteriori": 72946, "histories": 41866, "progressing": 76019, "queryresponse": 78565, "lie": 53972, "flipped": 35441, "emotionally": 28268, "engaged": 28913, "lecture": 53513, "intriguingly": 47383, "laying": 52767, "hippocampus": 41855, "neurons": 66309, "stride": 90979, "preclude": 73619, "establishment": 30003, "tiered": 96916, "interchange": 47128, "modulated": 64654, "adjustments": 3591, "polarizing": 72527, "distort": 25909, "contentious": 18714, "selfinterest": 86244, "highstake": 41816, "dictator": 24946, "selfinterested": 86245, "altruistic": 5287, "underestimates": 99438, "overestimating": 69375, "altruism": 5286, "frustration": 36416, "suffered": 92321, "decomposing": 22695, "summarizes": 92586, "mind2web": 60066, "scripting": 85823, "documenting": 26237, "branches": 11364, "instrumentation": 46638, "amortize": 5335, "coderelated": 15617, "decompositional": 22703, "occasional": 67699, "eda": 27076, "electronic": 27952, "designer": 23963, "compounded": 17121, "hugginggpt": 42060, "builtin": 11682, "schematic": 85521, "exploitation": 32574, "ieee": 42955, "sp": 89437, "author": 8618, "signs": 88042, "broken": 11527, "ls": 57644, "surroundings": 93016, "disregard": 25779, "escalating": 29848, "fascination": 33883, "reconcile": 80679, "domainadaptive": 26476, "assimilate": 8010, "preserves": 74186, "unbiased": 99379, "boasts": 11237, "sft": 87146, "instructiontune": 46580, "left": 53545, "anatomy": 5824, "botnet": 11317, "deceptive": 22568, "stolen": 90727, "suspicious": 93074, "wellchosen": 103579, "anticipation": 6246, "crack": 20121, "longerterm": 57373, "lta": 57656, "bottomup": 11331, "topdown": 97495, "infers": 45336, "recognizes": 80633, "ego4d": 27924, "gaze": 37042, "goalconditioned": 39078, "forefront": 35735, "intertwining": 47333, "steady": 90575, "nonexistent": 66898, "machiavellianism": 57680, "hitherto": 41872, "qualified": 78183, "circumvent": 14640, "owl": 69439, "disjoint": 25753, "axioms": 9229, "humanllm": 42548, "ushering": 101268, "imbued": 43153, "atop": 8152, "citation": 14644, "catalyst": 12580, "hebrew": 41220, "turkish": 99126, "percent": 70770, "queried": 78467, "evasive": 30911, "denying": 23519, "discrepancy": 25625, "bubbles": 11546, "penetration": 70725, "supplementing": 92776, "hunting": 42694, "ssh": 90073, "deliberating": 22930, "gemini": 37056, "pro": 74935, "70b": 1220, "recommends": 80675, "distinctive": 25888, "democratizes": 22993, "players": 72359, "escape": 29850, "murder": 65407, "vote": 103224, "killer": 48385, "crime": 20278, "persuasive": 71978, "neutrality": 66318, "reap": 79719, "noncommercial": 66885, "literatures": 54669, "sparkdesk": 89510, "metaphors": 59163, "disagreement": 25541, "non": 66877, "serbian": 86715, "incisive": 44222, "reversed": 84235, "poems": 72470, "critic": 20296, "sandbox": 85176, "viewing": 102917, "breakdowns": 11384, "checker": 14479, "alfworld": 4896, "babylm": 9238, "aifacilitated": 4652, "lowering": 57578, "steep": 90580, "glean": 38999, "illustration": 43007, "democratization": 22990, "beckons": 9934, "everevolving": 30945, "obsolete": 67632, "517": 1045, "comprehensiveness": 17333, "52": 1046, "verbose": 102731, "wellarticulated": 103576, "chatgpt35": 14366, "averaged": 9187, "799": 1275, "institutes": 46263, "socratic": 88959, "january": 48110, "december": 22561, "leave": 53507, "popularly": 72709, "k8": 48239, "hour": 41997, "maze": 58657, "codedotorg": 15595, "karel": 48244, "configurable": 18028, "rater": 79408, "interrater": 47314, "094": 86, "099": 91, "087": 77, "transit": 98654, "packages": 69453, "733": 1239, "mcq": 58680, "93": 1426, "nondeterminism": 66887, "nondeterministically": 66889, "returning": 84123, "unless": 100161, "underlining": 99483, "behavioural": 10020, "criterion": 20295, "deducing": 22732, "trial": 98861, "compassionate": 16742, "division": 26176, "tried": 98872, "trainer": 97934, "mediating": 58857, "relearning": 81343, "terminology": 95786, "cooperatives": 19500, "machinery": 57781, "aspire": 7796, "linked": 54616, "200000": 506, "ranged": 79225, "153": 339, "illuminate": 42989, "sycophancy": 93109, "sycophantic": 93110, "oneforall": 67918, "buildings": 11654, "tooluse": 97485, "sifting": 87636, "webpages": 103505, "extractor": 33355, "037": 28, "007": 8, "059": 48, "simile": 88163, "nlpbased": 66830, "intense": 46940, "manages": 58195, "permissively": 71842, "union": 100066, "shepherd": 87250, "ties": 96917, "quarterly": 78463, "subfields": 91930, "overload": 69397, "newcomers": 66581, "dominance": 26657, "declining": 22624, "coauthors": 15103, "supply": 92780, "highprofile": 41735, "losses": 57479, "categorizations": 12624, "markets": 58399, "extant": 32924, "void": 103211, "exogenous": 31863, "textrelated": 96536, "freelancers": 36352, "transaction": 98380, "gigs": 38828, "amidst": 5332, "carries": 12437, "bodies": 11239, "guideline": 40761, "resistance": 82925, "subcategories": 91924, "audioldm": 8498, "commonalities": 16184, "texttoaudio": 96617, "texttomusic": 96629, "texttospeech": 96630, "turnlevel": 99133, "addiction": 3162, "birth": 11113, "ushered": 101264, "drugs": 26879, "molecules": 64698, "symbiotic": 93114, "approached": 7096, "steering": 90590, "reimagines": 81134, "therapeutic": 96779, "assets": 7995, "systemonchip": 93380, "intricacies": 47359, "weakness": 103451, "assertions": 7815, "enforcement": 28902, "succeeded": 92180, "multiround": 65315, "067": 55, "universality": 100116, "crossentropy": 20409, "streamlines": 90939, "commit": 16110, "commits": 16116, "debunking": 22549, "088": 78, "85": 1365, "liar": 53948, "debunk": 22548, "consultations": 18491, "tod": 97114, "underperformed": 99529, "travel": 98789, "partition": 70512, "flagged": 35376, "bleurt": 11182, "92": 1421, "partitions": 70515, "ag": 4099, "xsum": 104569, "maintains": 57906, "288": 705, "medications": 58929, "recovery": 80706, "774": 1267, "campaign": 11792, "multichoice": 64878, "attracting": 8430, "interoperability": 47258, "executors": 31470, "rtl": 84910, "graphic": 40424, "gptj6b": 40227, "offtarget": 67885, "catalyzed": 12584, "stark": 90248, "embarks": 28040, "isotropic": 47922, "distinctly": 25891, "anisotropic": 5848, "palm2": 69557, "restrict": 83369, "233": 625, "epochs": 29678, "closedsourced": 15017, "roleplay": 84812, "outpaces": 68913, "llama27bchat": 54874, "vicuna7b": 102875, "alpacaeval": 5238, "llama213bchat": 54859, "explosive": 32881, "000": 0, "grapple": 40453, "recency": 80164, "perceptive": 70803, "patents": 70583, "gorilla": 39160, "conceptually": 17655, "multimodel": 65119, "testtaking": 96064, "drivers": 26851, "confined": 18037, "confronted": 18066, "nonpublic": 66940, "california": 11770, "foreign": 35737, "dollar": 26341, "inefficiency": 45175, "transformerlike": 98597, "3billionparameter": 885, "openllama": 68282, "highaccuracy": 41474, "cnndm": 15091, "nyt": 67460, "deployable": 23561, "backward": 9283, "specialpurpose": 89655, "conducive": 17818, "700": 1213, "liability": 53947, "unravel": 100235, "gamification": 36899, "aroused": 7500, "stimulating": 90712, "concatenation": 17586, "069": 56, "048": 37, "comet": 16045, "blue": 11228, "056": 46, "economics": 27062, "transportation": 98783, "render": 81871, "assists": 8071, "broadening": 11505, "pull": 78022, "graphbased": 40416, "skeletons": 88570, "internalized": 47239, "decade": 22554, "obviously": 67698, "questionnaires": 78760, "pointed": 72486, "crosslanguage": 20413, "15fold": 351, "loops": 57435, "enthusiasts": 29511, "inspiring": 46193, "career": 12396, "resume": 83930, "recruiters": 80710, "counselor": 19977, "reviewer": 84282, "xla": 104557, "chiefly": 14518, "133": 272, "104": 165, "phonetics": 72047, "phonology": 72048, "631": 1145, "llama270bchat": 54863, "422": 937, "486": 981, "visible": 102952, "polygons": 72580, "untrusted": 100326, "draws": 26830, "2006": 509, "stand": 90153, "longcontext": 57349, "nicely": 66674, "retrievalenhanced": 84066, "voicebased": 103208, "handsfree": 40957, "smartphones": 88820, "multigranularity": 64912, "memoryaugmented": 59074, "158": 347, "713": 1229, "gpt4powered": 40172, "397": 875, "typified": 99309, "expands": 31879, "imputation": 44174, "expense": 31903, "spreadsheet": 90045, "formulae": 35857, "deduce": 22730, "deduction": 22733, "subvert": 92174, "intentionally": 46964, "button": 11707, "desktop": 24016, "blog": 11207, "combating": 15943, "instructtune": 46632, "32k": 792, "batched": 9900, "permutation": 71845, "rte": 84908, "singleprompt": 88420, "916": 1416, "906": 1410, "274": 687, "872": 1378, "884": 1386, "915": 1415, "308": 765, "pluralistic": 72460, "rights": 84442, "duties": 26905, "pluralism": 72459, "tension": 95760, "lying": 57674, "honesty": 41939, "averages": 9190, "valence": 102081, "philosophical": 72036, "customizable": 20851, "equips": 29700, "controllers": 19255, "registration": 81096, "modelscope": 64567, "demonstrable": 23008, "fantastic": 33862, "expedite": 31897, "pertains": 71983, "favored": 33932, "hypernym": 42718, "finetuningbased": 35296, "disparities": 25759, "citizens": 14654, "tracked": 97622, "sociodemographics": 88950, "sociopolitical": 88956, "income": 44533, "employment": 28467, "rural": 84965, "gnns": 39040, "medqausmle": 58958, "xgen": 104548, "linguistically": 54607, "pipelinebased": 72177, "holding": 41893, "outofscope": 68898, "ecosystems": 27074, "successes": 92253, "dollars": 26342, "iq": 47886, "consolidate": 18347, "deviates": 24753, "projecting": 76057, "1217": 231, "devgpt": 24750, "developerchatgpt": 24541, "maritime": 58378, "threaten": 96880, "nowadays": 67307, "pollution": 72578, "certainly": 12784, "fare": 33879, "networking": 66167, "resorts": 82952, "prototypes": 77363, "spent": 89998, "cowriting": 20109, "writings": 104508, "ensures": 29469, "rough": 84870, "screened": 85813, "sentinels": 86625, "touches": 97569, "irreplaceable": 47905, "phi15": 72032, "initiated": 45807, "rudimentary": 84920, "encouragingly": 28809, "vertical": 102836, "foreseeable": 35746, "cnndailymail": 15090, "dawn": 22498, "imagination": 43140, "customers": 20849, "suppliers": 92779, "friendly": 36389, "humanfriendly": 42484, "selfhealing": 86234, "codegeneration": 15604, "emulator": 28528, "bartlarge": 9395, "undermine": 99523, "superfluous": 92623, "ameliorate": 5321, "mauve": 58631, "possesses": 72862, "vehicle": 102711, "055": 45, "shines": 87265, "transcending": 98383, "confines": 18038, "boasting": 11236, "vaccination": 102071, "vaccinerelated": 102073, "goldstandard": 39100, "singleshot": 88423, "converts": 19451, "linux": 54621, "http": 42020, "centralized": 12739, "crossplatform": 20441, "traveling": 98791, "elucidates": 28024, "viewpoint": 102918, "124m": 237, "204": 572, "flores200": 35455, "hrls": 42015, "lrls": 57642, "841": 1360, "disadvantaged": 25537, "linker": 54617, "fetched": 34182, "reranker": 82451, "impactful": 43275, "generativeai": 38731, "infringe": 45701, "authorship": 8632, "bears": 9927, "courts": 20042, "maintainability": 57877, "em": 28030, "2278": 619, "eas": 26995, "bbh": 9915, "humanengineered": 42468, "synergies": 93149, "sophomore": 89296, "electrical": 27947, "majors": 57958, "unlocking": 100201, "sortednet": 89298, "submodels": 91984, "triviaqa": 98903, "a100": 1472, "7bs": 1311, "penalty": 70722, "jensenshannon": 48129, "multipurpose": 65311, "pipelining": 72182, "legitimacy": 53575, "manifolds": 58214, "simplicial": 88260, "heat": 41205, "sva": 93083, "gpt4generated": 40170, "riscv": 84465, "eluded": 28026, "languageagnostic": 51210, "entails": 29498, "tax": 95310, "got": 39161, "taxes": 95312, "rouge1": 84863, "anticancer": 6237, "tissue": 97101, "smile": 88823, "oncology": 67912, "faculties": 33665, "decreases": 22720, "baichuan": 9296, "mmlu": 60412, "cmmlu": 15086, "gsm8k": 40689, "circa": 14632, "beings": 10022, "subgoals": 91936, "subgoal": 91935, "betweensubject": 10818, "scaffold": 85226, "llama213b": 54855, "subdatasets": 91926, "justice": 48227, "chatgpt35turbo": 14375, "staging": 90142, "vice": 102853, "versa": 102782, "compresses": 17345, "patches": 70579, "434": 949, "librispeech": 53958, "585": 1098, "303": 762, "compressor": 17378, "circles": 14634, "coursework": 20039, "india": 44971, "redefining": 80749, "bolster": 11247, "keen": 48252, "slimpajama": 88642, "627b": 1139, "cerebrasgpt": 12745, "alibi": 4987, "swiglu": 93099, "cerebras": 12744, "bf16": 10821, "batchsize": 9903, "specializing": 89648, "rephrased": 81918, "t53b": 93657, "rubert": 84916, "rugpt3": 84921, "aiassistant": 4616, "2s": 730, "ablations": 1817, "correspondence": 19785, "001": 3, "wizardcoder": 103875, "xu": 104571, "pangucoder": 69577, "userspecific": 101205, "useroriented": 101068, "unaffordable": 99360, "memorybased": 59075, "mere": 59105, "excessively": 31400, "attacking": 8200, "ip": 47885, "entail": 29491, "stateful": 90285, "orchestrates": 68680, "triggers": 98879, "monologue": 64718, "calculationintensive": 11742, "reversal": 84230, "germany": 38810, "llama1": 54807, "composer": 17105, "melodies": 58980, "alleviated": 5138, "mary": 58418, "lee": 53542, "son": 89268, "dishonest": 25749, "detectable": 24230, "abuses": 1964, "diminish": 25395, "revolve": 84362, "positioned": 72814, "hinges": 41848, "ethos": 30100, "continuum": 19047, "institutional": 46265, "downsides": 26681, "kb": 48245, "supervisors": 92766, "lesson": 53631, "curricula": 20823, "granted": 40353, "lagging": 49084, "money": 64705, "lived": 54695, "monthlong": 64733, "card": 12388, "zone": 104895, "expertcrafted": 32377, "analyzer": 5796, "prolog": 76082, "z3": 104691, "blending": 11164, "bolstering": 11250, "comprehensibility": 17145, "fortifying": 35881, "spaced": 89471, "repetition": 81913, "semesterlong": 86400, "thread": 96872, "approachs": 7232, "bengali": 10493, "bangla": 9333, "claude2": 14862, "161": 373, "unicode": 99999, "iso": 47916, "mc4": 58678, "oscar": 68834, "rankorder": 79283, "pointing": 72489, "autoregression": 8948, "hypothesized": 42747, "lowprobability": 57591, "fosters": 35909, "respectful": 83046, "commonplace": 16205, "memorable": 58993, "va": 102070, "selfdiagnosis": 86217, "stakes": 90148, "objectivity": 67530, "elicits": 27997, "resilient": 82924, "comply": 17071, "nontechnical": 66956, "eliminates": 28005, "extractable": 33249, "ttest": 98988, "democratic": 22988, "disabled": 25534, "autistic": 8635, "marginalized": 58370, "contributors": 19191, "incorrectness": 44746, "remotely": 81860, "surging": 92902, "locationbased": 57230, "actuators": 3019, "supposed": 92872, "sensor": 86481, "apartment": 6262, "trip": 98891, "40000": 913, "dearth": 22517, "378": 866, "universitys": 100134, "gpt354": 39689, "treeofthought": 98827, "tot": 97556, "risky": 84540, "longtailed": 57406, "safer": 85001, "suspected": 93073, "generalises": 37216, "sales": 85067, "cherrypicking": 14514, "legacy": 53548, "retrospective": 84117, "eager": 26954, "qwen": 78998, "exclusive": 31426, "breach": 11374, "acknowledgment": 2897, "seldom": 86116, "laboratories": 48963, "mines": 60070, "validates": 102115, "reagents": 79535, "268": 679, "spotlight": 90027, "deriving": 23657, "2500": 654, "selfalignment": 86193, "unlabelled": 100152, "superposition": 92687, "mpt30b": 64824, "squared": 90066, "cohen": 15761, "kappa": 48242, "053": 43, "elusive": 28027, "misalignment": 60159, "roleplaying": 84813, "paved": 70647, "profile": 75811, "contextbased": 18885, "rolespecific": 84821, "aspiration": 7795, "closedform": 14997, "approximates": 7278, "mislabeled": 60182, "incapability": 44207, "appreciated": 6701, "unveiled": 100334, "llama27b": 54864, "requesting": 82218, "benchmarked": 10278, "merges": 59111, "rectifies": 80713, "elevating": 27979, "costefficiency": 19899, "evosuite": 31059, "file": 34457, "8192": 1338, "resembling": 82904, "16b": 383, "starcoder": 90246, "sketching": 88575, "polynomial": 72582, "subquadratic": 92001, "pg19": 72005, "replications": 81953, "objectlevel": 67531, "vectorized": 102706, "numeric": 67402, "160k": 371, "ocean": 67716, "planets": 72245, "firstever": 35315, "804": 1325, "localizations": 57218, "kill": 48384, "357": 846, "rq1": 84899, "reusability": 84125, "rq2": 84900, "rq3": 84901, "citing": 14652, "selftaught": 86280, "selfimproving": 86239, "treeofthoughts": 98829, "programaided": 75855, "selfimprovement": 86238, "annealing": 5851, "altered": 5252, "2d": 722, "autoencoding": 8647, "refute": 81036, "trusted": 98934, "wellexplored": 103586, "urls": 100416, "213": 594, "nonnegligible": 66931, "326": 788, "refusing": 81035, "firm": 35311, "212": 593, "677": 1185, "183": 431, "patch": 70577, "surrogate": 93008, "replaces": 81934, "nn": 66847, "couple": 20020, "exploded": 32557, "multinode": 65122, "multigpu": 64910, "sharding": 87180, "weather": 103470, "city": 14655, "prices": 74771, "invokes": 47819, "executor": 31469, "affordability": 4075, "subnetworks": 91988, "disentangling": 25744, "subgraphs": 91937, "multiobjective": 65123, "adverse": 4013, "relational": 81255, "201": 514, "deems": 22745, "coq": 19531, "wizard": 103874, "longhorizon": 57389, "feasibly": 33954, "concatenated": 17583, "333": 803, "154": 341, "procedural": 75245, "pdf": 70673, "objectionable": 67486, "perturbs": 71995, "copies": 19511, "unnecessary": 100213, "admits": 3603, "undo": 99946, "inferential": 45330, "declines": 22623, "modeldriven": 61612, "mdd": 58687, "autogeneration": 8653, "undergoes": 99458, "casestudy": 12566, "unmanned": 100206, "autogenerated": 8651, "diagram": 24812, "manageable": 58180, "underlines": 99482, "prospects": 77331, "genais": 37086, "earlystage": 26991, "programmingbased": 75938, "suppression": 92876, "769": 1261, "selfrepair": 86260, "ablating": 1803, "ablated": 1802, "suppress": 92874, "visualisations": 103134, "subtracting": 92170, "continual": 18989, "endow": 28858, "lemur": 53579, "soundness": 89334, "indonesia": 45130, "testsuite": 96062, "openacc": 68134, "phind": 72040, "deepseek": 22825, "gpt4turbo": 40184, "rag": 79033, "alarmingly": 4883, "stating": 90539, "register": 81092, "eu": 30101, "unequivocally": 99951, "regulating": 81123, "firmly": 35312, "airelated": 4840, "coarsegrained": 15099, "dictated": 24945, "incredibly": 44921, "reforms": 81024, "imminent": 43181, "parrots": 70326, "shadow": 87162, "stereotype": 90700, "disciplinary": 25560, "imbalanced": 43150, "imbalances": 43152, "replete": 81941, "categorized": 12627, "modelspecific": 64574, "firstyear": 35332, "juan": 48175, "httpswwwcluebenchmarkscom": 42027, "acm": 2898, "meant": 58726, "stir": 90715, "grain": 40323, "salt": 85077, "ct": 20568, "preferably": 73790, "semiautomatically": 86408, "ecommerce": 27046, "domainindependent": 26480, "producer": 75688, "usa": 100417, "earn": 26992, "indian": 44973, "meaningfully": 58717, "powerlaw": 73479, "generalisation": 37213, "subtypes": 92172, "depended": 23531, "male": 58150, "technologyrelated": 95665, "novices": 67304, "technologydriven": 95664, "tasksolving": 95275, "effortless": 27884, "declined": 22622, "expediting": 31900, "agentic": 4157, "ace": 2470, "conceptualize": 17652, "prosecution": 77325, "compass": 16741, "harmonious": 41054, "blend": 11160, "proficiencies": 75774, "specialize": 89615, "meticulous": 59846, "k12": 48236, "silent": 88043, "crowdworker": 20463, "cpu": 20113, "runtimes": 84964, "whisper": 103625, "gpttype": 40246, "elevates": 27977, "morally": 64749, "normative": 66984, "gptx": 40247, "western": 103619, "40k": 926, "resemblance": 82899, "costperformance": 19918, "highvolume": 41824, "selfcritique": 86213, "selfrefinement": 86255, "footprints": 35721, "ended": 28853, "domainagnostic": 26478, "elastic": 27940, "multiaccelerator": 64857, "phones": 72046, "vits": 103171, "elasticity": 27941, "granularities": 40358, "speculative": 89936, "digits": 25377, "extrapolate": 33371, "purposebuilt": 78052, "tokenizing": 97171, "densities": 23515, "stems": 90608, "tokenizes": 97170, "daytoday": 22503, "surpassed": 92918, "religious": 81562, "transmission": 98762, "islam": 47914, "v20": 102067, "substring": 92158, "religion": 81561, "meticulously": 59850, "prohibited": 76028, "multitoken": 65373, "expandable": 31871, "013": 13, "gd": 37045, "criticism": 20381, "colored": 15931, "496": 990, "937": 1429, "leans": 52925, "concentrate": 17591, "pearson": 70679, "equilibrium": 29690, "discriminatively": 25643, "mutually": 65432, "gametheoretic": 36898, "discriminator": 25644, "equilibria": 29689, "fight": 34448, "proliferates": 76073, "checkers": 14480, "rival": 84541, "penetrate": 70724, "validators": 102135, "misconfiguration": 60169, "coping": 19518, "ineffectiveness": 45173, "deceiving": 22560, "criminal": 20279, "solitary": 89070, "obfuscating": 67465, "encapsulation": 28672, "harmless": 41050, "disguise": 25747, "chatglm2": 13466, "upsetting": 100383, "queen": 78466, "humankind": 42504, "tie": 96913, "listener": 54628, "grasps": 40458, "speaker": 89590, "coordinate": 19502, "imprecision": 43567, "accounted": 2165, "pseudocode": 77864, "externally": 33208, "remediating": 81851, "remediation": 81852, "contextsensitive": 18930, "treesearch": 98833, "excelled": 31342, "ats": 8154, "puzzle": 78083, "656": 1164, "406": 918, "llmss": 57067, "humanevalet": 42479, "metatraining": 59170, "recasts": 80130, "datapoints": 21791, "metatrained": 59169, "vaccine": 102072, "unfold": 99980, "reactions": 79491, "instagram": 46201, "propagated": 76880, "cskbs": 20563, "diagnostics": 24810, "machinedetectable": 57767, "uninformative": 100060, "falsenegative": 33823, "utilising": 101884, "australian": 8611, "catalogue": 12579, "reusing": 84129, "disciplinespecific": 25564, "started": 90255, "readable": 79503, "modularized": 64652, "songs": 89270, "enterprise": 29505, "opacity": 68037, "plagued": 72226, "reversing": 84238, "indicators": 45053, "geographies": 38785, "standardize": 90218, "toplevel": 97541, "skillset": 88613, "decoupling": 22711, "emulated": 28521, "harmlessness": 41052, "upscaling": 100382, "july": 48203, "843": 1362, "outbreaks": 68838, "ukraine": 99332, "forecasts": 35734, "underperforms": 99530, "genuinely": 38777, "personalities": 71892, "identities": 42940, "spanbert": 89484, "longformer": 57388, "textitcontextual": 96524, "url": 100415, "httpsgithubcommicrosoftlmops": 42023, "mediumsized": 58948, "enterprises": 29507, "afford": 4074, "payment": 70666, "emojis": 28246, "jargon": 48116, "selfimprove": 86237, "widening": 103763, "replay": 81939, "perils": 71829, "lawsuits": 52709, "cite": 14647, "wordorder": 103943, "clause": 14866, "mllm": 60376, "visualtext": 103158, "mllms": 60381, "marine": 58376, "imagetext": 43130, "pushes": 78073, "projectbased": 76053, "stresses": 90974, "necessitated": 65881, "gestures": 38814, "communicative": 16291, "facetoface": 33471, "tl": 97109, "boxes": 11349, "contract": 19048, "resort": 82949, "categorization": 12623, "higherquality": 41538, "margins": 58374, "timestamps": 97091, "moments": 64700, "videototext": 102903, "benign": 10494, "securityrelated": 86052, "languagemodel": 51219, "disproportionate": 25775, "sms": 88831, "banks": 9338, "explorative": 32613, "midterm": 60008, "interview": 47347, "169": 382, "antisocial": 6253, "1219": 232, "confused": 18070, "prefixtuning": 73848, "prefixes": 73846, "mistral": 60215, "textitgraph": 96527, "constantly": 18361, "piece": 72103, "axis": 9230, "kbs": 48250, "asset": 7994, "thresholding": 96900, "competitively": 16827, "1100": 197, "900": 1406, "minutes": 60144, "structurebased": 91153, "journalism": 48167, "newlyconstructed": 66603, "tuples": 99113, "deepen": 22806, "listening": 54630, "heart": 41202, "uncontaminated": 99417, "premature": 73884, "screens": 85817, "grammarbased": 40330, "allocated": 5150, "determinants": 24401, "london": 57295, "dissecting": 25790, "asymmetric": 8140, "sourcetarget": 89427, "ada": 3027, "domaininvariant": 26481, "diluting": 25381, "confounders": 18061, "newest": 66584, "situational": 88443, "su": 91922, "lewis": 53910, "mpcs": 64817, "interlocutors": 47200, "exchanges": 31402, "subjecting": 91950, "mpc": 64816, "leaves": 53508, "addressee": 3506, "casting": 12570, "conception": 17615, "deciphering": 22575, "occupational": 67705, "relates": 81229, "30000": 757, "hierarchically": 41368, "occupation": 67704, "specialty": 89657, "dolly": 26343, "sharegpt": 87202, "estate": 30005, "tulu": 98990, "864": 1374, "spontaneously": 90024, "pp": 73483, "architecturespecific": 7408, "coefficient": 15725, "nas": 65519, "beats": 9932, "trade": 97633, "green": 40542, "circle": 14633, "colors": 15933, "attaching": 8157, "englishspeaking": 29126, "culturallyaware": 20606, "sizeable": 88538, "suggestive": 92432, "llmsgenerated": 57065, "pandalm": 69571, "5k": 1105, "humantohuman": 42659, "violate": 102925, "selfcorrection": 86212, "inaccurately": 44192, "prefinetuned": 73840, "openllm": 68283, "selfdetection": 86215, "nonfactual": 66908, "diversify": 26133, "referring": 80967, "integrative": 46785, "rewardbased": 84380, "negotiate": 66092, "bundle": 11685, "postediting": 72941, "incentivize": 44211, "exclusion": 31424, "grant": 40352, "refuse": 81034, "inflict": 45343, "hackathon": 40794, "influenza": 45371, "virus": 102949, "entering": 29504, "llama270b": 54860, "rejected": 81173, "uphold": 100370, "unsafe": 100252, "empheg": 28306, "muslimviolence": 65422, "persists": 71869, "antimuslim": 6250, "managerial": 58193, "codewhisperer": 15652, "skewed": 88577, "dependability": 23530, "sustainability": 93076, "likewise": 54270, "100b": 149, "pushdown": 78071, "depths": 23637, "parse": 70327, "synchronously": 93147, "softly": 88968, "constituents": 18365, "silver": 88046, "35x": 849, "perplexities": 71852, "gpt2medium": 39377, "parsed": 70330, "basically": 9891, "mr": 64826, "wellcalibrated": 103578, "calibrating": 11759, "trainingbased": 98356, "segmented": 86111, "leakage": 52916, "warranting": 103326, "skypile": 88617, "fulltraining": 36436, "intrinsically": 47390, "quantized": 78450, "trading": 97648, "identifier": 42832, "convinced": 19464, "lowfidelity": 57586, "eliza": 28017, "textgeneration": 96521, "questionansweringbased": 78751, "concisely": 17725, "swarm": 93092, "modeled": 61613, "photo": 72049, "entered": 29503, "groupwise": 40633, "pathway": 70593, "crossencoder": 20408, "dissatisfaction": 25788, "copa": 19507, "portrayal": 72725, "professionally": 75765, "dialect": 24816, "6547": 1162, "noiserobust": 66865, "insensitive": 46029, "analytic": 5725, "decider": 22571, "081": 71, "083": 73, "040": 32, "cotbased": 19971, "rescoring": 82466, "scienceworld": 85622, "markov": 58405, "rises": 84484, "hide": 41358, "twopart": 99169, "swiftsage": 93098, "singlestage": 88424, "deteriorated": 24395, "unnoticeable": 100214, "misclassification": 60163, "checklist": 14485, "scoping": 85683, "disclosures": 25569, "genaipowered": 37085, "userspecified": 101206, "directing": 25442, "interconnectedness": 47134, "conclusively": 17769, "744": 1242, "invariants": 47598, "106": 167, "transcription": 98388, "atypical": 8468, "station": 90540, "waiting": 103293, "engender": 28927, "correspondingly": 19809, "semester": 86399, "cs": 20560, "selfrationalization": 86252, "200x": 513, "mario": 58377, "rationalization": 79442, "axes": 9226, "gauging": 37037, "dialogsum": 24842, "critiquing": 20390, "lunch": 57661, "assimilating": 8012, "dare": 20925, "disparity": 25762, "zeros": 104717, "rescales": 82465, "ranges": 79226, "amalgamation": 5297, "wizardmath": 103878, "663": 1175, "merged": 59110, "datacentric": 21780, "enlarging": 29388, "stateofthearts": 90515, "marking": 58400, "respects": 83096, "rust": 84972, "provably": 77366, "propagate": 76878, "exacerbates": 31063, "52000": 1049, "noteworthy": 67058, "programmatically": 75863, "patternbased": 70619, "collaborator": 15852, "explanatory": 32523, "invariance": 47596, "possessing": 72864, "gpt2small": 39381, "rdf": 79459, "dbpedia": 22506, "lodsyndesis": 57233, "aggregated": 4252, "400": 909, "enrichment": 29414, "greek": 40541, "853": 1368, "embeddingbased": 28071, "eliminated": 28004, "818": 1337, "repeats": 81912, "existential": 31645, "began": 9938, "transient": 98653, "humanaligned": 42435, "3000": 756, "tencent": 95730, "transport": 98782, "wasserstein": 103330, "coreset": 19556, "minimizes": 60116, "parity": 70322, "ca": 11727, "vendors": 102716, "tandem": 93848, "340": 813, "crosssectional": 20442, "adults": 3657, "equation": 29686, "607": 1121, "insignificant": 46144, "os": 68833, "highcost": 41477, "unmodified": 100210, "september": 86633, "toptier": 97553, "untrained": 100325, "catalysts": 12581, "n65": 65451, "quiz": 78995, "wordlevel": 103940, "trait": 98370, "undergrad": 99468, "dig": 25349, "miami": 59985, "attainable": 8245, "enduring": 28892, "quest": 78566, "subreddit": 92004, "gather": 37024, "primacy": 74773, "glove": 39025, "fasttext": 33919, "resumes": 83932, "unmatched": 100208, "affirming": 4072, "makers": 58043, "secured": 85992, "dispersed": 25763, "insect": 46026, "traps": 98787, "optical": 68555, "vibration": 102852, "ensembles": 29428, "lifelong": 53987, "criticized": 20382, "fever": 34184, "unfeasible": 99978, "360": 853, "cooperate": 19490, "chart": 13355, "harmony": 41057, "offpolicy": 67883, "226": 618, "corrective": 19712, "rightarrow": 84440, "uncontrolled": 99419, "tangible": 93849, "tactics": 93759, "511": 1041, "81": 1330, "llavav15": 54924, "trap": 98785, "confusion": 18072, "blank": 11157, "resilience": 82923, "casual": 12573, "bidirectionally": 10981, "deterioration": 24399, "zephyr": 104692, "honest": 41937, "insider": 46039, "tip": 97099, "scratchpad": 85811, "interpreters": 47303, "locally": 57223, "intentional": 46963, "falcon7b": 33774, "afforded": 4080, "supervisor": 92765, "appearing": 6310, "inferable": 45205, "6000": 1118, "geocultural": 38778, "continents": 18984, "audiolanguage": 8493, "mt0": 64840, "belowpar": 10057, "worst": 104445, "crossmodality": 20438, "alleviating": 5143, "concentrated": 17593, "altogether": 5285, "48k": 985, "inlanguage": 45833, "llamav2": 54905, "nuance": 67313, "storylines": 90759, "premium": 73888, "nov": 67079, "hurts": 42700, "picked": 72097, "attentive": 8398, "datadependent": 21782, "jarvis": 48117, "pretty": 74624, "convincingly": 19466, "babel": 9235, "mystery": 65445, "gamut": 36902, "resides": 82916, "verifications": 102757, "flawless": 35420, "underscored": 99555, "inflated": 45342, "162": 374, "genderneutral": 37098, "pediatric": 70689, "ran": 79097, "outputted": 69262, "9th": 1470, "7th": 1313, "10th": 177, "bards": 9373, "hesitancy": 41327, "cautious": 12711, "sixthgrade": 88447, "algorithmicallygenerated": 4952, "gans": 36904, "corpusbased": 19657, "unfiltered": 99979, "interchangeably": 47129, "dissimilar": 25795, "senior": 86432, "elaborately": 27935, "publishers": 78013, "padding": 69457, "pipelineparallel": 72179, "variablelength": 102244, "microbatch": 59988, "325x": 787, "thesis": 96786, "bachelor": 9239, "bachelors": 9240, "chats": 14460, "structuring": 91204, "valued": 102202, "conclusive": 17768, "evidently": 31007, "mits": 60318, "alpaca52k": 5235, "132": 271, "double": 26671, "smallersized": 88803, "mixtureofexpert": 60358, "bit": 11115, "word2vec": 103934, "unigram": 100055, "summation": 92607, "competitiveness": 16830, "personabased": 71875, "multipersona": 65128, "observational": 67559, "empathetic": 28275, "anthropic": 6233, "616": 1132, "depict": 23555, "distinctiveness": 25890, "svm": 93087, "fr": 35997, "malaysian": 58148, "morphosyntactic": 64757, "men": 59081, "evil": 31008, "delving": 22962, "camel": 11789, "stealthier": 90578, "graduatelevel": 40319, "448": 957, "discounting": 25579, "retrospect": 84116, "skilled": 88587, "spending": 89996, "supervise": 92690, "aisupported": 4852, "masters": 58481, "scieval": 85675, "newlycreated": 66604, "uploading": 100374, "chi": 14516, "statistic": 90542, "plotting": 72443, "oasis": 67462, "onestop": 67957, "booming": 11264, "lifecycle": 53984, "exemplifying": 31485, "excellence": 31344, "departs": 23524, "onerous": 67921, "residuals": 82922, "ternary": 95850, "qlora": 78168, "degeneration": 22884, "bge": 10823, "mteb": 64849, "languagerelated": 51222, "multistage": 65323, "verifies": 102765, "drugrelated": 26878, "deepmind": 22823, "heis": 41224, "searched": 85908, "interoperable": 47260, "polarization": 72526, "userpersonalized": 101069, "echoing": 27042, "differing": 25274, "affiliation": 4066, "rightleaning": 84441, "presidential": 74202, "excluded": 31421, "personalizing": 71923, "monitored": 64707, "initiation": 45810, "pbl": 70668, "353": 841, "meetings": 58971, "fairs": 33744, "dead": 22508, "endangered": 28847, "conservation": 18128, "digitization": 25375, "gpt30": 39563, "persuasion": 71977, "fascinating": 33882, "illegal": 42984, "hacking": 40797, "walking": 103296, "embracing": 28120, "fulfilling": 36425, "obligations": 67548, "forthcoming": 35877, "dishonesty": 25750, "renewal": 81875, "gpt3davinci": 39726, "gpt3curie": 39723, "gpt3babbage": 39719, "gpt3ada": 39718, "clueanswer": 15076, "relate": 81181, "mixedmethods": 60333, "offtopic": 67897, "nearing": 65849, "chunking": 14623, "66b": 1178, "characterbased": 13325, "closesource": 15047, "langauge": 49118, "40b": 923, "180b": 426, "assembled": 7806, "falcon180b": 33772, "dive": 25967, "4096": 922, "aws": 9225, "catching": 12599, "interval": 47334, "promotional": 76228, "laid": 49090, "stitching": 90718, "burdens": 11689, "onestage": 67955, "trainingtime": 98365, "boosted": 11284, "programmatic": 75862, "prefers": 73837, "widelyadopted": 103750, "separated": 86627, "incentive": 44209, "diverting": 26163, "venturing": 102717, "tracker": 97623, "critiquellm": 20387, "recovers": 80705, "exposing": 32894, "compositions": 17119, "249": 642, "952": 1442, "baidu": 9298, "contextualising": 18958, "personalisation": 71889, "blur": 11231, "renewed": 81876, "socioeconomic": 88951, "erasure": 29749, "maximization": 58638, "erase": 29746, "erases": 29747, "erasing": 29748, "southeast": 89431, "customs": 20861, "assistantstyle": 8063, "thai": 96711, "administer": 3593, "textitetc": 96526, "modal": 60428, "payoffs": 70667, "perpetual": 71848, "alphafold2": 5247, "schoollevel": 85556, "reasoningbased": 80090, "quadruples": 78181, "condensed": 17782, "separation": 86632, "president": 74201, "colab": 15802, "voices": 103210, "lexiconbased": 53937, "norwegian": 66992, "documentgrounded": 26234, "supplemental": 92770, "ugly": 99322, "meantime": 58727, "harnessed": 41077, "userlevel": 101067, "handles": 40942, "accelerates": 2012, "rearranged": 79720, "160": 368, "625": 1138, "underdeveloped": 99434, "twodimensional": 99164, "devising": 24770, "651": 1160, "449": 958, "246": 639, "conversions": 19439, "vehicles": 102712, "avs": 9210, "adeptly": 3566, "reinforced": 81138, "regionspecific": 81091, "rsd": 84906, "modulation": 64656, "av": 8993, "longtext": 57417, "succumb": 92296, "flag": 35375, "immune": 43182, "embarked": 28039, "cap": 11817, "cup": 20618, "housing": 42012, "eligibility": 27998, "discriminatory": 25647, "decisionmakers": 22589, "137": 279, "157": 346, "imagebased": 43071, "illustrates": 43002, "marketing": 58397, "professor": 75772, "relatable": 81180, "turbos": 99120, "epc": 29669, "notation": 67048, "generativebased": 38732, "improper": 43658, "impersonate": 43310, "opposite": 68527, "biographies": 11075, "activating": 2974, "monetary": 64703, "5point": 1106, "likert": 54265, "impersonal": 43309, "formulaic": 35858, "regularities": 81109, "learnt": 53506, "learnability": 52975, "threephase": 96891, "translators": 98761, "earnings": 26993, "disruption": 25783, "highlighter": 41622, "unconditional": 99412, "vlms": 103180, "707": 1218, "mmbench": 60407, "federated": 34050, "fl": 35372, "clients": 14902, "selfannotated": 86194, "070": 58, "deteriorate": 24394, "reassess": 80100, "pensieve": 70729, "vllm": 103177, "filling": 34463, "042": 34, "softwarerelated": 89049, "undeniable": 99433, "captivating": 12341, "xray": 104568, "symbolically": 93136, "audited": 8504, "counterexample": 19989, "237": 626, "lfms": 53939, "accomplishment": 2139, "anticipated": 6243, "assume": 8116, "grand": 40349, "degrading": 22901, "forcing": 35727, "rediscover": 80751, "amber": 5306, "selftraining": 86283, "modelslms": 64572, "expectationmaximization": 31888, "repeat": 81907, "favorably": 33931, "disrupted": 25781, "removes": 81867, "rnn": 84583, "ioawareness": 47881, "1k": 473, "touvron": 97574, "2023a": 566, "mamba": 58173, "2k": 726, "28k": 708, "degradations": 22892, "similarlysized": 88161, "alters": 5284, "steers": 90594, "medpalm": 58955, "instructionguided": 46465, "lesser": 53629, "safetyaligned": 85059, "retail": 83934, "123": 235, "promotion": 76227, "subversion": 92173, "redteaming": 80753, "backdoors": 9259, "backdoored": 9258, "ev": 30118, "projections": 76063, "distantly": 25800, "corrector": 19751, "pinpointing": 72123, "circumventing": 14641, "716": 1230, "scrutinizes": 85830, "persian": 71860, "malware": 58171, "obfuscated": 67464, "consecutive": 18111, "drift": 26834, "afterward": 4098, "geodistributed": 38779, "consumergrade": 18499, "idle": 42952, "volunteers": 103222, "disconnect": 25570, "abruptly": 1899, "uneven": 99956, "faulttolerant": 33926, "decentralized": 22565, "triaging": 98860, "crashes": 20135, "gpt432k": 40163, "triage": 98859, "170": 395, "812": 1333, "gpt4v": 40185, "bread": 11376, "gpt4vs": 40201, "nutritional": 67449, "180": 424, "snapshot": 88832, "presuppositions": 74214, "pertain": 71980, "transcend": 98382, "stereotyped": 90701, "304": 763, "f1macro": 33422, "appended": 6313, "drag": 26778, "injects": 45832, "projectlevel": 76064, "lifting": 53992, "increment": 44923, "pragmatics": 73581, "grices": 40548, "n76": 65452, "pretesting": 74217, "placing": 72222, "5th": 1110, "2nd": 728, "agitation": 4269, "elucidating": 28025, "pinpoint": 72120, "articulates": 7580, "exactmatch": 31075, "873": 1379, "chinas": 14532, "geopolitical": 38795, "tensions": 95761, "upgrading": 100369, "informatics": 45387, "knowledgeaugmented": 48818, "sentinel": 86624, "prioritizes": 74880, "barring": 9380, "longest": 57374, "regarded": 81041, "hands": 40956, "collaborated": 15813, "countering": 19999, "skeptical": 88571, "hatexplain": 41111, "macrof1": 57793, "speculated": 89933, "priorities": 74876, "peerreview": 70698, "welfare": 103574, "screenshots": 85818, "visionbased": 103018, "reframe": 81029, "528": 1054, "geminis": 37074, "aggressive": 4258, "cells": 12724, "tuple": 99112, "underwent": 99932, "forest": 35747, "cocreate": 15108, "cocreation": 15110, "selfefficacy": 86225, "faults": 33925, "monotonically": 64723, "paris": 70321, "geotechnical": 38800, "japan": 48113, "precedent": 73586, "redefines": 80748, "cutting": 20865, "ba": 9233, "saved": 85217, "proceeded": 75259, "dyadic": 26906, "multiagentbased": 64869, "optimisation": 68579, "singleagent": 88405, "891": 1389, "mbppet": 58676, "695": 1197, "630": 1144, "aggression": 4257, "lgbtq": 53943, "conspiracy": 18354, "orchestration": 68682, "dutch": 26904, "likeness": 54264, "noticeably": 67065, "opinionated": 68476, "graybox": 40460, "redteam": 80752, "divulge": 26177, "unions": 100069, "authorities": 8627, "booking": 11256, "yahoo": 104577, "inequality": 45179, "generalise": 37214, "265": 678, "begun": 9950, "unreflected": 100240, "paste": 70576, "231": 624, "689": 1193, "duplicates": 26900, "worthwhile": 104450, "immensely": 43176, "relieve": 81560, "multiapi": 64870, "rebuild": 80103, "substituting": 92153, "codesearchnet": 15642, "chatgptenhanced": 14399, "modellevel": 61691, "bertopic": 10578, "chineseenglish": 14580, "comics": 16047, "movies": 64807, "tv": 99145, "fictions": 34336, "constrain": 18372, "dedicate": 22722, "admissions": 3601, "marginally": 58373, "deficiencies": 22857, "saturation": 85212, "differentiation": 25272, "definitely": 22871, "highvalue": 41823, "primer": 74818, "operated": 68441, "zephyr7bbeta": 104695, "client": 14901, "accelerators": 2031, "arent": 7453, "dropout": 26868, "arriving": 7517, "micro": 59986, "dev": 24428, "abbreviations": 1484, "delicate": 22932, "crm": 20391, "115": 203, "substantiates": 92144, "fortify": 35880, "attract": 8407, "selfplay": 86249, "prospect": 77328, "selfgenerated": 86231, "optimum": 68665, "developmental": 24735, "cautions": 12710, "jailbreaks": 48106, "bypassed": 11714, "reverting": 84239, "theres": 96784, "gpt4vison": 40200, "focal": 35498, "professions": 75771, "ondemand": 67913, "n8": 65453, "tinyllama": 97098, "progressive": 76022, "giants": 38824, "finer": 34811, "hopes": 41977, "react": 79484, "continuity": 19023, "2based": 718, "dark": 20926, "gmat": 39037, "blended": 11161, "defeasibility": 22833, "strengthened": 90948, "weakened": 103434, "supporters": 92849, "weakening": 103435, "defeasible": 22834, "causeeffect": 12696, "801": 1324, "reacting": 79488, "braininspired": 11358, "debt": 22541, "scattered": 85386, "imperfections": 43308, "stepgame": 90671, "mixtral": 60339, "8x7b": 1397, "sees": 86101, "claude21": 14864, "implant": 43312, "tackled": 93742, "manhours": 58205, "invested": 47612, "inspected": 46148, "chicken": 14517, "mcts": 58685, "factories": 33582, "strain": 90775, "quicker": 78980, "trailing": 97726, "print": 74836, "rubber": 84915, "warn": 103317, "widen": 103762, "preexisting": 73786, "prosperity": 77334, "diplomatic": 25405, "21st": 601, "century": 12742, "230": 623, "verifiable": 102736, "plcs": 72395, "predominance": 73775, "ics": 42773, "programmable": 75861, "llama34b": 54887, "257": 663, "csv": 20567, "trustllm": 98937, "thirdly": 96811, "mistakenly": 60210, "bespoke": 10585, "truthfully": 98960, "adjectives": 3583, "concatenating": 17585, "hesitate": 41329, "mistral7b": 60225, "webscale": 103508, "textitie": 96528, "phi": 72031, "ragbased": 79052, "infonce": 45374, "fetch": 34180, "wearable": 103467, "nonlinguistic": 66925, "sleep": 88620, "mimiciii": 60054, "cardiac": 12389, "238": 628, "zephyr7b": 104694, "ssp": 90077, "answerability": 6070, "specialist": 89610, "interlaced": 47194, "trec6": 98816, "rotten": 84855, "expedited": 31898, "unbalanced": 99377, "specifics": 89905, "quantisation": 78398, "proofs": 76876, "industriallevel": 45159, "interrogating": 47319, "372": 863, "revolves": 84363, "tricking": 98869, "pdfs": 70675, "sourcing": 89428, "counselling": 19976, "crowdsource": 20453, "24k": 646, "manifests": 58212, "nshot": 67312, "operates": 68442, "tunes": 99011, "met": 59133, "delineated": 22934, "im": 43013, "wechat": 103515, "flooding": 35448, "twophase": 99170, "363": 856, "telemetry": 95674, "sheeps": 87238, "clothing": 15054, "maliciously": 58168, "interpretative": 47299, "summarizations": 92576, "portrayals": 72726, "resonant": 82947, "300b": 759, "cascaded": 12451, "cmc": 15085, "presently": 74110, "mediator": 58859, "processor": 75597, "testbenches": 95965, "fpga": 35995, "disfluent": 25746, "speechtotext": 89976, "burst": 11697, "discernment": 25559, "proteins": 77351, "chemicals": 14502, "pmc": 72465, "streamlining": 90940, "verifiability": 102735, "everexpanding": 30947, "blinded": 11188, "favor": 33929, "disrupts": 25787, "apt": 7293, "prunes": 77847, "reshape": 82908, "twoplayer": 99172, "streaming": 90934, "streams": 90943, "packet": 69455, "710": 1228, "316": 776, "duplication": 26901, "eloquent": 28021, "enjoy": 29381, "xai": 104545, "builder": 11616, "usecase": 100724, "easytounderstand": 27038, "corruption": 19817, "encapsulated": 28669, "sc": 85225, "imposing": 43560, "chatglm3": 13467, "invocation": 47815, "recreated": 80707, "stanfords": 90243, "safely": 85000, "concluded": 17742, "simpletod": 88258, "accomplishing": 2137, "2024": 569, "cuis": 20582, "elemental": 27961, "ux": 102059, "presentations": 74087, "breakout": 11389, "orchestrator": 68683, "picking": 72098, "mixtrals": 60347, "759": 1253, "onsite": 68019, "truncating": 98924, "nonroman": 66944, "wellresourced": 103605, "ul2": 99335, "phi2": 72033, "sliced": 88622, "24gb": 644, "40gb": 924, "strives": 90998, "hermeneutic": 41325, "humanderived": 42465, "cohens": 15763, "geq": 38802, "justifying": 48231, "referenced": 80948, "yoda": 104684, "adeptness": 3567, "998": 1467, "syntactical": 93186, "classlevel": 14845, "deteriorates": 24396, "bolsters": 11251, "lvlms": 57666, "outrageous": 69264, "moebased": 64693, "lvlm": 57663, "topk": 97536, "llava157b": 54919, "llava1513b": 54918, "farsi": 33881, "permutations": 71846, "decompositions": 22705, "124": 236, "openmp": 68289, "epitomized": 29675, "codebased": 15578, "narrower": 65514, "lays": 52779, "rigid": 84444, "gendered": 37097, "genderspecific": 37099, "leaked": 52920, "amd": 5320, "poc": 72466, "listen": 54627, "llamacpp": 54901, "container": 18527, "aichatbot": 4635, "influencing": 45366, "18b": 437, "lutbased": 57662, "subfield": 91929, "cmos": 15087, "agentbased": 4154, "companions": 16358, "abm": 1893, "interviewed": 47349, "surfaced": 92884, "apparent": 6301, "envisage": 29661, "crossarchitecture": 20397, "confronting": 18068, "wsc": 104538, "winograd": 103840, "toe": 97123, "topperforming": 97549, "geographic": 38781, "rampant": 79095, "privileging": 74933, "fluctuations": 35461, "distributing": 25930, "eliminative": 28016, "contiguous": 18983, "assertion": 7814, "verilog": 102779, "expertdriven": 32380, "formatted": 35839, "neurodegenerative": 66301, "imaging": 43144, "trimodal": 98890, "coattention": 15102, "interleave": 47195, "178": 417, "surged": 92897, "cutoff": 20863, "llmsthe": 57068, "015": 15, "012": 12, "1148": 202, "emit": 28242, "apibank": 6284, "collaborates": 15814, "7k": 1312, "owned": 69440, "contemplation": 18571, "holdout": 41894, "polished": 72559, "decoded": 22626, "misunderstandings": 60233, "emoji": 28245, "userprovided": 101070, "outofvocabulary": 68909, "compelled": 16751, "phishing": 72041, "multipronged": 65309, "fortifies": 35879, "irt": 47912, "cryptography": 20557, "imperfect": 43307, "abovementioned": 1896, "62": 1135, "lighter": 54026, "languagecentric": 51215, "recomputation": 80676, "waste": 103331, "llama2chat70b": 54882, "likelihoodbased": 54250, "minigptv2": 60074, "llava": 54906, "instructblip": 46278, "mplugowl2": 64819, "lottery": 57490, "tickets": 96912, "ticket": 96910, "suffices": 92329, "graphenhanced": 40420, "illustrations": 43008, "recallk": 80121, "mpnet": 64820, "6711": 1183, "medcpt": 58824, "leak": 52912, "255": 659, "globally": 39020, "263": 677, "lowentropy": 57548, "dotproduct": 26670, "monotonicity": 64724, "berts": 10580, "167": 379, "165": 377, "unforeseen": 99982, "alice": 4988, "traces": 97616, "propelling": 76885, "learnings": 53494, "412": 931, "984": 1462, "iclbased": 42769, "109": 170, "firsthand": 35317, "sociological": 88954, "constitutional": 18370, "mild": 60010, "cloudbased": 15065, "encrypted": 28811, "encrypt": 28810, "sending": 86430, "safeguard": 84995, "stagewise": 90140, "gradual": 40315, "walltime": 103303, "subnetwork": 91987, "2033": 571, "articulation": 7581, "aya": 9231, "ift": 42956, "humancurated": 42464, "513": 1043, "114": 201, "collaborators": 15853, "toolaugmented": 97335, "willingness": 103826, "cyberattacks": 20881, "hotspot": 41996, "locate": 57225, "500k": 1029, "belonging": 10055, "codebertbased": 15583, "disproportionately": 25776, "suppressing": 92875, "pink": 72118, "grey": 40546, "unavailability": 99372, "amharic": 5330, "featurerich": 33981, "manuals": 58324, "withinsubject": 103857, "smith": 88824, "unaligned": 99361, "infectious": 45194, "llava15": 54917, "issuing": 48023, "outpatient": 68914, "450": 961, "humandriven": 42467, "conll2003": 18087, "llmannotated": 55324, "decay": 22557, "resourcelimited": 82994, "radiology": 79026, "inhospital": 45758, "uncertainties": 99383, "physicians": 72074, "physicsbased": 72092, "pack": 69450, "packs": 69456, "codellama13b": 15610, "arm": 7497, "layoutaware": 52776, "opposed": 68525, "solar": 89050, "128k": 248, "4k": 999, "upsampling": 100381, "internetscale": 47255, "compressible": 17347, "quantizes": 78455, "deltas": 22948, "eastern": 27027, "orientation": 68752, "negativity": 66077, "prejudices": 73852, "positivity": 72848, "142": 310, "distributionbased": 25962, "needles": 66031, "11m": 216, "haystack": 41129, "overgeneralization": 69384, "incidents": 44221, "overwhelmed": 69435, "hardwarefriendly": 41018, "silicon": 88044, "codesign": 15643, "parallelization": 70090, "minuscule": 60142, "0001": 2, "anchored": 5826, "rerunning": 82462, "sparql": 89522, "roleoriented": 84811, "llemma": 54925, "finishing": 35304, "toolbox": 97342, "kgbased": 48376, "textbfdecomposition": 96500, "manifested": 58209, "mti": 64851, "146": 314, "flant5s": 35405, "misinterpret": 60181, "clearcut": 14888, "flagging": 35377, "violence": 102932, "postchatgpt": 72935, "unwarranted": 100342, "dsl": 26880, "postdeployment": 72937, "18k": 438, "20k": 584, "inaugural": 44206, "wic": 103638, "wsi": 104540, "selfdistillation": 86221, "doubles": 26673, "reevaluating": 80915, "opensourcing": 68434, "xxl": 104576, "domaingeneral": 26479, "grained": 40324, "strands": 90776, "cefr": 12719, "ccs": 12716, "semeval2024": 86404, "1a": 464, "supervising": 92750, "recoverability": 80702, "privacyaware": 74917, "steal": 90576, "rolebased": 84810, "reconstructor": 80690, "portions": 72722, "defect": 22835, "156": 345, "mixtral8x7b": 60344, "relu": 81563, "gelu": 37050, "substitutive": 92157, "curves": 20835, "adaption": 3140, "indoeuropean": 45119, "midsized": 60007, "eagle": 26955, "abnormal": 1894, "oneonone": 67920, "contentspecific": 18718, "nurturing": 67446, "unearthing": 99950, "fragmented": 36006, "unearth": 99949, "delay": 22919, "medmcqa": 58952, "groupedquery": 40613, "lookups": 57429, "isolated": 47918, "tricked": 98868, "rome": 84826, "keypoint": 48358, "lamp": 49098, "echo": 27041, "maximally": 58635, "07": 57, "maths": 58611, "highconfidence": 41476, "diminishing": 25402, "terminological": 95783, "survive": 93061, "maker": 58042, "patent": 70582, "566": 1083, "situated": 88441, "industrialgrade": 45158, "handy": 40960, "467": 972, "skg": 88579, "deviating": 24754, "coda19": 15113, "815": 1334, "836": 1353, "2010": 515, "hypertuning": 42727, "mu": 64854, "economical": 27059, "p3": 69445, "initializations": 45793, "sundanese": 92613, "lowerresource": 57580, "victims": 102857, "survivors": 93062, "domestic": 26656, "capitalize": 12315, "costing": 19905, "continuations": 19001, "microbenchmarks": 59990, "attributevalue": 8461, "entanglements": 29501, "tightly": 96921, "neuronlevel": 66308, "stablelm": 90099, "2b": 716, "spill": 90006, "diverging": 25977, "configured": 18036, "tripartite": 98893, "denotes": 23500, "aihuman": 4681, "todate": 97116, "readytouse": 79534, "pt": 77896, "resolutions": 82936, "rlaif": 84562, "minds": 60067, "vi": 102840, "finely": 34810, "presentday": 74088, "inside": 46037, "multidoc2dial": 64898, "pivoting": 72210, "dgms": 24781, "dgm": 24780, "journalistic": 48168, "editorial": 27117, "sa": 84974, "column": 15939, "headers": 41140, "ultra": 99349, "anchoring": 5827, "singledocument": 88412, "timelines": 97062, "multiphase": 65130, "timeseries": 97088, "sensing": 86451, "inertial": 45181, "alphanumeric": 5248, "ssl": 90074, "har": 40968, "animals": 5846, "enlarge": 29386, "relevancy": 81442, "gb": 37044, "063": 53, "punctuation": 78025, "visualized": 103145, "crises": 20282, "jurisdiction": 48215, "enter": 29502, "everyones": 30964, "textdavinci": 96510, "codegeex": 15597, "separating": 86631, "blackandwhite": 11124, "assigns": 8008, "programbased": 75858, "prefill": 73838, "decodes": 22659, "sarathi": 85183, "chunkedprefills": 14622, "pausing": 70643, "unlocks": 100204, "homes": 41930, "inthewild": 47353, "hardnegative": 40995, "floatingpoint": 35445, "violating": 102928, "lmgenerated": 57090, "243": 638, "facial": 33473, "flood": 35447, "sociocultural": 88947, "alerts": 4891, "warnings": 103322, "easytohard": 27037, "responsiveness": 83359, "davinci002": 22486, "diminishes": 25397, "conjectures": 18081, "5200": 1048, "postedit": 72940, "nativelevel": 65542, "warrant": 103323, "enumerative": 29608, "synthesizer": 93239, "codechef": 15589, "stylometry": 91921, "aucroc": 8471, "091": 83, "excludes": 31422, "089": 79, "exemplifies": 31483, "chronic": 14616, "ehr": 27928, "diabetes": 24783, "morbidity": 64750, "mortality": 64759, "ehrs": 27930, "1505": 335, "dnn": 26187, "blood": 11209, "clinicalbert": 14946, "pubmedbert": 78020, "roc": 84749, "auroc": 8610, "exacerbated": 31062, "seat": 85913, "pediatrics": 70690, "gum": 40787, "drinks": 26837, "gardenpath": 37004, "remembered": 81857, "adjustable": 3586, "https": 42021, "compromised": 17405, "lrl": 57641, "alpha": 5242, "005": 6, "leq": 53627, "intuitions": 47580, "humanrobot": 42563, "hri": 42014, "rs": 84904, "082": 72, "desirability": 23988, "invoke": 47817, "row": 84895, "invocations": 47816, "optimised": 68580, "modelllm": 61697, "hausa": 41112, "namedentity": 65485, "greatest": 40518, "indic": 44976, "instructionresponse": 46468, "unverified": 100340, "curating": 20640, "amalgamate": 5294, "qwenvlchat": 78999, "videollava": 102893, "sparser": 89551, "solidly": 89069, "autoevaluation": 8650, "iclr": 42770, "emnlp": 28244, "indexing": 44970, "scanned": 85362, "liberating": 53950, "llama12": 54809, "elo": 28020, "registering": 81094, "interlinear": 47199, "gemma": 37076, "stateofthe": 90299, "cycles": 20889, "208": 578, "458": 965, "webcrawled": 103501, "lowerresourced": 57582, "twist": 99157, "negating": 66047, "573": 1092, "wizardlms": 103877, "dream": 26832, "silly": 88045, "mistake": 60209, "asserted": 7813, "chatstyle": 14461, "acegpt": 2471, "jais": 48108, "7billionparameter": 1306, "llama2chat13b": 54881, "mixtral8x7binstructv01": 60346, "nesting": 66123, "350": 837, "lends": 53580, "disambiguating": 25545, "retrofit": 84114, "h100": 40789, "gqa": 40277, "fabricated": 33428, "ostensibly": 68836, "purported": 78031, "fabricate": 33427, "receptor": 80573, "affinity": 4068, "indicative": 45049, "evasion": 30910, "ade": 3563, "contracts": 19051, "solidity": 89068, "gpt35turbo1106": 39715, "mixtral8x7binstruct": 60345, "omissions": 67907, "sidechannel": 87631, "modelsmllms": 64573, "hades": 40799, "512": 1042, "roads": 84593, "unraveling": 100236, "withinsubjects": 103858, "n21": 65448, "stones": 90728, "git": 38833, "readme": 79528, "text2text": 96490, "peculiarities": 70682, "210": 591, "332": 802, "scanning": 85364, "dot": 26669, "jax": 48128, "fullmodel": 36428, "12x": 255, "vram": 103237, "tertiary": 95855, "destroying": 24147, "scrambled": 85798, "slowdown": 88656, "077": 66, "principledriven": 74827, "exhaustiveness": 31498, "gpt34": 39566, "grants": 40355, "disseminate": 25791, "413": 932, "wellformatted": 103587, "specializes": 89647, "confidencebased": 18021, "corrects": 19752, "directives": 25480, "ecological": 27043, "directive": 25479, "grid": 40549, "losing": 57455, "longbench": 57347, "constructive": 18484, "incentivizing": 44214, "ecologically": 27044, "overtime": 69426, "affairs": 4047, "stars": 90251, "forks": 35765, "avatar": 9103, "instructionfinetuned": 46432, "parliament": 70324, "leaning": 52924, "shone": 87267, "brilliance": 11457, "heights": 41223, "veterinary": 102839, "intends": 46938, "internationalization": 47245, "counterspeech": 20013, "preferencebased": 73811, "stringently": 90995, "242": 637, "320": 782, "526": 1053, "sst2": 90079, "omics": 67905, "delineates": 22935, "minimalist": 60105, "spheres": 90001, "rationality": 79441, "euler": 30104, "disjunction": 25754, "trapped": 98786, "emphasising": 28281, "species": 89658, "hmms": 41874, "chatgptstyle": 14457, "ghost": 38820, "insert": 46030, "passphrases": 70559, "383": 868, "umls": 99351, "074": 62, "errorfree": 29798, "feeds": 34167, "operator": 68469, "mas": 58419, "congress": 18074, "headings": 41143, "cataloging": 12578, "dialogic": 24838, "electroencephalography": 27950, "interacted": 46987, "equalization": 29682, "blindly": 11189, "919": 1419, "811": 1332, "921": 1422, "taskfocused": 94312, "internlm2": 47257, "needleinahaystack": 66030, "cool": 19484, "blends": 11165, "negatives": 66076, "sentencet5": 86575, "disputes": 25778, "nonprofessionals": 66937, "protecting": 77340, "genericity": 38758, "determination": 24402, "motives": 64794, "chatgptdriven": 14397, "adventure": 3965, "simplistic": 88283, "gamebased": 36893, "immersing": 43177, "gameplay": 36894, "scenariobased": 85398, "gptdriven": 40212, "ingame": 45707, "agreeableness": 4275, "iti": 48087, "testsets": 96061, "invasive": 47599, "searchaugmented": 85906, "agrees": 4283, "rewritten": 84396, "filled": 34462, "selfreflection": 86256, "instabilities": 46197, "personae": 71876, "argues": 7464, "underutilized": 99929, "unsupported": 100320, "existent": 31644, "online reviews": 68004, "reviews using": 84298, "using neural": 101634, "neural language": 66226, "language models": 49603, "models human": 62682, "advanced neural": 3729, "models nlms": 63675, "widely used": 103730, "sequence generation": 86646, "generation tasks": 38446, "able produce": 1875, "produce fluent": 75628, "sentences used": 86572, "used generate": 100808, "generate fake": 37453, "fake reviews": 33764, "review systems": 84278, "attacks necessary": 8229, "specific topic": 89764, "topic work": 97521, "threat model": 96878, "model built": 60621, "publicly available": 77964, "humans machines": 42622, "particular use": 70428, "use gpt2": 100566, "generate large": 37518, "large number": 52285, "based review": 9707, "desired sentiment": 24010, "sentiment using": 86612, "using bert": 101315, "bert based": 10502, "based text": 9733, "text classifier": 96125, "classifier accuracy": 14819, "accuracy 96": 2193, "fluent samples": 35484, "training data": 97989, "data generated": 21254, "subjective evaluation": 91953, "participants demonstrated": 70362, "simple method": 88214, "method produce": 59392, "distinguish fake": 25893, "openai gpt2": 68157, "difficult accurately": 25279, "accurately detect": 2446, "fake review": 33763, "bert neural": 10538, "neural machine": 66235, "machine translation": 57740, "gpt2 bert": 39260, "demonstrate effectiveness": 23055, "effectiveness using": 27589, "using pretrained": 101685, "pretrained language": 74279, "models lms": 63520, "lms various": 57183, "various natural": 102495, "natural language": 65554, "language processing": 50962, "processing tasks": 75575, "catastrophic forgetting": 12586, "tasks work": 95259, "work introduce": 104136, "training framework": 98119, "pretrained lms": 74376, "translation nmt": 98727, "nmt model": 66844, "previous pretrained": 74689, "pretrained knowledge": 74278, "bleu score": 11178, "language pair": 50946, "surpasses previous": 92941, "previous stateoftheart": 74707, "base model": 9416, "model significantly": 61404, "significantly improves": 87948, "improves stateoftheart": 44078, "stateoftheart transformer": 90505, "big model": 10986, "code model": 15400, "social impacts": 88867, "models large": 62852, "large language": 51455, "models range": 63956, "beneficial uses": 10438, "analyze dataset": 5754, "dataset biases": 21841, "generative capabilities": 38603, "discusses openais": 25709, "work related": 104246, "release gpt2": 81371, "gpt2 language": 39299, "language model": 49320, "model discusses": 60772, "time model": 96997, "conduct risk": 17912, "model sizes": 61426, "research provides": 82739, "generation guided": 38188, "commonsense knowledge": 16213, "knowledge graphs": 48601, "human conversations": 42139, "concepts paper": 17632, "paper presents": 69848, "presents new": 74147, "generation model": 38269, "explicitly model": 32550, "concept space": 17609, "commonsense relations": 16242, "concept graph": 17605, "space order": 89457, "order generate": 68699, "generate semantic": 37589, "informative responses": 45686, "responses experiments": 83211, "effectiveness previous": 27566, "conversation models": 19330, "models gpt2": 62588, "gpt2 based": 39257, "based models": 9622, "models using": 64471, "fewer parameters": 34196, "source codes": 89365, "codes work": 15641, "work available": 104000, "better text": 10796, "text understanding": 96470, "understanding recent": 99860, "recent progress": 80311, "progress nlp": 76000, "nlp witnessed": 66829, "largescale pretrained": 52556, "models gpt": 62586, "gpt bert": 39186, "bert xlnet": 10565, "based transformer": 9740, "et al": 30037, "al 2017": 4862, "range end": 79155, "end tasks": 28843, "tasks models": 94869, "models achieved": 61764, "achieved stateoftheart": 2672, "stateoftheart results": 90464, "approaching human": 7230, "human performance": 42321, "number layers": 67357, "large pretraining": 52327, "pretraining data": 74515, "data tasks": 21684, "tasks require": 95043, "require complex": 82232, "cues large": 20580, "large gap": 51433, "gap pretrained": 36962, "pretrained models": 74398, "al 2018": 4863, "inject knowledge": 45818, "knowledge syntactic": 48777, "syntactic structure": 93182, "structure model": 91144, "model supervised": 61472, "semantic knowledge": 86318, "knowledge particular": 48694, "coreference information": 19553, "information existing": 45458, "existing model": 31772, "model improve": 60987, "improve performance": 43744, "performance complex": 71097, "complex problems": 16975, "al 2016": 4861, "task model": 94145, "model trained": 61518, "trained scratch": 97902, "auxiliary supervision": 8989, "outperforms largest": 69075, "largest gpt2": 52590, "gpt2 model": 39310, "setting new": 87008, "new stateoftheart": 66537, "tiny fraction": 97095, "fraction parameters": 36002, "parameters compared": 70186, "compared gpt2": 16555, "conduct thorough": 17925, "thorough analysis": 96820, "analysis different": 5489, "different variants": 25251, "model architectures": 60563, "suggesting future": 92411, "future directions": 36713, "similar techniques": 88116, "models recently": 64016, "recently large": 80513, "gpt2 shown": 39347, "text generation": 96232, "generation able": 38004, "able achieve": 1822, "highquality results": 41789, "results downstream": 83577, "downstream nlp": 26707, "nlp tasks": 66772, "tasks text": 95193, "text classification": 96109, "classification sentiment": 14793, "sentiment analysis": 86579, "analysis question": 5629, "question answering": 78572, "finetuning present": 35188, "technique using": 95465, "using large": 101540, "model perform": 61217, "perform task": 70930, "demonstrated capable": 23237, "capable generating": 12237, "generating paraphrases": 37948, "sentence level": 86505, "spans text": 89508, "text smaller": 96423, "smaller chunks": 88743, "extend idea": 32937, "models machine": 63566, "machine learning": 57689, "learning tasks": 53440, "achieved applying": 2610, "multilayer transformer": 64936, "able obtain": 1866, "models high": 62662, "high accuracy": 41372, "outperform models": 68955, "models similar": 64202, "similar size": 88110, "degree models": 22911, "models larger": 62873, "larger size": 52475, "size trained": 88532, "trained using": 97924, "using sampled": 101748, "computational budget": 17436, "key observation": 48325, "alternative method": 5270, "method solving": 59432, "solving problems": 89245, "problems large": 75160, "large vocabulary": 52390, "vocabulary size": 103199, "generative pretraining": 38706, "generation evaluation": 38144, "automatic generation": 8789, "cooking recipes": 19483, "past years": 70574, "evaluation provides": 30741, "instruction generation": 46343, "generation given": 38183, "generation module": 38285, "generative pretrained": 38682, "model gpt2": 60950, "gpt2 finetuned": 39279, "finetuned large": 34913, "allows users": 5214, "users conveniently": 101086, "quality generated": 78276, "results future": 83619, "accessed online": 2096, "trec 2019": 98815, "information seeking": 45621, "create largescale": 20166, "conversational search": 19397, "search systems": 85900, "document corpus": 26206, "complex answer": 16911, "answer retrieval": 6055, "machine reading": 57734, "reading comprehension": 79519, "marco datasets": 58354, "30 train": 753, "average 10": 9124, "20 test": 499, "runs using": 84958, "ranking methods": 79272, "methods include": 59677, "traditional retrieval": 97698, "retrieval based": 83972, "based methods": 9617, "methods feature": 59645, "neural models": 66244, "models knowledge": 62830, "knowledge enhanced": 48542, "neural reranking": 66286, "reranking methods": 82458, "methods employed": 59616, "query expansion": 78525, "expansion generative": 31881, "generative language": 38625, "models conversational": 62125, "query rewriting": 78545, "gpt2 results": 39344, "systems using": 93594, "using manually": 101605, "relative improvement": 81297, "automatic conversational": 8766, "conversational question": 19391, "architectures pretrained": 7401, "models paper": 63751, "presents empirical": 74133, "empirical study": 28354, "study conversational": 91559, "models plms": 63816, "independence assumption": 44935, "maximum likelihood": 58650, "likelihood estimation": 54246, "benchmarks taskoriented": 10420, "taskoriented dialogue": 94319, "dialogue systems": 24904, "systems evaluate": 93442, "task validate": 94290, "validate models": 102100, "using data": 101396, "different numbers": 25130, "numbers parameters": 67401, "parameters demonstrate": 70196, "demonstrate recent": 23175, "texttotext transfer": 96648, "transfer transformer": 98438, "transformer t5": 98547, "achieves best": 2714, "best results": 10646, "transformer architectures": 98485, "dynamic evaluation": 26915, "evaluation language": 30644, "language use": 51190, "new challenge": 66359, "challenge task": 12937, "task dataset": 94002, "language understanding": 51151, "understanding models": 99816, "models given": 62577, "model generate": 60926, "generate helpful": 37474, "language evaluation": 49206, "evaluation framework": 30607, "fundamental aspect": 36529, "aspect human": 7755, "human language": 42276, "understanding ability": 99664, "ability use": 1793, "use language": 100592, "empirical results": 28340, "todays models": 97122, "models struggle": 64269, "multibillion parameter": 64876, "parameter models": 70118, "models finetuned": 62475, "indomain training": 45128, "training examples": 98100, "best model": 10610, "model finetuned": 60885, "finetuned t5": 34977, "cases larger": 12539, "gpt3 model": 39494, "model does": 60777, "low performance": 57522, "generative setting": 38715, "setting showing": 87023, "room progress": 84839, "italian language": 48026, "years pretrained": 104608, "pretrained neural": 74435, "neural architectures": 66218, "improvements nlp": 43982, "tasks generative": 94673, "models available": 61886, "mainly english": 57847, "built using": 11680, "using gpt2": 101481, "gpt2 architecture": 39254, "provide thorough": 77585, "humanbased evaluation": 42451, "evaluation automatic": 30516, "automatic assessment": 8755, "different genres": 25071, "complex sentences": 17002, "sentences human": 86556, "human evaluation": 42167, "evaluation performed": 30711, "sentence completion": 86491, "completion task": 16903, "original human": 68779, "human texts": 42394, "texts simpler": 96599, "simpler language": 88252, "baseline large": 9785, "large scale": 52336, "generative dialog": 38616, "dialog modeling": 24829, "dialog agents": 24822, "aim produce": 4725, "engaging conversations": 28924, "users paper": 101150, "paper addresses": 69584, "addresses issues": 3516, "agents persona": 4218, "able utilize": 1891, "generated responses": 37772, "responses work": 83332, "work introduces": 104140, "control model": 19220, "model augmented": 60577, "augmented finetuned": 8567, "finetuned gpt2": 34897, "multiturn conversations": 65384, "data collection": 21069, "procedure obtain": 75254, "reddit comments": 80743, "demonstrate scaling": 23183, "scaling model": 85344, "parameters yields": 70301, "increasing model": 44839, "model scale": 61372, "yielded similar": 104654, "improvements human": 43973, "human evaluations": 42193, "preference model": 73801, "model samples": 61371, "content quality": 18675, "improves perplexity": 44058, "automatic evaluations": 8782, "evaluations human": 30855, "steps improve": 90686, "datatotext tasks": 22472, "tasks study": 95147, "pretrain finetune": 74221, "tasks experiments": 94611, "experiments indicate": 32224, "transformer based": 98490, "models outperform": 63735, "datatotext generation": 22471, "model based": 60588, "based pretraining": 9663, "pretraining techniques": 74610, "bert gpt2": 10521, "t5 pretraining": 93649, "leads better": 52889, "better generalization": 10718, "generalization evidenced": 37259, "large improvements": 51449, "improvements outofdomain": 43986, "outofdomain test": 68893, "test sets": 95946, "hope work": 41963, "work serves": 104259, "serves useful": 86801, "baseline future": 9776, "future research": 36754, "transfer learning": 98413, "tasks common": 94453, "common sense": 16169, "sense world": 86445, "world knowledge": 104402, "knowledge injection": 48630, "pretrained transformers": 74484, "transformers following": 98609, "success neural": 92224, "lms bert": 57102, "gpt2 variety": 39366, "variety language": 102301, "understanding tasks": 99888, "tasks recent": 95013, "recent work": 80394, "work focused": 104103, "structured knowledge": 91166, "knowledge external": 48563, "external resources": 33201, "resources models": 83020, "models hand": 62644, "joint pretraining": 48157, "pretraining training": 74615, "training scratch": 98278, "based external": 9529, "external knowledge": 33187, "knowledge primary": 48713, "computationally expensive": 17493, "lead catastrophic": 52795, "knowledge work": 48810, "work investigate": 104144, "investigate models": 47672, "knowledge bert": 48453, "respectively using": 83095, "using adapter": 101285, "overall results": 69315, "glue benchmark": 39029, "deeper analysis": 22811, "analysis reveals": 5649, "models substantially": 64288, "substantially outperform": 92133, "inference tasks": 45304, "knowledge explicitly": 48559, "explicitly present": 32552, "code experiments": 15253, "open sourced": 68128, "automatic text": 8833, "text summarization": 96444, "medical research": 58916, "research articles": 82496, "articles using": 7576, "covid19 pandemic": 20106, "medical community": 58868, "covid19 open": 20103, "open research": 68102, "research dataset": 82533, "dataset challenge": 21848, "scholarly articles": 85536, "learning approaches": 53033, "bridging gap": 11447, "rapidly growing": 79350, "recent advances": 80193, "advances pretrained": 3895, "pretrained nlp": 74438, "nlp models": 66750, "models bert": 61917, "bert openai": 10540, "solve challenge": 89162, "summarization dataset": 92528, "dataset evaluate": 21924, "evaluate results": 30280, "results using": 83905, "using rouge": 101746, "rouge scores": 84862, "model provides": 61298, "comprehensive information": 17270, "information based": 45412, "based keywords": 9584, "original articles": 68758, "work help": 104114, "summaries articles": 92491, "available fewshot": 9034, "fewshot generative": 34239, "rewriting aims": 84393, "existing information": 31725, "information retrieval": 45600, "retrieval systems": 84029, "systems paper": 93522, "presents fewshot": 74136, "generative approach": 38587, "develop methods": 24462, "methods based": 59547, "based rules": 9709, "selfsupervised learning": 86269, "learning generate": 53176, "weak supervision": 103433, "supervision data": 92754, "data using": 21733, "large amounts": 51384, "ad hoc": 3025, "finetune gpt2": 34821, "weakly supervised": 103447, "stateoftheart ranking": 90461, "accuracy 12": 2174, "using limited": 101566, "limited amounts": 54391, "query rewrites": 78544, "zeroshot learning": 104806, "learning setting": 53410, "stateoftheart systems": 90491, "analyses reveal": 5409, "capture context": 12348, "hard cases": 40975, "generation using": 38494, "models proven": 63930, "proven powerful": 77383, "powerful approach": 73422, "approach various": 7086, "language tasks": 51126, "openais gpt2": 68200, "capability generate": 12166, "generate fluent": 37461, "consistent text": 18277, "paper leverage": 69803, "generation capability": 38064, "gpt2 generate": 39282, "generate paraphrases": 37546, "labelled data": 48931, "data examine": 21200, "examine results": 31125, "supervised unsupervised": 92746, "unsupervised approaches": 100301, "data augmentation": 20994, "downstream tasks": 26714, "tasks classification": 94437, "classification experiments": 14744, "generated model": 37740, "model good": 60945, "good quality": 39122, "improves downstream": 44017, "downstream task": 26711, "task performance": 94181, "performance used": 71656, "used data": 100770, "model pretraining": 61272, "pretraining knowledge": 74550, "knowledge pretrained": 48704, "models hold": 62670, "recent research": 80335, "grasp human": 40455, "human knowledge": 42267, "transformer architecture": 98484, "explicit knowledge": 32532, "external storage": 33204, "semantic information": 86314, "input transformer": 45969, "transformer pretraining": 98544, "entity prediction": 29570, "prediction task": 73723, "task experiments": 94053, "pretraining significantly": 74600, "transformer parameters": 98541, "parameters observe": 70257, "observe improved": 67586, "improved language": 43841, "language modeling": 49577, "accuracy factual": 2265, "factual correctness": 33627, "knowledge probing": 48714, "probing tasks": 74986, "tasks semantics": 95089, "hidden representations": 41349, "dropin replacement": 26867, "gpt2 models": 39319, "models significantly": 64197, "significantly improving": 87962, "improving downstream": 44112, "tasks like": 94817, "like zeroshot": 54243, "zeroshot questionanswering": 104855, "vulnerabilities neural": 103264, "neural code": 66220, "code completion": 15161, "completion code": 16896, "latest generation": 52661, "uses neural": 101247, "models trained": 64376, "trained public": 97895, "opensource code": 68317, "code repositories": 15477, "given current": 38873, "demonstrate neural": 23139, "vulnerable poisoning": 103285, "poisoning attacks": 72522, "training corpus": 97979, "data poisoning": 21481, "directly finetuning": 25496, "files model": 34460, "suggest insecure": 92369, "targeted attack": 93900, "attacks stateoftheart": 8238, "evaluate existing": 30182, "existing defenses": 31696, "deep transformer": 22804, "based data": 9491, "subword units": 92176, "morphologically rich": 64755, "asr recently": 7802, "recently deep": 80466, "transformer models": 98528, "particularly powerful": 70492, "powerful language": 73442, "modeling tasks": 61682, "high complexity": 41383, "complexity makes": 17045, "makes difficult": 58055, "single pass": 88387, "online recent": 68000, "recent studies": 80354, "studies showed": 91441, "knowledge neural": 48685, "neural network": 66246, "network language": 66144, "models lm": 63518, "neural text": 66289, "generation based": 38047, "pretrain gpt2": 74222, "gpt2 transformer": 39360, "general text": 37197, "text corpus": 96151, "corpus finetune": 19621, "task data": 94001, "language propose": 51069, "propose new": 77037, "new method": 66452, "method called": 59225, "text augmentation": 96090, "generated text": 37797, "methods significantly": 59800, "significantly improve": 87938, "greatly reducing": 40533, "size memory": 88490, "memory requirements": 59062, "finally demonstrate": 34518, "deep learning": 22755, "learning models": 53272, "models text": 64354, "survey recent": 93046, "recent years": 80420, "fields natural": 34435, "processing nlp": 75511, "nlp information": 66734, "retrieval ir": 83988, "tremendous progress": 98840, "models like": 62901, "recurrent neural": 80724, "neural networks": 66262, "networks rnns": 66203, "gated recurrent": 37023, "long shortterm": 57330, "shortterm memory": 87339, "bidirectional encoder": 10971, "encoder representations": 28705, "representations transformers": 82128, "transformers bert": 98601, "transformer gpt2": 98513, "deep neural": 22791, "world applications": 104399, "small model": 88704, "model size": 61410, "size low": 88489, "response times": 83166, "low computational": 57505, "computational power": 17475, "different types": 25237, "pruning quantization": 77856, "knowledge distillation": 48506, "parameter sharing": 70125, "tensor decomposition": 95763, "models enable": 62311, "enable deployment": 28542, "critical need": 20340, "applications efficient": 6460, "efficient small": 27821, "small models": 88705, "recently published": 80540, "published work": 78011, "believe survey": 10042, "work deep": 104039, "learning nlp": 53304, "nlp community": 66717, "community past": 16331, "coherent story": 15788, "comparative evaluation": 16430, "evaluation pretrained": 30722, "models automatic": 61878, "automatic short": 8825, "short answer": 87271, "answer grading": 6013, "grading asag": 40311, "grading student": 40314, "student answers": 91243, "computational approaches": 17434, "given question": 38939, "desired answer": 23998, "previous works": 74736, "word embeddings": 103899, "semantic features": 86310, "features extracted": 33998, "multiple features": 65190, "features manually": 34013, "datasets use": 22451, "use pretrained": 100656, "pretrained embeddings": 74250, "models elmo": 62287, "elmo bert": 28019, "bert gpt": 10518, "gpt gpt2": 39199, "gpt2 assess": 39255, "efficiency task": 27724, "train single": 97774, "cosine similarity": 19823, "models compare": 62054, "models previous": 63883, "dataset work": 22125, "work demonstrates": 104048, "outperformed models": 68983, "models conclude": 62079, "conclude possible": 17739, "models black": 61940, "black box": 11120, "adversarial attacks": 3970, "underlying knowledge": 99496, "knowledge model": 48676, "model information": 61006, "underlying architecture": 99487, "training dataset": 98066, "process paper": 75369, "model training": 61527, "learning explored": 53153, "image based": 43018, "based classifiers": 9467, "transformers gpt2": 98612, "image classification": 43025, "focus exploring": 35518, "architectures datasets": 7390, "datasets available": 22150, "public libraries": 77931, "using single": 101767, "architecture multiple": 7358, "multiple levels": 65213, "fine tuning": 34779, "tuning different": 99029, "different datasets": 25039, "datasets dataset": 22204, "image text": 43066, "diversity text": 26159, "research needed": 82680, "text domain": 96184, "measuring massive": 58775, "massive multitask": 58459, "multitask language": 65356, "understanding propose": 99847, "new test": 66556, "test measure": 95915, "text models": 96338, "multitask accuracy": 65347, "accuracy test": 2373, "57 tasks": 1088, "tasks including": 94722, "elementary mathematics": 27963, "computer science": 17529, "science law": 85597, "test models": 95919, "models possess": 63837, "possess extensive": 72853, "extensive world": 33140, "problem solving": 75082, "ability recent": 1759, "recent models": 80298, "largest gpt3": 52591, "model improves": 60992, "random chance": 79101, "20 percentage": 494, "percentage points": 70774, "points average": 72491, "average 57": 9133, "tasks best": 94406, "best models": 10614, "models need": 63664, "need substantial": 65996, "substantial improvements": 92087, "expertlevel accuracy": 32399, "accuracy models": 2317, "know wrong": 48405, "comprehensively evaluating": 17327, "breadth depth": 11378, "models academic": 61743, "used analyze": 100740, "analyze models": 5775, "models tasks": 64338, "identify important": 42870, "semeval2020 task": 86403, "adversarial training": 4003, "sentiment classification": 86600, "classification code": 14732, "linguistic phenomenon": 54593, "multilingual setting": 65007, "groups different": 40624, "different languages": 25088, "little research": 54684, "research data": 82532, "classification work": 14812, "work domain": 104060, "domain transfer": 26464, "learning stateoftheart": 53424, "model ernie": 60815, "surprisingly strong": 93007, "strong baseline": 91005, "multilingual model": 64981, "model used": 61555, "used achieve": 100728, "1st place": 479, "selection pretrained": 86170, "model paper": 61198, "paper describes": 69671, "team achieved": 95380, "written text": 104527, "text visual": 96483, "visual media": 103086, "given sentence": 38955, "automated design": 8688, "design leverage": 23806, "leverage unsupervised": 53765, "unsupervised pretraining": 100312, "pretraining model": 74574, "model finetune": 60884, "finetune models": 34840, "models task": 64336, "achieved excellent": 2620, "excellent performance": 31353, "performance task": 71616, "roberta albert": 84595, "regression loss": 81100, "pairwise ranking": 69538, "ranking loss": 79270, "models additional": 61788, "feature engineering": 33965, "help improve": 41253, "performance best": 71019, "model achieves": 60492, "achieves highest": 2747, "highest score": 41551, "gpt3 advanced": 39398, "paper expand": 69703, "previous research": 74691, "research potential": 82714, "potential abuse": 72978, "abuse generative": 1963, "models assessing": 61864, "social interaction": 88872, "demonstrates significant": 23400, "significant improvement": 87770, "gpt2 generating": 39286, "generating text": 37988, "text accurately": 96070, "represents significant": 82182, "significant risk": 87842, "requires little": 82393, "likely ai": 54252, "community governments": 16321, "soon possible": 89273, "social norms": 88906, "public policy": 77942, "disinformation propaganda": 25752, "civil society": 14657, "current limitations": 20712, "limitations language": 54337, "reexamine current": 80918, "current approaches": 20662, "tradeoff language": 97638, "models including": 62720, "masked language": 58427, "length efficient": 53589, "efficient attention": 27744, "conditional computation": 17787, "identify limitations": 42877, "openended text": 68269, "generation output": 38312, "like gpt23": 54136, "specific finetuning": 89698, "finetuning dataset": 35042, "dataset improve": 21970, "improve prediction": 43773, "size efficiently": 88465, "poor performance": 72597, "performance scaling": 71553, "tasks argue": 94380, "extend context": 32933, "context entire": 18761, "entire training": 29523, "long way": 57346, "toxic language": 97588, "language classification": 49154, "data scarcity": 21591, "scarcity labeled": 85379, "labeled training": 48916, "data data": 21138, "generating new": 37942, "new synthetic": 66544, "synthetic data": 93257, "efficacy data": 27631, "fully explored": 36449, "present systematic": 74066, "systematic study": 93353, "study data": 91562, "augmentation techniques": 8555, "techniques impact": 95529, "impact performance": 43246, "logistic regression": 57282, "architectures bert": 7389, "stateoftheart pretrained": 90452, "pretrained transformer": 74462, "transformer network": 98537, "compare performance": 16477, "datasets bert": 22155, "performed best": 71752, "performed comparably": 71754, "trained data": 97809, "data augmented": 21013, "combination techniques": 15960, "techniques including": 95535, "computational overhead": 17473, "inform choice": 45377, "techniques different": 95503, "different constraints": 25025, "recently neural": 80529, "lms demonstrated": 57115, "demonstrated impressive": 23268, "impressive abilities": 43572, "abilities generating": 1513, "generating highquality": 37921, "recent papers": 80305, "knowledge paper": 48689, "paper propose": 69877, "propose method": 77021, "method quantitatively": 59401, "quantitatively evaluates": 78429, "neural lms": 66234, "lms understanding": 57180, "evaluating abilities": 30393, "set linguistic": 86892, "linguistic features": 54577, "features derived": 33992, "transformer lms": 98524, "discourse knowledge": 25587, "intermediate layer": 47210, "layer representations": 52732, "gpt2 xlnet": 39370, "method shows": 59420, "retrieval recommend": 84016, "methods code": 59563, "software developers": 88985, "source code": 89343, "time effort": 96953, "rapid development": 79310, "previous work": 74727, "work introduced": 104139, "network model": 66152, "tuning gpt2": 99043, "code clone": 15149, "probabilistic nature": 74950, "output generation": 69157, "requires manual": 82396, "output final": 69150, "propose novel": 77056, "novel approach": 67088, "approach applying": 6742, "closely matching": 15030, "predicted output": 73668, "quantitatively evaluated": 78428, "strategy showing": 90916, "showing proposed": 87425, "proposed approach": 77174, "approach significantly": 7019, "improves quality": 44063, "question generation": 78672, "generation high": 38193, "high level": 41422, "text comprehension": 96138, "questions come": 78798, "variety settings": 102331, "challenging task": 13230, "task automatic": 93945, "systems natural": 93514, "type question": 99214, "knowledge text": 48781, "comprehension like": 17171, "news article": 66610, "background information": 9264, "despite recent": 24105, "generating questions": 37962, "range models": 79176, "trained existing": 97828, "existing datasets": 31693, "datasets introduce": 22304, "compared existing": 16537, "questions target": 78962, "highlevel semantic": 41564, "comprehension text": 17188, "finally evaluate": 34525, "generation models": 38275, "models based": 61897, "based gpt2": 9553, "model able": 60473, "able generate": 1850, "generate reasonable": 37570, "task challenging": 93969, "highlight importance": 41590, "importance context": 43444, "context generate": 18777, "vernacular english": 102781, "transformerbased text": 98593, "growth social": 40681, "social media": 88877, "african american": 4093, "american vernacular": 5327, "traditionally used": 97720, "developed using": 24536, "american english": 5326, "text corpora": 96149, "investigate performance": 47676, "performance gpt2": 71265, "creating dataset": 20217, "pairs isolating": 69504, "gpt2 generated": 39283, "text pretrained": 96360, "text results": 96400, "negative sentiment": 66069, "positive sentiment": 72836, "additionally conduct": 3281, "conduct human": 17890, "text generated": 96220, "generated gpt2": 37706, "overall quality": 69312, "point view": 72484, "virtual assistants": 102938, "designed allow": 23875, "target user": 93893, "developed rulebased": 24530, "rulebased model": 84931, "model integrates": 61020, "classification model": 14763, "methods investigated": 59696, "approaches including": 7154, "separately trained": 86629, "trained language": 97852, "model gpt": 60947, "performed similarly": 71766, "faithfulness metrics": 33755, "meteor score": 59177, "times fewer": 97072, "publicly released": 77996, "dataset composed": 21867, "claim generation": 14663, "argument generation": 7467, "generation challenging": 38069, "task research": 94228, "research timely": 82804, "potential impact": 73125, "impact social": 43255, "generating coherent": 37878, "explore types": 32752, "manual automatic": 58259, "addition explore": 3186, "task task": 94262, "substance style": 92052, "transfer existing": 98407, "existing language": 31733, "models excel": 62370, "realworld scenarios": 79691, "scenarios require": 85479, "little work": 54690, "work addressed": 103974, "entire document": 29516, "introduce task": 47490, "novel model": 67214, "model task": 61491, "task based": 93952, "based generative": 9547, "train large": 97748, "automatic human": 8791, "evaluations model": 30866, "model outperforms": 61179, "outperforms existing": 69042, "existing methods": 31755, "methods generating": 59661, "original document": 68770, "finally analyze": 34506, "making language": 58111, "language generation": 49235, "distractor generation": 25917, "generation multiple": 38289, "multiple choice": 65153, "choice question": 14588, "field education": 34368, "generate semantically": 37590, "semantically correct": 86365, "choice questions": 14592, "large impact": 51447, "generation active": 38011, "active research": 2993, "research topic": 82807, "topic generating": 97507, "generating distractors": 37891, "room improvement": 84831, "area work": 7435, "work train": 104294, "train gpt2": 97742, "question text": 78713, "text context": 96148, "context using": 18873, "race dataset": 79003, "dataset train": 22107, "bert language": 10531, "model answer": 60543, "use model": 100627, "model filter": 60879, "questions answered": 78778, "make sense": 58026, "evaluate work": 30306, "using text": 101812, "generation metrics": 38267, "metrics model": 59950, "outperforms earlier": 69039, "earlier work": 26966, "generation dg": 38118, "achieves stateoftheart": 2797, "stateoftheart performance": 90429, "calculating question": 11739, "answering ability": 6074, "larger base": 52429, "base models": 9418, "models lead": 62883, "lead better": 52793, "better performance": 10758, "performance conducted": 71107, "conducted human": 17968, "evaluation study": 30798, "study confirmed": 91545, "generated questions": 37765, "statistically significant": 90562, "medical text": 58923, "text simplification": 96419, "simplification ts": 88271, "easier understand": 27004, "accessible wide": 2117, "wide variety": 103702, "domains healthcare": 26526, "fully automated": 36439, "automated approaches": 8673, "approaches used": 7219, "used information": 100829, "information accurately": 45392, "used assist": 100745, "assist human": 8015, "simplifying text": 88282, "higher quality": 41519, "quality paper": 78330, "paper examine": 69700, "medical domain": 58879, "domain introduce": 26401, "introduce new": 47451, "new parallel": 66480, "medical data": 58873, "data set": 21614, "english wikipedia": 29112, "simple english": 88193, "dataset compare": 21863, "roberta xlnet": 84613, "xlnet gpt2": 104563, "additional context": 3231, "context sentence": 18847, "achieve better": 2485, "better results": 10782, "absolute improvement": 1915, "improvement best": 43889, "individual model": 45089, "model introduce": 61029, "ensemble model": 29423, "model combines": 60674, "outperforms best": 69020, "model 21": 60466, "word prediction": 103913, "prediction accuracy": 73679, "topic modeling": 97513, "contextualized word": 18966, "word representations": 103923, "representations produces": 82117, "models english": 62328, "english text": 29108, "text collections": 96131, "resulting models": 83439, "way organizing": 103392, "trained different": 97813, "contextualized language": 18962, "gpt2 produce": 39337, "produce high": 75634, "high quality": 41442, "models simple": 64206, "perform better": 70825, "lda topic": 52788, "models maintaining": 63573, "maintaining high": 57894, "analyzing behavior": 5801, "ir models": 47891, "models pretrained": 63865, "bert t5": 10558, "established new": 29990, "methods effective": 59607, "present new": 74013, "comprehensive framework": 17264, "framework analyzing": 36037, "includes new": 44254, "new types": 66566, "writing styles": 104500, "word order": 103909, "addressed previous": 3504, "techniques demonstrate": 95497, "framework conduct": 36076, "conduct extensive": 17873, "extensive empirical": 33016, "insights factors": 46089, "factors contribute": 33588, "models gains": 62530, "identify potential": 42892, "biases models": 10939, "models exhibit": 62377, "results confirm": 83519, "conventional wisdom": 19299, "recent neural": 80300, "neural ranking": 66283, "ranking models": 79275, "models rely": 64053, "instead leverage": 46251, "linguistic information": 54579, "higher sensitivity": 41525, "sensitivity word": 86479, "word sentence": 103927, "models t5": 64325, "factually correct": 33660, "base language": 9405, "variations model": 102268, "iterative text": 48070, "present novel": 74020, "editing approach": 27093, "approach maximizes": 6943, "semantic accuracy": 86289, "output text": 69199, "text leveraging": 96327, "leveraging abilities": 53817, "abilities recent": 1561, "recent pretrained": 80309, "gpt2 improve": 39297, "improve text": 43814, "text fluency": 96211, "transform data": 98456, "data items": 21347, "text using": 96475, "iteratively improve": 48078, "resulting text": 83449, "neural model": 66243, "sentence fusion": 86503, "task output": 94172, "model evaluate": 60822, "evaluate approach": 30140, "opens possibility": 68302, "zeroshot domain": 104762, "domain adaptation": 26347, "style transfer": 91913, "informal formal": 45384, "formal language": 35793, "indonesian language": 45132, "models typically": 64442, "work address": 103972, "lowresource machine": 57627, "translation problem": 98732, "problem build": 74995, "build new": 11603, "new dataset": 66370, "dataset parallel": 22027, "parallel sentences": 70086, "explore augmenting": 32642, "augmenting training": 8605, "training set": 98283, "lowresource setting": 57638, "translation approach": 98687, "approach outperforms": 6964, "pretrained gpt2": 74271, "task performed": 94186, "computational resource": 17478, "findings promising": 34714, "promising step": 76203, "step leveraging": 90648, "leveraging machine": 53877, "translation models": 98722, "transfer code": 98402, "code data": 15181, "data available": 21016, "serves essential": 86792, "essential role": 29955, "problems despite": 75127, "despite encouraging": 24044, "encouraging results": 28808, "results recent": 83804, "recent methods": 80295, "model scratch": 61380, "dataset paper": 22026, "presents novel": 74149, "model develop": 60763, "technique named": 95455, "paraphrasing task": 70314, "outperforms competitive": 69031, "competitive baselines": 16790, "semantic preservation": 86333, "introduce technique": 47492, "technique allows": 95433, "allows model": 5201, "model provide": 61296, "provide various": 77599, "preserving semantic": 74198, "largescale generative": 52517, "chinese pretrained": 14571, "model pretrained": 61267, "proven beneficial": 77376, "various downstream": 102414, "tasks recently": 95019, "175 billion": 400, "billion parameters": 11024, "lot attention": 57486, "fewshot zeroshot": 34325, "learning applying": 53030, "applying gpt3": 6684, "chinese nlp": 14568, "tasks challenging": 94425, "challenging training": 13251, "primarily english": 74781, "parameters publicly": 70270, "technical report": 95414, "pretraining largescale": 74563, "largescale chinese": 52495, "data best": 21025, "best knowledge": 10600, "largest chinese": 52587, "model facilitate": 60858, "cloze test": 15073, "extensive experiments": 33044, "experiments demonstrate": 32150, "achieves strong": 2802, "strong performance": 91054, "performance nlp": 71427, "tasks settings": 95100, "settings fewshot": 87055, "learning code": 53072, "programming interfaces": 75902, "difficult control": 25286, "artificial neural": 7679, "networks generative": 66187, "generative neural": 38676, "recast problem": 80129, "generation learning": 38236, "model just": 61037, "application programming": 6379, "interfaces apis": 47184, "new paradigm": 66474, "network called": 66133, "programming interface": 75901, "activations pretrained": 2987, "pretrained model": 74389, "model produce": 61282, "produce desired": 75615, "desired outputs": 24007, "original model": 68791, "model allowing": 60538, "models new": 63669, "new tasks": 66547, "model contribute": 60711, "new data": 66369, "loss function": 57462, "allows train": 5211, "models control": 62121, "autoregressive transformers": 8979, "transformers experiments": 98608, "experiments stateoftheart": 32305, "stateoftheart approaches": 90307, "approaches demonstrate": 7123, "demonstrate efficacy": 23068, "methods using": 59835, "using openais": 101661, "model successfully": 61466, "offensive speech": 67728, "aspects language": 7778, "widely studied": 103729, "classification problem": 14774, "problem using": 75097, "approaches existing": 7136, "existing work": 31848, "work does": 104059, "developing semantic": 24595, "increasingly powerful": 44897, "models able": 61739, "surprisal values": 92978, "conducting experiments": 17997, "dataset features": 21940, "existing baselines": 31670, "limited labeled": 54437, "labeled data": 48903, "data adversarial": 20956, "reviews vital": 84299, "source information": 89375, "making difficult": 58096, "difficult train": 25311, "detection models": 24329, "models propose": 63921, "propose adversarial": 76926, "training mechanism": 98192, "leveraging capabilities": 53822, "capabilities generative": 11921, "pretraining gpt2": 74542, "data large": 21363, "large set": 52341, "set unlabeled": 86947, "unlabeled data": 100144, "data experiments": 21214, "datasets proposed": 22376, "proposed model": 77238, "outperforms stateoftheart": 69116, "stateoftheart techniques": 90495, "techniques terms": 95599, "terms accuracy": 95788, "data limited": 21383, "generate synthetic": 37609, "reasonable perplexity": 79740, "providing additional": 77733, "data training": 21700, "training making": 98191, "making pretrained": 58130, "models better": 61928, "better fewshot": 10712, "fewshot learners": 34251, "learners recent": 53003, "brown et": 11537, "al 2020": 4868, "2020 achieves": 532, "achieves remarkable": 2775, "remarkable fewshot": 81770, "fewshot performance": 34282, "performance solely": 71578, "naturallanguage prompt": 65788, "prompt task": 76428, "task demonstrations": 94009, "demonstrations input": 23474, "input context": 45883, "inspired findings": 46172, "findings study": 34754, "study fewshot": 91637, "fewshot learning": 34253, "learning practical": 53336, "practical scenario": 73528, "use smaller": 100691, "smaller language": 88753, "models finetuning": 62482, "finetuning computationally": 35035, "computationally efficient": 17492, "fewshot finetuning": 34236, "finetuning language": 35104, "techniques finetuning": 95521, "models small": 64215, "small number": 88712, "number annotated": 67327, "annotated examples": 5871, "examples approach": 31188, "approach includes": 6898, "promptbased finetuning": 76460, "novel pipeline": 67225, "prompt generation": 76329, "strategy dynamically": 90874, "incorporating demonstrations": 44694, "demonstrations context": 23468, "context finally": 18771, "finally present": 34555, "systematic evaluation": 93327, "performance range": 71513, "range nlp": 79187, "including classification": 44300, "classification regression": 14781, "demonstrate methods": 23132, "methods combine": 59566, "outperform standard": 68968, "standard finetuning": 90175, "finetuning procedures": 35203, "low resource": 57531, "resource setting": 82977, "30 absolute": 741, "tasks approach": 94377, "approach makes": 6941, "domain expertise": 26379, "strong taskagnostic": 91076, "method fewshot": 59307, "conditional generation": 17788, "sequences models": 86684, "knowledge proven": 48722, "proven useful": 77386, "tasks typically": 95215, "capture temporal": 12368, "temporal relationships": 95722, "events propose": 30936, "single model": 88378, "sequence use": 86670, "model capture": 60635, "applied different": 6604, "different tasks": 25219, "space model": 89455, "denoising autoencoder": 23494, "original event": 68772, "model make": 61119, "make inferences": 57999, "incomplete knowledge": 44540, "sequences existing": 86680, "evaluation shows": 30779, "shows model": 87597, "fit better": 35337, "story completion": 90752, "completion models": 16899, "models pile": 63810, "dataset diverse": 21913, "diverse text": 26121, "text language": 96316, "work demonstrated": 104045, "dataset diversity": 21914, "crossdomain knowledge": 20406, "knowledge downstream": 48526, "generalization capability": 37252, "largescale language": 52528, "targeted training": 93909, "training largescale": 98171, "diverse highquality": 26030, "existing newly": 31781, "newly constructed": 66590, "gpt2 gpt3": 39290, "shows models": 87598, "academic writing": 2000, "improve significantly": 43804, "improving performance": 44144, "performance downstream": 71160, "downstream evaluations": 26692, "exploratory analysis": 32615, "aspects data": 7767, "users make": 101139, "make publicly": 58022, "available code": 9019, "code used": 15558, "evaluating improving": 30436, "improving models": 44142, "models counterfactual": 62131, "counterfactual examples": 19994, "analysis training": 5706, "training nlp": 98218, "models current": 62141, "current generation": 20690, "generation methods": 38266, "methods rely": 59779, "manual labor": 58273, "word substitutions": 103930, "finetuning gpt2": 35079, "multiple datasets": 65169, "datasets paired": 22360, "produces diverse": 75693, "diverse sets": 26103, "useful various": 100958, "applications improving": 6498, "improving training": 44161, "training evaluation": 98097, "evaluation different": 30575, "annotation effort": 5891, "error analysis": 29768, "human experts": 42213, "impact multiple": 43236, "multiple parallel": 65234, "present indepth": 73994, "indepth analysis": 44942, "analysis impact": 5545, "model user": 61557, "user behaviour": 100972, "input text": 45962, "text composition": 96137, "writing study": 104498, "compares different": 16665, "recent literature": 80288, "built text": 11675, "suggestions results": 92431, "results reveal": 83819, "discuss implications": 25663, "implications research": 43399, "research design": 82541, "design interactive": 23796, "vision supporting": 103005, "supporting writers": 92864, "writers ai": 104462, "ai instead": 4438, "linear complexity": 54524, "models googles": 62584, "googles bert": 39152, "openais gpt3": 68202, "successful natural": 92263, "tasks training": 95210, "training deploying": 98073, "deploying models": 23588, "models costly": 62130, "models used": 64464, "remained challenge": 81640, "challenge large": 12896, "large size": 52343, "deployment models": 23611, "main bottleneck": 57813, "quadratic time": 78175, "time space": 97025, "respect sequence": 83042, "sequence length": 86654, "time complexity": 96937, "complexity selfattention": 17053, "selfattention mechanism": 86200, "ai research": 4533, "lowrank matrix": 57608, "linear time": 54538, "space complexity": 89440, "complexity depends": 17036, "affects performance": 4065, "performance model": 71404, "model tuning": 61541, "timeconsuming paper": 97053, "paper proposed": 69902, "proposed alternative": 77173, "method works": 59465, "long sequences": 57325, "active learning": 2991, "learning platform": 53331, "work propose": 104216, "propose use": 77155, "use fully": 100557, "learning service": 53409, "learning directly": 53112, "build models": 11600, "unstructured data": 100291, "data tool": 21695, "build machine": 11597, "models directly": 62235, "data scientists": 21599, "approach leverages": 6932, "stateoftheart text": 90498, "text representation": 96393, "like openais": 54202, "relies simple": 81557, "learning using": 53467, "using linear": 101567, "linear models": 54531, "models providing": 63937, "experiments publicly": 32275, "datasets empirically": 22228, "classification algorithms": 14721, "task hand": 94089, "understanding capabilities": 99680, "capabilities limitations": 11975, "limitations societal": 54370, "societal impact": 88930, "impact large": 43219, "humancentered artificial": 42454, "artificial intelligence": 7594, "discuss open": 25670, "research questions": 82748, "questions surrounding": 78960, "model time": 61512, "took place": 97258, "including computer": 44308, "political science": 72568, "main questions": 57837, "limitations large": 54341, "widespread use": 103796, "use large": 100594, "models provide": 63932, "provide detailed": 77445, "1bit adam": 470, "communication efficient": 16262, "efficient largescale": 27789, "largescale training": 52576, "convergence speed": 19309, "scalable training": 85246, "training large": 98160, "large models": 52255, "like bert": 54052, "bert gpt3": 10526, "gpt3 requires": 39522, "model design": 60755, "architecture capabilities": 7333, "communication major": 16272, "major bottleneck": 57921, "bottleneck especially": 11322, "especially commodity": 29861, "commodity systems": 16126, "network bandwidth": 66131, "communication compression": 16259, "technique reduce": 95458, "reduce training": 80808, "training time": 98326, "effective methods": 27330, "offers robust": 67859, "stateoftheart error": 90339, "techniques work": 95612, "optimizers like": 68651, "like sgd": 54222, "momentum sgd": 64702, "efficiency accuracy": 27659, "communication volume": 16289, "better scalability": 10786, "key finding": 48301, "warmup phase": 103315, "256 gpus": 661, "higher throughput": 41528, "bertlarge pretraining": 10575, "addition provide": 3206, "provide theoretical": 77583, "theoretical analysis": 96732, "proposed work": 77265, "responses approach": 83178, "approach using": 7077, "using gpt3": 101483, "computer systems": 17538, "systems ability": 93382, "ability understand": 1788, "understand generate": 99609, "generate natural": 37532, "progress natural": 75996, "like gpt3": 54137, "gpt3 language": 39482, "model released": 61336, "released openai": 81410, "paper explore": 69706, "explore possibility": 32715, "communication using": 16288, "gpt3 demonstrate": 39437, "generating responses": 37970, "software engineering": 88998, "data science": 21595, "second apply": 85917, "knowledge business": 48458, "studies software": 91448, "tackle challenges": 93715, "challenges encountered": 13003, "new application": 66325, "application domains": 6350, "generation main": 38256, "main obstacle": 57834, "training neural": 98213, "models consists": 62100, "lack training": 49063, "data usually": 21738, "usually large": 101874, "large numbers": 52293, "available data": 9025, "data text": 21691, "text samples": 96403, "samples available": 85102, "available address": 9007, "address problem": 3469, "problem propose": 75061, "novel fewshot": 67160, "fewshot approach": 34211, "approach automatically": 6750, "available training": 9095, "new text": 66557, "samples based": 85103, "automatic method": 8801, "samples data": 85107, "data samples": 21585, "samples text": 85144, "noise training": 66863, "data use": 21721, "order make": 68709, "make sure": 58034, "given data": 38874, "data sample": 21584, "text text": 96461, "benchmarks weakly": 10429, "supervised training": 92743, "training paradigm": 98228, "able outperform": 1867, "fully supervised": 36468, "seq2seq models": 86640, "models 10": 61702, "10 annotations": 98, "annotations utilizing": 5960, "annotated data": 5864, "data model": 21414, "model boost": 60618, "boost performance": 11275, "performance standard": 71587, "seq2seq model": 86639, "bleu points": 11174, "establishing new": 30001, "prompt programming": 76400, "programming large": 75916, "models fewshot": 62458, "fewshot paradigm": 34281, "large generative": 51436, "models supervised": 64301, "supervised tasks": 92742, "tasks fail": 94628, "probe models": 74973, "models novel": 63685, "capabilities using": 12114, "case study": 12477, "prompts significantly": 76821, "significantly outperform": 87977, "fewshot prompts": 34301, "fewshot examples": 34234, "rethinking role": 83946, "role prompts": 84802, "prompts controlling": 76677, "models work": 64545, "work discuss": 104056, "language explore": 49212, "explore techniques": 32748, "techniques exploiting": 95512, "problem components": 75001, "language prompts": 51067, "prompts range": 76808, "range tasks": 79212, "tasks finally": 94635, "finally discuss": 34520, "general methods": 37163, "practical applications": 73495, "improving fewshot": 44121, "performance language": 71331, "models gpt3": 62593, "gpt3 perform": 39509, "numerous tasks": 67443, "tasks provided": 94984, "provided natural": 77627, "language prompt": 51064, "prompt contains": 76264, "choice prompt": 14587, "prompt format": 76324, "examples order": 31259, "examples cause": 31194, "near chance": 65839, "near stateoftheart": 65843, "bias language": 10855, "models predicting": 63853, "end prompt": 28833, "common pretraining": 16162, "models bias": 61932, "given training": 38979, "training prompt": 98246, "test input": 95902, "cause prediction": 12689, "diverse set": 26098, "set tasks": 86940, "contextual calibration": 18934, "substantially improves": 92126, "average accuracy": 9134, "choices prompt": 14601, "prompt learning": 76358, "onthefly adaptation": 68021, "adaptation unseen": 3102, "unseen domains": 100263, "domains natural": 26556, "examples address": 31185, "address challenging": 3376, "algorithm trained": 4936, "trained source": 97909, "domains applied": 26490, "examples labeled": 31241, "labeled unlabeled": 48919, "target domain": 93863, "domain available": 26357, "learning algorithm": 53023, "based t5": 9728, "t5 language": 93635, "model given": 60941, "given test": 38971, "test example": 95889, "trained generate": 97835, "prompt token": 76435, "token sequence": 97155, "domain related": 26441, "semantic space": 86352, "domains experiments": 26518, "experiments tasks": 32313, "sequence tagging": 86666, "total 14": 97558, "adaptation scenarios": 3095, "substantially outperforms": 92135, "outperforms strong": 69125, "strong baselines": 91007, "knowledge context": 48484, "context better": 18736, "better language": 10739, "language domain": 49195, "domain understanding": 26467, "entity representations": 29589, "representations learned": 82107, "stateoftheart transformerbased": 90507, "transformerbased language": 98558, "gpt t5": 39243, "t5 leverage": 93638, "leverage attention": 53710, "attention mechanism": 8337, "data context": 21118, "context training": 18866, "corpus models": 19643, "models use": 64462, "use knowledge": 100588, "context knowledge": 18793, "context understood": 18870, "neighboring entities": 66105, "entities knowledge": 29540, "novel effective": 67150, "effective technique": 27375, "infuse knowledge": 45703, "context multiple": 18817, "multiple knowledge": 65205, "knowledge graph": 48590, "graph embeddings": 40379, "introduces new": 47526, "baseline model": 9796, "model implement": 60984, "significantly outperforms": 87986, "outperforms bert": 69019, "bert variants": 10563, "like ernie": 54117, "domainspecific tasks": 26649, "android apps": 5836, "text descriptions": 96170, "descriptions present": 23721, "framework allows": 36033, "users create": 101088, "android applications": 5835, "applications natural": 6529, "language specifications": 51107, "conventional method": 19282, "method source": 59433, "code generation": 15274, "generate source": 37598, "code directly": 15231, "creating complex": 20215, "complex software": 17008, "overcome limitation": 69354, "transforming natural": 98646, "substantially smaller": 92139, "smaller number": 88779, "number tokens": 67386, "formal representation": 35799, "target source": 93889, "networks learn": 66197, "learn complex": 52935, "complex application": 16912, "order train": 68717, "sequence models": 86661, "models introduce": 62808, "introduce data": 47416, "data synthesis": 21674, "grounded human": 40571, "human survey": 42386, "generalizes unseen": 37312, "capable handling": 12243, "language instructions": 49284, "instructions explore": 46500, "possibility creating": 72874, "gpt3 large": 39484, "large pretrained": 52305, "perform extensive": 70870, "extensive human": 33101, "demo video": 22986, "surface form": 92881, "models shown": 64177, "shown promising": 87523, "promising results": 76196, "results zeroshot": 83929, "zeroshot settings": 104869, "radford et": 79015, "al 2019": 4864, "perform multiple": 70896, "choice tasks": 14596, "tasks simply": 95116, "simply conditioning": 88287, "question selecting": 78707, "answer highest": 6015, "probability ranking": 74962, "surface forms": 92882, "represent underlying": 82044, "underlying concept": 99490, "computer pc": 17525, "correct answer": 19660, "answers multiple": 6197, "domain conditional": 26364, "mutual information": 65431, "information alternative": 45402, "scoring function": 85791, "context specific": 18855, "zeroshot task": 104877, "task achieves": 93921, "achieves consistent": 2738, "consistent gains": 18259, "gains zeroshot": 36877, "zeroshot performance": 104836, "al 2021": 4870, "scoring functions": 85792, "gpt3 models": 39500, "models variety": 64491, "choice datasets": 14584, "nlp systems": 66770, "systems seek": 93569, "fluent natural": 35481, "expert humans": 32363, "humans use": 42650, "use creative": 100518, "intelligence solve": 46891, "flexibly combining": 35436, "linguistic world": 54606, "world domain": 104401, "domain knowledge": 26402, "paper make": 69807, "main contributions": 57820, "present dataset": 73966, "new benchmark": 66343, "stateoftheart neural": 90421, "model achieve": 60482, "achieve good": 2525, "good performance": 39119, "performance make": 71388, "second main": 85940, "main contribution": 57818, "contribution novel": 19169, "novel curriculum": 67137, "approach model": 6947, "related tasks": 81219, "introduce challenging": 47408, "challenging data": 13161, "data split": 21649, "metalinguistic capabilities": 59155, "models investigate": 62812, "investigate model": 47670, "t5 exhibits": 93625, "consistent human": 18261, "solving strategies": 89251, "approach considerably": 6783, "considerably improves": 18176, "t5 baseline": 93618, "bestperforming model": 10669, "model fails": 60861, "fails generalize": 33702, "unsolved challenge": 100286, "challenge nlp": 12910, "systems potential": 93532, "potential source": 73271, "largescale autoregressive": 52490, "autoregressive pretrained": 8975, "chinese language": 14553, "paradigm natural": 70042, "hundreds billions": 42685, "billions parameters": 11036, "parameters gpt3": 70224, "gpt3 demonstrated": 39438, "demonstrated strong": 23342, "strong performances": 91060, "understanding generation": 99747, "incontext learning": 44573, "learning work": 53475, "work present": 104207, "practice training": 73555, "autoregressive language": 8959, "models named": 63654, "ai processors": 4517, "scale training": 85297, "training task": 98316, "including data": 44316, "data parallelism": 21469, "model parallelism": 61207, "pipeline model": 72167, "enhance generalization": 29161, "generalization ability": 37242, "highquality chinese": 41738, "chinese data": 14542, "wide range": 103655, "range domains": 79151, "domains pretrain": 26571, "pretrain model": 74223, "model empirically": 60798, "test generation": 95895, "generation ability": 38000, "various scenarios": 102560, "scenarios including": 85442, "including text": 44494, "summarization question": 92555, "dialogue generation": 24867, "generation investigate": 38217, "investigate effect": 47638, "effect model": 27247, "model scales": 61374, "performances broad": 71734, "broad range": 11494, "tasks experimental": 94607, "experimental results": 32014, "results demonstrate": 83531, "demonstrate superior": 23200, "superior capabilities": 92634, "performing various": 71792, "various tasks": 102591, "tasks fewshot": 94633, "sentence comprehension": 86494, "transformer language": 98518, "pretrained largescale": 74367, "largescale transformer": 52577, "transformer model": 98526, "gpt2 specifically": 39350, "ungrammatical sentences": 99995, "empirical evidence": 28323, "effects including": 27611, "including recent": 44461, "largescale studies": 52572, "attention patterns": 8359, "retrieval models": 83996, "contrast models": 19078, "task predicting": 94195, "predicting word": 73675, "unreasonable effectiveness": 100239, "rulebased heuristics": 84926, "superglue tasks": 92626, "like superglue": 54231, "development nlp": 24683, "standard benchmarks": 90160, "fair comparison": 33726, "modern language": 64598, "models driven": 62266, "worlds best": 104427, "tasks general": 94661, "general language": 37143, "understanding performance": 99838, "higher human": 41507, "performance results": 71543, "benchmark datasets": 10124, "learning based": 53043, "based language": 9589, "models exploit": 62408, "english datasets": 29061, "datasets shown": 22413, "annotation artifacts": 5884, "certain tasks": 12779, "tasks simple": 95115, "simple rules": 88235, "achieving competitive": 2840, "analysis russian": 5660, "benchmark set": 10247, "test datasets": 95884, "shallow heuristics": 87168, "approaches based": 7110, "based simple": 9718, "come close": 16028, "close results": 14982, "gpt3 bert": 39414, "sota models": 89318, "models performance": 63795, "common real": 16166, "provide set": 77569, "set recommendations": 86928, "recommendations improve": 80663, "datasets making": 22329, "models identify": 62694, "play central": 72330, "central role": 12736, "role human": 84780, "commonsense reasoning": 16229, "reasoning ability": 79761, "ability recognize": 1761, "structure knowledge": 91139, "knowledge understand": 48795, "understand language": 99620, "task identifying": 94092, "identifying analogies": 42913, "received attention": 80134, "attention language": 8327, "model era": 60814, "paper analyze": 69609, "analyze capabilities": 5743, "models unsupervised": 64460, "task using": 94287, "using benchmarks": 101314, "educational settings": 27218, "commonly used": 16198, "used datasets": 100773, "offtheshelf language": 67887, "certain extent": 12759, "complex relations": 16995, "highly sensitive": 41712, "model architecture": 60560, "overall best": 69279, "results obtained": 83749, "gpt2 roberta": 39345, "word embedding": 103897, "embedding models": 28064, "models results": 64092, "results raise": 83800, "important questions": 43532, "questions future": 78859, "future work": 36789, "extent pretrained": 33170, "models capture": 61963, "semantic relations": 86337, "grounded text": 40580, "generation modeling": 38274, "advances largescale": 3885, "largescale pretraining": 52567, "pretraining gpt3": 74543, "gpt3 allow": 39400, "quality text": 78373, "generated given": 37704, "given prompt": 38933, "generation systems": 38440, "systems suffer": 93582, "suffer problems": 92319, "hallucinated facts": 40819, "designed incorporate": 23922, "external information": 33186, "appear offer": 6306, "training typically": 98343, "typically relies": 99298, "parallel data": 70079, "provided context": 77607, "context propose": 18830, "propose framework": 76981, "document retriever": 26219, "retriever language": 84095, "model learns": 61058, "retrieval documents": 83980, "mixtureofexperts moe": 60365, "joint training": 48158, "training work": 98353, "produce informative": 75643, "relevant text": 81484, "models improves": 62715, "transfer models": 98431, "content finetuning": 18628, "finetuning pretrained": 35189, "language gpt2": 49266, "bart models": 9388, "models boosts": 61945, "amounts parallel": 5353, "style content": 91906, "task achieve": 93919, "achieve new": 2548, "multiple studies": 65263, "studies shown": 91443, "remarkably robust": 81847, "transformer encoders": 98505, "layer outputs": 52729, "model weights": 61584, "bert pretrained": 10542, "pretrained encoder": 74251, "scaling factors": 85327, "significantly degrades": 87908, "performance effect": 71168, "models popular": 63828, "popular pretrained": 72671, "architectures including": 7393, "including bart": 44278, "using transfer": 101824, "directly generate": 25498, "development tool": 24722, "lines code": 54547, "code complete": 15160, "learning techniques": 53446, "learn language": 52950, "models deep": 62166, "needs large": 66036, "number training": 67391, "data work": 21758, "addresses problem": 3522, "learning leverage": 53249, "leverage powerful": 53754, "powerful generative": 73437, "pretrained large": 74357, "adapts gpt2": 3151, "randomly generated": 79125, "generated models": 37741, "models models": 63636, "opensource repositories": 68403, "opensource models": 68381, "texttotext transformers": 96652, "models focused": 62496, "language pairs": 50947, "monolingual english": 64712, "given recent": 38945, "recent success": 80370, "success pretrained": 92227, "models test": 64351, "recent transformerbased": 80388, "encoderdecoder models": 28727, "models mt5": 63643, "mt5 mbart": 64843, "task finding": 94062, "finding work": 34636, "method generating": 59316, "distributed representations": 25926, "improving language": 44128, "model performance": 61219, "performance particular": 71463, "additional data": 3235, "data adopt": 20951, "adopt curriculum": 3606, "curriculum learning": 20827, "learning approach": 53031, "approach finetune": 6861, "finetune language": 34825, "models synthetic": 64318, "data gold": 21277, "data simple": 21628, "simple synthetic": 88241, "method competitive": 59236, "competitive cases": 16795, "standard methods": 90193, "method based": 59216, "set conditions": 86854, "work shows": 104276, "mt5 model": 64844, "finetuned following": 34890, "learning procedure": 53348, "translation performance": 98731, "shared task": 87194, "methods detoxification": 59598, "russian language": 84969, "language introduce": 49296, "introduce study": 47489, "study automatic": 91505, "russian texts": 84971, "offensive language": 67724, "toxic content": 97584, "content social": 18689, "media work": 58855, "english language": 29078, "language field": 49219, "language test": 51137, "types models": 99250, "approach based": 6752, "based bert": 9450, "bert architecture": 10499, "supervised approach": 92694, "based pretrained": 9658, "model compare": 60680, "baselines addition": 9817, "addition evaluation": 3183, "evaluation setup": 30775, "providing training": 77810, "training datasets": 98069, "metrics automatic": 59884, "automatic evaluation": 8773, "evaluation results": 30753, "successfully used": 92289, "everyday conversations": 30957, "require understanding": 82299, "requires understanding": 82419, "understanding temporal": 99891, "massive pretrained": 58464, "lms t5": 57175, "t5 gpt3": 93633, "temporal reasoning": 95720, "remains largely": 81668, "largely underexplored": 52417, "underexplored paper": 99444, "paper present": 69824, "present study": 74061, "study investigate": 91691, "investigate pretrained": 47691, "reasoning capabilities": 79795, "introducing new": 47547, "new task": 66545, "challenge set": 12931, "set timedial": 86943, "cloze task": 15071, "carefully curated": 12412, "best performing": 10624, "performing models": 71783, "struggle task": 91227, "task compared": 93978, "compared humans": 16573, "absolute points": 1919, "accuracy furthermore": 2269, "furthermore analysis": 36575, "reveals models": 84219, "models fail": 62442, "dialog context": 24823, "rely shallow": 81588, "based existing": 9522, "temporal patterns": 95719, "modeling temporal": 61685, "contextual reasoning": 18950, "reasoning dataset": 79853, "dataset publicly": 22046, "based question": 9688, "answering using": 6165, "using blooms": 101321, "blooms taxonomy": 11225, "current pretrained": 20759, "knowledge limited": 48661, "limited ability": 54383, "educators teach": 27230, "children use": 14527, "use analyze": 100468, "analyze improve": 5769, "skills large": 88603, "models experiments": 62404, "focus zeroshot": 35569, "taxonomy provide": 95325, "helps model": 41314, "answer questions": 6048, "relevant questions": 81473, "improves performance": 44050, "performance popular": 71472, "question answer": 78568, "transformerbased models": 98578, "models tremendous": 64435, "tremendous impacts": 98838, "generation inference": 38207, "inference speed": 45294, "bottleneck large": 11326, "large model": 52253, "autoregressive decoding": 8953, "decoding process": 22672, "framework accelerate": 36013, "generation accuracy": 38007, "accuracy loss": 2308, "loss proposed": 57473, "proposed optimization": 77244, "optimization techniques": 68621, "techniques include": 95534, "attention cache": 8287, "efficient algorithm": 27739, "generation pipeline": 38323, "pipeline parallel": 72170, "t5 gpt2": 93632, "benchmark results": 10242, "results set": 83834, "diverse models": 26051, "models demonstrate": 62173, "easy use": 27036, "use simple": 100688, "simple oneline": 88222, "code change": 15144, "code available": 15131, "industries including": 45161, "including finance": 44346, "need perform": 65979, "tasks despite": 94531, "number natural": 67363, "plan extraction": 72236, "extraction methods": 33317, "methods provide": 59767, "provide possibility": 77539, "possibility extracting": 72876, "plans natural": 72296, "language descriptions": 49184, "leveraged automated": 53771, "paper investigate": 69779, "models performing": 63803, "quite effective": 78990, "effective multiple": 27336, "translation tasks": 98746, "initial results": 45781, "results point": 83766, "effectiveness context": 27504, "particularly gpt3": 70468, "gpt3 able": 39391, "generate plan": 37549, "extraction results": 33329, "results comparable": 83505, "comparable current": 16368, "current state": 20773, "state art": 90264, "process adapting": 75266, "adapting language": 3125, "datasets language": 22311, "models generate": 62543, "generate harmful": 37471, "harmful biased": 41027, "biased outputs": 10905, "exhibit undesirable": 31563, "undesirable behavior": 99934, "according given": 2149, "iterative process": 48065, "process significantly": 75402, "change model": 13272, "model behavior": 60596, "crafting finetuning": 20131, "predetermined set": 73639, "values evaluate": 102213, "process using": 75417, "using metrics": 101614, "quantitative metrics": 78414, "metrics human": 59928, "score output": 85731, "analyzing common": 5804, "given social": 38960, "add additional": 3155, "additional training": 3262, "examples based": 31191, "based observed": 9644, "performs significantly": 71819, "significantly better": 87886, "metrics compared": 59897, "compared baseline": 16507, "control models": 19221, "models broad": 61948, "increases model": 44809, "size significantly": 88528, "models recent": 63996, "size pretrained": 88514, "largescale plms": 52555, "scenarios present": 85471, "present suite": 74065, "techniques use": 95604, "use plms": 100650, "pretraining finetuning": 74531, "finetuning inference": 35097, "inference introduce": 45251, "introduce knowledge": 47439, "pretraining process": 74589, "existing plms": 31790, "instead training": 46258, "training models": 98203, "models scratch": 64147, "best practice": 10630, "prompt tuning": 76438, "compared conventional": 16523, "conventional finetuning": 19278, "finetuning prompt": 35205, "tuning significantly": 99096, "significantly reduces": 88016, "reduces number": 80839, "number taskspecific": 67381, "taskspecific parameters": 95296, "parameters implement": 70230, "implement new": 43319, "new inference": 66425, "using largescale": 101561, "limited computational": 54407, "computational resources": 17479, "pretrain models": 74224, "models encoderdecoder": 62318, "model 11": 60453, "11 billion": 184, "parameters experiments": 70209, "experiments compare": 32130, "language intelligence": 49289, "inference largescale": 45259, "largescale models": 52547, "models having": 62651, "tens billions": 95753, "parameters single": 70287, "single gpu": 88360, "model parameters": 61211, "cost code": 19836, "models code": 62011, "used software": 100898, "suggestions given": 92426, "given partially": 38924, "written code": 104511, "code snippet": 15508, "traditional code": 97661, "methods support": 59813, "single token": 88399, "ability provide": 1754, "reduce overall": 80799, "results different": 83574, "develop ensemble": 24449, "framework combine": 36066, "results multiple": 83736, "multiple models": 65226, "models draw": 62264, "paper conducts": 69650, "collect data": 15860, "data code": 21053, "code context": 15170, "context different": 18752, "different code": 25017, "models apply": 61843, "apply data": 6655, "tasks introduce": 94765, "acceptance model": 2047, "dynamically control": 26945, "features predict": 34018, "predict correct": 73648, "output models": 69172, "models best": 61926, "model reduces": 61324, "second design": 85926, "automatically identify": 8885, "various models": 102490, "models regardless": 64034, "top1 top5": 97490, "top5 accuracy": 97494, "accuracy respectively": 2351, "addition propose": 3205, "new code": 66364, "evaluation metric": 30671, "taking account": 93829, "closer real": 15044, "openai released": 68178, "released gpt3": 81402, "gpt3 autoregressive": 39405, "model shown": 61400, "shown promise": 87517, "promise tasks": 76131, "particularly interested": 70474, "benefits gpt3": 10471, "scientific literature": 85650, "questions answering": 78779, "solution task": 89123, "gpt3s fewshot": 39733, "learning capabilities": 53049, "performance prior": 71493, "prior work": 74866, "effort paper": 27880, "paper discusses": 69683, "approach used": 7070, "results observed": 83748, "problems encountered": 75133, "size prompt": 88520, "prompt answer": 76231, "limited training": 54476, "training signal": 98292, "generative models": 38655, "factual information": 33638, "information impact": 45504, "making hard": 58101, "performance gpt3": 71266, "gpt3 text": 39545, "text indistinguishable": 96303, "indistinguishable human": 45069, "human text": 42393, "machine text": 57739, "text modern": 96339, "modern neural": 64614, "models produce": 63900, "fluent grammatical": 35477, "fact recent": 33560, "reliably distinguish": 81535, "poses new": 72777, "challenge research": 12928, "research community": 82517, "robust machine": 84668, "text evaluation": 96199, "evaluation propose": 30735, "new framework": 66408, "framework called": 36058, "support broad": 92789, "commonsense errors": 16210, "error spans": 29794, "news text": 66647, "detailed analysis": 24153, "analysis including": 5549, "parameter count": 70094, "count training": 19982, "data various": 21744, "approach successfully": 7044, "gaps human": 36991, "human authored": 42098, "authored text": 8622, "models sizes": 64211, "sizes including": 88554, "addition analysis": 3174, "new insights": 66429, "rationales provided": 79439, "commonsense capabilities": 16209, "capabilities improving": 11939, "larger models": 52454, "models math": 63587, "math capabilities": 58545, "decoding hyperparameters": 22665, "differences perceived": 24985, "perceived quality": 70765, "quality machine": 78312, "text release": 96391, "annotation toolkit": 5913, "ai language": 4443, "web data": 103487, "data generate": 21253, "reflects human": 81021, "novel insights": 67187, "insights predictions": 46125, "best language": 10607, "model gpt3": 60955, "difficult questions": 25307, "library information": 53954, "information science": 45616, "different responses": 25182, "using ai": 101293, "research ideas": 82624, "spanish language": 89488, "work presents": 104211, "models associated": 61866, "associated resources": 8098, "resources available": 82999, "industry research": 45169, "robertabase robertalarge": 84615, "models arguably": 61852, "models spanish": 64230, "pretrained using": 74488, "using massive": 101609, "billion words": 11030, "words extracted": 103953, "assessed performance": 7892, "performance models": 71407, "models existing": 62393, "existing evaluation": 31706, "evaluation datasets": 30567, "extractive question": 33349, "answering dataset": 6092, "dataset created": 21887, "outperform existing": 68932, "nlu tasks": 66841, "training settings": 98289, "semistructured tables": 86422, "models reasoning": 63991, "reasoning skills": 80022, "modeling objective": 61660, "knowledge language": 48643, "language skills": 51101, "known struggle": 48858, "struggle tasks": 91228, "require reasoning": 82285, "reasoning work": 80086, "propose leverage": 77013, "automatically generate": 8868, "answering question": 6143, "question requires": 78702, "reasoning multiple": 79952, "multiple facts": 65189, "pretraining step": 74602, "data includes": 21318, "examples require": 31279, "16 different": 363, "different reasoning": 25176, "improve data": 43687, "data efficiency": 21172, "efficiency propose": 27709, "sampling strategies": 85168, "focus training": 35562, "currently lacking": 20816, "comprehension datasets": 17163, "datasets focused": 22272, "reasoning model": 79942, "outperforms t5": 69130, "t5 popular": 93647, "pretrained encoderdecoder": 74252, "encoderdecoder model": 28724, "based current": 9490, "current model": 20735, "model errors": 60817, "faster training": 33913, "training higher": 98126, "higher overall": 41513, "overall performance": 69308, "dataset model": 22006, "work work": 104307, "uses construct": 101215, "parallel corpus": 70078, "based large": 9593, "model t5": 61485, "t5 trained": 93654, "shown produce": 87515, "translating english": 98672, "faster inference": 33906, "learning recommendation": 53378, "recommendation data": 80645, "recent times": 80383, "recommendation models": 80647, "models largest": 62880, "largest models": 52598, "models matching": 63585, "gpt3 switch": 39540, "switch transformer": 93104, "stem learning": 90604, "learning dense": 53107, "dense embeddings": 23503, "scale models": 85283, "engineering challenges": 28950, "prohibitive communication": 76031, "training inference": 98139, "inference times": 45314, "slower inference": 88658, "inference time": 45308, "user experience": 100985, "model compression": 60688, "gaining traction": 36855, "community recently": 16333, "recently shown": 80558, "shown impressive": 87474, "results paper": 83755, "low memory": 57519, "orders magnitude": 68721, "reduction memory": 80901, "memory usage": 59071, "maintaining accuracy": 57880, "approach improving": 6894, "performance variance": 71661, "models accuracy": 61747, "accuracy using": 2381, "1000 times": 141, "compressed model": 17342, "model directly": 60770, "engineering effort": 28964, "particular train": 70426, "model using": 61562, "gpu achieve": 40251, "inference throughput": 45307, "greedy decoding": 40538, "answering finetuned": 6102, "finetuned language": 34909, "comprehension questions": 17180, "approach does": 6811, "given passage": 38925, "does guarantee": 26295, "perform worse": 70945, "study performance": 91769, "decoding present": 22671, "decoding algorithm": 22661, "algorithm efficiently": 4912, "performance t5": 71614, "decoding algorithms": 22662, "zeroshot fewshot": 104767, "examples available": 31190, "selfsupervised training": 86277, "bias model": 10866, "increasing performance": 44846, "performance zeroshot": 71725, "zeroshot setting": 104867, "results suggest": 83868, "models good": 62581, "small training": 88734, "greedy algorithm": 40537, "decoding strategy": 22679, "warmup training": 103316, "gpt models": 39212, "recent works": 80414, "demonstrated great": 23263, "great success": 40496, "models massive": 63581, "gpus reduce": 40275, "common practice": 16159, "batch size": 9896, "size learning": 88486, "learning rate": 53370, "increasing batch": 44821, "batch sizes": 9899, "sizes learning": 88556, "learning rates": 53371, "better training": 10799, "training efficiency": 98084, "training instability": 98146, "leading poor": 52876, "poor generalization": 72594, "better understand": 10800, "understand phenomenon": 99638, "conduct indepth": 17894, "analysis largescale": 5572, "model strong": 61455, "strong correlation": 91018, "correlation training": 19779, "extreme values": 33383, "long sequence": 57323, "sequence lengths": 86657, "extreme gradient": 33382, "beginning training": 9947, "training indicating": 98138, "source training": 89396, "based analysis": 9435, "method aims": 59198, "solve training": 89199, "models approach": 61844, "approach enables": 6831, "stable training": 90098, "8x larger": 1396, "larger batch": 52430, "4x larger": 1006, "baseline approach": 9765, "approach struggles": 7038, "better zeroshot": 10815, "zeroshot evaluation": 104764, "results method": 83721, "method reduces": 59404, "required number": 82316, "training tokens": 98329, "respectively experiments": 83066, "model 125m": 60454, "zeroshot accuracy": 104723, "11 tasks": 195, "tasks using": 95231, "10x data": 180, "time compared": 96936, "compared original": 16599, "original gpt3": 68778, "gpt3 training": 39550, "training recipe": 98255, "95 accuracy": 1438, "accuracy lower": 2310, "opportunities risks": 68507, "foundation models": 35933, "models ai": 61810, "undergoing paradigm": 99460, "paradigm shift": 70052, "dalle gpt3": 20909, "gpt3 trained": 39548, "data scale": 21588, "adaptable wide": 3063, "range downstream": 79152, "models foundation": 62505, "models underscore": 64451, "report provides": 81989, "provides thorough": 77713, "models ranging": 63960, "capabilities language": 11954, "language vision": 51203, "vision robotics": 103002, "reasoning human": 79903, "human interaction": 42254, "architectures training": 7406, "training procedures": 98241, "data systems": 21679, "systems security": 93568, "theory applications": 96757, "applications law": 6517, "healthcare education": 41185, "environmental impact": 29632, "legal ethical": 53558, "ethical considerations": 30065, "standard deep": 90167, "learning transfer": 53459, "results new": 83744, "provides powerful": 77691, "foundation model": 35925, "model inherited": 61007, "models downstream": 62262, "widespread deployment": 103787, "models currently": 62143, "currently lack": 20815, "lack clear": 48982, "clear understanding": 14887, "understanding work": 99906, "emergent properties": 28203, "questions believe": 78789, "critical research": 20348, "models require": 64070, "require deep": 82240, "finetuning works": 35293, "widely applied": 103714, "finetunes pretrained": 34999, "models intermediate": 62802, "intermediate task": 47221, "target task": 93890, "able improve": 1857, "performance pretrained": 71483, "models unclear": 64446, "works previous": 104376, "research shows": 82782, "intermediate tasks": 47222, "tasks involving": 94778, "involving complex": 47863, "paper discover": 69680, "reasoning complex": 79836, "complex skills": 17006, "skills simple": 88609, "target tasks": 93891, "tasks conduct": 94477, "experiments study": 32306, "study impact": 91670, "impact different": 43200, "different factors": 25063, "findings suggest": 34756, "role intermediate": 84783, "intermediate finetuning": 47209, "labeling cost": 48923, "data annotation": 20975, "annotation timeconsuming": 5911, "timeconsuming laborintensive": 97047, "laborintensive process": 48967, "various methods": 102481, "methods produce": 59761, "data labels": 21358, "parameters achieved": 70168, "achieved tremendous": 2682, "improvement fewshot": 43911, "tasks paper": 94919, "explore ways": 32764, "ways leverage": 103417, "leverage gpt3": 53729, "data labeler": 21353, "train models": 97761, "models make": 63575, "downstream model": 26699, "achieve performance": 2559, "performance variety": 71666, "nlu nlg": 66839, "nlg tasks": 66691, "use labels": 100591, "gpt3 using": 39553, "humans furthermore": 42598, "furthermore propose": 36648, "novel framework": 67163, "pseudo labels": 77863, "human labels": 42274, "labels leads": 48946, "performance limited": 71358, "results present": 83776, "data labeling": 21354, "information human": 45502, "smaller neural": 88778, "key component": 48280, "component language": 17076, "language comprehension": 49163, "computational language": 17462, "models humans": 62687, "humans better": 42579, "better reflect": 10779, "language stimuli": 51113, "important difference": 43500, "difference linguistic": 24964, "models language": 62844, "models base": 61896, "contemporary language": 18573, "gpt3 roberta": 39525, "closely human": 15025, "previously thought": 74762, "transformers gpt3": 98613, "gpt3 shows": 39534, "shows remarkable": 87613, "learning ability": 53008, "lms trained": 57178, "trained hundreds": 97846, "scale data": 85258, "data address": 20948, "remaining issues": 81643, "gpt3 paper": 39508, "different sized": 25196, "sized models": 88540, "models effect": 62274, "recently introduced": 80511, "prompt optimization": 76383, "learning achieve": 53012, "achieve introduce": 2542, "82b gpt3": 1346, "performances various": 71745, "performance benefits": 71016, "promptbased learning": 76463, "learning demonstrate": 53103, "prompt engineering": 76285, "code ai": 15120, "interactive prompt": 47113, "demonstrate potential": 23148, "potential methods": 73193, "methods successful": 59810, "transfer model": 98430, "model transformerbased": 61537, "transformerbased pretrained": 98589, "conventional nlp": 19290, "tasks struggle": 95143, "numerical understanding": 67410, "understanding required": 99866, "possible reasons": 72915, "pretraining objectives": 74582, "specifically designed": 89803, "designed learn": 23925, "investigate ability": 47614, "learning model": 53271, "tasks learn": 94810, "t5 models": 93642, "models perform": 63785, "setting tasks": 87028, "models textual": 64363, "textual data": 96663, "output space": 69193, "finetuned target": 34980, "formal languages": 35794, "languages like": 51310, "code trained": 15545, "trained models": 97879, "models incremental": 62761, "output sequences": 69191, "texttosql translation": 96636, "performance stateoftheart": 71590, "stateoftheart solutions": 90476, "improving text": 44160, "prediction language": 73696, "task models": 94147, "domains medical": 26550, "intermediate training": 47224, "training strategy": 98312, "strategy enhance": 90880, "performance text": 71629, "specific domains": 89687, "strategy includes": 90894, "includes novel": 44255, "novel selfsupervised": 67246, "training objective": 98221, "model complete": 60683, "improve models": 43735, "preliminary experiments": 73868, "experiments shown": 32299, "shown approach": 87440, "approach able": 6705, "outperform baselines": 68922, "measuring models": 58780, "models mimic": 63616, "mimic human": 60051, "propose benchmark": 76942, "generating answers": 37863, "answers questions": 6211, "benchmark comprises": 10099, "questions span": 78949, "categories including": 12609, "including health": 44378, "law finance": 52703, "humans answer": 42574, "models avoid": 61890, "avoid generating": 9200, "generating false": 37906, "false answers": 33805, "imitating human": 43161, "tested gpt3": 95976, "t5based model": 93662, "model best": 60605, "questions human": 78869, "performance 94": 70964, "models generated": 62557, "models generally": 62540, "tasks performance": 94940, "performance improves": 71304, "improves model": 44043, "learned training": 52995, "training distribution": 98076, "scaling models": 85348, "models promising": 63911, "finetuning using": 35285, "using training": 101820, "training objectives": 98222, "scale efficiently": 85263, "open questions": 68100, "questions pertaining": 78910, "scaling behaviour": 85320, "decisions findings": 22615, "critical training": 20368, "computational cost": 17444, "cost financial": 19846, "goal paper": 39062, "presents comprehensive": 74122, "comprehensive study": 17300, "study scaling": 91824, "upstream pretraining": 100386, "pretraining loss": 74570, "task context": 93994, "key findings": 48302, "size model": 88491, "downstream finetuning": 26693, "widely adopted": 103712, "t5base t5large": 93660, "end present": 28830, "improved scaling": 43859, "models achieve": 61752, "achieve similar": 2581, "parameters training": 70296, "compared widely": 16661, "t5base model": 93659, "model publicly": 61302, "publicly release": 77993, "pretrained checkpoints": 74241, "checkpoints different": 14494, "facilitate future": 33494, "research analysis": 82488, "fewshot text": 34321, "benchmark large": 10200, "promise fewshot": 76121, "textbased tasks": 96498, "tasks given": 94675, "taskspecific examples": 95285, "examples models": 31255, "classification tasks": 14801, "tasks far": 94631, "human research": 42354, "existing benchmarks": 31672, "benchmarks designed": 10331, "designed measure": 23926, "measure progress": 58745, "directly answer": 25482, "answer question": 6042, "raft benchmark": 79032, "benchmark realworld": 10236, "fewshot tasks": 34318, "tasks focuses": 94652, "naturally occurring": 65792, "techniques struggle": 95595, "reasoning long": 79934, "long texts": 57340, "tasks difficult": 94548, "difficult nonexpert": 25302, "human baseline": 42106, "f1 scores": 33421, "gpt3 average": 39408, "leaderboard track": 52833, "model improvements": 60991, "collaborative storytelling": 15847, "work report": 104248, "stories ai": 90744, "novel conversational": 67135, "conversational agent": 19344, "introduced novel": 47508, "constraints language": 18400, "longer narrative": 57366, "narrative text": 65497, "evaluate ai": 30137, "responded positively": 83109, "indicated preference": 45026, "preference ai": 73792, "meaningful novel": 58712, "findings support": 34763, "explore different": 32665, "different language": 25085, "exhibit bias": 31503, "contextualizing language": 18971, "use dataset": 100521, "labels based": 48940, "gender racial": 37094, "examine effect": 31103, "effect training": 27256, "gpt2 t5": 39355, "training corpora": 97976, "corpora language": 19580, "racial bias": 79007, "names associated": 65488, "indicating models": 45041, "task assess": 93942, "open book": 68047, "closed book": 14984, "book qa": 11255, "stimulate research": 90709, "research question": 82744, "models ptlms": 63940, "shown great": 87463, "questionanswering tasks": 78749, "given significant": 38957, "training zeroshot": 98355, "settings propose": 87088, "texts social": 96600, "social sciences": 88916, "humanities history": 42501, "truefalse statements": 98919, "statements based": 90288, "tests based": 96037, "baseline results": 9805, "results given": 83625, "given stateoftheart": 38962, "performance 50": 70959, "t5 finetuned": 93629, "achieves performance": 2769, "performance suggesting": 71604, "having read": 41124, "yields best": 104660, "performance better": 71022, "automatically retrieve": 8894, "use answer": 100471, "models derive": 62199, "stateoftheart unsupervised": 90509, "translation systems": 98744, "models method": 63610, "method consists": 59244, "consists steps": 18346, "zeroshot translation": 104883, "translation ability": 98681, "ability large": 1694, "generate translations": 37636, "small set": 88727, "zeroshot translations": 104885, "using fewshot": 101441, "fewshot demonstrations": 34227, "synthetic dataset": 93271, "dataset dataset": 21895, "dataset distilled": 21912, "demonstrations finetuning": 23470, "single language": 88369, "translation task": 98745, "generated translations": 37812, "using method": 101612, "method leverage": 59352, "gpt3s zeroshot": 39736, "translation capability": 98689, "capability achieve": 12147, "attracted lot": 8420, "attention natural": 8346, "nlp domain": 66727, "tasks success": 95152, "success gpt": 92202, "huge data": 42036, "number parameters": 67366, "parameters despite": 70199, "despite superior": 24131, "superior performance": 92645, "performance gpt": 71264, "especially fewshot": 29877, "zeroshot setup": 104874, "deploying model": 23587, "mitigated using": 60288, "using model": 101617, "compression techniques": 17376, "models investigated": 62813, "literature work": 54668, "work use": 104301, "version gpt2": 102807, "model undergone": 61547, "small portion": 88721, "finetuned downstream": 34882, "evaluate model": 30229, "model language": 61043, "understanding evaluation": 99729, "evaluation benchmark": 30519, "benchmark tasks": 10263, "tasks efficient": 94569, "efficient pretraining": 27813, "similar number": 88091, "significantly short": 88023, "decoderbased language": 22637, "range natural": 79178, "tasks stateoftheart": 95139, "stateoftheart plms": 90451, "extremely large": 33392, "edge devices": 27080, "topic model": 97512, "attracted increasing": 8418, "increasing attention": 44819, "attention nlp": 8352, "community existing": 16315, "existing works": 31852, "works focus": 104357, "encoderbased models": 28715, "decoderbased models": 22639, "investigated paper": 47724, "paper aims": 69595, "aims gap": 4808, "specifically explore": 89818, "current stateoftheart": 20776, "stateoftheart knowledge": 90355, "distillation techniques": 25828, "techniques improve": 95531, "improve finetuning": 43704, "performance finetuned": 71221, "tasks demonstrate": 94516, "impact data": 43196, "data cleaning": 21049, "performance power": 71476, "semantic parsing": 86329, "tuning recently": 99087, "recently emerged": 80478, "emerged effective": 28129, "effective method": 27327, "adapting pretrained": 3137, "models number": 63687, "number language": 67355, "tuning semantic": 99095, "parsing task": 70340, "language utterances": 51200, "meaning representations": 58703, "outperforms finetuned": 69055, "strong gpt3": 91032, "conduct ablation": 17820, "ablation studies": 1806, "studies different": 91379, "different model": 25114, "tuned t5": 99007, "models improve": 62712, "pretraining distribution": 74522, "improves language": 44033, "model generalization": 60923, "capabilities led": 11971, "gpt3 t5": 39542, "t5 research": 93650, "research large": 82650, "new model": 66459, "training tasks": 98317, "tasks loss": 94839, "loss objectives": 57469, "substantial engineering": 92078, "engineering efforts": 28965, "efforts scale": 27919, "scale model": 85280, "model capacity": 60634, "dataset size": 22078, "comparatively little": 16444, "work improve": 104126, "improve generalization": 43708, "sam recently": 85079, "recently proposed": 80539, "substantially improve": 92123, "generalization language": 37263, "models computational": 62074, "questions natural": 78901, "natural questions": 65775, "particularly large": 70477, "large gains": 51432, "gains training": 36873, "tasks limited": 94830, "risks ai": 84506, "ai foundation": 4402, "models education": 62271, "models represent": 64065, "shift ai": 87253, "including education": 44333, "types algorithmic": 99218, "algorithmic models": 4945, "particular downstream": 70402, "computer vision": 17540, "vision models": 102993, "models clip": 62006, "technologies potential": 95633, "potential harm": 73117, "broadly speaking": 11526, "educational domain": 27200, "domain particularly": 26428, "despite potential": 24096, "potential benefits": 73038, "achieving goal": 2851, "goal providing": 39069, "requires efficient": 82374, "scale educational": 85262, "educational contexts": 27196, "contexts argue": 18893, "evidence suggests": 30990, "models likely": 62933, "learners use": 53005, "use introduce": 100585, "generating artificial": 37867, "data quality": 21530, "artificially generated": 7685, "generated texts": 37803, "question using": 78718, "using models": 101618, "learning data": 53096, "data supervised": 21670, "supervised learning": 92718, "question explored": 78667, "explored aspects": 32768, "artificial data": 7588, "data efficient": 21173, "replace original": 81924, "original data": 68766, "improve explainability": 43699, "different experiments": 25062, "experiments carried": 32120, "tasks sentiment": 95091, "analysis product": 5616, "product reviews": 75728, "fake news": 33759, "news detection": 66621, "detection using": 24376, "generated data": 37686, "data finetuned": 21236, "data used": 21722, "efficient tuning": 27832, "tuning pretrained": 99079, "models central": 61973, "starting point": 90259, "point finetuning": 72478, "finetuning range": 35212, "pain points": 69466, "models grow": 62636, "175b parameters": 410, "finetuning process": 35204, "process timeconsuming": 75410, "finetuned model": 34936, "functionality practical": 36511, "finetuned models": 34942, "models deployed": 62196, "deployed resourceconstrained": 23572, "resourceconstrained environments": 82983, "environments address": 29640, "parameterefficient finetuning": 70138, "finetuning leveraging": 35123, "weight updates": 103531, "final model": 34486, "proposed framework": 77203, "framework dubbed": 36100, "parameter efficient": 70100, "efficient finetuning": 27759, "lowrank updates": 57610, "pretrained weights": 74503, "resourceefficient inference": 82989, "model leverage": 61061, "sparse patterns": 89542, "models unified": 64456, "unified approach": 100007, "approach extensive": 6854, "diverse network": 26059, "backbones bert": 9254, "bert roberta": 10549, "roberta gpt2": 84600, "gpt2 dozens": 39271, "dozens datasets": 26763, "datasets consistently": 22187, "demonstrate impressive": 23102, "maintaining competitive": 57883, "downstream performance": 26709, "performance instance": 71318, "achieving comparable": 2837, "comparable performance": 16386, "trainable parameters": 97790, "parameters bert": 70179, "codes available": 15621, "model finetuning": 60899, "modern natural": 64611, "introduction transformers": 47562, "transformers architecture": 98600, "nlp task": 66771, "task leading": 94124, "leading significant": 52881, "significant advancements": 87668, "advancements field": 3812, "respect input": 83040, "input length": 45915, "presents challenge": 74115, "requires lot": 82395, "context paper": 18822, "propose finetuning": 76977, "finetuning framework": 35074, "framework named": 36211, "architecture current": 7339, "models incorporate": 62742, "incorporate explicit": 44665, "entity information": 29562, "make available": 57967, "available information": 9055, "information outside": 45562, "model results": 61352, "results better": 83480, "fraction computational": 35999, "implement approach": 43315, "compare finetuned": 16457, "model original": 61175, "achieves lower": 2754, "lower perplexity": 57569, "datasets compared": 22178, "finetuned version": 34993, "changes compare": 13286, "compare models": 16474, "performance terms": 71626, "coreference annotations": 19552, "scalable efficient": 85237, "optimization method": 68601, "residual learning": 82920, "learning scheme": 53401, "obtain scalable": 67660, "dynamically adjust": 26942, "test time": 95958, "models flexibly": 62492, "enhancement performance": 29264, "incurring minimal": 44929, "memory training": 59069, "training overhead": 98225, "scalability experiments": 85230, "demonstrate proposed": 23164, "method achieves": 59186, "slight performance": 88632, "performance degradation": 71126, "trained endtoend": 97819, "data evaluating": 21195, "evaluating linguistic": 30448, "current language": 20702, "generate highquality": 37480, "highquality text": 41794, "simply copying": 88288, "text seen": 96406, "tease apart": 95392, "suite analyses": 92468, "models lstm": 63560, "lstm transformer": 57651, "transformerxl gpt2": 98643, "modelgenerated text": 61620, "text substantially": 96442, "humangenerated text": 42494, "test set": 95939, "structure overall": 91145, "sentence structure": 86524, "baseline models": 9798, "1000 words": 143, "words long": 103958, "long training": 57343, "set perform": 86914, "extensive manual": 33113, "manual analysis": 58254, "analysis showing": 5676, "novel text": 67267, "text usually": 96476, "linguistic knowledge": 54586, "knowledge data": 48493, "augmentation natural": 8548, "investigate role": 47698, "role linguistic": 84791, "augmentation da": 8528, "classification task": 14799, "programs produce": 75958, "simple text": 88245, "techniques largely": 95547, "enhanced pretrained": 29242, "knowledge trained": 48786, "network models": 66153, "cnn lstm": 15089, "results significant": 83848, "significant performance": 87804, "performance differences": 71138, "differences models": 24984, "techniques applied": 95479, "techniques make": 95558, "texts results": 96594, "results indicate": 83669, "indicate need": 45011, "need sufficient": 65998, "amounts training": 5360, "classification models": 14764, "negative impact": 66062, "augmented text": 8587, "pairs improve": 69501, "similar results": 88107, "comparative study": 16437, "word sense": 103924, "sense disambiguation": 86436, "years research": 104611, "research natural": 82675, "witnessed dramatic": 103861, "growth training": 40683, "models generating": 62560, "language representations": 51090, "numerous nlp": 67435, "neural networkbased": 66261, "incorporate sense": 44672, "sense information": 86437, "embeddings cwes": 28076, "despite progress": 24100, "community witnessed": 16339, "witnessed significant": 103870, "significant work": 87870, "architectures paper": 7400, "presents comparative": 74119, "extensive analysis": 32993, "analysis widely": 5720, "adopted transformer": 3618, "transformerxl xlnet": 98644, "electra albert": 27946, "adopt simple": 3610, "simple effective": 88178, "effective approach": 27263, "knearest neighbor": 48400, "results proposed": 83785, "proposed techniques": 77263, "techniques achieve": 95469, "achieve superior": 2601, "superior results": 92667, "results current": 83526, "simple efficient": 88190, "efficient sparse": 27823, "sparse training": 89545, "networks generalize": 66186, "expensive train": 31928, "ideally like": 42794, "reduce computational": 80765, "generalization benefits": 37248, "training simple": 98295, "promising approach": 76147, "approach achieve": 6706, "remain challenges": 81613, "challenges existing": 13010, "methods struggle": 59808, "slow training": 88655, "model components": 60686, "sparse matrices": 89536, "address main": 3457, "main insight": 57829, "propose simple": 77109, "modern hardware": 64597, "lowrank matrices": 57607, "network layers": 66150, "layers attention": 52741, "empirically validate": 28385, "speeds training": 89986, "sparse models": 89540, "models train": 64375, "25x faster": 668, "faster dense": 33904, "vision transformer": 103011, "gpt2 medium": 39309, "drop accuracy": 26863, "models meet": 63602, "program synthesis": 75846, "synthesis large": 93211, "gpt3 codex": 39428, "model capable": 60631, "generating code": 37872, "code natural": 15416, "models potential": 63843, "potential improve": 73131, "improve productivity": 43779, "ai pair": 4491, "pair programmer": 69471, "models understand": 64452, "program semantics": 75844, "code paper": 15431, "present approach": 73931, "approach augment": 6746, "augment large": 8516, "postprocessing steps": 72959, "based program": 9672, "program analysis": 75829, "understand syntax": 99651, "syntax semantics": 93196, "make use": 58038, "use user": 100718, "user feedback": 100988, "feedback improve": 34093, "usage present": 100452, "experiences building": 31948, "synthesizing code": 93242, "code using": 15559, "using python": 101713, "using multimodal": 101624, "multimodal inputs": 65060, "suggests large": 92438, "models evolve": 62365, "important role": 43534, "role play": 84797, "improving accuracy": 44095, "systems neural": 93516, "program evaluation": 75834, "evaluation paper": 30703, "paper explores": 69721, "explores capabilities": 32797, "capabilities current": 11873, "current transformerbased": 20795, "models program": 63906, "functional programming": 36505, "programming languages": 75909, "languages introduce": 51295, "program generation": 75836, "generation mechanism": 38260, "mechanism allows": 58792, "semantically equivalent": 86366, "experiments reveal": 32289, "performs surprisingly": 71824, "achieving high": 2854, "match scores": 58499, "indistribution outofdistribution": 45075, "tests using": 96058, "pretrained t5": 74457, "significant advantages": 87677, "present evaluate": 73977, "evaluate datasets": 30163, "datasets study": 22426, "study generalization": 91647, "generalization abilities": 37241, "programs based": 75942, "based type": 9745, "type function": 99206, "data publicly": 21527, "augmentation logical": 8541, "logical form": 57259, "generation logical": 38247, "generation generating": 38178, "generating textual": 37989, "textual descriptions": 96667, "structured table": 91185, "challenge low": 12904, "addressed problem": 3505, "problem annotating": 74991, "logical programs": 57263, "programs control": 75944, "control generation": 19205, "presented task": 74102, "form text": 35787, "generation table": 38441, "real world": 79556, "logical forms": 57260, "require costly": 82236, "costly human": 19910, "human annotation": 42080, "annotation work": 5919, "limits performance": 54505, "performance neural": 71425, "models mitigate": 63621, "mitigate propose": 60280, "generate unpaired": 37639, "tables introduce": 93698, "dual task": 26889, "requires generating": 82382, "generating valid": 37995, "text description": 96169, "semisupervised learning": 86424, "approach jointly": 6917, "jointly train": 48162, "lg model": 53942, "model labeled": 61042, "augmented data": 8564, "data models": 21424, "models benefit": 61916, "extra supervision": 33218, "supervision signals": 92762, "task demonstrate": 94007, "demonstrate approach": 23016, "approach effectively": 6823, "effectively utilize": 27481, "data outperform": 21458, "supervised baselines": 92696, "substantial margin": 92093, "crosslingual transfer": 20427, "monolingual language": 64713, "building block": 11623, "block nlp": 11198, "nlp applications": 66707, "models requires": 64075, "existing models": 31773, "trained english": 97820, "models languages": 62851, "alleviate problem": 5136, "problem introduce": 75028, "introduce novel": 47465, "novel method": 67205, "efficiently effectively": 27846, "effectively transfer": 27474, "new languages": 66438, "model uses": 61559, "subwordbased tokenization": 92178, "learns embedding": 53498, "source model": 89388, "model english": 60805, "target language": 93874, "language token": 51142, "token embeddings": 97132, "semantically similar": 86371, "static word": 90536, "french german": 36367, "german chinese": 38804, "method lowresource": 59356, "lowresource languages": 57618, "proposed methods": 77236, "outperforms models": 69082, "models comparable": 62050, "comparable size": 16405, "method makes": 59357, "makes training": 58078, "environment make": 29623, "make code": 57972, "code models": 15408, "models publicly": 63942, "scaling language": 85331, "models mixtureofexperts": 63623, "models data": 62147, "data compute": 21097, "driven significant": 26849, "significant progress": 87824, "achieve strong": 2593, "strong results": 91068, "results incontext": 83666, "large dense": 51423, "dense models": 23505, "requires significant": 82407, "significant amounts": 87678, "computing resources": 17574, "resources paper": 83023, "family language": 33845, "named glam": 65483, "generalist language": 37220, "sparsely activated": 89548, "activated mixtureofexperts": 2971, "mixtureofexperts architecture": 60361, "training cost": 97981, "cost compared": 19838, "trillion parameters": 98883, "parameters approximately": 70175, "7x larger": 1315, "larger gpt3": 52439, "used train": 100920, "train gpt3": 97743, "flops inference": 35451, "achieving better": 2834, "better overall": 10754, "zeroshot oneshot": 104831, "oneshot performance": 67949, "fewshot semantic": 34310, "trained code": 97805, "code large": 15374, "perform semantic": 70918, "little training": 54685, "incontext examples": 44563, "underlying meaning": 99510, "meaning representation": 58701, "controlled natural": 19250, "models easily": 62269, "language used": 51192, "used pretraining": 100876, "recently models": 80527, "pretrained code": 74242, "code like": 15381, "like openai": 54200, "openai codex": 68148, "risen prominence": 84483, "parsing tasks": 70341, "tasks map": 94851, "map natural": 58336, "language code": 49155, "paper test": 69978, "test hypothesis": 95900, "codex performs": 15676, "performs better": 71800, "better tasks": 10794, "tasks equivalent": 94592, "models evaluate": 62354, "performs similarly": 71822, "representations directly": 82094, "directly meaning": 25507, "similar code": 88059, "code datasets": 15213, "datasets efficient": 22227, "adaptation pretrained": 3091, "models remarkable": 64058, "remarkable success": 81823, "success large": 92209, "trained massive": 97868, "unlabeled unstructured": 100151, "text diverse": 96182, "heterogeneous sources": 41336, "sources information": 89413, "information source": 45632, "source text": 89394, "used training": 100924, "transferring knowledge": 98452, "domain typically": 26466, "paper introduce": 69759, "introduce method": 47445, "adaptation diverse": 3070, "diverse domains": 26013, "domains using": 26606, "using computationally": 101374, "efficient adapter": 27737, "adapter approach": 3110, "based observation": 9638, "tree structure": 98824, "node tree": 66852, "associated set": 8102, "adapter weights": 3115, "frozen pretrained": 36408, "model approach": 60556, "results gpt2": 83628, "gpt2 large": 39303, "large fraction": 51430, "additionally provide": 3340, "time algorithm": 96931, "cost inference": 19853, "human feedback": 42218, "finetune gpt3": 34822, "longform questions": 57384, "questions using": 78970, "using textbased": 101813, "model search": 61381, "humans able": 42568, "able train": 1888, "imitation learning": 43164, "learning optimize": 53314, "answer quality": 6039, "quality human": 78290, "feedback make": 34109, "evaluation factual": 30599, "factual accuracy": 33621, "models collect": 62031, "train evaluate": 97738, "evaluate models": 30230, "dataset questions": 22048, "questions asked": 78785, "model obtained": 61161, "obtained finetuning": 67670, "finetuning gpt3": 35081, "behavior cloning": 9964, "rejection sampling": 81176, "reward model": 84369, "trained predict": 97888, "human preferences": 42332, "preferences models": 73823, "models answers": 61838, "time human": 96971, "69 time": 1195, "learning multilingual": 53292, "multilingual language": 64967, "models largescale": 62876, "competitive fewshot": 16800, "models known": 62837, "jointly represent": 48161, "represent different": 82032, "languages training": 51367, "crosslingual generalization": 20420, "multilingual generative": 64960, "corpus covering": 19609, "covering diverse": 20076, "set languages": 86891, "languages study": 51364, "study zeroshot": 91898, "capabilities wide": 12136, "largest model": 52597, "sets new": 86966, "new state": 66534, "outperforming gpt3": 68999, "gpt3 comparable": 39429, "size multilingual": 88494, "absolute accuracy": 1908, "accuracy improvement": 2288, "language inference": 49274, "benchmark model": 10214, "outperforms gpt3": 69063, "32 training": 781, "examples surpassing": 31289, "supervised baseline": 92695, "prompting approaches": 76502, "approaches showing": 7201, "strong fewshot": 91023, "learning performance": 53326, "performance languages": 71336, "languages achieved": 51228, "demonstration examples": 23461, "examples finally": 31218, "models social": 64220, "social value": 88922, "hate speech": 41108, "speech detection": 89945, "models scaling": 64141, "models methods": 63613, "methods analysis": 59526, "analysis insights": 5557, "insights training": 46141, "language modelling": 49597, "intelligent communication": 46920, "communication systems": 16284, "harnessing large": 41088, "written human": 104514, "knowledge better": 48455, "understand world": 99659, "world paper": 104411, "present analysis": 73930, "analysis transformerbased": 5707, "performance wide": 71709, "range model": 79175, "models tens": 64348, "tens millions": 95756, "millions parameters": 60046, "billion parameter": 11019, "parameter model": 70116, "model called": 60623, "models evaluated": 62356, "diverse tasks": 26117, "tasks achieving": 94342, "achieving stateoftheart": 2884, "performance majority": 71387, "language logical": 49317, "mathematical reasoning": 58586, "provide holistic": 77492, "holistic analysis": 41916, "dataset models": 22008, "application language": 6362, "ai safety": 4540, "blackbox tuning": 11154, "users design": 101093, "design taskspecific": 23857, "taskspecific prompts": 95301, "prompts query": 76806, "optimize task": 68635, "task prompts": 94205, "accessing model": 2120, "model inference": 61005, "inference apis": 45211, "apis paper": 6297, "paper proposes": 69903, "tuning framework": 99042, "framework optimize": 36220, "continuous prompt": 19033, "prepended input": 73897, "derivativefree optimization": 23644, "space intractable": 89446, "labeled samples": 48912, "samples significantly": 85142, "manual prompt": 58276, "tuning model": 99068, "sequencetosequence model": 86694, "model simple": 61407, "generation recent": 38386, "approaches proposed": 7189, "consisting complex": 18318, "dedicated training": 22729, "training paradigms": 98229, "decoding strategies": 22678, "strategies work": 90857, "seq2seq language": 86637, "model bart": 60585, "easily adapted": 27009, "single batch": 88349, "using simple": 101763, "simple training": 88246, "training procedure": 98239, "results benchmarks": 83478, "benchmarks approach": 10310, "existing stateoftheart": 31821, "models artificial": 61857, "intelligence ai": 46798, "ai technologies": 4576, "growing concern": 40650, "used students": 100903, "assignments exams": 8005, "used solve": 100900, "introductory level": 47565, "programming assignments": 75879, "used ai": 100732, "ai tools": 4585, "tools detect": 97385, "using gptj": 101497, "plagiarism detection": 72224, "detection tool": 24370, "despite fact": 24051, "provided examples": 77614, "work code": 104013, "code written": 15573, "detection techniques": 24368, "algorithmically generated": 4951, "generated code": 37675, "conclude discussion": 17732, "implications large": 43389, "directions future": 25466, "models dialog": 62219, "applications present": 6544, "transformerbased neural": 98588, "models specialized": 64237, "parameters pretrained": 70263, "dialog data": 24824, "data web": 21754, "web text": 103498, "text model": 96336, "model scaling": 61375, "improve quality": 43782, "improvements safety": 43996, "factual grounding": 33631, "demonstrate finetuning": 23084, "data enabling": 21181, "enabling model": 28648, "knowledge sources": 48764, "lead significant": 52821, "significant improvements": 87773, "key challenges": 48278, "models responses": 64088, "responses consistent": 83191, "set human": 86883, "human values": 42409, "metric based": 59858, "candidate responses": 11810, "responses using": 83324, "finetuned small": 34966, "data offers": 21450, "offers promising": 67856, "improving model": 44139, "model safety": 61367, "second challenge": 85919, "retrieval language": 83990, "enables model": 28603, "generate responses": 37577, "responses grounded": 83233, "sources responses": 89423, "finally explore": 34529, "explore use": 32754, "blackbox prompt": 11146, "learning pretrained": 53340, "models increasing": 62750, "increasing scale": 44853, "generalpurpose pretrained": 37362, "study efficient": 91593, "efficient adaptation": 27736, "different downstream": 25054, "paper establish": 69692, "discrete prompt": 25628, "finetuning model": 35144, "adapt plms": 3051, "plms prompt": 72431, "discrete prompts": 25630, "access parameters": 2079, "parameters gradients": 70228, "gradients pretrained": 40309, "models outputs": 63744, "outputs given": 69225, "given inputs": 38902, "blackbox setting": 11151, "potential attack": 73024, "policy gradient": 72536, "estimate gradients": 30007, "user devices": 100978, "tasks querying": 94993, "api calls": 6267, "experiments roberta": 32295, "roberta gpt3": 84604, "proposed algorithm": 77172, "algorithm achieves": 4901, "achieves significant": 2782, "manner finally": 58238, "finally conduct": 34514, "case studies": 12470, "analyze method": 5774, "method terms": 59448, "terms various": 95847, "various data": 102397, "data sizes": 21632, "lengths training": 53618, "training budgets": 97954, "optimization objectives": 68605, "objectives prompt": 67525, "learned prompts": 52992, "prompts code": 76664, "receiving increasing": 80160, "model fairness": 60864, "explored paper": 32777, "distillation pruning": 25826, "pruning toxicity": 77859, "toxicity bias": 97596, "bias generative": 10843, "test knowledge": 95906, "pruning methods": 77854, "methods gpt2": 59664, "model consistent": 60697, "reduction model": 80903, "model distillation": 60775, "line research": 54515, "technique work": 95466, "serves reference": 86798, "safe deployment": 84982, "compressed models": 17343, "possibility using": 72886, "deepspeed megatron": 22827, "megatronturing nlg": 58978, "nlg 530b": 66685, "pretrained generalpurpose": 74263, "generalpurpose language": 37348, "achieve stateoftheart": 2589, "stateoftheart accuracies": 90302, "tasks zeroshot": 95271, "finetuning techniques": 35276, "size models": 88493, "models increased": 62748, "hardware software": 41015, "techniques enable": 95507, "models result": 64089, "joint effort": 48149, "present details": 73969, "details training": 24203, "parameters paper": 70259, "paper focus": 69738, "methodology used": 59499, "train model": 97760, "training process": 98242, "process design": 75292, "design training": 23861, "data curation": 21132, "curation techniques": 20647, "key ingredient": 48311, "model finally": 60880, "various evaluation": 102422, "interesting observations": 47156, "new properties": 66506, "achieves superior": 2809, "zero fewshot": 104697, "nlp benchmarks": 66712, "establishes new": 29994, "results believe": 83475, "believe contributions": 10034, "contributions help": 19180, "models natural": 63655, "reinforcement learning": 81140, "learning finetuning": 53161, "finetuning reinforcement": 35216, "learning rl": 53392, "models challenging": 61979, "challenging lack": 13184, "lack large": 49029, "high variance": 41472, "different environments": 25058, "environments recent": 29656, "rl perspective": 84560, "sequence modeling": 86659, "improved results": 43858, "results result": 83817, "paper look": 69805, "investigate transferability": 47705, "vision language": 102980, "language finetuned": 49222, "rl tasks": 84561, "tasks control": 94493, "end propose": 28834, "propose techniques": 77135, "domains results": 26585, "results consistent": 83521, "consistent performance": 18269, "performance gains": 71236, "gains terms": 36872, "accelerating training": 2023, "variety tasks": 102332, "models hope": 62677, "modeling techniques": 61684, "models rl": 64123, "knowledge generative": 48583, "generative modeling": 38654, "tasks completely": 94464, "completely different": 16884, "different domains": 25050, "text distributions": 96181, "samples propose": 85138, "propose automatically": 76939, "learning natural": 53297, "tackle problem": 93735, "larger set": 52474, "binary classification": 11050, "tasks gpt3": 94681, "similar human": 88076, "time performance": 97002, "gpt3 davinci": 39435, "davinci 175b": 22482, "distribution shifts": 25949, "unknown tasks": 100140, "analyses based": 5392, "automatically generated": 8872, "generated descriptions": 37689, "learning large": 53237, "data prompting": 21514, "emerged promising": 28150, "promising paradigm": 76177, "paradigm fewshot": 70032, "models compared": 62055, "compared standard": 16637, "standard supervised": 90208, "supervised setup": 92739, "makes possible": 58070, "original prompt": 68803, "prompt model": 76378, "taskspecific model": 95293, "model case": 60638, "model output": 61189, "output probabilities": 69178, "gpt3 brown": 39417, "calibration model": 11768, "model prompt": 61287, "prompt outputs": 76389, "prompt models": 76379, "finetuning remains": 35222, "prohibitively expensive": 76038, "t0 sanh": 93608, "sanh et": 85179, "set soft": 86936, "soft prompt": 88965, "prompt continuous": 76266, "continuous vectors": 19038, "update prompt": 100351, "model models": 61138, "performance challenging": 71040, "challenging datasets": 13164, "datasets currently": 22202, "models benchmark": 61913, "benchmark corpus": 10108, "detection automatically": 24266, "text academic": 96069, "academic publications": 1991, "based neural": 9632, "achieved performance": 2650, "performance levels": 71354, "make generated": 57995, "indistinguishable written": 45071, "written humans": 104516, "generation various": 38505, "various applications": 102349, "academic publishing": 1992, "address problems": 3476, "problems propose": 75189, "research content": 82523, "dataset case": 21847, "model short": 61398, "short prompt": 87298, "hybrid dataset": 42703, "sentences abstracts": 86540, "abstracts sentences": 1957, "sentences generated": 86554, "evaluate quality": 30271, "quality datasets": 78249, "datasets comparing": 22179, "comparing generated": 16676, "aligned original": 5029, "original texts": 68817, "texts using": 96611, "metrics bleu": 59889, "bleu rouge": 11175, "texts difficult": 96557, "difficult detect": 25289, "better benchmark": 10693, "benchmark evaluate": 10150, "evaluate difficulty": 30168, "difficulty task": 25333, "task distinguishing": 94028, "distinguishing original": 25907, "original generated": 68775, "using stateoftheart": 101787, "stateoftheart classification": 90322, "engagement ai": 28916, "neural narrative": 66245, "large transformer": 52353, "models problem": 63895, "problem determining": 75013, "order properly": 68713, "advent advanced": 3951, "advanced language": 3702, "models openais": 63705, "offers new": 67847, "new possibilities": 66485, "possibilities addressing": 72866, "problem paper": 75056, "output large": 69165, "diagrams maps": 24815, "intended provide": 46934, "provide insight": 77502, "organization information": 68740, "model turn": 61542, "provide means": 77518, "mapping information": 58344, "concrete implementation": 17773, "context openais": 18820, "capability evaluate": 12158, "method able": 59182, "produce highquality": 75636, "new ways": 66577, "evaluating natural": 30464, "processing models": 75506, "models generalization": 62537, "need access": 65897, "access training": 2090, "training testing": 98322, "testing data": 96000, "selecting suitable": 86148, "essential enhancing": 29943, "enhancing machine": 29348, "learning ml": 53268, "ml model": 60369, "performance recent": 71522, "recent empirical": 80254, "empirical studies": 28351, "conduct largescale": 17899, "analysis neural": 5588, "metrics guide": 59925, "type model": 99212, "model selection": 61387, "metrics typically": 59973, "test performance": 95924, "performance paper": 71458, "tasks prior": 94966, "work primarily": 104213, "vision cv": 102963, "tasks ii": 94708, "directly predict": 25513, "access data": 2057, "able provide": 1877, "provide model": 77521, "selection results": 86174, "results large": 83701, "transformers trained": 98637, "different settings": 25194, "including gpt2": 44356, "28 existing": 697, "metrics despite": 59905, "metrics derived": 59904, "particularly useful": 70508, "tasks exhibiting": 94603, "popular metrics": 72653, "extend prior": 32945, "power law": 73380, "large autoregressive": 51395, "french language": 36368, "scaling size": 85358, "size training": 88533, "training autoregressive": 97947, "models enabled": 62312, "novel ways": 67285, "solving natural": 89240, "using zeroshot": 101857, "gpt3 offer": 39502, "multilingual capabilities": 64944, "capabilities zeroshot": 12143, "learning languages": 53236, "languages english": 51264, "remain largely": 81623, "largely unexplored": 52420, "unexplored introduce": 99965, "large open": 52295, "open source": 68109, "model specifically": 61444, "specifically trained": 89885, "models competitive": 62059, "gpt3 range": 39518, "zeroshot benchmarks": 104731, "benchmarks furthermore": 10344, "furthermore provide": 36651, "provide indepth": 77497, "models showing": 64176, "improvement language": 43917, "concepts generated": 17624, "generated gpt3": 37708, "gpt3 semantic": 39526, "playing central": 72363, "conceptual representations": 17648, "enormous time": 29402, "effort required": 27882, "features human": 34003, "human raters": 42342, "use limited": 100609, "limited set": 54466, "set manually": 86897, "manually curated": 58301, "concepts given": 17625, "models asked": 61859, "possible use": 72924, "use models": 100629, "models automatically": 61879, "generate meaningful": 37527, "similar humans": 88077, "features existing": 33997, "existing human": 31721, "feature norms": 33975, "gpt3 generated": 39467, "generated features": 37700, "showed similar": 87405, "similar distribution": 88063, "types generated": 99237, "features generated": 34001, "human norms": 42308, "gpt3 results": 39524, "results highlight": 83636, "highlight potential": 41604, "potential large": 73153, "yield new": 104643, "new approach": 66327, "automatically generating": 8878, "generating interpretable": 37934, "potential use": 73296, "use semantic": 100685, "linguistic studies": 54600, "efficiency largescale": 27696, "open question": 68098, "pretraining bert": 74510, "gpt paper": 39234, "paper demonstrate": 69669, "applied alleviate": 6600, "limitation propose": 54288, "optimizer states": 68649, "states using": 90525, "linear correlation": 54527, "wallclock time": 103302, "provide convergence": 77436, "largescale benchmarks": 52494, "gpt2 pretraining": 39336, "able reduce": 1881, "data volume": 21751, "communication rounds": 16281, "higher training": 41529, "training throughput": 98325, "endtoend training": 28890, "reduction compared": 80900, "compared stateoftheart": 16639, "stateoftheart baseline": 90313, "end task": 28842, "model accuracy": 60480, "accuracy glue": 2274, "validation set": 102128, "surprise large": 92980, "general purpose": 37177, "models discuss": 62240, "scaling laws": 85340, "specific capabilities": 89666, "inputs outputs": 46003, "useful capabilities": 100942, "development models": 24680, "make difficult": 57989, "difficult anticipate": 25282, "model deployment": 60753, "harmful behavior": 41025, "experiments illustrate": 32220, "furthermore analyze": 36577, "combine model": 15972, "model developers": 60766, "models challenges": 61978, "challenges hinder": 13034, "conclude list": 17736, "interventions ai": 47345, "ai community": 4338, "increase chance": 44751, "regulate ai": 81120, "ai systems": 4562, "impact work": 43272, "develop large": 24454, "systems work": 93603, "work attempt": 103997, "simulation models": 88329, "models systems": 64323, "framework built": 36057, "finetuned gpt3": 34899, "control systems": 19226, "systems given": 93465, "conducted experiments": 17957, "experiments gpt3": 32206, "codex demonstrated": 15661, "understanding domainspecific": 99718, "detailed description": 24158, "description process": 23685, "corresponding values": 19806, "models open": 63700, "open door": 68062, "model development": 60767, "focus highlevel": 35523, "holistic thinking": 41922, "failures large": 33719, "human cognitive": 42128, "cognitive biases": 15741, "biases large": 10933, "generate complex": 37405, "complex openended": 16968, "summaries generate": 92496, "generate dialogue": 37428, "produce working": 75667, "working code": 104325, "openended generation": 68256, "systems aim": 93390, "aim identify": 4718, "individual errors": 45080, "draw inspiration": 26800, "inspiration human": 46154, "systematic patterns": 93343, "judgement specifically": 48182, "specifically use": 89887, "use cognitive": 100509, "motivation generate": 64790, "generate hypotheses": 37494, "problems models": 75169, "experiments elicit": 32180, "problems using": 75212, "using code": 101365, "openais codex": 68194, "based input": 9575, "input prompt": 45939, "outputs mimic": 69239, "examples use": 31298, "use framework": 100555, "cognitive science": 15754, "learning systems": 53437, "models building": 61951, "highly capable": 41683, "capable language": 12245, "models trend": 64436, "years despite": 104593, "despite great": 24056, "great performance": 40475, "high computational": 41387, "cost common": 19837, "need separate": 65992, "model desirable": 60758, "performance case": 71033, "compression paper": 17365, "proposes effective": 77269, "dynamic inference": 26921, "inference approach": 45213, "approach called": 6766, "inference large": 45255, "models end": 62325, "decision making": 22581, "latent space": 52640, "space method": 89454, "method easily": 59271, "unlike existing": 100168, "tasks method": 94861, "sequencetosequence tasks": 86698, "tasks translation": 95213, "set experiments": 86873, "experiments t5": 32311, "t5 bert": 93619, "glue superglue": 39033, "code demo": 15219, "demo available": 22984, "paradigm finetuning": 70033, "models parameterefficient": 63768, "learn taskspecific": 52969, "feature maps": 33974, "time enabling": 96958, "enabling flexible": 28635, "information sharing": 45624, "competitive strong": 16823, "multitask learning": 65359, "parameters achieving": 70171, "computational efficiency": 17456, "empirical experiments": 28326, "superior performances": 92662, "understanding benchmarks": 99676, "sizes training": 88568, "training language": 98156, "models follow": 62498, "follow instructions": 35648, "instructions human": 46512, "make better": 57969, "following users": 35703, "users intent": 101122, "example large": 31164, "generate outputs": 37545, "models aligned": 61821, "paper avenue": 69621, "aligning language": 5040, "models user": 64469, "user intent": 100997, "tasks finetuning": 94644, "finetuning human": 35086, "prompts submitted": 76829, "openai api": 68141, "collect dataset": 15861, "using supervised": 101798, "model outputs": 61190, "outputs use": 69258, "supervised model": 92730, "using reinforcement": 101732, "learning human": 53188, "feedback resulting": 34133, "models instructgpt": 62789, "13b parameter": 299, "instructgpt model": 46294, "model preferred": 61263, "preferred outputs": 73835, "175b gpt3": 405, "gpt3 despite": 39441, "despite having": 24061, "generation having": 38191, "public nlp": 77935, "nlp datasets": 66723, "makes simple": 58074, "results finetuning": 83615, "promising direction": 76159, "human intent": 42250, "tuning large": 99055, "large neural": 52278, "learning expensive": 53140, "expensive process": 31922, "maximal update": 58634, "remain stable": 81630, "leads new": 52901, "tuning paradigm": 99073, "target model": 93879, "smaller model": 88765, "model zeroshot": 61602, "zeroshot transfer": 104881, "pip install": 72138, "lexical semantics": 53926, "semantics word": 86398, "example words": 31181, "work shown": 104266, "shown large": 87494, "models surprisingly": 64309, "considered natural": 18199, "correct classification": 19663, "english sentences": 29102, "early layer": 26979, "layer embeddings": 52718, "lexical word": 53932, "representations words": 82135, "words semantically": 103961, "highlight models": 41598, "use context": 100512, "prompting large": 76555, "providing natural": 77774, "instructions prompts": 46549, "useful new": 100951, "paradigm improving": 70035, "performance large": 71338, "models zeroshot": 64562, "setting recent": 87021, "work aimed": 103982, "improve prompts": 43781, "manual rewriting": 58279, "timeconsuming requires": 97055, "requires subjective": 82412, "extremely computationally": 33386, "models feasible": 62452, "apibased models": 6287, "instructional prompt": 46425, "prompt search": 76409, "search approach": 85855, "task instructions": 94105, "instructions large": 46525, "instructions designed": 46489, "humans automatically": 42576, "improves average": 44012, "average task": 9181, "430 percentage": 945, "points classification": 72492, "tasks natural": 94880, "dataset similar": 22077, "opt bloom": 68530, "examples prompts": 31273, "tuning approaches": 99018, "improve accuracy": 43663, "accuracy code": 2219, "training instances": 98148, "generation nlg": 38298, "unclear extent": 99401, "instance models": 46215, "similar training": 88119, "training samples": 98274, "work study": 104282, "texts comparison": 96551, "finetuned lms": 34933, "domainspecific corpora": 26619, "extensively used": 33153, "used practice": 100874, "widely exist": 103723, "decoding methods": 22669, "vary based": 102636, "based corpus": 9484, "words phrases": 103960, "core ideas": 19545, "training sets": 98288, "ethical implications": 30072, "data increase": 21321, "raising concerns": 79088, "larger training": 52479, "sensitive information": 86461, "information findings": 45483, "cast doubt": 12569, "writing tasks": 104504, "data source": 21637, "powerful ubiquitous": 73475, "tool developing": 97281, "developing systems": 24597, "generate programs": 37559, "proven challenging": 77378, "challenging recent": 13219, "recent largescale": 80287, "models demonstrated": 62181, "impressive ability": 43575, "ability generate": 1657, "generate code": 37393, "able complete": 1833, "complete simple": 16874, "programming tasks": 75935, "perform poorly": 70908, "unseen problems": 100274, "problems require": 75200, "problemsolving skills": 75239, "simply translating": 88300, "instructions code": 46477, "code example": 15247, "competitive programming": 16818, "programming problems": 75924, "complex natural": 16962, "extremely challenging": 33385, "challenging address": 13145, "address gap": 3397, "gap introduce": 36937, "alphacode code": 5244, "create novel": 20170, "solutions problems": 89152, "programming competitions": 75890, "achieved average": 2611, "key components": 48281, "performance extensive": 71201, "dataset training": 22110, "evaluation large": 30646, "transformerbased architectures": 98555, "largescale model": 52546, "sampling explore": 85156, "search space": 85894, "automatic detection": 8770, "factual knowledge": 33639, "work focus": 104100, "focus problem": 35549, "distinguishing human": 25905, "human written": 42423, "written news": 104520, "replacing entities": 81937, "factually incorrect": 33663, "propose neural": 77036, "network based": 66132, "news articles": 66611, "reasoning facts": 79881, "article proposed": 7551, "graph convolutional": 40366, "convolutional neural": 19471, "textual information": 96676, "information news": 45556, "article create": 7534, "create challenging": 20146, "datasets task": 22433, "task considering": 93990, "considering various": 18222, "various strategies": 102585, "strategies generate": 90817, "generate new": 37537, "entity generation": 29561, "generation gpt2": 38184, "settings proposed": 87089, "model matches": 61122, "matches outperforms": 58508, "models seek": 64152, "seek knowledge": 86066, "search generation": 85876, "generation dialogue": 38119, "prompt completion": 76252, "completion language": 16897, "lms recently": 57163, "generate factual": 37450, "zhou et": 104893, "combination retrieval": 15958, "recent approach": 80220, "internet search": 47250, "method applies": 59206, "single lm": 88376, "generating knowledge": 37935, "knowledge generating": 48582, "final response": 34494, "response using": 83168, "dialogue model": 24878, "stateoftheart model": 90399, "chen et": 14511, "terms consistency": 95803, "prompt completions": 76253, "standard language": 90186, "outperforms gpt2": 69062, "gpt2 radford": 39338, "2019 gpt3": 526, "terms factuality": 95819, "larger model": 52452, "model code": 60658, "learning dl": 53114, "techniques involving": 95540, "finetuning large": 35108, "impressive performance": 43612, "individuals alzheimers": 45109, "alzheimers disease": 5291, "disease ad": 25735, "questions remain": 78932, "ability generalize": 1652, "generalize small": 37302, "available research": 9085, "parameters directly": 70201, "gpt2 pretrained": 39332, "pretrained general": 74262, "general english": 37125, "text paired": 96348, "approaches stateoftheart": 7205, "text data": 96159, "data widely": 21755, "description task": 23689, "conversations furthermore": 19416, "generates text": 37853, "text characteristics": 96105, "better understanding": 10805, "understanding relationships": 99865, "inner workings": 45839, "human speech": 42371, "speech language": 89951, "language characteristics": 49152, "outofdistribution generalization": 68881, "generalization natural": 37269, "nlp algorithms": 66705, "generalization remains": 37281, "remains significant": 81696, "significant challenge": 87703, "challenge paper": 12913, "addresses issue": 3515, "data multiple": 21429, "multiple source": 65259, "unknown target": 100139, "target domains": 93866, "domains training": 26601, "training innovative": 98145, "innovative framework": 45853, "framework employs": 36109, "t5 encoderdecoder": 93624, "input example": 45893, "hypernetwork generate": 42716, "generate task": 37617, "method tasks": 59443, "classification natural": 14765, "advanced version": 3760, "input examples": 45894, "fewshot gpt3": 34240, "gpt3 demonstrating": 39440, "demonstrating effectiveness": 23425, "use cases": 100487, "knowledge marks": 48671, "marks application": 58411, "feedforward layers": 34162, "vocabulary space": 103200, "space transformerbased": 89469, "modern nlp": 64615, "construction process": 18474, "work make": 104173, "make substantial": 58033, "ffn layers": 34331, "layers building": 52743, "building blocks": 11625, "token representation": 97153, "changing distribution": 13303, "distribution vocabulary": 25953, "ffn updates": 34332, "leverage findings": 53725, "findings controlling": 34651, "reduce toxicity": 80807, "computation efficiency": 17417, "efficiency simple": 27721, "early exit": 26973, "models positional": 63836, "positional encodings": 72812, "positional information": 72813, "lms gpt3": 57131, "typically require": 99300, "positional encoding": 72811, "positional embeddings": 72810, "explicit positional": 32535, "standard models": 90195, "robust different": 84651, "datasets model": 22339, "reveal models": 84160, "models acquire": 61778, "network effectively": 66139, "missing information": 60203, "model infer": 61004, "absolute position": 1921, "position findings": 72803, "findings indicate": 34683, "indicate causal": 44979, "parameters models": 70255, "various factors": 102429, "factors including": 33595, "including need": 44429, "distribute computation": 25921, "data ensure": 21188, "results work": 83928, "simplifies process": 88278, "process building": 75275, "models scale": 64138, "ease use": 26999, "data evaluation": 21196, "evaluation pipelines": 30713, "opensource libraries": 68353, "models hundreds": 62688, "parameters datasets": 70195, "datasets multiple": 22344, "decoderonly architectures": 22642, "source available": 89340, "efficient accurate": 27735, "popular approach": 72614, "approach reduce": 7000, "reduce compute": 80769, "compute memory": 17508, "weight matrices": 103524, "methods seen": 59793, "seen widespread": 86099, "widespread adoption": 103778, "finetuning lack": 35103, "address issues": 3435, "issues propose": 48011, "represent commonly": 82030, "optimal solution": 68571, "unlock new": 100197, "ways train": 103422, "finetune sparse": 34857, "sparse dense": 89529, "models empirically": 62306, "vit gpt2": 103160, "gpt2 training": 39359, "comparable model": 16382, "model quality": 61305, "technique called": 95437, "serve useful": 86780, "useful intermediate": 100950, "intermediate representation": 47215, "bert pretraining": 10544, "optimized implementation": 68641, "mlperf 11": 60404, "bert finetuning": 10513, "comparable accuracy": 16363, "shown achieve": 87436, "achieve remarkable": 2566, "remarkable performance": 81783, "variety natural": 102309, "taskspecific training": 95304, "adapt model": 3048, "model particular": 61215, "understanding impact": 99767, "learning trained": 53457, "540billion parameter": 1071, "pathways language": 70596, "model palm": 61197, "new ml": 66458, "highly efficient": 41696, "efficient training": 27828, "training multiple": 98212, "tpu pods": 97610, "stateoftheart fewshot": 90340, "learning results": 53391, "generation benchmarks": 38051, "benchmarks number": 10388, "number tasks": 67380, "tasks palm": 94918, "palm 540b": 69543, "540b achieves": 1066, "breakthrough performance": 11399, "performance outperforming": 71451, "outperforming finetuned": 68998, "finetuned stateoftheart": 34975, "suite multistep": 92475, "multistep reasoning": 65336, "reasoning tasks": 80043, "tasks outperforming": 94913, "outperforming average": 68990, "average human": 9158, "performance recently": 71523, "recently released": 80544, "bigbench benchmark": 10993, "significant number": 87801, "bigbench tasks": 10996, "tasks showed": 95105, "improvements model": 43978, "strong capabilities": 91013, "capabilities multilingual": 12006, "multilingual tasks": 65012, "tasks source": 95127, "generation demonstrate": 38111, "wide array": 103644, "benchmarks additionally": 10307, "provide comprehensive": 77425, "comprehensive analysis": 17196, "analysis bias": 5444, "study extent": 91632, "data memorization": 21401, "discuss ethical": 25657, "related large": 81202, "discuss potential": 25676, "potential mitigation": 73199, "mitigation strategies": 60313, "lms shown": 57168, "knowledge pretraining": 48708, "pretraining corpora": 74513, "knowledge given": 48586, "generation used": 38492, "focus modifying": 35542, "pretraining task": 74608, "task finetuning": 94065, "incorporate knowledge": 44669, "require additional": 82225, "present knowledge": 74003, "novel decoding": 67144, "generative lms": 38645, "knowledge memory": 48673, "learning diverse": 53113, "lms gpt2": 57130, "gpt2 bart": 39256, "stateoftheart models": 90400, "models particularly": 63776, "particularly strong": 70502, "performance fewshot": 71214, "fewshot scenarios": 34308, "evaluation confirms": 30553, "generate relevant": 37573, "language input": 49281, "context compared": 18740, "compared multiple": 16595, "multiple baselines": 65143, "baselines finally": 9832, "alleviates exposure": 5140, "exposure bias": 32899, "generation quality": 38371, "generating longer": 37937, "longer sequences": 57370, "accuracy various": 2382, "transformerbased natural": 98584, "models attention": 61870, "correlation score": 19777, "words sentence": 103962, "small subset": 88732, "highly correlates": 41692, "attention scores": 8377, "main challenge": 57815, "scores subsequent": 85782, "function training": 36492, "backpropagation training": 9281, "optimal balance": 68559, "balance accuracy": 9300, "best utilize": 10658, "mechanism evaluate": 58795, "bert albert": 10498, "gpt2 vision": 39367, "results average": 83472, "attentionbased language": 8391, "address highly": 3411, "highly complex": 41686, "complex tasks": 17016, "domains models": 26554, "models encounter": 62321, "social networks": 88905, "complex language": 16948, "careful evaluation": 12401, "role context": 84764, "addressing tasks": 3557, "tasks domain": 94559, "domain natural": 26419, "stateoftheart multilingual": 90411, "models applied": 61841, "language specific": 51104, "face challenges": 33433, "challenges present": 13103, "proposed far": 77202, "pretrained massive": 74382, "using roberta": 101744, "used applications": 100742, "social network": 88902, "special emphasis": 89603, "spreading misinformation": 90043, "evaluated tasks": 30365, "tasks compared": 94460, "mbert xlmroberta": 58671, "multilingual transformers": 65019, "utility approach": 101889, "applications case": 6420, "spreading disinformation": 90042, "platforms twitter": 72319, "leveraging pretrained": 53889, "text recent": 96385, "advances natural": 3887, "construction large": 18470, "language representation": 51086, "representation models": 82067, "models opening": 63712, "opening new": 68276, "new perspectives": 66483, "investigate usage": 47707, "usage incontext": 100440, "models address": 61790, "information extraction": 45467, "extraction process": 33326, "fashion particular": 33885, "particular investigate": 70412, "model incontext": 60997, "limited number": 54447, "number samples": 67375, "potential approach": 73014, "address training": 3496, "data challenge": 21041, "based nlp": 9636, "nlp techniques": 66822, "challenge posed": 12918, "control flow": 19202, "joint learning": 48154, "learning token": 53453, "extraction text": 33337, "generation paper": 38313, "paper introduces": 69770, "generation different": 38121, "prior studies": 74862, "studies work": 91463, "datasets design": 22215, "design simple": 23842, "effective model": 27332, "tokens context": 97186, "context contribute": 18746, "labels work": 48957, "annotation data": 5890, "learning promising": 53355, "results benchmark": 83476, "scenarios model": 85460, "model better": 60608, "model methods": 61130, "public health": 77924, "way people": 103394, "media provide": 58848, "public perceptions": 77939, "health issues": 41165, "issues especially": 47987, "policy recommendations": 72552, "method used": 59457, "used explore": 100798, "explore potential": 32716, "specifically harness": 89833, "generative model": 38650, "gpt2 directly": 39270, "demonstrate used": 23218, "finally introduce": 34540, "novel evaluation": 67154, "evaluation scheme": 30766, "statistical testing": 90558, "testing allows": 95993, "capture semantics": 12366, "20 billion": 484, "openly available": 68287, "available public": 9083, "permissive license": 71840, "knowledge largest": 48655, "autoregressive model": 8971, "available weights": 9099, "weights time": 103567, "work models": 104178, "models architecture": 61849, "architecture training": 7378, "training evaluate": 98094, "evaluate performance": 30243, "performance evaluated": 71184, "similarly sized": 88159, "models opensource": 63714, "opensource training": 68412, "evaluation code": 30542, "studies report": 91437, "models successfully": 64293, "successfully solve": 92284, "tasks zero": 95269, "learning paradigms": 53322, "opens new": 68295, "possibilities using": 72868, "gptlike models": 40229, "models 13": 61706, "13 billion": 257, "billion 13": 11014, "parameters trained": 70295, "languages 25": 51226, "language families": 49216, "families using": 33842, "colossal clean": 15935, "clean crawled": 14869, "crawled corpus": 20138, "gpt3 architecture": 39403, "architecture using": 7381, "sparse attention": 89526, "inference steps": 45301, "performance par": 71462, "resource languages": 82966, "architecture design": 7340, "data preparation": 21491, "train small": 97775, "versions model": 102829, "model choose": 60654, "measure model": 58742, "model perplexity": 61247, "evaluate wide": 30305, "sequence labeling": 86652, "probing models": 74984, "evaluated zeroshot": 30371, "fewshot methods": 34278, "methods furthermore": 59656, "furthermore compared": 36585, "compared classification": 16515, "tasks nlp": 94889, "models generalize": 62539, "unseen tasks": 100278, "address question": 3479, "supernaturalinstructions benchmark": 92685, "diverse nlp": 26061, "expertwritten instructions": 32427, "task types": 94280, "types including": 99239, "including limited": 44403, "classification extraction": 14746, "large diverse": 51424, "diverse collection": 25995, "collection tasks": 15908, "tasks enables": 94582, "crosstask generalization": 20445, "instructions training": 46569, "tasks evaluating": 94597, "unseen ones": 100273, "variety incontext": 102299, "incontext instructions": 44570, "plain language": 72229, "language task": 51124, "task definitions": 94005, "examples experiments": 31216, "instructionfollowing models": 46462, "despite order": 24088, "order magnitude": 68706, "magnitude smaller": 57807, "scaling parameters": 85352, "tasks number": 94894, "instances task": 46230, "hope dataset": 41948, "future progress": 36751, "models evaluating": 62358, "underlying user": 99522, "user information": 100993, "information need": 45554, "clarifying questions": 14686, "important feature": 43507, "modern conversational": 64593, "evaluation systems": 30804, "questions requires": 78939, "significant human": 87759, "human effort": 42161, "timeconsuming expensive": 97045, "expensive paper": 31920, "propose conversational": 76956, "user simulator": 101042, "evaluation conversational": 30556, "automatically answering": 8843, "experiments including": 32222, "including automated": 44276, "automated natural": 8720, "responses generated": 83223, "underlying information": 99494, "humangenerated answers": 42486, "answers make": 6195, "make steps": 58032, "multiturn interactions": 65389, "interactions conversational": 47051, "simulated user": 88318, "user goal": 100990, "user need": 101013, "currently available": 20804, "available datasets": 9028, "data acquisition": 20945, "gpt2based model": 39373, "capable providing": 12260, "providing accurate": 77729, "capabilities model": 12003, "provide code": 77420, "data pretrained": 21498, "used research": 100890, "media platforms": 58845, "nlp extensively": 66730, "extensively studied": 33150, "pretrained transformerbased": 74480, "gaining popularity": 36854, "data scarce": 21590, "models present": 63859, "largescale real": 52568, "mixed data": 60324, "bert models": 10537, "using masked": 101606, "models subsequent": 64284, "pos tagging": 72735, "generative transformer": 38723, "corpus largest": 19639, "interactive tool": 47117, "opaque nature": 68039, "methods focus": 59653, "input features": 45899, "process largely": 75347, "transformerbased lms": 98572, "provides finegrained": 77666, "models internal": 62803, "powerful framework": 73435, "recent method": 80294, "token representations": 97154, "demonstrate utility": 23221, "effective interventions": 27316, "process release": 75394, "opensource tool": 68410, "effect pretraining": 27249, "learning largescale": 53243, "model recent": 61315, "models reported": 64064, "ability indepth": 1683, "analysis incontext": 5550, "learning occurs": 53309, "performance changes": 71041, "changes training": 13301, "size pretraining": 88519, "pretraining corpus": 74514, "corpus incontext": 19633, "indepth investigation": 44959, "introduce following": 47427, "following observations": 35693, "performance heavily": 71286, "heavily depends": 41211, "domain source": 26449, "corpus does": 19613, "does necessarily": 26312, "learning incontext": 53212, "does result": 26328, "learning pretraining": 53343, "related downstream": 81191, "task does": 94030, "task especially": 94039, "fewshot setting": 34311, "does correlate": 26285, "low perplexity": 57523, "incontext fewshot": 44566, "performance training": 71642, "language feedback": 49218, "perform tasks": 70931, "line preferences": 54514, "generating offensive": 37945, "text factually": 96207, "issue learning": 47941, "learning simple": 53416, "limited information": 54431, "preferences human": 73819, "propose learn": 77012, "learn natural": 52953, "outputs using": 69259, "model initial": 61008, "feedback generate": 34084, "given input": 38900, "experiments evaluate": 32187, "evaluate language": 30208, "models accurately": 61750, "incorporate feedback": 44668, "finding large": 34627, "models 175b": 61711, "parameters using": 70299, "using 100": 101272, "100 samples": 132, "samples humanwritten": 85120, "feedback learning": 34103, "summarization ability": 92514, "contrastive learning": 19102, "learning promptbased": 53360, "promptbased fewshot": 76458, "fewshot language": 34248, "language learners": 49307, "using natural": 101628, "prompts incontext": 76751, "learning inspired": 53218, "inspired work": 46190, "work better": 104003, "better finetuning": 10714, "models paradigm": 63765, "line work": 54517, "learning framework": 53166, "trained limited": 97863, "limited examples": 54418, "examples specifically": 31287, "specifically propose": 89864, "supervised contrastive": 92700, "ones different": 67925, "different classes": 25014, "different views": 25253, "contrastive loss": 19108, "modeling mlm": 61655, "method improve": 59325, "improve stateoftheart": 43808, "stateoftheart methods": 90391, "methods diverse": 59606, "set 15": 86836, "model applied": 60553, "vector representations": 102703, "conversational systems": 19403, "systems demonstrate": 93424, "idioms figurative": 42949, "figurative language": 34452, "responses prompts": 83283, "prompts containing": 76675, "languages cultures": 51253, "pose great": 72743, "great challenge": 40467, "tasks information": 94750, "translation mt": 98723, "conversational ai": 19354, "tasks investigate": 94770, "generation achieve": 38008, "stateoftheart sota": 90477, "macro f1": 57790, "f1 score": 33419, "t5 model": 93641, "model dialogue": 60768, "evaluated using": 30368, "using automatic": 101305, "automatic metric": 8803, "results model": 83729, "corpus generates": 19626, "similar model": 88086, "huggingface hub": 42058, "public access": 77904, "learning fewshot": 53156, "fewshot incontext": 34242, "learning icl": 53198, "enables pretrained": 28610, "gradientbased training": 40304, "examples input": 31233, "substantial computational": 92067, "computational memory": 17468, "storage costs": 90733, "processing training": 75588, "finetuning peft": 35174, "peft adapter": 70704, "modules prompt": 64685, "tuning sparse": 99101, "methods offers": 59742, "offers alternative": 67822, "alternative paradigm": 5272, "set parameters": 86913, "enable model": 28558, "perform new": 70903, "task paper": 94175, "compare fewshot": 16456, "better accuracy": 10675, "accuracy dramatically": 2247, "lower computational": 57555, "computational costs": 17450, "way introduce": 103377, "peft method": 70708, "stronger performance": 91093, "relatively tiny": 81335, "new parameters": 66481, "parameters propose": 70267, "t0 model": 93607, "applied new": 6624, "tasks taskspecific": 95184, "taskspecific tuning": 95307, "validate effectiveness": 102093, "tasks applying": 94376, "superhuman performance": 92629, "performance time": 71633, "outperforming stateoftheart": 69009, "used experiments": 100795, "coreference resolution": 19554, "crucial task": 20539, "task understanding": 94282, "discourse language": 25588, "language large": 49303, "benefits large": 10477, "models llms": 62965, "systems largely": 93502, "largely rely": 52414, "rely supervised": 81592, "expensive difficult": 31909, "engineering paper": 28999, "pretrained llms": 74372, "llms abilities": 55398, "abilities limitations": 1531, "experiments gpt2": 32205, "gpt2 gptneo": 39294, "leading inconsistent": 52853, "inconsistent results": 44555, "stateoftheart generative": 90347, "good ai": 39106, "designing ai": 23972, "challenging evaluation": 13173, "evaluation methods": 30668, "ability paper": 1732, "paper reports": 69935, "conversational agents": 19349, "responses terms": 83319, "speak like": 89589, "student help": 91251, "method builds": 59223, "reliability comparative": 81492, "benchmark assessing": 10078, "assessing quality": 7932, "texttotext models": 96644, "benchmark consists": 10104, "consists diverse": 18330, "tasks datasets": 94511, "benchmark adapted": 10067, "translation summarization": 98740, "additionally present": 3333, "finetuned various": 34992, "tasks single": 95119, "single training": 88400, "denoising pretraining": 23497, "initializing model": 45798, "multilingual t5": 65011, "t5 mt5": 93643, "scores tasks": 85784, "tasks summarization": 95158, "results encoderdecoder": 83580, "encoderdecoder architectures": 28718, "instruction induction": 46344, "examples natural": 31257, "task descriptions": 94011, "descriptions large": 23712, "able perform": 1871, "task conditioning": 93986, "inputoutput demonstrations": 45976, "known incontext": 48849, "learning language": 53233, "models explicitly": 62407, "prompting generate": 76537, "language instruction": 49283, "explore ability": 32625, "ability introduce": 1691, "introduce instruction": 47436, "compile dataset": 16838, "dataset consisting": 21876, "generated instruction": 37722, "generate instructions": 37509, "does emerge": 26290, "model large": 61045, "instructions instructgpt": 46518, "model reaches": 61310, "surprising result": 92993, "result suggests": 83412, "learning paradigm": 53321, "parameters data": 70194, "bayesian inference": 9911, "rl frequently": 84556, "employed finetuning": 28426, "generated sequences": 37780, "social bias": 88843, "lm policy": 57077, "maximise expected": 58637, "reward function": 84366, "captures human": 12375, "analyze challenges": 5744, "challenges associated": 12968, "treating language": 98801, "rl approach": 84549, "objective finetuning": 67498, "finetuning lms": 35136, "original distribution": 68769, "kullbackleibler kl": 48879, "kl divergence": 48394, "variational inference": 102263, "update prior": 100350, "evidence provided": 30985, "problem offers": 75055, "objectives finetuning": 67521, "general point": 37172, "formal framework": 35791, "models problems": 63896, "distribution conditional": 25933, "using seq2seq": 101758, "models conditional": 62080, "generation learns": 38237, "input sequence": 45953, "sequence tokens": 86669, "set nlp": 86905, "tasks entity": 94591, "entity typing": 29596, "dialogue emotion": 24861, "fully leverage": 36457, "leverage key": 53732, "key properties": 48332, "novel algorithm": 67085, "algorithm effectively": 4911, "model set": 61396, "set size": 86933, "taking advantage": 93831, "augmentation approach": 8523, "approach endows": 6834, "data additional": 20947, "additional annotations": 3225, "average relative": 9174, "improvement 20": 43872, "datasets various": 22460, "models bart": 61894, "bart t5": 9389, "code use": 15557, "question decomposition": 78659, "need large": 65968, "performance natural": 71418, "growing number": 40661, "number new": 67365, "new benchmarks": 66352, "building new": 11639, "cost time": 19883, "explore alternative": 32632, "models strengths": 64260, "models answer": 61835, "question set": 78708, "simpler questions": 88253, "models solve": 64224, "range datasets": 79148, "datasets involving": 22306, "involving various": 47877, "various forms": 102435, "forms reasoning": 35854, "possible significantly": 72919, "improve model": 43732, "decomposition approach": 22698, "approach provides": 6992, "provides viable": 77727, "viable option": 102849, "people nlp": 70740, "nlp research": 66767, "meaningful way": 58716, "provide alternate": 77402, "building large": 11635, "large lms": 52242, "lms code": 57108, "qa datasets": 78128, "datasets improve": 22295, "ability generative": 1668, "generate text": 37622, "text improved": 96298, "enabling use": 28663, "use generative": 100560, "approach improve": 6890, "data generation": 21262, "generation context": 38096, "context generation": 18780, "questionanswer qa": 78729, "qa pair": 78142, "datasets training": 22445, "training context": 97973, "tasks question": 94994, "task domain": 94031, "domain finally": 26385, "finally use": 34574, "use finetuned": 100553, "relevant contexts": 81452, "synthetic training": 93301, "tasks perform": 94939, "experiments multiple": 32252, "classification datasets": 14736, "datasets demonstrate": 22206, "demonstrate substantial": 23198, "improvements performance": 43988, "datasets require": 22397, "require highlevel": 82257, "highlevel reasoning": 41563, "reasoning abilities": 79751, "datasets tend": 22435, "availability large": 9000, "growing using": 40672, "data create": 21127, "generation problem": 38335, "field natural": 34393, "generate realistic": 37568, "trained various": 97927, "recipe data": 80575, "data present": 21495, "application generate": 6355, "generate novel": 37539, "model data": 60727, "lowresource nlp": 57629, "paper focuses": 69741, "existing solutions": 31817, "heuristic rules": 41339, "synonym replacement": 93161, "gpt2 using": 39365, "produce new": 75648, "taskspecific knowledge": 95289, "issue propose": 47953, "propose knowledge": 77011, "mixture data": 60349, "augmentation model": 8545, "pretrained mixture": 74388, "framework knowledge": 36184, "knowledge single": 48759, "utilize knowledge": 101940, "task limited": 94130, "instances specifically": 46229, "examples various": 31301, "tasks unified": 95221, "unified texttotext": 100041, "texttotext format": 96639, "objectives different": 67518, "different granularity": 25072, "knowledge attempt": 48431, "multitask training": 65370, "experiments synthetic": 32309, "data produced": 21509, "successfully improves": 92281, "performance strong": 71597, "strong pretrained": 91063, "large margin": 52245, "nlp benchmark": 66711, "successfully transfers": 92288, "task knowledge": 94112, "types seen": 99264, "seen unseen": 86098, "benchmark evaluating": 10155, "evaluating language": 30440, "syntactic semantic": 93180, "generation prompted": 38352, "semantic representation": 86340, "representation introduce": 82058, "constrained language": 18377, "output representations": 69185, "constrained decoding": 18375, "generate valid": 37642, "low medium": 57518, "high resource": 41450, "various language": 102457, "models different": 62224, "different data": 25036, "benchmark supports": 10257, "using promptbased": 101698, "finetuning benchmark": 35023, "benchmark language": 10197, "including gpt3": 44359, "gpt3 variants": 39554, "similar performance": 88098, "surpass stateoftheart": 92915, "pretraining work": 74622, "work try": 104295, "nlp technology": 66824, "past decades": 70566, "potential new": 73210, "new learning": 66444, "paradigm nlp": 70046, "role data": 84767, "finetuning downstream": 35050, "process data": 75290, "storing accessing": 90749, "large data": 51415, "ease access": 26997, "pretraining models": 74575, "valuable information": 102150, "raw data": 79448, "models surpass": 64305, "surpass strong": 92917, "popular datasets": 72624, "variety nlp": 102315, "tasks achieve": 94340, "college entrance": 15923, "entrance examination": 29600, "specifically proposed": 89868, "points higher": 72502, "higher average": 41488, "average scores": 9178, "15 points": 330, "higher gpt3": 41506, "high score": 41460, "gaokao benchmark": 36906, "addition test": 3215, "test model": 95918, "total score": 97564, "evaluating performance": 30471, "turing test": 99123, "performance humans": 71292, "used test": 100914, "better humancomputer": 10730, "systems perform": 93529, "humans computers": 42583, "perform test": 70932, "test using": 95960, "effect size": 27253, "size demonstrate": 88463, "demonstrate use": 23216, "use test": 100706, "published experimental": 78006, "results surprisingly": 83885, "decrease performance": 22716, "performance improvement": 71299, "improvement approximately": 43880, "corresponding improvement": 19795, "36 improvement": 852, "experimentally investigate": 32086, "higher performance": 41514, "human programmers": 42337, "stateoftheart ai": 90304, "ai case": 4322, "50 human": 1014, "task example": 94044, "generation large": 38226, "llms code": 55626, "use code": 100507, "code assistants": 15128, "github copilot": 38836, "introducing domainspecific": 47544, "domainspecific knowledge": 26630, "knowledge prompt": 48718, "prompt design": 76273, "design process": 23827, "prompt generator": 76333, "learns generate": 53501, "prompts using": 76846, "using prompt": 101695, "repository context": 82025, "imports parent": 43556, "doesnt require": 26338, "require access": 82223, "access weights": 2093, "weights llm": 103558, "blackbox access": 11126, "access llm": 2070, "llm conduct": 55016, "conduct experiments": 17865, "remarkably high": 81843, "model predict": 61258, "achieve significant": 2576, "release code": 81352, "data trained": 21699, "trained checkpoints": 97803, "dataset chinese": 21851, "unique form": 100084, "task demands": 94006, "general knowledge": 37140, "language paper": 50948, "paper construct": 69656, "dataset named": 22012, "simplified chinese": 88274, "model generation": 60937, "generation stage": 38426, "model produces": 61285, "descriptions generated": 23705, "order assess": 68689, "assess performance": 7865, "retrievalbased generative": 84061, "strategies test": 90853, "bert chatgpt": 10506, "chatgpt chatglm": 13608, "test results": 95931, "reveal current": 84142, "cognitive psychology": 15752, "gpt3 study": 39536, "study gpt3": 91652, "gpt3 recent": 39520, "recent large": 80277, "using tools": 101816, "tools cognitive": 97374, "specifically assess": 89781, "decisionmaking information": 22597, "information search": 45618, "causal reasoning": 12667, "similarly better": 88157, "better human": 10728, "human subjects": 42378, "able make": 1863, "outperforms humans": 69070, "multiarmed bandit": 64872, "modelbased reinforcement": 61610, "small perturbations": 88719, "reasoning task": 80041, "task results": 94231, "results enrich": 83585, "enrich understanding": 29408, "understanding current": 99706, "current large": 20705, "pave way": 70645, "way future": 103359, "future investigations": 36732, "psychology study": 77891, "increasingly capable": 44867, "artificial agents": 7587, "selfsupervised pretraining": 86274, "human motion": 42304, "motion forecasting": 64764, "severity estimation": 87139, "neurological disorder": 66304, "scoring systems": 85797, "rating scale": 79422, "prediction using": 73730, "using video": 101845, "provides promising": 77695, "impairments limited": 43293, "limited size": 54467, "data hinders": 21295, "model ability": 60472, "potential clinical": 73053, "clinical data": 14915, "inspired recent": 46182, "gpt3 use": 39551, "use human": 100575, "transformer pretrained": 98543, "public datasets": 77916, "applied clinical": 6601, "data predict": 21490, "method outperforms": 59376, "outperforms previous": 69097, "previous approaches": 74660, "approaches rely": 7195, "rely solely": 81590, "margin achieving": 58359, "achieving f1": 2847, "score 076": 85689, "clinical use": 14941, "cases learning": 12540, "representations code": 82091, "language acquisition": 49126, "similar natural": 88090, "study probing": 91787, "allows obtain": 5205, "representation linguistic": 82062, "linguistic phenomena": 54592, "network using": 66165, "using external": 101437, "statistical analysis": 90544, "analysis pretrained": 5612, "models widely": 64540, "used natural": 100858, "understanding nlu": 99825, "nlu natural": 66835, "tasks making": 94850, "used downstream": 100782, "downstream applications": 26684, "analysis carried": 5446, "linguistic theory": 54603, "english models": 29086, "information language": 45521, "models process": 63899, "early stages": 26985, "stages training": 90138, "demonstrate capabilities": 23034, "various levels": 102471, "fail tasks": 33692, "introduce opensource": 47477, "opensource framework": 68336, "compatible transformerbased": 16749, "context based": 18735, "computational linguistics": 17465, "process determining": 75293, "intended meaning": 46932, "depends correctly": 23548, "correctly identifying": 19722, "larger context": 52433, "developing efficient": 24578, "complex task": 17014, "task recent": 94214, "used task": 100912, "outperform methods": 68954, "methods including": 59678, "including machine": 44415, "learning algorithms": 53024, "google t5": 39144, "model presented": 61266, "presented training": 74103, "training run": 98272, "different context": 25026, "context lengths": 18806, "answering qa": 6136, "regular basis": 81107, "qa systems": 78155, "systems need": 93515, "need answer": 65910, "opendomain qa": 68241, "ongoing effort": 67969, "results past": 83761, "past year": 70573, "results gpt3": 83629, "generation results": 38401, "results based": 83473, "highlighting importance": 41629, "uptodate information": 100394, "retrieved documents": 84080, "sufficient information": 92336, "information answer": 45405, "avenue future": 9108, "research opendomain": 82688, "retrieval module": 83997, "retrieval results": 84020, "results hope": 83645, "spur progress": 90051, "representation model": 82066, "professional knowledge": 75760, "knowledge base": 48435, "incorporating prior": 44715, "prior knowledge": 74846, "proven effective": 77380, "relation extraction": 81240, "current pretraining": 20762, "knowledge models": 48677, "using knowledge": 101530, "knowledge fusion": 48574, "fusion knowledge": 36679, "information contained": 45423, "input sentences": 45951, "context information": 18787, "limited address": 54388, "strategies proposed": 90842, "introduce twostage": 47495, "comprehensive analyses": 17195, "illustrate superiority": 42999, "bertbased models": 10572, "models military": 63615, "analysis framework": 5524, "framework code": 36064, "code synthesis": 15530, "models codex": 62027, "codex large": 15670, "model llm": 61076, "llm trained": 55294, "previous state": 74705, "code codex": 15154, "benefits models": 10482, "significant limitations": 87787, "limitations alignment": 54299, "problems potential": 75183, "potential misused": 73197, "increase rate": 44773, "misuse potential": 60245, "potential safety": 73254, "safety risks": 85052, "like codex": 54112, "advanced code": 3684, "generation techniques": 38462, "capability understand": 12212, "understand execute": 99607, "human ability": 42063, "ability neural": 1728, "ability pretrained": 1744, "knowledge essential": 48551, "models inspired": 62786, "inspired existing": 46171, "feedforward networks": 34163, "design neural": 23815, "introduce extra": 47426, "memory slots": 59066, "highly interpretable": 41700, "extra knowledge": 33215, "pretraining objective": 74580, "original pretrained": 68798, "model train": 61517, "modeling ability": 61622, "ability original": 1730, "model verify": 61575, "verify strong": 102775, "strong ability": 91003, "knowledge based": 48442, "closedbook question": 14992, "answering datasets": 6093, "datasets prove": 22377, "representative tasks": 82160, "summarization machine": 92543, "translation thoroughly": 98749, "thoroughly analyze": 96836, "keys values": 48360, "way finally": 103357, "knowledge stored": 48770, "cognitive processes": 15751, "powered large": 73411, "research understand": 82816, "decisionmaking processes": 22602, "conducted qualitative": 17978, "qualitative study": 78210, "study shed": 91833, "shed light": 87212, "positively negatively": 72844, "diverse range": 26080, "model align": 60534, "varying degrees": 102646, "various complex": 102385, "complex ways": 17029, "multiple parts": 65235, "various criteria": 102394, "various effects": 102419, "writing process": 104484, "higher levels": 41510, "based qualitative": 9686, "qualitative analysis": 78187, "analysis using": 5715, "cognitive process": 15750, "process model": 75361, "model writing": 61600, "propose theoretical": 77138, "causal language": 12656, "models general": 62535, "movie review": 64805, "writing task": 104503, "task followed": 94070, "bias gpt3": 10844, "model generating": 60936, "text completions": 96136, "exact approximate": 31065, "bias recent": 10880, "gpt3 finetuned": 39459, "biased toxic": 10908, "toxic outputs": 97590, "violent completions": 102934, "preregistered experiments": 73909, "experiments showed": 32298, "showed using": 87406, "using common": 101369, "significant increase": 87782, "increase violent": 44785, "relatively fewer": 81310, "steer model": 90587, "content analysis": 18591, "analysis revealed": 5648, "containing highly": 18536, "regardless prompt": 81081, "results need": 83742, "need additional": 65901, "debiasing large": 22537, "intelligence large": 46865, "code solve": 15515, "solve variety": 89200, "variety problems": 102320, "problems expressed": 75140, "expressed natural": 32909, "language technology": 51135, "new way": 66576, "finally draw": 34523, "user study": 101047, "end user": 28844, "programmers use": 75873, "issues arise": 47972, "research challenges": 82508, "challenges applying": 12963, "applying large": 6687, "generation language": 38222, "order identify": 68701, "difficult distinguish": 25290, "distinguish real": 25898, "widely investigated": 103725, "majority existing": 57948, "existing research": 31810, "knowledge users": 48803, "attackers exploit": 8199, "exploit users": 32571, "personally identifiable": 71925, "identifiable information": 42806, "information pii": 45570, "propose build": 76944, "require training": 82298, "conducted pilot": 17975, "pilot experiment": 72114, "extremely difficult": 33388, "larger sample": 52471, "sample size": 85091, "reveal significant": 84172, "significant difference": 87734, "approach help": 6881, "simple prompting": 88229, "prompting strategy": 76620, "create customized": 20151, "content models": 18658, "controlling text": 19260, "generated language": 37724, "longstanding challenge": 57402, "challenge existing": 12875, "existing prompting": 31798, "prompting techniques": 76632, "techniques proposed": 95576, "taskspecific lack": 95290, "lack generality": 49010, "nonexpert users": 66903, "asking set": 7747, "set relevant": 86929, "questions leveraging": 78885, "technique help": 95451, "tasks specifically": 95134, "specifically focus": 89822, "focus tasks": 35559, "tasks hard": 94692, "require significant": 82288, "work encourage": 104068, "encourage development": 28783, "ways harness": 103413, "harness power": 41071, "power large": 73373, "models simulate": 64207, "replicate human": 81947, "human subject": 42377, "studies introduce": 91404, "new type": 66565, "evaluating extent": 30421, "given language": 38906, "different aspects": 25002, "aspects human": 7775, "human behavior": 42107, "reveal consistent": 84141, "specific human": 89706, "single arbitrary": 88348, "requires simulating": 82409, "representative sample": 82153, "subject research": 91946, "findings prior": 34713, "studies design": 91378, "design methodology": 23809, "compare different": 16453, "social psychology": 88908, "psychology experiments": 77888, "ultimatum game": 99348, "garden path": 37002, "path sentences": 70587, "using recent": 101728, "hyperaccuracy distortion": 42712, "present language": 74004, "including chatgpt": 44291, "chatgpt gpt4": 13891, "affect downstream": 4050, "applications education": 6458, "using language": 101535, "base construction": 9397, "lms proven": 57159, "translation question": 98735, "answering text": 6161, "lms increasingly": 57136, "increasingly important": 44885, "important tools": 43542, "tools artificial": 97357, "intelligence vast": 46905, "vast quantity": 102692, "originally proposed": 68825, "multistep approach": 65326, "approach combines": 6775, "variety prompting": 102325, "achieve results": 2571, "results manual": 83718, "essential lm": 29951, "answer sets": 6062, "particular including": 70410, "truefalse questions": 98918, "suggestions generated": 92425, "generated lm": 37738, "crucial factor": 20490, "improves lm": 44042, "study indicates": 91678, "techniques substantially": 95597, "substantially enhance": 92119, "enhance quality": 29203, "final predictions": 34492, "outperforming baseline": 68991, "implementation available": 43326, "training t5": 98315, "resources training": 83035, "large datasets": 51418, "requirements create": 82336, "barrier entry": 9377, "resources build": 83000, "competitive models": 16808, "various techniques": 102606, "techniques making": 95559, "making possible": 58125, "reasonable time": 79741, "time provide": 97008, "explainable ai": 32445, "chatgpt significant": 14234, "research field": 82594, "focused leveraging": 35589, "completion rates": 16902, "research studies": 82792, "science prediction": 85603, "prediction component": 73685, "predictive analytics": 73758, "individual cases": 45077, "additionally works": 3353, "works attempt": 104345, "ai field": 4399, "field recently": 34405, "tools support": 97474, "techniques generating": 95526, "students study": 91339, "study proposes": 91794, "proposes novel": 77278, "framework unifies": 36309, "transparent machine": 98780, "techniques enabling": 95508, "latest advances": 52655, "advances large": 3879, "demonstrates proposed": 23394, "framework using": 36314, "predictive models": 73765, "models identifying": 62696, "study demonstrates": 91569, "risk using": 84503, "using chatgpt": 101333, "inference finetuning": 45245, "models nlp": 63676, "tasks benefit": 94404, "benefit using": 10458, "llms 100": 55388, "100 billion": 123, "parameters release": 70275, "scale using": 85299, "cases llms": 12542, "llms used": 56996, "requires access": 82359, "weights attention": 103542, "attention logits": 8333, "resources multiple": 83021, "strategy outperforms": 90908, "consumer gpus": 18498, "step second": 90655, "llm applications": 54964, "applications unlike": 6587, "hidden states": 41351, "models allowing": 61825, "allowing train": 5184, "model extensions": 60849, "based efficient": 9509, "finetuning methods": 35140, "methods large": 59703, "models know": 62829, "child development": 14520, "development particularly": 24691, "particularly exposure": 70463, "exposure language": 32901, "language describing": 49182, "mental states": 59094, "assessing models": 7924, "large quantities": 52332, "preregistered analyses": 73908, "analyses present": 5407, "task human": 94090, "human participants": 42314, "significantly exceeds": 87926, "behavior does": 9968, "does perform": 26316, "exposed language": 32892, "language human": 49268, "ability reason": 1757, "automatic code": 8760, "code documentation": 15233, "documentation generation": 26228, "software development": 88986, "development code": 24622, "greatly benefit": 40522, "codex gpt3": 15665, "gpt3 based": 39412, "based model": 9620, "pretrained natural": 74432, "natural programming": 65771, "languages codex": 51248, "existing techniques": 31834, "settings like": 87071, "oneshot learning": 67947, "learning providing": 53368, "example training": 31176, "codex achieves": 15656, "achieves overall": 2766, "different programming": 25158, "shows promise": 87607, "future studies": 36782, "studies automatic": 91364, "development tasks": 24718, "tasks toxic": 95204, "toxic behavior": 97582, "chatbots used": 13460, "applications automated": 6412, "smart home": 88816, "home assistants": 41928, "crucial ensure": 20487, "offensive toxic": 67729, "toxic responses": 97593, "responses users": 83323, "trivial task": 98901, "task stateoftheart": 94254, "chatbot models": 13413, "trained large": 97854, "large public": 52329, "firstofitskind largescale": 35329, "largescale measurement": 52544, "providing toxic": 77809, "responses set": 83307, "design experiment": 23778, "generate nontoxic": 37538, "manner extensive": 58237, "extensive experimental": 33037, "experimental evaluation": 31995, "evaluation demonstrates": 30570, "attack effective": 8164, "malicious queries": 58161, "work evaluate": 104072, "defense mechanisms": 22851, "attack performance": 8179, "performance cost": 71115, "chatbots utility": 13462, "effective mitigating": 27331, "highlights need": 41660, "need research": 65985, "computer security": 17537, "online safety": 68006, "tool work": 97334, "work pave": 104198, "way designing": 103348, "designing effective": 23976, "overall goal": 69295, "goal assess": 39042, "potential implications": 73130, "summarize basic": 92579, "lamda large": 49095, "provoked flurry": 77825, "popular press": 72670, "consideration given": 18180, "given topics": 38978, "research machine": 82662, "available hope": 9046, "hope provide": 41957, "provide useful": 77590, "current debate": 20679, "years old": 104607, "remain valid": 81638, "recent developments": 80241, "sequencetosequence models": 86695, "recent trends": 80392, "substantially improved": 92125, "linguistic tasks": 54602, "tasks huge": 94702, "cost training": 19884, "training larger": 98170, "make tuning": 58037, "expensive motivating": 31917, "efficient methods": 27800, "hyperparameter optimization": 42720, "hyperparameters training": 42726, "setting apply": 86977, "apply simple": 6673, "simple general": 88198, "tasks time": 95202, "time demonstrating": 96946, "efficiency performance": 27705, "gains strong": 36871, "translation natural": 98725, "tasks t5": 95174, "translation method": 98718, "method generalizes": 59313, "hyperparameters pretraining": 42725, "pretraining improve": 74544, "tasks learning": 94812, "learning multiple": 53296, "global learning": 39014, "training improves": 98135, "facilitate research": 33505, "benchmarks new": 10387, "really understand": 79603, "challenge ai": 12855, "ai models": 4465, "aspects understanding": 7792, "key elements": 48293, "relationships images": 81285, "images captions": 43086, "human experience": 42207, "languageonly models": 51221, "models challenged": 61977, "directly given": 25501, "descriptions visual": 23735, "visual scene": 103120, "visual understanding": 103131, "tasks example": 94601, "best multimodal": 10616, "multimodal models": 65086, "models fall": 62446, "30 accuracy": 742, "accuracy points": 2329, "points human": 72504, "performance matching": 71393, "matching task": 58528, "fewshot gpt4": 34241, "release models": 81380, "code leaderboard": 15377, "corpus includes": 19631, "describing images": 23674, "model instruction": 61015, "instruction tuning": 46369, "generate annotated": 37377, "intent classification": 46953, "data intent": 21339, "multilingual sequencetosequence": 65005, "sequencetosequence seq2seq": 86696, "instruction prompt": 46352, "surpasses stateoftheart": 92944, "wide margin": 103653, "zeroshot crosslingual": 104758, "crosslingual setting": 20425, "baseline machine": 9790, "score languages": 85723, "matching performance": 58523, "finally verify": 34577, "internal largescale": 47231, "largescale multilingual": 52548, "multilingual dataset": 64954, "dataset conversational": 21883, "improvements baseline": 43962, "knowledge demonstrate": 48498, "instruction finetuning": 46327, "finetuning largescale": 35120, "model control": 60712, "learning unified": 53462, "transformers shown": 98634, "shown remarkable": 87528, "task multitask": 94150, "learning especially": 53134, "especially natural": 29901, "attempts train": 8271, "train transformers": 97785, "transformers different": 98605, "domains code": 26496, "code summarization": 15524, "summarization natural": 92550, "language summary": 51119, "study multitask": 91752, "learning works": 53478, "tasks significantly": 95113, "significantly different": 87910, "tasks domains": 94560, "python code": 78097, "experiments using": 32326, "using popular": 101681, "popular training": 72689, "training strategies": 98311, "joint finetuning": 48153, "finetuning evaluate": 35058, "model metrics": 61131, "score bleu": 85706, "metrics measure": 59946, "measure performance": 58744, "performance various": 71677, "knowledge transfer": 48790, "challenges models": 13073, "finetuning strategy": 35266, "showed promise": 87398, "learning performs": 53329, "performs tasks": 71826, "tasks keeping": 94785, "accelerating transformerbased": 2024, "generation transformer": 38481, "model widely": 61594, "models generative": 62562, "transformer gpt": 98508, "achieved remarkable": 2654, "generation natural": 38291, "processing large": 75495, "large input": 51450, "context summarization": 18858, "produces single": 75700, "single word": 88404, "word time": 103931, "parallel processing": 70083, "performance significantly": 71565, "degrades generation": 22899, "efficient hardware": 27773, "hardware platform": 41010, "required address": 82305, "address high": 3410, "high latency": 41420, "low latency": 57517, "high throughput": 41468, "summarization generation": 92536, "generation stages": 38427, "uses model": 101243, "instructions provide": 46551, "operations endtoend": 68459, "xilinx alveo": 104554, "alveo u280": 5289, "high bandwidth": 41379, "bandwidth memory": 9331, "memory hbm": 59040, "maximum number": 58653, "high hardware": 41417, "hardware efficiency": 41006, "energy efficiency": 28898, "promising solution": 76200, "workloads cloud": 104342, "cloud datacenters": 15058, "design prompts": 23834, "based chatbots": 9463, "mental wellbeing": 59095, "mechanical turk": 58787, "largelanguage models": 52399, "potential enable": 73082, "designers researchers": 23969, "researchers create": 82846, "specific applications": 89660, "applications evaluating": 6470, "designing prompts": 23979, "prompts optimize": 76787, "specific task": 89759, "present case": 73941, "questions applying": 78782, "present quantitative": 74044, "quantitative qualitative": 78417, "qualitative analyses": 78186, "user perceptions": 101018, "researchers build": 82837, "specific tasks": 89760, "tasks build": 94415, "methods use": 59832, "use prompt": 100662, "design evaluation": 23777, "interpretable models": 47287, "llms training": 56955, "training recent": 98253, "llms demonstrated": 55733, "demonstrated remarkable": 23311, "remarkable prediction": 81811, "prediction performance": 73713, "growing array": 40643, "array tasks": 7511, "highstakes domains": 41819, "domains medicine": 26551, "interpretability efficiency": 47274, "efficiency address": 27663, "address need": 3459, "framework leveraging": 36198, "leveraging knowledge": 53858, "knowledge learned": 48656, "learned llms": 52986, "llms build": 55546, "efficient interpretable": 27779, "use llms": 100614, "inference compared": 45223, "compared llms": 16585, "llms explore": 55937, "embeddings llm": 28086, "decision tree": 22588, "llm feature": 55082, "outperform larger": 68948, "6billion parameter": 1205, "gptj model": 40225, "model despite": 60759, "study generate": 91648, "generate interesting": 37510, "scientific data": 85632, "results available": 83471, "available github": 9043, "impressive capabilities": 43580, "capabilities generating": 11919, "generating fluent": 37908, "fluent text": 35485, "social biases": 88844, "biases study": 10955, "study investigates": 91702, "investigates llms": 47750, "biases associated": 10914, "united states": 100103, "opt families": 68534, "transformerbased llms": 98571, "llms using": 57003, "moral foundations": 64742, "foundations theory": 35986, "shown llms": 87501, "study explores": 91624, "similarity human": 88137, "human llm": 42292, "use case": 100486, "case report": 12466, "report ai": 81958, "longshort term": 57399, "term memory": 95776, "memory lstm": 59045, "use information": 100580, "semantic content": 86303, "llms gpt3": 56081, "gpt3 openai": 39503, "reporting biases": 82003, "raw texts": 79456, "direct access": 25408, "physical world": 72069, "instead focusing": 46247, "trained text": 97919, "cooccurrence statistics": 19479, "naturally learn": 65791, "bias remains": 10883, "remains unknown": 81723, "models scaled": 64139, "larger language": 52441, "llms palm": 56481, "palm gpt3": 69549, "specifically query": 89870, "query llms": 78537, "llms typical": 56974, "grounded physical": 40577, "surprisingly llms": 93003, "llms significantly": 56804, "outperform smaller": 68966, "smaller lms": 88763, "human judgments": 42266, "texts suggests": 96603, "language able": 49125, "certain types": 12781, "climate change": 14904, "critical appraisal": 20303, "use deep": 100522, "learning produce": 53352, "produce humanlike": 75637, "humanlike texts": 42545, "increasingly widespread": 44918, "areas like": 7443, "autonomous driving": 8931, "parameters large": 70237, "models improving": 62717, "concerns persist": 17696, "persist models": 71863, "despite growing": 24060, "ai fairness": 4396, "metrics assess": 59880, "science technology": 85615, "studies paper": 91424, "analytical framework": 5730, "dialogues using": 24942, "using framework": 101458, "framework conducted": 36077, "examine gpt3": 31110, "different subpopulations": 25215, "science social": 85609, "corpus consists": 19604, "gender race": 37093, "largest knowledge": 52593, "knowledge gain": 48575, "gpt3 used": 39552, "minority groups": 60140, "compared responses": 16627, "responses majority": 83256, "majority groups": 57950, "implications findings": 43382, "diversity equity": 26143, "equity inclusion": 29705, "keyword extraction": 48366, "short texts": 87311, "intrinsic extrinsic": 47386, "short text": 87310, "text passages": 96354, "evaluation carried": 30534, "open science": 68108, "metadata corpus": 59146, "paper collection": 69631, "abstracts scientific": 1956, "scientific publications": 85659, "compare results": 16492, "different methods": 25110, "model yields": 61601, "particularly promising": 70493, "discuss performance": 25674, "news stories": 66644, "represent text": 82043, "genres domains": 38772, "dataset scientific": 22065, "scientific abstracts": 85624, "challenges evaluating": 13008, "model intrinsic": 61028, "bidirectional language": 10975, "learners large": 53000, "labeled examples": 48910, "arbitrary task": 7320, "prompt language": 76352, "model asked": 60567, "asked generate": 7734, "generate completion": 37404, "performing task": 71789, "unidirectional language": 100002, "models bidirectional": 61934, "pretrained denoising": 74249, "objectives masked": 67523, "learned representations": 52994, "possibility prompting": 72884, "bidirectional models": 10979, "models pretraining": 63881, "prompting paradigm": 76585, "prompting technique": 76628, "technique enables": 95447, "models utilizing": 64486, "task case": 93963, "study prompt": 91789, "demonstrate fewshot": 23080, "xglm lin": 104550, "lin et": 54509, "effective question": 27355, "answering summarization": 6157, "time results": 97018, "class language": 14698, "english chinese": 29055, "challenges particularly": 13092, "introduce training": 47494, "including design": 44322, "design choices": 23760, "model offers": 61165, "offers significant": 67861, "gpt3 175b": 39388, "english benchmarks": 29052, "performance advantage": 70980, "consistently significantly": 18310, "model related": 61332, "benchmarks finally": 10339, "finally leverage": 34542, "leverage unique": 53764, "scaling property": 85357, "post training": 72934, "training performance": 98231, "performance loss": 71381, "models importantly": 62710, "2080 ti": 580, "weights publicly": 103562, "publicly accessible": 77963, "code training": 15548, "training logs": 98184, "lessons learned": 53633, "generalization properties": 37277, "retrievalbased models": 84065, "models modern": 63638, "primarily rely": 74790, "models transformer": 64421, "transformer networks": 98538, "work aims": 103983, "aims improve": 4813, "input instance": 45909, "inference examples": 45240, "similar examples": 88067, "retrievalbased methods": 84064, "success wide": 92251, "range problems": 79191, "problems ranging": 75194, "vision tasks": 103009, "tasks protein": 94981, "recent efforts": 80247, "efforts including": 27912, "growing literature": 40658, "promise models": 76127, "models remains": 64057, "remains underexplored": 81712, "ability particular": 1736, "particular focus": 70406, "classification approaches": 14723, "minimization based": 60110, "based retrieved": 9705, "learning task": 53439, "model employ": 60799, "low complexity": 57504, "good overall": 39118, "overall accuracy": 69276, "retrievalbased approaches": 84060, "global model": 39016, "methods directly": 59603, "directly map": 25506, "map input": 58334, "examples prediction": 31268, "models symbolic": 64315, "endtoend neural": 28880, "neural approaches": 66214, "approaches recently": 7194, "lack interpretability": 49024, "task input": 94099, "api language": 6273, "model lm": 61109, "programming language": 75905, "language sql": 51110, "tackle diverse": 93722, "diverse questions": 26079, "questions adopts": 78771, "underlying model": 99514, "execution requires": 31460, "annotations specifically": 5952, "specifically employ": 89811, "incontext exemplars": 44565, "codex able": 15655, "able identify": 1856, "original programming": 68802, "prompt codex": 76249, "codex solve": 15680, "execution stage": 31463, "codex perform": 15675, "extraction given": 33301, "proper prompts": 76890, "output programs": 69181, "benefit human": 10449, "previous best": 74666, "best systems": 10653, "systems finetuned": 93458, "tens thousands": 95757, "training code": 97960, "models transforming": 64429, "severe threat": 87134, "threat academic": 96875, "academic integrity": 1981, "original work": 68820, "role large": 84787, "work explores": 104086, "generation scientific": 38409, "scientific articles": 85626, "detection performance": 24339, "performance automated": 71001, "automated solutions": 8739, "detection software": 24358, "perform human": 70879, "human study": 42376, "regarding detection": 81052, "performance quality": 71511, "generated examples": 37697, "examples results": 31281, "suggest large": 92374, "experts rate": 32420, "rate quality": 79397, "detection model": 24327, "gpt3 achieves": 39394, "llms shown": 56771, "shown exceptional": 87454, "exceptional performance": 31376, "tasks capabilities": 94416, "finetuned llms": 34929, "llms indepth": 56214, "analysis capabilities": 5445, "capabilities tasks": 12096, "tasks semantic": 95088, "description generation": 23680, "autonomous web": 8941, "web navigation": 103491, "html pages": 42019, "work developed": 104051, "understanding llms": 99803, "llms pretrained": 56559, "pretrained standard": 74456, "language corpora": 49173, "tasks instance": 94755, "accurate semantic": 2429, "classification compared": 14733, "compared models": 16591, "trained exclusively": 97827, "dataset finetuned": 21946, "finetuned data": 34878, "benchmark llms": 10208, "llms successfully": 56882, "successfully complete": 92271, "data compared": 21085, "compared previous": 16608, "best supervised": 10651, "model llms": 61108, "llms evaluate": 55880, "t5based models": 93663, "encoderdecoder architecture": 28717, "promote research": 76218, "research llms": 82661, "opensource largescale": 68352, "analogy generation": 5382, "generation prompting": 38353, "models case": 61966, "novel application": 67087, "application prompting": 6383, "prompting pretrained": 76589, "plms generate": 72421, "generate analogies": 37376, "study design": 91572, "design effective": 23773, "effective prompts": 27353, "prompts task": 76834, "task settings": 94238, "settings generating": 87058, "generating source": 37975, "given target": 38966, "target concept": 93856, "concept generation": 17604, "similarity given": 88136, "given pair": 38923, "pair target": 69474, "explanation generation": 32464, "generation aeg": 38018, "instructgpt generate": 46287, "best prompts": 10638, "especially low": 29897, "temperature setting": 95684, "systematically analyzed": 93360, "spelling errors": 89994, "errors model": 29826, "model particularly": 61216, "particularly sensitive": 70500, "questions vs": 78973, "quality generations": 78286, "varies substantially": 102284, "achieve humanlevel": 2534, "humanlevel performance": 42514, "performance generating": 71257, "generating meaningful": 37938, "strong language": 91039, "models incur": 62762, "work proposes": 104229, "methods approximate": 59535, "time memory": 96994, "memory complexity": 59017, "simple alternative": 88167, "outperforms prior": 69103, "prior methods": 74850, "competitive performance": 16810, "generation pretrained": 38327, "variety input": 102300, "input data": 45886, "data terms": 21689, "domains finance": 26521, "neural methods": 66241, "methods require": 59781, "require substantial": 82293, "substantial training": 92113, "examples learn": 31245, "disambiguate data": 25544, "data realworld": 21539, "issues access": 47966, "handful training": 40914, "examples different": 31204, "different domain": 25049, "domain schema": 26444, "gap propose": 36965, "diverse settings": 26104, "efficient use": 27834, "use given": 100563, "given examples": 38886, "steps data": 90680, "finetuning data": 35041, "prompted gpt3": 76478, "model understand": 61548, "ambiguity sentence": 5312, "stage uses": 90125, "like t5": 54232, "various datasets": 102398, "datasets different": 22217, "different scenarios": 25188, "generalization unseen": 37285, "outofdomain data": 68885, "data experimental": 21211, "consistently achieves": 18283, "improvement baselines": 43887, "bleu gain": 11168, "dataset zeroshot": 22126, "reasoning sequential": 80020, "applications areas": 6408, "user modeling": 101010, "medicine finance": 58933, "learning shifting": 53412, "neural autoregressive": 66219, "autoregressive models": 8972, "rnns transformers": 84585, "largely restricted": 52415, "simple cases": 88174, "nextevent prediction": 66656, "introduce general": 47429, "models queries": 63948, "develop new": 24465, "new query": 66509, "estimation methods": 30030, "beam search": 9922, "importance sampling": 43478, "different application": 24995, "model demonstrate": 60742, "demonstrate ability": 23010, "ability make": 1717, "clear differences": 14880, "costaccuracy tradeoffs": 19890, "sampling methods": 85161, "methods language": 59701, "code fewshot": 15259, "address general": 3407, "general task": 37194, "structured commonsense": 91155, "reasoning given": 79898, "given natural": 38916, "goal generate": 39056, "employ large": 28401, "task existing": 94048, "existing approaches": 31653, "lms pretrained": 57153, "correctly paper": 19723, "tasks code": 94439, "tasks pretrained": 94955, "commonsense reasoners": 16228, "does involve": 26305, "code demonstrate": 15221, "approach diverse": 6810, "using approach": 101295, "approach code": 6773, "generation lm": 38246, "lm codex": 57070, "t5 strong": 93652, "gpt3 fewshot": 39457, "aligned human": 5017, "nlp classification": 66714, "detection toxicity": 24372, "toxicity detection": 97600, "detection based": 24268, "based human": 9563, "values human": 102219, "diverse cultural": 26004, "introduce framework": 47428, "classification performs": 14772, "prediction based": 73682, "task propose": 94206, "propose practical": 77090, "practical approach": 73502, "approach distills": 6809, "knowledge largescale": 48651, "llms construct": 55674, "steps generate": 90685, "data llms": 21385, "llms promptbased": 56594, "learning finetune": 53160, "finetune smaller": 34854, "data task": 21683, "task empirical": 94033, "including fewshot": 44344, "existing text": 31836, "augmentation methods": 8544, "suggest using": 92397, "using classifiers": 101362, "explicit human": 32529, "human value": 42407, "input improves": 45906, "prompting gpt3": 76538, "reliable large": 81520, "llms impressive": 56162, "fewshot prompting": 34290, "openai gpt3": 68159, "increase use": 44781, "use realworld": 100669, "language applications": 49139, "applications crucial": 6439, "crucial problem": 20515, "improve reliability": 43794, "defined term": 22868, "establish simple": 29976, "prompts improve": 76744, "uses natural": 101245, "instructions reduce": 46557, "llms factual": 55967, "knowledge reasoning": 48730, "reasoning chains": 79822, "appropriate prompts": 7245, "prompts gpt3": 76730, "supervised models": 92731, "processed datasets": 75423, "datasets evaluation": 22238, "evaluation scripts": 30769, "model predictions": 61260, "systematic empirical": 93323, "study sheds": 91835, "sheds new": 87237, "prompting llms": 76566, "prompting strategies": 76613, "strategies help": 90822, "help practitioners": 41272, "llms like": 56297, "humans ai": 42571, "ai study": 4559, "study role": 91823, "openais language": 68216, "gpt3 test": 39544, "gpt3 prompted": 39515, "additional information": 3243, "realistic unrealistic": 79576, "relative control": 81292, "50 100": 1009, "splits distinct": 90012, "effect ai": 27234, "ai bot": 4316, "shift compared": 87254, "compared human": 16566, "control group": 19207, "group ai": 40606, "prompt test": 76434, "knowledge encoded": 48535, "encoded pretrained": 28682, "lms introduce": 57138, "introduce benchmark": 47401, "sentence pairs": 86511, "mandarin chinese": 58201, "pair demonstrates": 69469, "specific syntactic": 89757, "minimal pairs": 60100, "english blimp": 29053, "syntactic lexical": 93177, "severe issues": 87130, "generation process": 38338, "process test": 75407, "available pretrained": 9078, "pretrained monolingual": 74426, "far human": 33868, "highest accuracy": 41541, "lms larger": 57141, "larger ones": 52464, "ones additionally": 67923, "lms strong": 57172, "gender number": 37092, "bias perform": 10872, "questions large": 78880, "llms grow": 56116, "assessing reasoning": 7933, "capabilities natural": 12014, "qa benchmarks": 78122, "attempt assess": 8254, "assess reasoning": 7871, "narrow scope": 65512, "qa dataset": 78127, "dataset built": 21843, "auxiliary task": 8990, "set topics": 86945, "supporting statements": 92859, "benchmark reasoning": 10237, "capabilities llms": 11986, "rationales answer": 79436, "implicit commonsense": 43414, "significant room": 87849, "room future": 84828, "future improvements": 36731, "improvements leveraging": 43976, "leveraging large": 53861, "models multiple": 63647, "answering large": 6117, "gpt3 achieved": 39393, "achieved impressive": 2635, "impressive results": 43644, "answering mcqa": 6127, "mcqa tasks": 58682, "fewshot settings": 34313, "generally lag": 37330, "art sota": 7529, "tasks traditionally": 95207, "presented llms": 74094, "cloze tasks": 15072, "tasks llm": 94834, "conditioned question": 17806, "answer options": 6034, "prompting approach": 76500, "approach present": 6979, "llm jointly": 55138, "approach allows": 6734, "model explicitly": 60844, "reduces computational": 80827, "tokenization scheme": 97166, "answer selection": 6057, "natural approach": 65545, "approach effective": 6822, "effective llm": 27321, "llm used": 55304, "choice symbol": 14593, "symbol binding": 93116, "binding mcsb": 11063, "mcsb ability": 58684, "varies greatly": 102281, "model model": 61137, "model high": 60974, "ability performs": 1742, "better natural": 10752, "approach traditional": 7061, "20 diverse": 488, "diverse datasets": 26008, "closes gap": 15046, "gap sota": 36976, "ability llms": 1703, "finetuning performance": 35182, "models llm": 62949, "gpt3 palm": 39507, "revolutionized natural": 84348, "processing recent": 75562, "impressive zeroshot": 43654, "fewshot capabilities": 34215, "technique significantly": 95459, "significantly boosts": 87896, "boosts performance": 11305, "performance llms": 71362, "token prediction": 97146, "randomly selected": 79131, "selected past": 86135, "tokens masked": 97214, "quality learned": 78307, "downstream language": 26696, "improves fewshot": 44027, "performance palm": 71457, "bidirectional context": 10970, "order improves": 68703, "promising solutions": 76202, "recently attracted": 80456, "attracted attention": 8412, "attention code": 8289, "programs automatically": 75941, "given programming": 38932, "language programming": 51063, "programming task": 75933, "task description": 94010, "save time": 85216, "writing code": 104470, "code systems": 15533, "systems currently": 93419, "poorly understood": 72608, "investigate various": 47714, "various input": 102451, "input parameters": 45932, "parameters language": 70234, "models conduct": 62081, "conduct study": 17918, "study understand": 91876, "variations input": 102267, "surrounding context": 93014, "model number": 61159, "number generated": 67343, "generated solutions": 37784, "significant impact": 87762, "impact quality": 43253, "generated programs": 37757, "design specific": 23849, "specific operators": 89730, "algorithmic problems": 4946, "results showed": 83841, "showed varying": 87407, "parameters significantly": 70285, "making potentially": 58127, "obtain optimal": 67654, "result work": 83416, "work opens": 104192, "opens opportunities": 68300, "propose automated": 76937, "secret information": 85974, "security literature": 86020, "literature recent": 54656, "advances generative": 3874, "models led": 62893, "learning researchers": 53388, "provide empirical": 77459, "empirical validation": 28369, "approach modern": 6948, "modern baselines": 64592, "grouping using": 40617, "communication channels": 16257, "approach achieves": 6710, "efficiency despite": 27679, "despite stronger": 24127, "engineering solving": 29020, "intelligence model": 46876, "model automatically": 60580, "language problem": 50959, "problem descriptions": 75012, "june 2022": 48208, "development environments": 24638, "environments like": 29650, "like visual": 54237, "visual studio": 103124, "studio code": 91465, "work exploring": 104089, "concerns impact": 17683, "introductory programming": 47569, "programming courses": 75893, "little known": 54681, "types problems": 99256, "copilot does": 19516, "language interactions": 49291, "explore questions": 32739, "questions evaluating": 78843, "available dataset": 9027, "successfully solves": 92285, "half problems": 40804, "problem description": 75011, "type prompt": 99213, "interaction human": 47011, "potentially useful": 73354, "computational thinking": 17488, "thinking skills": 96809, "change nature": 13274, "code writing": 15572, "semiparametric language": 86415, "generally require": 37337, "require huge": 82259, "huge number": 42044, "number model": 67360, "necessary knowledge": 65872, "knowledge solving": 48762, "solving multiple": 89239, "multiple natural": 65227, "settings addition": 87035, "adapt evolving": 3040, "knowledge costly": 48485, "costly model": 19912, "model retraining": 61356, "paper develop": 69676, "develop novel": 24470, "novel semiparametric": 67248, "texttotext language": 96641, "external memory": 33198, "memory specifically": 59067, "contains different": 18552, "types knowledge": 99244, "knowledge entity": 48550, "causality knowledge": 12682, "knowledge input": 48631, "model adaptively": 60515, "knowledge type": 48792, "retrieves helpful": 84100, "instance knowledge": 46208, "knowledge augmentation": 48432, "generate output": 37544, "input output": 45928, "output natural": 69173, "moe model": 64690, "model knowledge": 61039, "plays role": 72388, "needs smaller": 66043, "superior zeroshot": 92672, "performance unseen": 71651, "40 different": 904, "outperforms large": 69071, "exhibits emergent": 31604, "emergent abilities": 28190, "abilities smaller": 1568, "scale compared": 85252, "models learning": 62891, "learning decompose": 53099, "decomposition modeling": 22700, "developing robust": 24594, "robust interpretable": 84662, "systems despite": 93427, "despite datasets": 24035, "datasets resources": 22399, "annotations limited": 5941, "limited scope": 54465, "largescale parallel": 52554, "models diverse": 62250, "baseline language": 9783, "model use": 61553, "build novel": 11604, "table question": 93681, "gpt3 present": 39513, "early results": 26982, "tabular data": 93704, "pretrained gpt3": 74274, "table structure": 93684, "able answer": 1827, "simple prompt": 88228, "qa examples": 78130, "examples significantly": 31283, "improves accuracy": 44011, "heterogeneous data": 41333, "data apply": 20985, "apply approach": 6652, "approach novel": 6955, "novel dataset": 67141, "results overall": 83754, "gpt2 small": 39349, "mechanistic interpretability": 58821, "models terms": 64350, "work focuses": 104104, "focuses simple": 35615, "simple behaviors": 88172, "work bridge": 104004, "bridge gap": 11417, "gap presenting": 36961, "task called": 93962, "attention heads": 8316, "using combination": 101368, "explanation using": 32476, "using quantitative": 101716, "gaps understanding": 37000, "work provides": 104232, "provides evidence": 77663, "mechanistic understanding": 58823, "understanding large": 99790, "large ml": 52251, "ml models": 60370, "opening opportunities": 68278, "scale understanding": 85298, "models complex": 62063, "carbon footprint": 12386, "bloom 176b": 11211, "parameter language": 70110, "comes cost": 16036, "training ml": 98200, "significant computational": 87716, "resources energy": 83007, "present article": 73932, "aim quantify": 4731, "life cycle": 53981, "final training": 34503, "power consumption": 73369, "carbon emissions": 12385, "deployment inference": 23600, "inference api": 45210, "receiving user": 80163, "user queries": 101029, "discussion regarding": 25728, "regarding difficulty": 81053, "footprint ml": 35719, "models future": 62522, "research directions": 82555, "contribute improving": 19127, "experiences using": 31955, "code explanations": 15256, "explanations generated": 32493, "generated large": 37727, "models web": 64533, "llms capable": 55553, "recent versions": 80393, "versions models": 102830, "models openai": 63702, "gpt3 generate": 39465, "code code": 15151, "explanations paper": 32510, "paper report": 69934, "generating multiple": 37939, "code explanation": 15255, "using llms": 101578, "llms integrating": 56239, "integrating interactive": 46725, "llmgenerated code": 55372, "code snippets": 15509, "use explanations": 100548, "ask feedback": 7714, "available students": 9091, "preliminary results": 73873, "students perceived": 91325, "student engagement": 91248, "discuss future": 25659, "generated llms": 37736, "llms existing": 55917, "requires ability": 82357, "raw text": 79455, "text ability": 96067, "combine multiple": 15973, "evidence propose": 30984, "novel learning": 67195, "helps language": 41310, "multihop questions": 64919, "perform complex": 70841, "compositional reasoning": 17116, "multihop question": 64917, "answering subquestions": 6156, "original question": 68805, "question context": 78656, "comprehension model": 17173, "predict answer": 73644, "manner using": 58249, "outperform baseline": 68918, "absolute f1": 1912, "f1 points": 33417, "hard subset": 40989, "subset drop": 92040, "task report": 94222, "sentences concise": 86548, "task different": 94021, "simplification evaluation": 88265, "sentences annotated": 86541, "annotated human": 5873, "human annotators": 42091, "respectively demonstrate": 83063, "difficult task": 25309, "task zeroshot": 94294, "zeroshot setups": 104875, "given limitations": 38908, "approaches propose": 7188, "generation method": 38262, "data train": 21698, "scratch finetune": 85805, "finetune t5": 34859, "improved finetuning": 43837, "dataset derived": 21902, "educational resources": 27217, "resources leveraging": 83016, "article introduce": 7545, "educational content": 27195, "lies intersection": 53976, "models instead": 62788, "models replace": 64061, "traditionally performed": 97719, "input evaluate": 45892, "evaluations used": 30888, "used improve": 100822, "improve large": 43723, "process study": 75405, "study feasibility": 91634, "programming exercises": 75898, "generated using": 37813, "using openai": 101659, "codex results": 15678, "significantly reduce": 88012, "reduce human": 80782, "creating diverse": 20219, "diverse educational": 26016, "maintaining quality": 57901, "quality similar": 78360, "openaccess multilingual": 68137, "shown able": 87433, "tasks based": 94396, "demonstrations natural": 23478, "instructions capabilities": 46475, "led widespread": 53538, "adoption llms": 3644, "llms developed": 55794, "present bloom": 73940, "openaccess language": 68136, "model designed": 60756, "decoderonly transformer": 22656, "corpus dataset": 19611, "dataset comprising": 21870, "comprising hundreds": 17401, "achieves competitive": 2733, "variety benchmarks": 102288, "stronger results": 91095, "multitask prompted": 65365, "prompted finetuning": 76475, "research applications": 82490, "applications using": 6592, "llms publicly": 56614, "responsible ai": 83338, "efficiently scaling": 27861, "transformer inference": 98517, "study problem": 91788, "efficient generative": 27770, "generative inference": 38621, "inference transformer": 45316, "challenging settings": 13229, "settings large": 87067, "large deep": 51420, "deep models": 22788, "tradeoffs inference": 97644, "large transformerbased": 52357, "models important": 62709, "cases models": 12545, "models growing": 62637, "growing rapidly": 40664, "application areas": 6339, "analytical model": 5731, "inference efficiency": 45237, "pareto frontier": 70318, "latency model": 52626, "model flops": 60902, "flops utilization": 35452, "utilization mfu": 101918, "multiquery attention": 65313, "attention multiple": 8345, "token generation": 97133, "weight quantization": 103526, "input tokens": 45968, "context length": 18801, "540b parameter": 1068, "models controllable": 62122, "working memory": 104330, "llms led": 56288, "breakthroughs natural": 11407, "generation abilities": 37999, "massive amounts": 58444, "pretraining downstream": 74527, "applications provide": 6551, "information presented": 45574, "context remains": 18838, "remains explored": 81656, "behavior llm": 9979, "context contains": 18744, "models memorized": 63604, "knowledge enables": 48533, "predictions grounded": 73744, "specific model": 89726, "irrelevant task": 47904, "internal knowledge": 47230, "paper undertake": 69985, "context llms": 18810, "llms demonstrate": 55727, "demonstrate stateoftheart": 23191, "stateoftheart t5": 90492, "pretrained finetuned": 74256, "exhibit poor": 31539, "poor controllability": 72592, "scale increasing": 85270, "solution propose": 89109, "robustness incorporating": 84721, "supervised datasets": 92703, "comprehensive evaluation": 17236, "humans language": 42614, "models predictions": 63855, "models affected": 61807, "research suggests": 82796, "make predictions": 58020, "evidence shows": 30988, "shows humans": 87589, "semantically related": 86368, "preceding context": 73588, "using stimuli": 101794, "psycholinguistic experiments": 77873, "experiments case": 32121, "albert roberta": 4889, "gptneo gptj": 40232, "understanding human": 99760, "harry potter": 41100, "dataset aligning": 21821, "dialogue agents": 24845, "llms chatgpt": 55575, "gpt4 demonstrated": 39822, "immense potential": 43170, "potential constructing": 73062, "opendomain dialogue": 68234, "agents specific": 4235, "remains considerable": 81651, "considerable challenge": 18152, "lack comprehensive": 48986, "annotations paper": 5944, "dataset designed": 21904, "designed advance": 23872, "advance study": 3670, "study dialogue": 91579, "dataset encompasses": 21919, "dialogue sessions": 24894, "information including": 45509, "including dialogue": 44325, "relationships attributes": 81281, "attributes extensive": 8452, "extensive annotations": 32996, "empower llms": 28491, "dialogue capabilities": 24848, "capabilities furthermore": 11914, "serve universal": 86779, "evaluating llm": 30449, "llm aligning": 54956, "finetuning incontext": 35094, "learning settings": 53411, "settings evaluation": 87053, "reveal substantial": 84176, "substantial room": 92108, "improvement generating": 43913, "responses proposed": 83285, "proposed dataset": 77190, "responses better": 83183, "better align": 10678, "instruction following": 46333, "perform common": 70834, "common tasks": 16179, "stepbystep instructions": 90667, "instructions manually": 46535, "manually written": 58317, "experience enhanced": 31936, "grounding instructions": 40588, "instructions help": 46511, "components including": 17089, "relevant dataset": 81454, "dataset task": 22098, "task introduce": 94107, "multilingual multimodal": 64985, "task completion": 93981, "tasks languages": 94801, "languages initial": 51292, "initial approach": 45763, "approach problem": 6982, "retrieving relevant": 84112, "based users": 9757, "users query": 101166, "llms generate": 56044, "steps available": 90678, "available english": 9030, "challenge includes": 12887, "crosslingual retrieval": 20424, "queries languages": 78497, "english instruction": 29075, "potentially different": 73335, "language compare": 49160, "performance different": 71139, "different llms": 25100, "llms including": 56170, "including palm": 44442, "gpt3 endtoend": 39447, "endtoend task": 28884, "completion rate": 16901, "performance drops": 71166, "languages analyze": 51232, "analyze common": 5747, "common failure": 16142, "failure modes": 33713, "areas improvement": 7441, "compositional generalization": 17114, "generalization gap": 37260, "performance tasks": 71617, "tasks exhibit": 94602, "exhibit low": 31532, "shown improve": 87486, "various nlp": 102504, "tasks just": 94784, "solve task": 89196, "finetuning known": 35102, "work look": 104171, "indistribution id": 45074, "outofdistribution ood": 68882, "ood performance": 68032, "models semantic": 64158, "tasks incontext": 94740, "model evaluated": 60823, "model families": 60865, "families opt": 33839, "bloom codegen": 11214, "different number": 25129, "gap models": 36948, "previous prompt": 74690, "prompt attack": 76235, "attack techniques": 8190, "techniques language": 95542, "models transformerbased": 64424, "transformerbased large": 98564, "llms provide": 56609, "tasks largescale": 94807, "studies explore": 91387, "malicious user": 58165, "user interaction": 101001, "adversarial prompt": 3989, "prompt composition": 76257, "widely deployed": 103720, "deployed language": 23565, "model production": 61286, "types attacks": 99219, "attacks goal": 8213, "prompt leaking": 76357, "risks code": 84511, "nlp language": 66738, "previous claims": 74670, "llm based": 54980, "chatbots chatgpt": 13435, "use similar": 100687, "similar models": 88088, "models position": 63835, "information theory": 45654, "progress language": 75987, "background language": 9267, "models powerful": 63848, "logical consistency": 57254, "test inputs": 95903, "inputs example": 45991, "example stateoftheart": 31175, "questionanswering qa": 78742, "qa model": 78139, "model answers": 60545, "answers yes": 6232, "failure mode": 33712, "relation detection": 81238, "consistency accuracy": 18228, "inference nli": 45271, "finetuning retraining": 35230, "outputs input": 69228, "likelihood answer": 54245, "answer choice": 5989, "efficiently compute": 27843, "answer choices": 5990, "raw models": 79452, "predictions experiments": 73739, "boosts accuracy": 11301, "accuracy consistency": 2230, "vqa models": 103233, "using offtheshelf": 101654, "models notably": 63683, "increasing accuracy": 44818, "factual error": 33628, "error correction": 29773, "require large": 82265, "errors spanning": 29842, "spanning multiple": 89502, "multiple tokens": 65275, "minimal edits": 60089, "carefully design": 12414, "design target": 23854, "fact verification": 33562, "actions using": 2967, "experiments public": 32274, "public dataset": 77915, "systems use": 93590, "use search": 100684, "search algorithms": 85853, "algorithms possible": 4982, "identify mentions": 42882, "instead present": 46254, "seq2seq paradigm": 86641, "underlying language": 99497, "model obtain": 61160, "obtain stateoftheart": 67662, "stateoftheart accuracy": 90303, "higher previous": 41516, "addition use": 3217, "data sets": 21615, "sets experiments": 86961, "experiments zeroshot": 32346, "supervised setting": 92738, "setting using": 87032, "using available": 101308, "substantially higher": 92122, "higher zeroshot": 41533, "languages previous": 51343, "approaches significantly": 7202, "exceed previous": 31315, "previous supervised": 74720, "supervised stateoftheart": 92740, "tested languages": 95979, "questions previous": 78916, "research explored": 82591, "providing semantic": 77796, "semantic linguistic": 86320, "questions despite": 78825, "despite showing": 24118, "efficiency method": 27699, "hand costly": 40895, "costly process": 19914, "process context": 75283, "investigate efficiency": 47644, "qa training": 78159, "training study": 98313, "study generating": 91649, "content using": 18704, "promptbased method": 76467, "task llm": 94131, "natural text": 65784, "text evaluate": 96198, "output using": 69203, "using human": 101509, "content results": 18686, "results suggested": 83879, "usefulness content": 100962, "content conduct": 18601, "field study": 34413, "primary school": 74812, "children aged": 14524, "qa performance": 78145, "training compare": 97965, "types content": 99226, "leading possible": 52878, "questions similar": 78947, "scalability approach": 85229, "gpt3 better": 39415, "open training": 68131, "training results": 98269, "llms support": 56893, "language prompting": 51066, "approach affords": 6726, "ai techniques": 4575, "techniques furthermore": 95524, "furthermore results": 36658, "suitable training": 92466, "study diverse": 91585, "landscape large": 49108, "llms lens": 56293, "bloom model": 11218, "understand performance": 99636, "performance bloom": 71024, "decoderonly llms": 22652, "llms compared": 55648, "encoderonly models": 28737, "model variants": 61571, "datasets popular": 22367, "performance does": 71156, "does scale": 26329, "parameter size": 70126, "unlike llms": 100174, "like gpt": 54132, "experiments finetuning": 32199, "bloom models": 11219, "variant zeroshot": 102252, "multilingual finetuning": 64958, "finetuning experiments": 35064, "par worse": 70017, "using realtoxicityprompts": 101725, "realtoxicityprompts dataset": 79633, "dataset shows": 22074, "model robustness": 61366, "perspective pretrained": 71960, "generation generate": 38175, "generate executable": 37445, "executable code": 31431, "descriptions natural": 23718, "natural languages": 65768, "substantial performance": 92099, "thoroughly investigated": 96844, "paper study": 69961, "study demonstrate": 91566, "enhance performance": 29191, "approach named": 6950, "code generator": 15344, "consists components": 18327, "generating adversarial": 37862, "semantic visual": 86361, "similar original": 88095, "original input": 68783, "generate completely": 37403, "plbart codet5": 72394, "finetuning code": 35031, "generation task": 38442, "codegen codet5": 15599, "studying model": 91900, "robustness software": 84744, "task multilingual": 94148, "multilingual learning": 64974, "english arabic": 29051, "sarcasm detection": 85185, "detection detecting": 24288, "detecting sarcasm": 24249, "statements crucial": 90289, "crucial understanding": 20545, "intended meanings": 46933, "social scenarios": 88913, "scenarios paper": 85465, "detection english": 24296, "aims detecting": 4791, "various settings": 102569, "multilingual settings": 65008, "arabic english": 7302, "english texts": 29109, "ranked second": 79254, "task binary": 93958, "binary multilabel": 11058, "multilabel classification": 64927, "event knowledge": 30923, "knowledge large": 48646, "models gap": 62531, "word cooccurrence": 103891, "patterns language": 70633, "corpora contain": 19570, "contain surprising": 18522, "llms trained": 56945, "words context": 103951, "leverage patterns": 53751, "achieve impressive": 2536, "performance diverse": 71153, "semantic tasks": 86356, "tasks requiring": 95054, "requiring world": 82446, "knowledge important": 48620, "important understudied": 43546, "question llms": 78686, "llms semantic": 56758, "acquire generalized": 2905, "generalized knowledge": 37306, "knowledge common": 48473, "events test": 30937, "assign higher": 7998, "higher likelihood": 41511, "minimally different": 60107, "using curated": 101392, "llms possess": 56536, "models particular": 63774, "particular assign": 70394, "teacher llms": 95342, "llms consistent": 55669, "consistent preferences": 18273, "active vs": 2996, "vs passive": 103252, "mirror human": 60151, "human judgment": 42263, "llm representations": 55238, "results important": 83657, "important aspects": 43491, "linguistic patterns": 54591, "highlight gap": 41589, "memory transformer": 59070, "processing long": 75500, "long documents": 57310, "transformer variants": 98551, "stateoftheart different": 90337, "different natural": 25124, "summarization paper": 92551, "use general": 100559, "model previous": 61274, "study aims": 91481, "ability proposed": 1753, "model handle": 60971, "used t5": 100911, "t5 transformer": 93655, "studied model": 91355, "modeling task": 61681, "task specific": 94247, "specific training": 89767, "training parameters": 98230, "parameters ablation": 70164, "ablation study": 1812, "study reveals": 91817, "ability using": 1794, "degradation performance": 22890, "play important": 72342, "sequential decisionmaking": 86705, "decisionmaking problems": 22600, "highlevel task": 41567, "knowledge required": 48744, "required build": 82307, "relevant task": 81483, "textual outputs": 96686, "decisionmaking propose": 22603, "algorithm named": 4925, "finite state": 35307, "task goal": 94084, "knowledge proposed": 48721, "fills gap": 34468, "accordingly propose": 2158, "iteratively refine": 48083, "glm based": 39004, "everyday tasks": 30962, "secure multiparty": 85990, "multiparty computation": 65125, "counterfactual reasoning": 19996, "reasoning language": 79920, "knowledge causal": 48465, "remarkable improvements": 81777, "tasks remains": 95035, "statistical correlation": 90547, "logical reasoning": 57266, "models predict": 63851, "introduce set": 47483, "set tests": 86942, "variety popular": 102317, "models consistently": 62098, "consistently able": 18280, "able override": 1869, "realworld knowledge": 79678, "counterfactual scenarios": 19997, "stronger baseline": 91087, "largely driven": 52406, "mitigate effects": 60259, "cues test": 20581, "knowledge linguistic": 48662, "linguistic nuances": 54590, "sensitivity nuances": 86477, "quality training": 78376, "efficient data": 27748, "data sampling": 21587, "advances deep": 3870, "models come": 62041, "root causes": 84844, "speed model": 89981, "rapidly evolving": 79344, "efficiently use": 27866, "use training": 100713, "data especially": 21189, "framework focuses": 36141, "makes better": 58048, "better use": 10808, "use data": 100519, "efficiency improves": 27688, "combine data": 15970, "learning library": 53252, "gpt3 13b": 39387, "work achieves": 103969, "95 model": 1439, "quality compared": 78237, "data cost": 21125, "achieve model": 2546, "better model": 10748, "benefit additional": 10440, "study social": 91850, "multilingual large": 64970, "interdisciplinary research": 47144, "dataset used": 22115, "models date": 62157, "collaborations large": 15834, "models datasets": 62154, "datasets analysis": 22144, "range research": 79201, "modeling choices": 61632, "distributed training": 25927, "training paper": 98226, "collaborative research": 15844, "takes step": 93825, "diversity tasks": 26158, "tasks required": 95052, "main goal": 57826, "share lessons": 87185, "scientific research": 85662, "result small": 83409, "different contexts": 25028, "tasks increasingly": 94745, "size computation": 88455, "computation costs": 17416, "models efficient": 62281, "efficient terms": 27825, "terms quality": 95833, "quality computation": 78238, "computation cost": 17415, "models remain": 64055, "scratch large": 85806, "way reuse": 103397, "training costs": 97982, "mixtureofexperts model": 60364, "model dense": 60752, "base large": 9409, "large xl": 52395, "models vision": 64511, "transformer base": 98489, "models respectively": 64084, "respectively significantly": 83092, "dense counterparts": 23502, "using 50": 101276, "computation budget": 17413, "models chatgpt": 61982, "chatgpt abilities": 13474, "task challenges": 93968, "prompt chatgpt": 76245, "chatgpt produce": 14107, "original content": 68764, "single text": 88398, "score original": 85729, "generated content": 37681, "cases generated": 12528, "contribution work": 19174, "simple grammatical": 88201, "understanding writing": 99908, "evaluating readability": 30483, "machinegenerated output": 57773, "remains unanswered": 81704, "datasets methods": 22338, "methods rapid": 59772, "rapid advancement": 79290, "advancement ai": 3763, "ai technology": 4580, "generation tools": 38475, "tools like": 97434, "gpt3 chatgpt": 39424, "chatgpt increasingly": 13954, "accessible scalable": 2114, "pose threat": 72755, "news sources": 66643, "development automated": 24614, "automated methods": 8715, "identification detecting": 42809, "remains challenge": 81645, "methods trained": 59825, "identification propose": 42814, "represented popular": 82167, "detection capabilities": 24272, "capabilities finally": 11906, "finally outline": 34550, "new directions": 66379, "research datasets": 82534, "role ai": 84755, "drug discovery": 26875, "challenges opportunities": 13084, "strategies artificial": 90793, "ai potential": 4511, "potential revolutionize": 73244, "discovery process": 25621, "offering improved": 67791, "improved efficiency": 43836, "successful application": 92258, "application ai": 6336, "availability highquality": 8999, "highquality data": 41745, "data addressing": 20950, "ethical concerns": 30062, "benefits challenges": 10467, "possible strategies": 72923, "overcoming present": 69368, "present obstacles": 74027, "ai integration": 4439, "integration ai": 46752, "methods potential": 59750, "potential advantages": 72990, "pharmaceutical research": 72007, "research discussed": 82562, "overall review": 69320, "highlights potential": 41664, "potential ai": 72993, "provides insights": 77679, "insights challenges": 46060, "realizing potential": 79592, "potential field": 73092, "test ability": 95861, "ability chatgpt": 1604, "chatgpt chatbot": 13605, "chatbot based": 13403, "based gpt35": 9557, "gpt35 language": 39634, "model assist": 60570, "human authors": 42100, "review articles": 84245, "generated ai": 37652, "following instructions": 35679, "supporting information": 92857, "information used": 45665, "generate content": 37410, "advantages limitations": 3944, "limitations using": 54379, "opendomain question": 68243, "aims answer": 4780, "providing specific": 77798, "challenging zeroshot": 13261, "setting data": 86982, "demonstrated effectiveness": 23246, "effectiveness zeroshot": 27597, "using direct": 101415, "direct prompting": 25430, "prompting methods": 76574, "methods methods": 59729, "methods fall": 59643, "fall short": 33779, "fully harnessing": 36455, "harnessing potential": 41093, "potential llms": 73173, "explicitly utilize": 32556, "massive knowledge": 58455, "parameters llms": 70247, "llms strong": 56865, "instruction understanding": 46417, "understanding abilities": 99663, "abilities concretely": 1500, "prompt llms": 76371, "llms step": 56861, "step step": 90659, "step generate": 90643, "generate multiple": 37531, "qa pairs": 78143, "entirely scratch": 29529, "learning experimental": 53146, "method significantly": 59421, "significantly surpasses": 88028, "stateoftheart zeroshot": 90513, "zeroshot methods": 104824, "datasets achieves": 22131, "achieves comparable": 2724, "customized finetuned": 20856, "models training": 64412, "targeted syntactic": 93907, "syntactic evaluations": 93171, "models ask": 61858, "ask models": 7720, "models stable": 64250, "syntactic evaluation": 93170, "just single": 48224, "input does": 45889, "does match": 26310, "match language": 58491, "training regime": 98258, "raises important": 79080, "important question": 43531, "robust models": 84673, "contexts paper": 18917, "investigate stability": 47701, "properties input": 76899, "length context": 53588, "syntactic phenomena": 93179, "randomly sampled": 79129, "linguistic contexts": 54568, "syntactic structures": 93183, "tested models": 95981, "significantly worsen": 88037, "unrelated inputs": 100243, "changes model": 13294, "matching context": 58516, "lexical overlap": 53922, "highly specific": 41716, "explained models": 32455, "models implicit": 62706, "learning abilities": 53007, "scale language": 85272, "shown perform": 87508, "paradigm paper": 70048, "investigate hypothesis": 47652, "tasks case": 94420, "performance substantial": 71601, "number incontext": 67347, "score highly": 85718, "ability perform": 1738, "induction heads": 45142, "learning overall": 53316, "overall study": 69324, "study provides": 91797, "insights indicate": 46105, "indicate large": 45001, "learning opens": 53312, "opens questions": 68303, "models effectively": 62277, "effectively perform": 27462, "perform incontext": 70883, "capabilities pretrained": 12046, "dramatically improve": 26785, "winning recipe": 103838, "investigate alternative": 47618, "models orders": 63728, "magnitude larger": 57806, "better gpt3": 10723, "powered novel": 73418, "design learning": 23805, "algorithm achieve": 4900, "achieve competitive": 2495, "competitive level": 16804, "particular study": 70423, "study generative": 91650, "models commonsense": 62046, "task generating": 94078, "everyday concepts": 30956, "birds fly": 11112, "distillation framework": 25813, "symbolic knowledge": 93123, "distillation west": 25830, "west et": 103617, "teacher model": 95343, "decoding enhance": 22664, "enhance generation": 29163, "selfimitation learning": 86236, "iteratively learn": 48080, "models enhanced": 62333, "acquisition capabilities": 2926, "way novel": 103390, "promising alternative": 76144, "study leads": 91729, "highest quality": 41550, "tuning language": 99053, "human labor": 42275, "tuning enables": 99030, "rely vast": 81597, "vast amounts": 102664, "amounts human": 5346, "human supervision": 42381, "supervision form": 92755, "crowdsourced datasets": 20458, "user interactions": 101002, "interactions work": 47084, "large dataset": 51417, "diverse instructions": 26040, "prompting language": 76553, "examples instructions": 31236, "prompting model": 76578, "outputs experiments": 69220, "effectiveness training": 27585, "training opensource": 98224, "datasets surpassing": 22429, "surpassing performance": 92967, "models t0": 64324, "various benchmarks": 102370, "benchmarks results": 10408, "modelgenerated data": 61617, "costeffective alternative": 19893, "models realworld": 63985, "realworld environments": 79668, "capacity current": 12288, "environments existing": 29643, "generate plans": 37550, "plans executed": 72294, "achieve desired": 2510, "faithfulness controllability": 33752, "lms propose": 57158, "generic framework": 38750, "framework grounded": 36151, "ability lms": 1715, "generative ability": 38524, "valid plans": 102085, "guide search": 40749, "search process": 85886, "study challenging": 91517, "challenging problem": 13212, "problem knowledge": 75030, "base question": 9423, "answering kbqa": 6112, "demonstrates remarkable": 23395, "remarkable effectiveness": 81768, "effectiveness flexibility": 27519, "new record": 66511, "standard kbqa": 90184, "kbqa datasets": 48248, "datasets larger": 22319, "larger lms": 52451, "substantial gains": 92081, "enables time": 28616, "time effective": 96951, "effective fewshot": 27300, "lms codex": 57110, "codex evaluating": 15663, "humanlanguage model": 42508, "model interaction": 61024, "realworld applications": 79638, "applications language": 6508, "writing assistance": 104466, "assistance code": 8026, "output human": 69159, "human involvement": 42259, "interactive systems": 47115, "consider designing": 18133, "evaluation metrics": 30674, "interactive process": 47112, "final output": 34488, "subjective experience": 91955, "design tasks": 23856, "tasks cover": 94499, "cover different": 20047, "different forms": 25069, "interaction social": 47035, "crossword puzzles": 20449, "stateoftheart lms": 90386, "does translate": 26333, "cases results": 12557, "underscore importance": 99543, "summary quality": 92599, "quality metrics": 78319, "quality assessment": 78224, "referencebased referencefree": 80947, "referencefree referencebased": 80953, "referencebased metrics": 80946, "information provided": 45581, "humanwritten references": 42674, "references limited": 80957, "reliance human": 81545, "human input": 42242, "input paper": 45931, "methodologies used": 59481, "metrics evaluate": 59909, "effectively adapted": 27394, "source document": 89370, "results support": 83884, "support hypothesis": 92811, "parameters consistently": 70189, "consistently outperforms": 18306, "outperforms original": 69093, "various aspects": 102357, "comparison existing": 16709, "existing referencefree": 31809, "referencefree metrics": 80952, "mental models": 59093, "people think": 70744, "models similarly": 64205, "investigate propose": 47694, "benchmark dataset": 10117, "consisting 100": 18316, "observe stateoftheart": 67600, "lms like": 57143, "knowledge everyday": 48555, "add constraint": 3156, "constraint satisfaction": 18386, "layer lms": 52722, "significantly reduced": 88014, "pay attention": 70663, "previous text": 74724, "text style": 96440, "transfer tasks": 98437, "requires deep": 82371, "deep understanding": 22805, "sentencelevel edits": 86535, "challenging nlp": 13201, "gold standard": 39097, "standard training": 90212, "training validation": 98347, "human review": 42357, "released soon": 81419, "contribute research": 19129, "research challenging": 82509, "paradigm help": 70034, "robustness evaluation": 84713, "lead different": 52800, "critical user": 20371, "deployed reallife": 23569, "reallife applications": 79594, "robustness text": 84746, "text code": 96128, "code tasks": 15535, "tasks focused": 94651, "area date": 7424, "comprehensive benchmark": 17208, "robustness code": 84700, "benchmark code": 10092, "specifically code": 89790, "code docstrings": 15232, "function variable": 36494, "variable names": 102242, "code syntax": 15529, "carefully designed": 12415, "designed natural": 23928, "original semantic": 68810, "semantic meaning": 86323, "models robustness": 64129, "robustness performance": 84736, "performance human": 71290, "meaning original": 58699, "metrics code": 59895, "models considering": 62095, "advantage fact": 3922, "code serve": 15501, "evaluation demonstrate": 30568, "using humaneval": 101513, "humaneval mbpp": 42478, "completion tasks": 16904, "observations include": 67565, "include better": 44228, "better robustness": 10785, "codegen incoder": 15600, "gptj models": 40226, "models sensitive": 64159, "mbpp humaneval": 58674, "good data": 39114, "annotation process": 5903, "labeling data": 48924, "train machine": 97757, "model learn": 61055, "desired output": 24006, "gpt3 largescale": 39487, "model developed": 60764, "developed openai": 24517, "impressive zero": 43652, "used effectively": 100785, "effectively annotate": 27401, "annotate data": 5853, "paper evaluate": 69694, "gpt3 data": 39434, "traditional data": 97662, "annotation methods": 5901, "tasks analysis": 94370, "analysis aim": 5429, "aim provide": 4727, "insight potential": 46046, "social commonsense": 88849, "scarcity long": 85381, "dialogue dataset": 24857, "knowledge knowledge": 48640, "broad spectrum": 11499, "spectrum social": 89929, "social interactions": 88873, "interactions large": 47064, "model human": 60978, "datasets using": 22455, "conversation model": 19328, "unseen datasets": 100262, "koala vicuna": 48864, "original humanwritten": 68780, "responses additionally": 83171, "results shed": 83836, "natural social": 65780, "plan make": 72240, "make data": 57983, "code public": 15456, "generic temporal": 38756, "temporal relations": 95721, "reasoning models": 79943, "limitations work": 54381, "novel task": 67258, "task named": 94151, "bridges gap": 11445, "analysis suggests": 5691, "correctly understand": 19726, "given event": 38885, "facilitate learning": 33501, "human explanations": 42216, "explanations existing": 32488, "including gpt35": 44363, "random guessing": 79105, "heavily rely": 41215, "rely spurious": 81591, "reasoning temporal": 80068, "annotations used": 5959, "encouraging models": 28805, "incidental supervision": 44220, "moving goal": 64812, "zeroshot dense": 104760, "dense retrieval": 23508, "relevance labels": 81436, "shown effective": 87448, "effective efficient": 27293, "languages remains": 51353, "create effective": 20159, "available paper": 9077, "instead propose": 46256, "given query": 38938, "instructionfollowing language": 46453, "false details": 33808, "embedding space": 28066, "retrieved based": 84076, "second step": 85955, "generated document": 37695, "incorrect details": 44731, "dense retriever": 23510, "shows strong": 87620, "performance comparable": 71074, "tasks web": 95252, "web search": 103494, "qa fact": 78131, "chainofthought reasoning": 12841, "reasoning knowledgeintensive": 79918, "multistep questions": 65335, "llms surprisingly": 56896, "surprisingly powerful": 93005, "generating natural": 37940, "language reasoning": 51079, "reasoning steps": 80033, "multistep question": 65333, "using question": 101718, "question retrieve": 78704, "retrieve relevant": 84071, "knowledge source": 48763, "helps llms": 41312, "llms observe": 56440, "address propose": 3478, "turn using": 99129, "using retrieved": 101743, "retrieved results": 84091, "results improve": 83659, "gpt3 substantially": 39537, "improves retrieval": 44076, "downstream qa": 26710, "observe similar": 67598, "gains outofdistribution": 36864, "smaller models": 88768, "reduces model": 80838, "model hallucination": 60969, "factually accurate": 33658, "cot reasoning": 19963, "reasoning code": 79827, "data prompts": 21515, "prompts available": 76655, "recent transformer": 80386, "chatgpt finetuned": 13824, "nlp machine": 66745, "problem generating": 75023, "annotated dataset": 5866, "scientific papers": 85657, "domains comprising": 26503, "human automatic": 42103, "automatic metrics": 8804, "evaluation suggests": 30800, "similarly human": 88158, "slightly worse": 88641, "humans learn": 42619, "finally chatgpt": 34509, "chatgpt finetuning": 13827, "best finetuned": 10597, "pairwise reranking": 69539, "models successful": 64292, "tasks various": 95244, "employed produce": 28430, "produce suboptimal": 75659, "suboptimal results": 91992, "present empirical": 73973, "empirical analysis": 28310, "constrained text": 18380, "selecting best": 86141, "output results": 69187, "multiple decoding": 65171, "performance improve": 71297, "tasks proposed": 94980, "proposed novel": 77243, "uses single": 101254, "source input": 89376, "experiments nlg": 32253, "showing strong": 87428, "results compared": 83509, "improve gpt3": 43710, "gpt3 textdavinci003": 39546, "rerankers trained": 82453, "models input": 62785, "shown highly": 87470, "highly effective": 41695, "paper consider": 69653, "consider transformer": 18143, "small large": 88689, "notion semantic": 67070, "content text": 18697, "models inferences": 62777, "models behavior": 61911, "behavior answering": 9960, "answering questions": 6145, "novel semantic": 67247, "achieve high": 2527, "high performance": 41434, "answering tasks": 6160, "mitigate undesirable": 60285, "significant margin": 87791, "margin 50": 58357, "understand effectiveness": 99605, "training does": 98079, "aspects semantic": 7789, "ability handle": 1674, "fail respond": 33690, "respond adequately": 83098, "times gpt2": 97074, "representations previous": 82114, "previous tokens": 74725, "retrieval framework": 83985, "framework work": 36321, "following recent": 35696, "attention weights": 8386, "alternative methods": 5271, "methods incorporating": 59686, "substantially better": 92116, "predictive power": 73767, "effect sizes": 27254, "times compared": 97070, "ai revolution": 4537, "latest ai": 52656, "technologies chatgpt": 95624, "freely available": 36355, "available internet": 9057, "present evidence": 73979, "ai generated": 4415, "university physics": 100130, "students answer": 91285, "answer openended": 6032, "openended questions": 68264, "ai answers": 4302, "answers generated": 6184, "indicate current": 44985, "current ai": 20655, "represent significant": 82040, "significant threat": 87861, "physics courses": 72082, "meta learning": 59137, "shown finetuning": 87460, "models collection": 62032, "tasks described": 94527, "described instructions": 23663, "fewshot generalization": 34237, "limited understanding": 54479, "tradeoffs different": 97643, "instructiontuning process": 46623, "scale diversity": 85261, "benchmark different": 10143, "strategies finetuning": 90815, "training using": 98345, "using specialized": 101781, "datasets reasoning": 22386, "dialogue finally": 24865, "finally finetuning": 34531, "objectives paper": 67524, "paper characterize": 69628, "model benchmark": 60600, "end create": 28820, "large benchmark": 51399, "benchmark instruction": 10195, "task categories": 93965, "framework measure": 36204, "tasks fully": 94656, "heldout tasks": 41228, "tasks seen": 95086, "lens framework": 53624, "present insights": 73998, "different evaluation": 25059, "evaluation benchmarks": 30530, "benchmarks diverse": 10332, "tasks input": 94752, "promptsource flan": 76854, "does significantly": 26330, "benchmarks highly": 10348, "highly competitive": 41685, "competitive existing": 16799, "finetuned specific": 34970, "specific benchmark": 89665, "framework does": 36099, "human reading": 42347, "presents detailed": 74128, "linguistic analysis": 54559, "models parameters": 63770, "predictive human": 73764, "earlier results": 26964, "results limited": 83710, "al 2022": 4871, "errors reveals": 29841, "named entities": 65464, "function words": 36496, "models memorize": 63603, "sequences training": 86689, "caution using": 12707, "models study": 64277, "study human": 91664, "models knowledgeintensive": 62835, "knowledgeintensive nlp": 48832, "retrievalaugmented incontext": 84044, "learning emerged": 53123, "emerged powerful": 28145, "approach addressing": 6724, "knowledgeintensive tasks": 48835, "frozen language": 36401, "lm retrieval": 57078, "work combined": 104015, "combined simple": 15984, "retrieves passages": 84101, "fully realize": 36465, "realize potential": 79588, "framework relies": 36258, "language texts": 51139, "highlevel programs": 41562, "search relevant": 85890, "relevant passages": 81471, "passages generate": 70548, "generate grounded": 37467, "breaking problems": 11387, "opendomain multihop": 68238, "relative gains": 81295, "gains vanilla": 36876, "gpt35 standard": 39667, "retrievethenread pipeline": 84104, "bar exam": 9342, "license exam": 53960, "commonly referred": 16194, "seven years": 87127, "postsecondary education": 72969, "law school": 52706, "despite significant": 24120, "significant investment": 87785, "task requires": 94224, "depth knowledge": 23634, "art ai": 7519, "evaluation performance": 30710, "performance openais": 71443, "openais textdavinci003": 68225, "textdavinci003 model": 96520, "benefit finetuning": 10448, "optimization prompt": 68614, "positively impacted": 72843, "best prompt": 10637, "prompt parameters": 76392, "parameters gpt35": 70225, "gpt35 achieves": 39575, "ranking responses": 79278, "choices correct": 14600, "88 time": 1384, "time respectively": 97016, "respectively indicating": 83075, "indicating strong": 45045, "performance ability": 70965, "ability interpret": 1689, "limited nascent": 54446, "scientific understanding": 85669, "llms proprietary": 56606, "proprietary nature": 77317, "believe results": 10039, "results strongly": 83861, "strongly suggest": 91114, "suggest llm": 92377, "llm pass": 55192, "near future": 65840, "future large": 36735, "models detecting": 62211, "detecting bugs": 24237, "systems ensuring": 93440, "end users": 28845, "effective challenging": 27269, "challenging domain": 13168, "dl programs": 26183, "input language": 45910, "language python": 51072, "address limitations": 3449, "limitations propose": 54362, "approach directly": 6807, "generate input": 37501, "trained billions": 97800, "generate humanlike": 37488, "key insight": 48315, "modern llms": 64607, "corpora implicitly": 19579, "implicitly learn": 43430, "dl program": 26182, "generation specifically": 38425, "higher code": 41490, "code coverage": 15179, "able detect": 1839, "previously unknown": 74765, "bugs paper": 11576, "paper demonstrates": 69670, "llms leveraged": 56295, "domains challenging": 26492, "challenging traditional": 13249, "traditional approaches": 97655, "direction llms": 25450, "massive language": 58456, "pruned oneshot": 77845, "gpt family": 39192, "family models": 33854, "models pruned": 63939, "50 sparsity": 1019, "oneshot retraining": 67952, "loss accuracy": 57458, "accuracy achieved": 2197, "achieved new": 2647, "pruning method": 77853, "designed work": 23962, "efficiently accurately": 27841, "gptfamily models": 40214, "models execute": 62374, "largest available": 52586, "available opensource": 9076, "models opt175b": 63721, "unstructured sparsity": 100294, "increase perplexity": 44771, "billion weights": 11029, "approaches code": 7115, "chat ai": 13359, "ai applications": 4304, "applications like": 6519, "like chatgpt": 54062, "chatgpt offer": 14043, "advanced understanding": 3759, "understanding question": 99851, "multistep tasks": 65343, "experiments test": 32314, "deductive reasoning": 22738, "reasoning paper": 79966, "challenge chatgpt": 12861, "chatgpt plays": 14084, "chat applications": 13360, "object names": 67480, "questions average": 78787, "experimental setups": 32079, "research introduces": 82641, "introduces novel": 47530, "emotions task": 28274, "task humans": 94091, "humans typically": 42647, "applications complete": 6433, "questions english": 78838, "problemsolving using": 75242, "using similar": 101762, "educational materials": 27208, "tsar2022 shared": 98981, "lexical simplification": 53928, "models lexical": 62898, "components requires": 17095, "technical knowledge": 95408, "potential alternative": 72998, "frustratingly simple": 36415, "simple pipeline": 88225, "settings training": 87097, "task consists": 93992, "ensemble different": 29419, "different prompt": 25160, "prompt templates": 76432, "spanish portuguese": 89490, "results minor": 83727, "original prompts": 68804, "work discussing": 104058, "implications future": 43383, "experiments available": 32112, "available online": 9073, "capabilities global": 11926, "increasingly dependent": 44875, "knowledge workers": 48814, "meet needs": 58965, "public private": 77943, "comprehensive assessment": 17203, "assessment capability": 7940, "versions gpt": 102821, "gpt sample": 39236, "multiplechoice questions": 65290, "questions based": 78788, "tasks textdavinci003": 95199, "human capabilities": 42116, "quantitative reasoning": 78421, "reasoning zeroshot": 80089, "zeroshot prompts": 104853, "prompts second": 76819, "approaching humanlevel": 7231, "understanding application": 99670, "parameters model": 70254, "questions correctly": 78809, "answers correct": 6175, "generations gpt3": 38517, "findings strongly": 34753, "potential transform": 73290, "quality efficiency": 78260, "work memory": 104177, "memory augmented": 59011, "augmented large": 8578, "models computationally": 62075, "processing arbitrarily": 75459, "arbitrarily large": 7313, "inputs potentially": 46005, "existing large": 31735, "turing machine": 99122, "key aspect": 48271, "does require": 26321, "weights instead": 103554, "specific set": 89752, "set prompts": 86924, "prompts chatgpt": 76661, "chatgpt need": 14033, "review large": 84260, "generative ai": 38528, "chatgpt stable": 14265, "stable diffusion": 90090, "creating artistic": 20212, "implications generative": 43385, "models industry": 62768, "example generative": 31161, "ai capable": 4320, "capable transforming": 12270, "texts images": 96576, "images like": 43101, "model text": 61505, "model images": 60983, "images text": 43118, "texts texts": 96607, "texts like": 96583, "chatgpt texts": 14313, "texts code": 96549, "codex model": 15674, "model create": 60721, "algorithms like": 4979, "ai provide": 4521, "provide taxonomy": 77581, "developed set": 24531, "applications use": 6588, "analyze data": 5753, "data social": 21635, "generate potential": 37555, "identifying relevant": 42932, "text content": 96147, "analyzed using": 5795, "gpt3 embedding": 39445, "corpora created": 19571, "models explore": 62413, "latent information": 52635, "tools allow": 97354, "allow researchers": 5165, "researchers practitioners": 82878, "gain valuable": 36817, "valuable insights": 102151, "pairwise comparison": 69530, "report describes": 81963, "submissions shared": 91975, "task evaluating": 94042, "instructionbased models": 46429, "based t5small": 9730, "model fewshot": 60876, "works best": 104348, "accuracy model": 2316, "model works": 61597, "works better": 104349, "english data": 29059, "english fewshot": 29069, "model performs": 61244, "performs worse": 71828, "finetuned english": 34886, "accuracy data": 2235, "data learning": 21376, "learning signals": 53414, "chinese fewshot": 14549, "performs best": 71798, "utilized language": 101972, "chinese english": 14544, "english words": 29113, "words using": 103966, "perform ml": 70894, "need different": 65934, "ml using": 60375, "sentiment lexicons": 86605, "model machine": 61115, "translation case": 98690, "study research": 91811, "shown excellent": 87452, "tasks prompting": 94977, "literature gap": 54649, "examining various": 31150, "factors prompt": 33605, "prompt template": 76430, "demonstration example": 23459, "example selection": 31174, "monolingual data": 64711, "learning prompting": 53362, "number quality": 67371, "prompt examples": 76319, "features prompt": 34020, "semantic similarity": 86351, "similarity significant": 88151, "spearman correlation": 89598, "prompting performance": 76588, "strong using": 91079, "using pseudo": 101707, "data zeroshot": 21764, "zeroshot prompting": 104850, "prompting improve": 76544, "improve translation": 43819, "improved performance": 43851, "examples selected": 31282, "finally provide": 34560, "provide analysis": 77403, "analysis model": 5582, "outputs discuss": 69217, "discuss problems": 25682, "agents learn": 4202, "trained designed": 97812, "computational models": 17471, "gpt3 experiments": 39452, "original results": 68807, "fresh insights": 36387, "chatgpt human": 13934, "comparison corpus": 16705, "evaluation detection": 30574, "introduction chatgpt": 47554, "chatgpt garnered": 13843, "widespread attention": 103784, "attention academic": 8280, "academic industrial": 1979, "industrial communities": 45153, "chatgpt able": 13477, "range human": 79162, "human questions": 42341, "questions providing": 78922, "fluent comprehensive": 35475, "comprehensive answers": 17201, "answers significantly": 6221, "significantly surpass": 88027, "surpass previous": 92913, "public chatbots": 77913, "security usefulness": 86044, "worry potential": 104435, "potential negative": 73209, "negative impacts": 66063, "impacts large": 43281, "chatgpt society": 14250, "news plagiarism": 66640, "security issues": 86015, "issues work": 48022, "work collected": 104014, "comparison responses": 16723, "responses human": 83236, "experts chatgpt": 32405, "chatgpt questions": 14141, "financial medical": 34608, "medical legal": 58898, "collected dataset": 15875, "dataset human": 21965, "human chatgpt": 42119, "chatgpt comparison": 13634, "corpus hc3": 19628, "dataset study": 22090, "chatgpts responses": 14449, "directions llms": 25474, "llms conducted": 55665, "conducted comprehensive": 17943, "comprehensive human": 17268, "linguistic analyses": 54558, "chatgptgenerated content": 14403, "content compared": 18600, "interesting results": 47160, "results revealed": 83825, "experiments effectively": 32178, "effectively detect": 27414, "generated chatgpt": 37670, "chatgpt humans": 13937, "humans build": 42580, "different detection": 25046, "detection systems": 24363, "systems explore": 93449, "explore key": 32694, "key factors": 48297, "factors influence": 33597, "influence effectiveness": 45347, "evaluate different": 30165, "dataset code": 21852, "efficient inference": 27777, "model apis": 60548, "performing inference": 71780, "large volumes": 52392, "samples large": 85126, "llms computationally": 55662, "realworld use": 79711, "propose batch": 76941, "prompting simple": 76609, "effective prompting": 27349, "enables llm": 28598, "run inference": 84947, "reduces token": 80852, "token time": 97157, "time costs": 96944, "theoretically demonstrate": 96750, "inference costs": 45232, "linearly number": 54543, "datasets commonsense": 22174, "arithmetic reasoning": 7492, "better comparable": 10702, "chatbased llms": 13397, "llms gpt35": 56089, "gpt35 gpt4": 39607, "analysis shows": 5677, "affect performance": 4055, "reasoning methods": 79940, "stability analysis": 90082, "analysis finetuning": 5520, "model bert": 60604, "roberta t5": 84611, "t5 gpt": 93631, "proven promising": 77384, "recent nlp": 80302, "research numerous": 82683, "numerous recent": 67439, "works indicate": 104361, "indicate finetuning": 44990, "suffers instability": 92324, "instability problem": 46200, "results significantly": 83850, "different performance": 25141, "works proposed": 104380, "proposed different": 77193, "methods solve": 59804, "solve problem": 89185, "theoretical understanding": 96748, "understanding methods": 99813, "methods work": 59843, "work paper": 104195, "finetuning procedure": 35202, "addition able": 3173, "able explain": 1845, "help design": 41240, "novel strategies": 67253, "extensively evaluate": 33146, "evaluate proposed": 30266, "proposed approaches": 77181, "used realworld": 100886, "realworld benchmark": 79648, "datasets experiment": 22248, "experiment results": 31973, "generation style": 38434, "contextually appropriate": 18974, "critical success": 20359, "dialog systems": 24836, "systems existing": 93445, "transfer large": 98412, "data argue": 20992, "difficult collect": 25285, "collect large": 15866, "data second": 21600, "hard define": 40976, "feedback paper": 34117, "pairwise comparisons": 69531, "pairwise human": 69533, "seed set": 86057, "text generator": 96283, "approach generate": 6870, "generic text": 38757, "text prompts": 96369, "data accessible": 20937, "humans humans": 42607, "humans perceive": 42626, "important prerequisite": 43528, "perception ability": 70780, "researchers quantify": 82883, "present alternative": 73929, "computational approach": 17433, "derived using": 23655, "gpt3 instead": 39479, "instead using": 46260, "human annotations": 42083, "annotations demonstrate": 5924, "demonstrate gpt3": 23092, "significantly correlated": 87901, "correlated human": 19759, "annotations furthermore": 5936, "solution obtained": 89102, "finding suggests": 34634, "suggests gpt3": 92437, "human cognition": 42126, "prediction large": 73698, "neural ranker": 66281, "llm generate": 55098, "generate explanations": 37448, "explanations prior": 32512, "effective strategy": 27371, "strategy improve": 90890, "range reasoning": 79200, "neural rankers": 66282, "benefit explanations": 10447, "ranking model": 79274, "explanation given": 32465, "querydocument pair": 78551, "model dubbed": 60782, "performs par": 71814, "additional computational": 3229, "media discourse": 58834, "offering rich": 67806, "rich data": 84412, "health topics": 41180, "despite advancements": 24023, "advancements natural": 3845, "media data": 58832, "data analysis": 20966, "gap remains": 36973, "used identify": 100821, "identify salient": 42898, "salient concepts": 85073, "predefined entity": 73630, "framework tailored": 36296, "pioneering approach": 72127, "approach designed": 6799, "designed capture": 23886, "broad categories": 11487, "extraction task": 33335, "task formulate": 94072, "formulate novel": 35864, "media text": 58852, "text use": 96471, "use disorder": 100526, "paper leverages": 69804, "qualitative quantitative": 78203, "quantitative analysis": 78401, "analysis demonstrate": 5481, "demonstrate feasibility": 23079, "actionable insights": 2958, "efficiently extracting": 27849, "models contributions": 62119, "contributions include": 19181, "development novel": 24684, "novel data": 67138, "collection curation": 15891, "dataset kind": 21986, "reddit community": 80744, "models extract": 62429, "model chatgpt": 60643, "chatgpt outperforms": 14055, "outperforms unsupervised": 69134, "extraction models": 33319, "evaluate efficacy": 30179, "task ai": 93931, "ai model": 4464, "better humans": 10731, "changing way": 13306, "evaluate information": 30205, "global health": 39012, "accurate information": 2414, "organic synthetic": 68735, "comparison humans": 16715, "produce accurate": 75602, "understand produce": 99643, "produce compelling": 75610, "tweets generated": 99152, "human users": 42406, "improve information": 43714, "information campaigns": 45414, "health understanding": 41181, "understanding effectiveness": 99721, "effectiveness large": 27541, "dialog evaluation": 24825, "models steadily": 64257, "increased size": 44801, "size past": 88504, "level performance": 53671, "summarization large": 92538, "humanlike text": 42540, "tasks realm": 95008, "llms language": 56271, "evaluation task": 30806, "llms bloom": 55538, "bloom opt": 11220, "opt gpt3": 68537, "gpt3 flant5": 39462, "paper shows": 69954, "datasets used": 22452, "training model": 98202, "performs task": 71825, "task prompt": 94202, "paper investigates": 69793, "number examples": 67338, "examples prompt": 31271, "affect models": 4053, "general responses": 37191, "instructgpt large": 46291, "feedback mechanisms": 34110, "future language": 36733, "consider ai": 18131, "complexity software": 17054, "engineering tasks": 29025, "tasks requires": 95053, "requires combination": 82364, "knowledge problemsolving": 48715, "possible solutions": 72922, "evaluate various": 30302, "specific requirements": 89745, "pros cons": 77323, "unique ways": 100091, "user requirements": 101035, "crucial making": 20506, "making informed": 58108, "informed decisions": 45693, "efficient effective": 27754, "effective software": 27367, "current chatbot": 20674, "openais chatgpt": 68187, "chatgpt github": 13871, "complex queries": 16981, "access paper": 2078, "compare multiple": 16475, "code solutions": 15513, "solutions generated": 89141, "similarities differences": 88125, "red teaming": 80737, "robustness reliability": 84741, "recent breakthroughs": 80225, "synthesis comprehension": 93207, "coherent text": 15790, "applications large": 6509, "significantly impacted": 87936, "report summarization": 81994, "observations indicate": 67566, "indicate llms": 45004, "llms exhibit": 55901, "exhibit social": 31556, "ethical societal": 30088, "consequences resulting": 18116, "llms consequently": 55667, "empirical investigations": 28334, "investigations reveal": 47802, "advanced llms": 3713, "systematic examination": 93333, "harmful behaviors": 41026, "current llm": 20718, "llm usage": 55302, "future efforts": 36721, "perform qualitative": 70912, "qualitative research": 78208, "research method": 82669, "paper chatgpt": 69629, "recent llms": 80290, "llms analyze": 55470, "benchmark chatgpt": 10087, "chatgpt multiple": 14025, "datasets significant": 22415, "ethical risks": 30083, "addition examine": 3184, "examine implications": 31116, "ai ethics": 4390, "behaviors chatgpt": 10000, "chatgpt future": 13836, "practical design": 73510, "design considerations": 23764, "llms believe": 55523, "findings light": 34698, "light future": 54006, "mitigate ethical": 60260, "robustness promptbased": 84738, "model empirical": 60797, "technique aimed": 95432, "structured representation": 91181, "question recent": 78700, "recent advancements": 80175, "advancements fewshot": 3811, "code demonstrated": 15222, "demonstrated superior": 23348, "representations compared": 82092, "compared traditional": 16648, "semantic parsers": 86328, "susceptible adversarial": 93066, "robustness smaller": 84743, "smaller semantic": 88790, "training approach": 97945, "requires substantial": 82413, "expensive human": 31911, "data paper": 21463, "study adversarial": 91475, "adversarial robustness": 3997, "robustness large": 84726, "promptbased language": 76462, "models vulnerable": 64526, "carefully crafted": 12409, "adversarial examples": 3973, "address challenge": 3360, "challenge propose": 12922, "propose methods": 77024, "methods improving": 59676, "improving robustness": 44153, "amounts labeled": 5351, "heavy computational": 41217, "skill large": 88583, "llm openais": 55178, "chatgpt gpt3": 13884, "offer unique": 67773, "exploring translation": 32871, "eighteen months": 27932, "times smaller": 97084, "provide basic": 77410, "basic arithmetic": 9873, "complex datasets": 16925, "encoded simple": 28684, "rules work": 84942, "work examines": 104075, "nexttoken prediction": 66660, "work highlights": 104117, "datasets llm": 22327, "python libraries": 78105, "exploratory data": 32618, "models capabilities": 61956, "feature importance": 33969, "importance derive": 43447, "unseen test": 100281, "test cases": 95872, "linear regression": 54535, "extend models": 32944, "semantic coherence": 86296, "work explore": 104078, "explore language": 32695, "models employed": 62308, "originally conceived": 68823, "assess given": 7854, "predict text": 73660, "text sequence": 96412, "word sequence": 103928, "specific language": 89717, "extensive experimentation": 33042, "data employed": 21177, "gpt2 transformerbased": 39362, "perplexity scores": 71858, "achieved accuracy": 2609, "potential application": 73002, "mental disorders": 59083, "human sensory": 42363, "language longstanding": 49318, "philosophy cognitive": 72038, "stateoftheart large": 90362, "models unlock": 64458, "insights problem": 46126, "lower bound": 57554, "information extracted": 45466, "language specifically": 51105, "similarity judgments": 88138, "human data": 42146, "data domains": 21166, "representations like": 82108, "model gpt4": 60960, "language does": 49194, "lead improvements": 52806, "specific visual": 89774, "visual modality": 103088, "study influence": 91679, "specific languages": 89719, "apply models": 6666, "models multilingual": 63645, "task gpt4": 94086, "english russian": 29099, "interaction language": 47014, "language perception": 50953, "use chatgpt": 100501, "chatgpt potential": 14091, "construction industry": 18466, "timeconsuming tasks": 97058, "presents study": 74175, "study chatgpt": 91518, "chatgpt used": 14328, "output chatgpt": 69143, "chatgpt evaluated": 13765, "provided feedback": 77615, "interaction experience": 47006, "experience quality": 31940, "quality output": 78327, "results chatgpt": 83489, "chatgpt generate": 13851, "generate coherent": 37397, "fulfill requirements": 36424, "great potential": 40477, "potential tool": 73288, "tool automate": 97268, "study highlights": 91657, "potential using": 73302, "industry need": 45166, "prompt strategies": 76420, "gpt3 carry": 39423, "improve llm": 43727, "llm chatbot": 55000, "textual prompts": 96688, "prompts instructions": 76755, "instructions examples": 46497, "prompt strategy": 76421, "conversations users": 19432, "challenge introduce": 12890, "introduce concept": 47413, "errors persist": 29833, "applying different": 6680, "multiple conversations": 65166, "conversation using": 19341, "using graph": 101499, "visualization highlights": 103137, "prompt changes": 76244, "pilot evaluation": 72113, "designers data": 23968, "data selection": 21604, "selection language": 86161, "models importance": 62708, "pretraining dataset": 74520, "dataset crucial": 21890, "codex language": 15668, "problem selecting": 75072, "unlabeled dataset": 100145, "desired target": 24011, "data existing": 21206, "simple heuristics": 88202, "require human": 82260, "manually curate": 58300, "curate data": 20620, "data instead": 21331, "propose data": 76957, "efficient scalable": 27817, "scalable framework": 85240, "importance weights": 43484, "weights reduced": 103565, "feature space": 33978, "data importance": 21309, "pile dataset": 72110, "data relevant": 21560, "metric measures": 59867, "data target": 21682, "target feature": 93869, "space data": 89442, "selection methods": 86166, "including expert": 44340, "expert selection": 32374, "downstream accuracy": 26683, "continued pretraining": 19015, "specific domain": 89685, "performs comparably": 71808, "target distributions": 93862, "models target": 64334, "wikipedia books": 103811, "random selection": 79111, "chatgpt write": 14360, "write good": 104458, "boolean query": 11260, "systematic review": 93347, "review literature": 84264, "literature search": 54661, "systematic reviews": 93351, "reviews literature": 84294, "evidencebased medicine": 31000, "answer research": 6053, "questions medical": 78894, "medical field": 58892, "create highquality": 20164, "queries constructed": 78478, "takes long": 93821, "long time": 57342, "advances transformerbased": 3897, "transformerbased generative": 98557, "potential effectively": 73077, "effectively follow": 27430, "users generate": 101116, "generate answers": 37379, "answers based": 6172, "instructions paper": 46543, "investigate effectiveness": 47639, "latest models": 52679, "chatgpt generating": 13862, "generating effective": 37894, "experiments standard": 32304, "standard test": 90211, "task chatgpt": 93970, "chatgpt capable": 13586, "lead high": 52803, "demonstrates potential": 23391, "potential chatgpt": 73051, "follow complex": 35642, "complex instructions": 16945, "instructions generate": 46505, "generate queries": 37564, "high precision": 41439, "makes valuable": 58080, "valuable tool": 102174, "tool researchers": 97312, "researchers conducting": 82844, "conducting systematic": 18001, "higher precision": 41515, "generative artificial": 38591, "ai enabled": 4380, "development sophisticated": 24714, "sophisticated models": 89288, "models capable": 61959, "capable producing": 12259, "text images": 96295, "utilization large": 101912, "quality generation": 78285, "arduous task": 7413, "task generation": 94082, "generation issue": 38218, "issue given": 47933, "recently paper": 80533, "abilities zeroshot": 1581, "zeroshot instruction": 104803, "models score": 64145, "score generated": 85716, "models explored": 62415, "ranging size": 79242, "gpt3 experimental": 39450, "results text": 83893, "22 evaluation": 605, "evaluation aspects": 30514, "multifaceted evaluation": 64908, "need annotated": 65909, "annotated samples": 5876, "samples make": 85131, "code publicly": 15457, "chatgpt caught": 13595, "rise artificial": 84469, "impact education": 43205, "topic growing": 97508, "new generation": 66413, "generation ai": 38019, "capabilities use": 12113, "use chatbots": 100500, "chatbots particularly": 13453, "particularly chatgpt": 70437, "generating academic": 37860, "scholars study": 85542, "aims explore": 4804, "popular ai": 72613, "ai chatbots": 4330, "chatgpt end": 13753, "detection tools": 24371, "tools used": 97478, "used evaluate": 100791, "chatgpt various": 14345, "various topics": 102611, "topics results": 97534, "chatgpt great": 13917, "potential generate": 73105, "text outputs": 96346, "words chatgpt": 103950, "chatgpt create": 13668, "findings align": 34641, "recent concerns": 80234, "concerns students": 17712, "students using": 91345, "minimal effort": 60090, "chatgpt asked": 13538, "generated additional": 37649, "performance compared": 71080, "tools paper": 97452, "measures mitigate": 58767, "mitigate potential": 60274, "plagiarism issues": 72225, "ongoing debate": 67963, "impact ai": 43188, "technology education": 95648, "education implications": 27153, "discussed paper": 25700, "assistance students": 8033, "compare students": 16496, "students essay": 91305, "writing performance": 104483, "writing assistant": 104468, "assistant tool": 8044, "materials methods": 58537, "students participated": 91323, "participated study": 70383, "study control": 91557, "control experimental": 19200, "experimental group": 32004, "group used": 40610, "numerical values": 67411, "writing time": 104505, "content similarity": 18688, "similarity results": 88148, "slightly higher": 88638, "low overall": 57520, "recognized potential": 80631, "aigenerated texts": 4679, "conclusions study": 17767, "evidence using": 30996, "using gpt": 101479, "quality control": 78242, "parameters generating": 70222, "feedback programming": 34121, "syntax errors": 93193, "errors using": 29845, "llms codex": 55635, "hold great": 41882, "great promise": 40487, "promise enhancing": 76118, "enhancing programming": 29363, "programming education": 75897, "education automatically": 27132, "generating feedback": 37907, "feedback students": 34142, "investigate using": 47712, "generate feedback": 37456, "python programs": 78109, "given students": 38963, "buggy program": 11564, "program goal": 75837, "program natural": 75839, "language explanation": 49209, "inspired human": 46174, "feedback using": 34155, "llms promising": 56589, "critical challenge": 20309, "ensure high": 29451, "generated feedback": 37701, "question study": 78710, "study develop": 91574, "feedback generation": 34088, "end introduce": 28826, "technique generate": 95450, "key idea": 48305, "use novel": 100639, "mechanism provides": 58808, "extensive evaluation": 33026, "evaluation using": 30819, "using realworld": 101726, "realworld datasets": 79661, "written natural": 104518, "language nl": 50943, "prone various": 76867, "quality assurance": 78225, "overlook important": 69400, "important quality": 43530, "quality issues": 78303, "issues time": 48020, "time budget": 96933, "qa approach": 78119, "provides automated": 77641, "stakeholders including": 90146, "posing question": 72793, "answers given": 6187, "resources work": 83038, "addressing requirements": 3554, "dataset covering": 21884, "containing total": 18542, "questionanswer pairs": 78725, "experiment stateoftheart": 31979, "qa methods": 78138, "models empirical": 62303, "average recall": 9173, "examples large": 31242, "pretraining language": 74551, "plms shown": 72433, "architecture existing": 7346, "memory computational": 59021, "scaling large": 85335, "large context": 51410, "context size": 18852, "tuning incontext": 99048, "underexplored study": 99453, "study propose": 91791, "efficient transformer": 27830, "tokens batch": 97181, "plms gpt3": 72424, "scale size": 85292, "examples efficiently": 31208, "learning explore": 53152, "results diverse": 83576, "higher accuracy": 41484, "accuracy average": 2209, "average length": 9164, "achieving best": 2832, "best accuracy": 10587, "accuracy score": 2358, "achieve higher": 2529, "upper bound": 100376, "linguistic ambiguity": 54557, "analysis chatgpt": 5454, "chatgpt linguistic": 13993, "main challenges": 57816, "challenges natural": 13075, "modern transformer": 64623, "architectures like": 7396, "work motivated": 104179, "chatgpt paper": 14060, "paper provide": 69917, "strengths weaknesses": 90964, "strategies model": 90835, "versus traditional": 102835, "answering knowledge": 6113, "current status": 20789, "questionanswering systems": 78747, "graphs kgs": 40436, "emerging research": 28229, "research areas": 82494, "empower users": 28493, "users natural": 101144, "language interfaces": 49293, "extracting information": 33266, "information easily": 45444, "easily effectively": 27013, "ai simulates": 4549, "conversations humans": 19419, "limited data": 54413, "data captured": 21037, "recent information": 80265, "translating natural": 98674, "language question": 51075, "engine paper": 28932, "present comprehensive": 73953, "conversational models": 19385, "qas conduct": 78163, "thorough evaluation": 96826, "using real": 101722, "various application": 102348, "identify current": 42859, "category systems": 12634, "systems based": 93398, "based findings": 9534, "findings propose": 34715, "propose open": 77084, "research opportunities": 82690, "chatbot capabilities": 13404, "chatgpt generalpurpose": 13850, "processing task": 75574, "task solver": 94246, "scale large": 85274, "demonstrated ability": 23227, "perform variety": 70938, "zeroshot adaptation": 104724, "adaptation downstream": 3072, "downstream data": 26688, "data recently": 21545, "debut chatgpt": 22552, "chatgpt drawn": 13729, "drawn great": 26820, "great deal": 40469, "deal attention": 22510, "highquality responses": 41786, "known chatgpt": 48840, "chatgpt serve": 14206, "generalist model": 37223, "work empirically": 104066, "empirically analyze": 28371, "chatgpt evaluating": 13767, "20 popular": 497, "datasets covering": 22194, "representative task": 82156, "categories extensive": 12607, "studies demonstrate": 91372, "effectiveness limitations": 27547, "limitations current": 54312, "current version": 20798, "version chatgpt": 102805, "chatgpt chatgpt": 13609, "chatgpt performs": 14076, "faces challenges": 33466, "challenges solving": 13126, "solving specific": 89250, "tasks sequence": 95095, "analysis qualitative": 5628, "qualitative case": 78192, "vision model": 102992, "lack ability": 48976, "empirical evaluation": 28316, "different lms": 25107, "gpt2 opt": 39325, "experiments lms": 32244, "differences chatgpt": 24974, "advancing ai": 3902, "allocate resources": 5149, "content production": 18673, "tutoring systems": 99142, "labor intensive": 48960, "humanauthored content": 42446, "approaches paper": 7180, "paper conduct": 69640, "evaluation chatgpt": 30537, "chatgpt comparing": 13633, "authored human": 8620, "human tutors": 42403, "intermediate algebra": 47204, "produced chatgpt": 75672, "chatgpt conditions": 13645, "positive learning": 72825, "statistically significantly": 90568, "significantly higher": 87932, "areas chatgpt": 7437, "discuss limitations": 25668, "limitations study": 54374, "study suggest": 91855, "suggest future": 92362, "content used": 18701, "opinions ai": 68478, "chatgpt study": 14276, "aims understand": 4832, "survey conducted": 93024, "research uses": 82820, "analysis method": 5580, "tool research": 97311, "study finds": 91639, "scheme using": 85530, "chatgpt bert": 13567, "crosslayer design": 20415, "model utilized": 61567, "importance data": 43445, "existing deep": 31695, "semantic communication": 86297, "scheme achieve": 85523, "achieve lower": 2545, "translation translating": 98751, "gained attention": 36820, "attention recent": 8368, "efforts focused": 27911, "producing accurate": 75704, "accurate translation": 2431, "knowledge datasets": 48497, "available based": 9013, "known data": 48842, "data sources": 21643, "platforms like": 72315, "stack overflow": 90103, "commands paper": 16057, "paper provides": 69920, "provides contributions": 77653, "contributions research": 19186, "translation model": 98721, "text second": 96405, "second introduce": 85934, "minimal human": 60091, "human intervention": 42257, "times larger": 97077, "larger prior": 52469, "prior datasets": 74843, "does rely": 26320, "performance chatgpt": 71043, "chatgpt task": 14298, "task discuss": 94027, "data generator": 21273, "diversity dataset": 26141, "unique opportunities": 100087, "reasoning conversational": 79844, "survey state": 93051, "art large": 7521, "understanding contextual": 99701, "semantics language": 86385, "language syntax": 51121, "enabled significant": 28570, "significant advances": 87675, "ai including": 4432, "including development": 44324, "systems capable": 93406, "complete tasks": 16877, "tasks involve": 94773, "levels reasoning": 53701, "reasoning including": 79907, "reasoning humans": 79904, "recent conversational": 80235, "research focused": 82603, "focused commonsense": 35575, "approaches include": 7153, "ai paper": 4493, "benchmarks used": 10425, "used evaluating": 100792, "finally paper": 34551, "presents preliminary": 74159, "capabilities stateoftheart": 12086, "stateoftheart open": 90426, "dialogue models": 24880, "negative effect": 66058, "observations motivate": 67569, "motivate research": 64772, "massively multilingual": 58475, "shallow fusion": 87167, "fusion large": 36680, "impressive progress": 43640, "processing remains": 75564, "remains unclear": 81707, "improving automatic": 44098, "automatic speech": 8827, "speech recognition": 89962, "recognition asr": 80588, "propose train": 77142, "fusion multiple": 36685, "multiple languages": 65208, "push limits": 78070, "number experts": 67339, "inference computation": 45224, "roughly constant": 84872, "based stateoftheart": 9723, "endtoend model": 28878, "model compared": 60681, "similar computation": 88060, "computation inference": 17423, "relative wer": 81305, "wer reduction": 103615, "achieves average": 2709, "models hybrid": 62691, "survey paper": 93038, "paper reviews": 69939, "stateoftheart language": 90356, "strategies complex": 90799, "complex questionanswering": 16983, "llm good": 55108, "public data": 77914, "data standard": 21650, "specific complex": 89673, "complex questions": 16984, "questions problems": 78919, "problems does": 75129, "vary different": 102638, "different cultures": 25034, "methods reduce": 59776, "knowledge skills": 48760, "methods sensitive": 59797, "sensitive data": 86459, "data protection": 21520, "feedback recent": 34127, "equally strong": 29685, "limitations llm": 54347, "paper start": 69958, "evaluation techniques": 30809, "techniques integrate": 95537, "findings robust": 34745, "research papers": 82701, "source benchmark": 89341, "benchmark analyze": 10073, "challenges llm": 13063, "llm terms": 55289, "evaluation accuracy": 30501, "accuracy fairness": 2266, "fairness robustness": 33742, "discuss challenges": 25653, "including domain": 44330, "decomposition efficient": 22699, "qa long": 78136, "long form": 57311, "analyze current": 5752, "current solutions": 20770, "promising research": 76193, "research trends": 82812, "trends using": 98856, "patterns training": 70640, "training prompting": 98247, "learning supervised": 53432, "supervised ai": 92693, "knowledge grounding": 48611, "higher education": 41498, "communication challenges": 16256, "instructors students": 46628, "learning students": 53428, "ask questions": 7723, "students need": 91320, "need work": 66006, "conceptual understanding": 17650, "creative thinking": 20258, "institutions need": 46269, "education proposing": 27174, "end developed": 28824, "framework based": 36049, "based power": 9654, "automatically generates": 8877, "intelligent assistants": 46917, "teaching assistant": 95361, "assistant ta": 8043, "capable answering": 12222, "questions concerning": 78801, "improve access": 43662, "students reduce": 91329, "knowledge discovery": 48505, "accuracy performance": 2328, "chatgpt question": 14140, "popular math": 72651, "universities country": 100121, "google search": 39143, "chat generative": 13369, "transformer chatgpt": 98498, "chatgpt revolutionized": 14190, "approach artificial": 6744, "publications chatgpt": 77959, "chatgpt evaluation": 13768, "test effectiveness": 95886, "wellknown natural": 103597, "tasks existing": 94604, "existing studies": 31825, "limited scale": 54463, "scale work": 85300, "chatgpts capabilities": 14424, "tasks subjective": 95150, "analysis emotion": 5496, "emotion recognition": 28251, "stance detection": 90150, "linguistic acceptability": 54555, "evaluated gpt4": 30339, "gpt4 model": 39978, "model selected": 61386, "tasks automated": 94390, "prompting process": 76593, "comparison results": 16725, "sota solutions": 89325, "loss quality": 57474, "quality chatgpt": 78234, "chatgpt model": 14018, "fewshot evaluation": 34229, "evaluation gpt4": 30626, "model loss": 61113, "loss semantic": 57475, "significantly lower": 87975, "chatgpt showed": 14218, "task lower": 94134, "sota performance": 89321, "nlp problems": 66763, "problems like": 75164, "chatgpt responses": 14181, "subjective tasks": 91958, "revealed chatgpt": 84186, "chatgpt bias": 13570, "results provide": 83791, "quality recent": 78343, "models indicate": 62764, "blackbox language": 11133, "model new": 61156, "new domain": 66381, "standard practice": 90198, "modern largescale": 64605, "accessed apis": 2095, "apis making": 6295, "difficult access": 25278, "access internal": 2064, "method effectively": 59273, "effectively adapt": 27393, "adapt blackbox": 3035, "blackbox large": 11135, "llms new": 56430, "retrievalaugmented language": 84046, "output language": 69163, "model retrieval": 61357, "domain data": 26369, "experiments different": 32171, "domains demonstrate": 26509, "settings limited": 87072, "limited access": 54384, "access llms": 2071, "llms additionally": 55445, "effective finetuning": 27301, "finetuning training": 35280, "release dataset": 81366, "dataset encourage": 21921, "practice education": 73546, "education research": 27181, "exploratory study": 32622, "practice learning": 73549, "learning research": 53387, "research tools": 82806, "stages development": 90132, "overview development": 69430, "development generative": 24649, "ai specifically": 4555, "explore chatgpts": 32655, "chatgpts ability": 14419, "basic concepts": 9875, "create knowledge": 20165, "knowledge related": 48739, "research investigating": 82646, "responses structured": 83310, "prompts highlight": 76740, "highlight benefits": 41576, "benefits limitations": 10478, "results study": 83864, "tasks translating": 95212, "code language": 15372, "creating code": 20214, "code scratch": 15494, "scratch using": 85809, "using new": 101639, "new ai": 66321, "tools help": 97417, "educators researchers": 27229, "used conjunction": 100764, "methods ensure": 59621, "ensure accurate": 29439, "accurate results": 2426, "guiding large": 40780, "prompting introduce": 76550, "introduce directional": 47418, "prompting novel": 76583, "framework guiding": 36154, "llms specific": 56844, "instead directly": 46245, "llms method": 56392, "method employs": 59277, "policy model": 72546, "generate auxiliary": 37384, "prompt input": 76347, "prompts act": 76647, "guide llms": 40743, "llms generating": 56057, "generating desired": 37889, "desired outcomes": 24005, "outcomes including": 68849, "specific keywords": 89714, "keywords generated": 48370, "generated summary": 37790, "challenges direct": 12997, "direct llm": 25424, "model explore": 60846, "align llms": 5001, "desired behaviors": 24000, "model optimized": 61172, "supervised finetuning": 92705, "using labeled": 101531, "data reinforcement": 21551, "offline online": 67878, "rewards based": 84383, "based llms": 9609, "llms output": 56479, "output assess": 69141, "summarization dialogue": 92531, "dialogue response": 24889, "response generation": 83132, "generation chainofthought": 38067, "demonstrate framework": 23085, "framework consistently": 36078, "consistently improves": 18295, "improves llms": 44039, "chatgpt codex": 13628, "instructgpt performance": 46295, "performance supervised": 71608, "using minimal": 101615, "data notably": 21444, "notably using": 67046, "using just": 101529, "dialogues multiwoz": 24936, "multiwoz dataset": 65404, "dataset approach": 21827, "approach enhances": 6838, "chatgpts performance": 14438, "performance impressive": 71296, "matching surpassing": 58526, "models additionally": 61789, "chainofthought prompt": 12832, "prompt generated": 76328, "generated approach": 37654, "approach improves": 6893, "reasoning accuracy": 79773, "accuracy compared": 2225, "generated prompts": 37758, "learning learn": 53246, "probing framework": 74981, "models means": 63594, "abstract concepts": 1927, "context time": 18862, "time lack": 96980, "controlled experiments": 19246, "experiments conducted": 32134, "based framework": 9543, "framework providing": 36246, "plms t5": 72436, "analysis shedding": 5671, "shedding light": 87226, "training phase": 98233, "twostage process": 99187, "evenly distributed": 30913, "distributed model": 25924, "capabilities exhibit": 11891, "exhibit robustness": 31548, "capability plms": 12198, "plms exhibit": 72415, "exhibit better": 31502, "sizes data": 88549, "scales robustness": 85316, "robustness chatgpt": 84698, "chatgpt recent": 14153, "attention past": 8357, "past months": 70568, "evaluations various": 30892, "aspects chatgpt": 7766, "ai especially": 4385, "especially safetycritical": 29911, "safetycritical applications": 85062, "applications paper": 6537, "benchmarks assess": 10311, "medical diagnosis": 58876, "datasets ood": 22355, "baselines results": 9849, "chatgpt shows": 14231, "shows consistent": 87574, "consistent advantages": 18252, "classification translation": 14810, "absolute performance": 1917, "performance far": 71209, "ood robustness": 68033, "astounding performance": 8131, "performance understanding": 71650, "medical tasks": 58922, "tasks instead": 94757, "definitive answers": 22878, "possible research": 72917, "makes language": 58063, "success natural": 92221, "fundamental property": 36550, "language compositional": 49162, "allowing humans": 5177, "unlike humans": 100172, "systematic generalization": 93339, "poses problem": 72779, "simulate human": 88304, "language learning": 49308, "learning evolution": 53136, "biases different": 10921, "different learning": 25095, "systems directly": 93429, "directly test": 25521, "compare humans": 16462, "generalizing different": 37314, "different input": 25077, "input languages": 45912, "languages vary": 51375, "memorization generalization": 58999, "generalization capabilities": 37250, "model gpt35": 60958, "second language": 85936, "networks trained": 66206, "child language": 14522, "human learners": 42285, "linguistic input": 54580, "generalization better": 37249, "learning findings": 53159, "highlight challenges": 41579, "challenges automated": 12969, "new avenues": 66337, "avenues research": 9118, "research language": 82649, "models widespread": 64542, "adoption large": 3640, "chatgpt bard": 13558, "led unprecedented": 53537, "pressing need": 74207, "algorithms data": 4961, "offer promising": 67763, "increase throughput": 44780, "multiple inputs": 65201, "single input": 88366, "inference speedup": 45296, "suite tasks": 92482, "linguistic resources": 54597, "task best": 93955, "knowledge explored": 48560, "explored generative": 32775, "generative large": 38633, "llms introduce": 56245, "uses gpt3": 101230, "gpt3 define": 39436, "define future": 22862, "steps aim": 90675, "improve initial": 43715, "improving large": 44132, "models external": 62428, "automated feedback": 8698, "feedback large": 34098, "humanlike fluent": 42530, "fluent responses": 35483, "tasks taskoriented": 95180, "taskoriented dialog": 94316, "applying llms": 6691, "llms realworld": 56638, "applications remains": 6561, "remains challenging": 81646, "tendency generate": 95744, "generate hallucinations": 37470, "use external": 100550, "blackbox llm": 11138, "plugandplay modules": 72449, "makes llm": 58064, "grounded external": 40568, "llm prompts": 55220, "model responses": 61349, "using feedback": 101439, "feedback generated": 34085, "utility functions": 101893, "response effectiveness": 83129, "empirically validated": 28386, "types scenarios": 99263, "fluency informativeness": 35470, "make source": 58028, "systems focused": 93459, "possible generate": 72906, "significantly longer": 87974, "opportunities study": 68511, "participants asked": 70360, "results participants": 83759, "findings implications": 34678, "communication assistance": 16254, "prompt knowledge": 76351, "answer correctness": 5996, "parameters knowledge": 70232, "models observe": 63690, "pretraining phase": 74587, "knowledge used": 48802, "used inference": 100827, "address task": 3495, "task specified": 94251, "specified user": 89910, "user prompt": 101026, "questionanswering task": 78748, "leverage knowledge": 53733, "training produce": 98245, "produce answer": 75603, "answers produced": 6206, "knowledge provided": 48723, "search engine": 85864, "engine used": 28934, "used retrieve": 100891, "documents relevant": 26265, "relevant question": 81472, "question content": 78655, "correctness generated": 19737, "chatgpt leveraging": 13990, "leveraging models": 53880, "combination prompt": 15956, "knowledge study": 48775, "seeking health": 86071, "health advice": 41154, "effectiveness chatgpt": 27496, "chatgpt context": 13657, "model experiments": 60840, "correctness work": 19750, "important implications": 43511, "implications development": 43373, "development robust": 24706, "independent evaluation": 44937, "mathematical word": 58595, "word problems": 103918, "problems mwp": 75171, "commercially available": 16103, "available large": 9060, "chatgpt math": 14008, "math word": 58559, "problems mwps": 75172, "chatgpt chatgpts": 13614, "operations lead": 68465, "lead higher": 52804, "higher probability": 41517, "compared prior": 16617, "addition subtraction": 3213, "llm performance": 55194, "performance present": 71480, "predict chatgpt": 73647, "chatgpt correctly": 13665, "correctly answer": 19716, "dataset comprised": 21868, "responses support": 83314, "support research": 92826, "research area": 82493, "conversation chatgpt": 19319, "chatgpt technology": 14303, "technology applications": 95642, "aipowered chatbot": 4836, "write coherent": 104457, "worlds attention": 104426, "attention paper": 8356, "chatbots technology": 13458, "potential applications": 73004, "applications chatgpt": 6425, "various domains": 102405, "domains including": 26529, "including healthcare": 44379, "research highlighted": 82618, "despite promising": 24101, "privacy ethical": 74895, "concerns surrounding": 17714, "chatgpt addition": 13498, "addition highlight": 3190, "highlight important": 41591, "important limitations": 43517, "ask chatgpt": 7710, "chatgpt provide": 14125, "provide point": 77538, "present responses": 74049, "responses questions": 83293, "size large": 88479, "models continue": 62113, "resources required": 83031, "overhead associated": 69387, "associated model": 8096, "models computer": 62077, "challenging train": 13250, "result performance": 83401, "performance lags": 71330, "modern deep": 64594, "learning effectiveness": 53121, "paper inspired": 69758, "receptance weighted": 80567, "weighted key": 103536, "key value": 48354, "value rwkv": 102197, "successfully implement": 92279, "activation units": 2985, "parameters best": 70180, "model date": 60734, "generation comprehension": 38090, "comprehension natural": 17177, "transformer block": 98495, "self attention": 86191, "computational complexity": 17443, "length input": 53592, "models tested": 64352, "tested benchmarks": 95972, "benchmarks maintaining": 10378, "fewer operations": 34195, "hardware leverage": 41008, "llama open": 54785, "foundation language": 35917, "introduce llama": 47442, "ranging 7b": 79233, "7b 65b": 1282, "65b parameters": 1170, "parameters train": 70294, "trillions tokens": 98889, "train stateoftheart": 97780, "using publicly": 101710, "datasets particular": 22363, "competitive best": 16792, "models research": 64077, "community systematic": 16337, "analysis adversarial": 5424, "prompts existing": 76711, "generate toxic": 37628, "way reduce": 103396, "reduce risk": 80804, "risk llms": 84499, "alter training": 5250, "training llm": 98180, "computation requirements": 17426, "requirements methods": 82347, "significantly smaller": 88024, "applied diverse": 6605, "diverse llms": 26047, "llms long": 56357, "importantly method": 43550, "method does": 59267, "internal representations": 47235, "representations llm": 82110, "llm token": 55292, "token probability": 97149, "probability distribution": 74957, "step crucial": 90623, "crucial llms": 20504, "applied various": 6637, "various llms": 102477, "gpt3 approach": 39402, "compared base": 16506, "base llms": 9412, "llms techniques": 56920, "language detoxification": 49189, "search tool": 85903, "tool data": 97279, "transparency llms": 98770, "multilingual text": 65014, "currently largest": 20817, "largest language": 52594, "search capabilities": 85858, "tool opensourced": 97304, "opensourced available": 68416, "available hugging": 9049, "hugging face": 42054, "collaborative software": 15845, "softwareintensive systems": 89048, "systems complex": 93412, "complex process": 16977, "stakeholders perspectives": 90147, "implementation evaluation": 43328, "evaluation despite": 30573, "stem lack": 90603, "lack standardized": 49053, "limitations scarcity": 54369, "human expertise": 42211, "quantum systems": 78461, "systems software": 93575, "models help": 62657, "artificially intelligent": 7687, "intelligent decision": 46921, "decision support": 22585, "solution enable": 89087, "collaboration chatgpt": 15819, "chatgpt disruptive": 13724, "disruptive technology": 25786, "based natural": 9628, "study involves": 91717, "synthesis evaluation": 93208, "indicate chatgpt": 44980, "chatgpt mimic": 14016, "requires human": 82388, "human oversight": 42311, "support collaborative": 92795, "research focuses": 82605, "chatgpt tackle": 14295, "tackle emerging": 93725, "robust gpt35": 84660, "study language": 91720, "tasks gpt35": 94682, "gpt35 models": 39647, "tasks showcasing": 95104, "strong understanding": 91078, "understanding reasoning": 99854, "handle various": 40939, "open world": 68133, "explored especially": 32773, "crucial assessing": 20475, "stability models": 90085, "models key": 62828, "trustworthy ai": 98947, "study perform": 91767, "perform comprehensive": 70846, "comprehensive experimental": 17253, "experimental analysis": 31985, "analysis gpt35": 5532, "robustness using": 84747, "21 datasets": 590, "test samples": 95933, "popular natural": 72657, "tasks findings": 94637, "indicate gpt35": 44997, "gpt35 outperforms": 39651, "tasks encounters": 94585, "degradation average": 22886, "average performance": 9171, "analysis tasks": 5697, "tasks respectively": 95063, "challenges including": 13041, "prompt sensitivity": 76411, "understanding limitations": 99799, "limitations guiding": 54328, "guiding future": 40775, "addressing challenges": 3528, "performance generalization": 71252, "finetuning chatgpt": 35029, "chatgpt data": 13675, "prediction paper": 73711, "describes submission": 23672, "2023 task": 562, "results 10": 83451, "10 languages": 110, "pearsons correlation": 70681, "evaluation measure": 30664, "benefits using": 10492, "finetuning method": 35139, "transformer encoder": 98502, "additionally study": 3347, "using small": 101772, "case chatgpt": 12454, "lowresource settings": 57639, "humanlabeled data": 42506, "study shows": 91844, "stabilizes training": 90088, "improves results": 44075, "models lack": 62839, "lack domain": 49000, "tweets study": 99153, "noticeable performance": 67064, "performance increase": 71310, "learning synthetic": 53435, "current text": 20793, "systems improve": 93484, "improve zeroshot": 43827, "zeroshot baseline": 104728, "results finally": 83609, "combining generative": 16011, "tools generate": 97410, "realistic images": 79567, "adoption generative": 3636, "dalle midjourney": 20911, "chatgpt gained": 13837, "wide public": 103654, "massive data": 58449, "tools trained": 97476, "scraped internet": 85800, "tools creating": 97380, "creating massive": 20227, "data fed": 21228, "internet data": 47249, "data mix": 21407, "mix original": 60320, "data time": 21694, "mixture original": 60355, "generated different": 37692, "different versions": 25252, "versions ai": 102819, "raises intriguing": 79082, "intriguing questions": 47381, "trained mixture": 97874, "mixture real": 60356, "document explore": 26207, "questions report": 78934, "simulation results": 88330, "ai tool": 4584, "tool results": 97313, "generated images": 37720, "results preliminary": 83775, "study serve": 91831, "illustrate potential": 42998, "potential issues": 73149, "interaction generative": 47007, "textual entailment": 96670, "models increasingly": 62752, "increasingly applied": 44866, "summary evaluation": 92596, "significant domain": 87740, "domain shift": 26446, "shift existing": 87256, "datasets models": 22342, "models underperform": 64450, "result propose": 83403, "new finegrained": 66404, "finegrained textual": 34808, "built natural": 11672, "addition standard": 3210, "propose automatic": 76938, "strategy using": 90928, "using gpt35": 101487, "gpt35 effective": 39592, "effective improving": 27308, "performance multiple": 71414, "datasets test": 22437, "verification retrieval": 102752, "problems existing": 75136, "fail address": 33671, "compositionality language": 17118, "models plm": 63815, "despite success": 24128, "paper argue": 69613, "argue current": 7458, "current paradigms": 20753, "critical aspect": 20306, "modeling human": 61644, "human intelligence": 42249, "tasks longstanding": 94838, "challenge field": 12877, "field ai": 34342, "hallmarks human": 40809, "illustrative example": 43010, "crosslingual summarization": 20426, "translate english": 98662, "document summary": 26222, "important open": 43526, "open problem": 68096, "problem requires": 75069, "attention field": 8309, "plms gpt2": 72422, "finally suggest": 34569, "suggest research": 92390, "models choice": 61999, "control users": 19228, "users write": 101204, "prompting propose": 76596, "prompts large": 76764, "crowd workers": 20452, "write short": 104459, "texts different": 96556, "different user": 25247, "user interfaces": 101004, "suggestions provided": 92428, "information work": 45673, "humanai interaction": 42432, "models revealing": 64109, "models examine": 62366, "text learn": 96324, "underlying structure": 99519, "lms text": 57177, "corpora used": 19590, "provide additional": 77399, "observed model": 67620, "model behaviors": 60598, "using set": 101760, "establish training": 29979, "consistency large": 18237, "does appear": 26279, "lexical items": 53918, "biases training": 10958, "data finetuning": 21239, "finetuning t5": 35270, "remains somewhat": 81701, "sensitive spelling": 86467, "gpt2 similarly": 39348, "event extraction": 30921, "extraction event": 33297, "extraction fundamental": 33300, "fundamental task": 36554, "task natural": 94152, "involves identifying": 47846, "identifying extracting": 42920, "mentioned text": 59098, "text challenging": 96103, "task lack": 94116, "lack annotated": 48979, "data expensive": 21210, "expensive timeconsuming": 31927, "emergence large": 28168, "chatgpt provides": 14129, "provides opportunity": 77689, "simple prompts": 88232, "prompts need": 76784, "need taskspecific": 66000, "taskspecific datasets": 95282, "datasets finetuning": 22270, "chatgpt demonstrated": 13684, "results tasks": 83890, "like machine": 54192, "translation text": 98747, "presents challenges": 74116, "used complex": 100762, "unlike tasks": 100188, "requires model": 82397, "model provided": 61297, "set instructions": 86889, "event types": 30927, "explore feasibility": 32682, "conducted series": 17983, "series experiments": 86732, "experiments results": 32287, "chatgpt average": 13556, "performance taskspecific": 71622, "complex scenarios": 16998, "chatgpt robust": 14193, "continuous refinement": 19035, "does lead": 26306, "lead stable": 52823, "stable performance": 90097, "performance improvements": 71301, "chatgpt highly": 13931, "prompt styles": 76426, "ai usage": 4606, "aigenerated content": 4665, "content given": 18639, "systems like": 93505, "content indistinguishable": 18647, "responsible use": 83354, "use technology": 100705, "benefits harms": 10472, "systems requires": 93559, "indiscriminate adoption": 45062, "lack common": 48984, "common framework": 16145, "framework language": 36185, "use ai": 100463, "ai content": 4350, "content generation": 18635, "generation prior": 38331, "work proposed": 104228, "guidelines using": 40766, "specific scenarios": 89751, "reporting scientific": 82004, "research work": 82825, "work makes": 104174, "makes contributions": 58053, "contributions propose": 19185, "model consisting": 60700, "report use": 81996, "research model": 82673, "model cards": 60637, "allow users": 5166, "support development": 92801, "research provide": 82738, "different research": 25181, "research fields": 82598, "easily generate": 27016, "need largescale": 65970, "largescale highquality": 52521, "text datasets": 96165, "data creation": 21129, "text sources": 96425, "dataset spanning": 22085, "languages used": 51371, "large openscience": 52297, "openscience openaccess": 68305, "multilingual bloom": 64943, "bloom language": 11215, "model release": 61335, "release large": 81374, "subset corpus": 92039, "monolingual multilingual": 64716, "multilingual modeling": 64982, "data processing": 21507, "processing tools": 75587, "large multilingual": 52270, "multilingual corpus": 64951, "corpus chatgpt": 19601, "linguistic data": 54571, "annotation use": 5915, "chatgpt shown": 14220, "shown strong": 87552, "naturally leads": 65790, "researchers explore": 82855, "explore abilities": 32624, "end paper": 28828, "examine chatgpt": 31100, "used zeroshot": 100938, "zeroshot text": 104880, "classification specifically": 14797, "specifically automatic": 89783, "compare chatgpt": 16451, "multilingual xlmroberta": 65020, "finetuned datasets": 34880, "datasets manually": 22330, "manually annotated": 58289, "seen models": 86087, "slovenian language": 88652, "underresourced language": 99538, "language chatgpts": 49153, "english model": 29085, "model fully": 60915, "drops significantly": 26872, "limitations chatgpt": 54304, "chatgpt usage": 14326, "smaller languages": 88757, "presented results": 74100, "results lead": 83706, "manual annotation": 58256, "comprehensive survey": 17303, "content aigc": 18586, "chatgpt recently": 14154, "recently chatgpt": 80460, "chatgpt dalle2": 13674, "significant attention": 87680, "related resources": 81215, "performance fact": 71207, "chatgpt generative": 13863, "ai gai": 4407, "intelligence generated": 46853, "digital content": 25356, "content images": 18643, "images music": 43104, "language ai": 49135, "models goal": 62580, "content creation": 18606, "creation process": 20248, "efficient accessible": 27734, "content faster": 18622, "faster pace": 33909, "understanding intent": 99776, "instructions provided": 46552, "generating content": 37881, "years largescale": 104604, "provide better": 77413, "improved generation": 43838, "data size": 21630, "models distribution": 62249, "survey provides": 93044, "provides comprehensive": 77647, "comprehensive review": 17296, "basic components": 9874, "tasks relative": 95027, "relative models": 81299, "text image": 96293, "existing open": 31783, "open problems": 68097, "future challenges": 36704, "challenges aigc": 12961, "seeing chatgpt": 86060, "chatgpt students": 14275, "data advanced": 20954, "advanced large": 3706, "gained considerable": 36823, "considerable attention": 18151, "attention recently": 8370, "including students": 44485, "debate chatgpt": 22521, "teachers students": 95354, "students use": 91343, "perceive chatgpt": 70758, "chatgpt address": 13499, "gap analyzed": 36911, "content chatgpt": 18597, "chatgpt available": 13555, "media platform": 58844, "specifically analyzed": 89779, "250 million": 653, "chatgpt tasks": 14299, "like writing": 54242, "code addition": 15119, "ai detectors": 4364, "chatgpt output": 14057, "discussion educators": 25719, "treat chatgpt": 98797, "producing content": 75707, "extracting accurate": 33261, "materials data": 58535, "data research": 21571, "conversational language": 19375, "models prompt": 63912, "replace manual": 81923, "manual extraction": 58271, "extraction data": 33288, "automated data": 8684, "data extraction": 21222, "extraction based": 33283, "processing language": 75494, "llms methods": 56393, "methods enable": 59617, "enable efficient": 28545, "large sets": 52342, "sets research": 86970, "method fully": 59312, "fully automate": 36438, "initial effort": 45768, "using advanced": 101287, "advanced conversational": 3686, "set engineered": 86865, "engineered prompts": 28940, "llm identify": 55119, "data extract": 21220, "followup questions": 35709, "issues llms": 48000, "llms providing": 56612, "factually inaccurate": 33662, "inaccurate responses": 44190, "conversational llms": 19381, "llms yields": 57058, "quality data": 78247, "precision recall": 73615, "best conversational": 10594, "like chatgpt4": 54103, "demonstrate exceptional": 23075, "information retention": 45599, "conversational model": 19384, "model combined": 60673, "prompts results": 76817, "suggest approaches": 92349, "likely powerful": 54259, "powerful tools": 73474, "tools data": 97382, "critical cooling": 20315, "cooling rates": 19486, "rates metallic": 79415, "metallic glasses": 59157, "high entropy": 41412, "realworld engagement": 79666, "millions users": 60048, "emergence pretrained": 28187, "range social": 79205, "social chatbots": 88848, "demonstrate language": 23109, "language ability": 49124, "users work": 101202, "work investigates": 104153, "development social": 24713, "user engagement": 100983, "efficiently develop": 27845, "engaging chatbots": 28921, "approach uses": 7075, "train reward": 97768, "conversation length": 19326, "users chai": 101080, "shows approach": 87564, "approach increases": 6900, "increase user": 44782, "gptj 6b": 40218, "6b model": 1202, "model future": 60919, "model reward": 61363, "ai humans": 4429, "greenhouse gas": 40545, "important concern": 43498, "human societies": 42367, "systems chatgpt": 93407, "chatgpt bloom": 13578, "dalle2 midjourney": 20915, "completing tasks": 16893, "tasks ai": 94361, "ai writing": 4614, "ai creating": 4355, "creating image": 20223, "substitute human": 92149, "human tasks": 42389, "tasks present": 94951, "present use": 74079, "ai holds": 4426, "holds potential": 41907, "gained huge": 36826, "huge popularity": 42047, "showed chatgpt": 87387, "chatgpt achieved": 13490, "support claim": 92791, "assist replace": 8020, "replace humans": 81922, "industrial fields": 45155, "doubt reliability": 26676, "reliability trustworthiness": 81513, "gpt4 regarding": 40046, "logically consistent": 57277, "focusing specifically": 35636, "semantic consistency": 86301, "suggest models": 92382, "enhanced language": 29235, "short generating": 87285, "consistent predictions": 18272, "experiments prompt": 32264, "prompt designing": 76278, "learning employing": 53127, "llms unlikely": 56988, "data form": 21243, "form user": 35789, "user reviews": 101037, "capture common": 12345, "common issues": 16148, "automatically identifying": 8886, "unfortunately existing": 99985, "text ranking": 96381, "reviews challenging": 84290, "features users": 34037, "class imbalance": 14694, "employs pretrained": 28481, "works phases": 104373, "phases phase": 72019, "adapts pretrained": 3152, "reviews data": 84291, "contrastive training": 19113, "phase uses": 72017, "efficient search": 27818, "dataset 21": 21805, "million user": 60042, "effectiveness proposed": 27570, "classification case": 14727, "investigates task": 47757, "realworld setting": 79698, "goal determine": 39052, "explore multiple": 32708, "multiple approaches": 65137, "including supervised": 44486, "approaches traditional": 7214, "traditional models": 97682, "support vector": 92842, "vector machines": 102700, "machines svms": 57784, "stateoftheart deep": 90332, "learning methods": 53265, "compare large": 16463, "used fewshot": 100801, "zeroshot classification": 104749, "classification settings": 14795, "accomplish task": 2134, "task employ": 94034, "employ prompt": 28411, "engineering technique": 29029, "involves designing": 47838, "prompts guide": 76734, "specifically evaluate": 89815, "models textdavinci003": 64360, "textdavinci003 gpt35turbo": 96517, "conduct detailed": 17852, "aspects prompt": 7784, "engineering models": 28996, "results welldesigned": 83919, "prompt zeroshot": 76453, "zeroshot gpt35turbo": 104795, "models achieving": 61775, "achieving increase": 2861, "recall compared": 80108, "compared best": 16512, "approach furthermore": 6867, "furthermore observe": 36642, "critical factor": 20327, "prompt significantly": 76417, "significantly affect": 87881, "performance exploring": 71200, "exploring chatgpts": 32841, "ability rank": 1755, "preliminary study": 73877, "consistency human": 18234, "capable performing": 12253, "article generation": 7542, "generation code": 38076, "analysis furthermore": 5525, "furthermore chatgpt": 36582, "chatgpt consistently": 13653, "consistently demonstrated": 18286, "level accuracy": 53645, "accuracy reliability": 2349, "reliability terms": 81512, "terms content": 95804, "content evaluation": 18619, "mimicking human": 60057, "preferences explore": 73817, "chatgpts potential": 14444, "regard study": 81040, "study conducted": 91542, "conducted assess": 17936, "assess ability": 7818, "content order": 18664, "consisting prompts": 18323, "covering wide": 20086, "range use": 79221, "models utilized": 64484, "utilized generate": 101968, "generate corresponding": 37419, "responses chatgpt": 83185, "rank responses": 79250, "results test": 83892, "preliminary experimental": 73866, "chatgpts zeroshot": 14456, "zeroshot ranking": 104856, "reduce annotation": 80759, "formulating optimization": 35872, "optimization problems": 68612, "problems based": 75115, "methods extracting": 59638, "optimization problem": 68611, "problem based": 74994, "increase accessibility": 44748, "accessibility usability": 2100, "interface using": 47180, "problem generate": 75022, "form problem": 35779, "task aims": 93933, "aims reduce": 4825, "problems second": 75202, "second task": 85957, "linear programming": 54533, "report present": 81987, "word problem": 103914, "problem dataset": 75007, "dataset shared": 22070, "shared tasks": 87198, "neurips 2022": 66296, "2022 competition": 538, "competition furthermore": 16779, "furthermore investigate": 36633, "chatgpt large": 13973, "learning applications": 53029, "domainspecific conversational": 26618, "agents understand": 4246, "understand human": 99612, "human dialogs": 42157, "challenging topic": 13248, "topic field": 97506, "field knowledge": 34380, "knowledge representation": 48741, "representation reasoning": 82074, "reasoning natural": 79954, "llms rely": 56693, "understanding semantic": 99873, "meaning sentence": 58704, "generate incorrect": 37497, "incorrect responses": 44739, "responses generate": 83222, "correct response": 19682, "understand semantics": 99649, "semantics sentence": 86395, "methods answer": 59528, "answer set": 6059, "set programming": 86921, "programming asp": 75878, "needed paper": 66020, "leverages llms": 53804, "truly understand": 98921, "focused specific": 35592, "area based": 7418, "understand users": 99656, "users utterances": 101199, "identify missing": 42883, "user natural": 101011, "human user": 42405, "star framework": 90245, "framework developed": 36095, "gpt3 convert": 39432, "like human": 54168, "help humans": 41251, "humans based": 42577, "taskoriented dialogs": 94318, "systems google": 93469, "everyday life": 30959, "impact academic": 43185, "academic research": 1994, "limited lack": 54441, "lack datasets": 48995, "challenging aspects": 13150, "conversations introduce": 19420, "contains diverse": 18553, "diverse array": 25985, "occur realworld": 67709, "revisions large": 84309, "scale human": 85268, "human generated": 42235, "generated conversational": 37685, "conversational parsing": 19386, "dataset provides": 22044, "provides structured": 77707, "structured context": 91157, "context users": 18872, "demonstrate conversational": 23050, "phenomenon present": 72029, "challenging model": 13194, "distributional shifts": 25958, "code analysis": 15121, "systematically study": 93375, "study large": 91722, "code capabilities": 15143, "codex chatgpt": 15657, "chatgpt generalize": 13848, "applications code": 6428, "summarization code": 92523, "following natural": 35690, "software project": 89025, "samples new": 85134, "domain present": 26430, "models significant": 64193, "distribution shift": 25948, "study established": 91602, "established methods": 29987, "generalize new": 37299, "new domains": 66382, "combining fewshot": 16010, "finetuning examples": 35060, "data achieve": 20939, "performance solution": 71579, "outperform direct": 68930, "finetuning lowdata": 35138, "lowdata scenarios": 57546, "scenarios finally": 85433, "finally consider": 34517, "consider variations": 18146, "approach create": 6790, "broadly applicable": 11525, "multiple domains": 65180, "model adapted": 60512, "domain chatgpt": 26360, "asked chatgpt": 7728, "chatgpt participate": 14065, "undergraduate computer": 99470, "data structures": 21656, "students chatgpt": 91290, "chatgpt narrowly": 14029, "performance indicates": 71313, "indicates chatgpt": 45029, "challenging tasks": 13241, "university exams": 100128, "chatgpts training": 14452, "experiment chatgpt": 31960, "chatgpt understanding": 14324, "improvements brought": 43963, "gpt4 gpt4": 39918, "reaching performance": 79482, "performance average": 71005, "conversations chatgpt": 19409, "labor market": 48961, "impact potential": 43247, "investigate potential": 47683, "llms generative": 56063, "transformers gpts": 98614, "increased capabilities": 44790, "llmpowered software": 55384, "llm capabilities": 54994, "capabilities integrating": 11951, "integrating human": 46723, "findings reveal": 34732, "development adoption": 24603, "significantly impacts": 87937, "tasks completed": 94463, "significantly faster": 87929, "level quality": 53677, "built llms": 11670, "effect scaling": 27252, "underlying models": 99515, "conclude llms": 17737, "llms gpts": 56112, "economic social": 27058, "implications comprehensive": 43370, "analysis gpt3": 5531, "gpt3 gpt35": 39469, "gpt35 series": 39663, "series models": 86744, "gpt series": 39237, "instructgpt chatgpt": 46285, "attention exceptional": 8303, "exceptional natural": 31372, "processing capabilities": 75464, "capabilities despite": 11877, "capabilities gpt": 11927, "models limited": 62936, "limited attention": 54395, "attention given": 8314, "capabilities time": 12100, "time conduct": 96938, "conduct comprehensive": 17836, "models select": 64154, "select representative": 86127, "representative models": 82149, "gpt3 series": 39527, "models davinci": 62158, "textdavinci002 textdavinci003": 96513, "performance robustness": 71547, "robustness different": 84708, "different models": 25120, "scenarios extensive": 85431, "ability gpt": 1670, "models nlu": 63678, "tasks does": 94558, "does increase": 26301, "rlhf training": 84577, "strategy strategy": 90919, "enhances models": 29289, "models ability": 61727, "humanlike responses": 42538, "ability solve": 1771, "solve tasks": 89198, "tasks furthermore": 94658, "furthermore findings": 36616, "improvement areas": 43881, "sparse pretraining": 89543, "finetuning paradigm": 35166, "directly training": 25522, "training downstream": 98080, "task language": 94117, "finetuned taskspecific": 34983, "taskspecific data": 95280, "data natural": 21433, "generation text": 38467, "model dataset": 60731, "llms unfortunately": 56985, "prohibitive computational": 76032, "pretraining llms": 74569, "llms require": 56707, "training flops": 98117, "weight sparsity": 103529, "weights pretraining": 103561, "representational capacity": 82081, "finetuning demonstrate": 35044, "parameter gpt3": 70107, "gpt3 xl": 39560, "model resulting": 61350, "significant loss": 87789, "accuracy downstream": 2245, "evaluating multiple": 30463, "multiple downstream": 65182, "task complexity": 93984, "complexity dataset": 17034, "presents promising": 74160, "large gpt": 51443, "benefits pretrained": 10483, "textual representations": 96694, "language agents": 49132, "llms increasingly": 56204, "increasingly used": 44913, "used interact": 100832, "interact external": 46976, "external environments": 33183, "compilers apis": 16848, "agents remains": 4227, "agents quickly": 4222, "efficiently learn": 27855, "traditional reinforcement": 97696, "require extensive": 82247, "extensive training": 33137, "expensive model": 31916, "finetuning propose": 35209, "episodic memory": 29671, "incorporate various": 44675, "various types": 102617, "freeform language": 36347, "obtains significant": 67687, "tasks sequential": 95097, "pass1 accuracy": 70536, "humaneval coding": 42472, "coding benchmark": 15696, "benchmark surpassing": 10258, "surpassing previous": 92969, "stateoftheart gpt4": 90350, "gpt4 achieves": 39748, "achieves 80": 2699, "studies using": 91461, "using different": 101409, "agent types": 4151, "types provide": 99258, "provide insights": 77505, "understanding perception": 99837, "problemsolving decisionmaking": 75230, "decisionmaking reasoning": 22604, "reasoning large": 79923, "llms emerging": 55844, "tools increasingly": 97425, "recent development": 80237, "success tasks": 92241, "tasks complex": 94465, "led increased": 53524, "confidence llms": 18017, "gpt4 report": 40053, "shown performance": 87509, "tasks comprehensive": 94467, "assessment gpt4": 7951, "gpt4 existing": 39872, "study focus": 91643, "evaluation gpt4s": 30627, "gpt4s performance": 40179, "performance set": 71559, "contextual information": 18942, "information providing": 45582, "responses gpt4": 83230, "gpt4 exhibits": 39870, "relative prior": 81303, "prior stateoftheart": 74859, "significant potential": 87819, "revolutionize field": 84333, "ai enabling": 4381, "gap human": 36932, "human machine": 42298, "machine reasoning": 57737, "advent powerful": 3964, "models aibased": 61812, "aibased systems": 4631, "developers coding": 24548, "coding tasks": 15719, "tasks widely": 95255, "widely available": 103719, "llm complete": 55012, "complete code": 16865, "code conditioned": 15167, "codex trained": 15681, "public github": 77921, "github repositories": 38846, "code include": 15356, "vulnerabilities previous": 103265, "previous studies": 74714, "seen training": 86097, "codex generate": 15664, "codex similar": 15679, "similar llms": 88085, "llms help": 56122, "help avoid": 41234, "2x likely": 738, "correct code": 19664, "code explore": 15257, "possibility producing": 72883, "efficiency recent": 27713, "network training": 66164, "training reduce": 98256, "test accuracy": 95863, "extended training": 32959, "attain accuracy": 8243, "models contrast": 62117, "contrast approach": 19064, "dense model": 23504, "sparsity level": 89562, "dynamic sparse": 26934, "robust correlation": 84648, "final performance": 34489, "performance notably": 71431, "yields significant": 104672, "open llm": 68083, "work demonstrate": 104044, "sparsity improving": 89558, "aigc chatgpt": 4655, "chatgpt goes": 13875, "content headlines": 18641, "ability analyze": 1591, "analyze create": 5751, "create text": 20182, "media coverage": 58831, "era ai": 29718, "worth noting": 104449, "recent language": 80274, "numerous aigc": 67416, "capability chatgpt": 12150, "gpt variants": 39245, "help chatgpt": 41239, "chatgpt unify": 14325, "question comprehensive": 78651, "review existing": 84255, "existing aigc": 31649, "techniques applications": 95478, "modern generative": 64596, "various technical": 102605, "technical foundations": 95407, "modeling methods": 61654, "methods like": 59712, "diffusion models": 25342, "models introducing": 62810, "development various": 24732, "based output": 9651, "images videos": 43127, "significant applications": 87679, "content finally": 18626, "english learners": 29082, "chatgpt deep": 13679, "narrative writing": 65500, "writing chatgpt": 104469, "chatgpt publicly": 14134, "quickly generate": 78985, "generate texts": 37624, "texts given": 96573, "human writers": 42421, "study compared": 91529, "chatgpt chinese": 13615, "data analyzed": 20971, "analyzed terms": 5794, "terms discourse": 95811, "chatgpt performed": 14073, "performed better": 71753, "referential cohesion": 80962, "initial version": 45791, "correlation analysis": 19767, "analysis discourse": 5490, "augmenting large": 8597, "conversational large": 19377, "llms open": 56450, "research challenge": 82507, "challenge particularly": 12917, "ground llms": 40555, "llms information": 56221, "sources paper": 89420, "retrieve generate": 84068, "dialogue responses": 24891, "tabular information": 93706, "uses transformer": 101259, "encoder embeddings": 28692, "encoder decoder": 28689, "decoder models": 22635, "knowledge cell": 48466, "combined gpt35": 15980, "llm response": 55243, "response generator": 83139, "improvement rouge": 43942, "finally human": 34536, "human evaluators": 42202, "80 time": 1320, "better previous": 10768, "conversational responses": 19396, "chatbots like": 13449, "open ais": 68042, "ability answer": 1592, "write code": 104456, "movie scripts": 64806, "imitate wellknown": 43158, "people paper": 70741, "responses various": 83326, "various questions": 102546, "questions dataset": 78818, "questions chatgpt": 78793, "chatgpt scored": 14198, "metrics grading": 59924, "bleu meteor": 11169, "meteor rouge": 59173, "rouge metrics": 84860, "human answer": 42092, "assess chatgpts": 7833, "showed responses": 87402, "translation abilities": 98680, "abilities chatgpt": 1495, "typical human": 99280, "multilingual evaluation": 64957, "evaluation generative": 30619, "ai generative": 4419, "tasks language": 94795, "generation important": 38200, "evaluating generative": 30428, "generative llms": 38642, "capable models": 12252, "models understanding": 64455, "understanding generating": 99743, "text languages": 96318, "comprehensive benchmarking": 17213, "benchmarking generative": 10288, "evaluates models": 30385, "models standard": 64252, "standard nlp": 90196, "benchmarks covering": 10321, "typologically diverse": 99313, "diverse languages": 26042, "languages compare": 51249, "performance generative": 71259, "gpt4 state": 40099, "tasks determine": 94539, "perform compared": 70837, "previous generation": 74678, "generation llms": 38245, "llms present": 56552, "present thorough": 74072, "analysis performance": 5599, "languages tasks": 51365, "tasks discuss": 94553, "challenges improving": 13039, "llms lowresource": 56366, "languages create": 51252, "framework evaluating": 36127, "llms multilingual": 56409, "provide directions": 77454, "progress field": 75981, "sparks artificial": 89520, "artificial general": 7589, "general intelligence": 37134, "early experiments": 26975, "experiments gpt4": 32209, "gpt4 artificial": 39763, "ai researchers": 4534, "refining large": 80995, "exhibit remarkable": 31543, "remarkable capabilities": 81743, "capabilities variety": 12116, "variety domains": 102291, "domains tasks": 26595, "challenging understanding": 13252, "understanding learning": 99797, "learning cognition": 53074, "latest model": 52678, "openai gpt4": 68163, "gpt4 trained": 40133, "unprecedented scale": 100230, "scale compute": 85255, "version gpt4": 102809, "gpt4 new": 39986, "chatgpt googles": 13880, "googles palm": 39156, "exhibit general": 31518, "implications models": 43393, "gpt4 solve": 40092, "solve novel": 89183, "tasks span": 95130, "vision medicine": 102991, "medicine law": 58934, "prompting tasks": 76625, "close humanlevel": 14977, "prior models": 74851, "gpt4s capabilities": 40177, "intelligence agi": 46796, "limitations discuss": 54317, "challenges ahead": 12959, "nextword prediction": 66665, "recent technological": 80382, "adoption demonstrated": 3635, "performance numerous": 71433, "numerous natural": 67432, "evaluating chatgpts": 30403, "diverse problem": 26070, "problem domains": 75017, "domains remains": 26580, "nature model": 65810, "model continuous": 60710, "feedback rlhf": 34135, "data contamination": 21113, "chatgpt evaluations": 13769, "study task": 91862, "detection discuss": 24290, "ensuring fair": 29482, "model evaluation": 60824, "continuously trained": 19045, "chatgpt good": 13876, "emergence chatgpt": 28163, "recently garnered": 80500, "garnered significant": 37012, "attention computational": 8296, "linguistics community": 54610, "conduct preliminary": 17904, "preliminary evaluation": 73860, "task evaluate": 94041, "aspects including": 7777, "generation prompts": 38357, "generation diversity": 38125, "long document": 57308, "document understanding": 26224, "evaluation based": 30518, "datasets adopt": 22138, "candidate prompts": 11806, "minor performance": 60136, "datasets based": 22151, "conclude chatgpt": 17728, "discover chatgpt": 25595, "chatgpt faces": 13803, "limitations future": 54323, "demonstrated surprising": 23353, "surprising ability": 92987, "directly applied": 25483, "applied solve": 6631, "solve numerous": 89184, "numerous downstream": 67422, "tasks conditioning": 94476, "conditioning prompt": 17811, "inputoutput examples": 45977, "prior research": 74854, "research shown": 82777, "shown incontext": 87488, "suffer high": 92308, "variations training": 102270, "examples example": 31212, "example order": 31170, "prompt formats": 76325, "appropriate prompt": 7242, "essential improving": 29947, "performance incontext": 71309, "learning paper": 53317, "paper revisit": 69940, "revisit problem": 84314, "bias specifically": 10890, "specifically introduce": 89838, "introduce metric": 47446, "metric evaluate": 59862, "evaluate predictive": 30263, "fixed prompt": 35359, "prompts higher": 76739, "higher bias": 41489, "quality based": 78229, "observation propose": 67557, "search strategy": 85897, "strategy based": 90863, "greedy search": 40540, "comprehensive experiments": 17255, "mainstream models": 57866, "gpt3 various": 39555, "tasks results": 95068, "indicate method": 45006, "method enhance": 59283, "enhance models": 29184, "models incontext": 62740, "aigenerated text": 4675, "text retrieval": 96402, "retrieval effective": 83982, "effective defense": 27284, "malicious usage": 58163, "usage large": 100442, "models fake": 62445, "fake content": 33757, "text including": 96300, "including based": 44279, "detection algorithms": 24262, "11b parameter": 214, "lexical diversity": 53915, "detectors including": 24389, "detection accuracy": 24255, "false positive": 33813, "positive rate": 72832, "input semantics": 45949, "text detection": 96175, "attacks introduce": 8214, "introduce simple": 47484, "model api": 60547, "given candidate": 38861, "previously generated": 74752, "text certain": 96102, "empirically verify": 28387, "generations finetuned": 38516, "t5xxl model": 93673, "model detect": 60760, "generations different": 38515, "study tested": 91865, "users perception": 101155, "chatbots responses": 13457, "health professionals": 41174, "used chatgpt": 100757, "users chatgpt": 101081, "text response": 96398, "100 participants": 129, "group participants": 40609, "chatgpts text": 14451, "warning labels": 103319, "set 50": 86838, "did affect": 24952, "60 participants": 1114, "participants expressed": 70366, "health information": 41164, "chatgpt computer": 13641, "computer programming": 17527, "carry essential": 12440, "research tasks": 82800, "challenging endeavor": 13170, "researchers students": 82888, "advances artificial": 3863, "functional code": 36498, "raising questions": 79093, "extent model": 33167, "model openais": 61168, "chatgpt successfully": 14281, "model prompting": 61290, "different approaches": 24999, "fewer attempts": 34188, "findings important": 34680, "research education": 82566, "tasks researchers": 95059, "need write": 66007, "machinelearning models": 57778, "need adapt": 65899, "pedagogical approaches": 70684, "approaches assessment": 7107, "assessment techniques": 7978, "new capabilities": 66357, "available general": 9039, "general public": 37176, "prompting multilingual": 76580, "texts case": 96545, "data remains": 21561, "research recent": 82756, "recent proliferation": 80324, "proliferation large": 76077, "systems generating": 93462, "explore prompting": 32736, "multilingual llms": 64976, "llms zeroshot": 57059, "zeroshot manner": 104820, "data seven": 21618, "east asia": 27025, "available multilingual": 9071, "instructiontuned models": 46607, "models bloomz": 61944, "languages chatgpt": 51245, "chatgpt exhibits": 13782, "performance varies": 71662, "varies depending": 102279, "instance chatgpt": 46205, "chatgpt generates": 13861, "generates fluent": 37834, "prompt based": 76238, "existing multilingual": 31777, "exhibit wide": 31567, "range proficiency": 79192, "sea languages": 85838, "llms context": 55677, "context extensive": 18766, "technology particular": 95654, "nlp increasingly": 66733, "increasingly vital": 44917, "immersive interactive": 43180, "intelligence tool": 46898, "trained openai": 97884, "article delves": 7536, "utilizing chatgpt": 102003, "ethical issues": 30074, "article aims": 7531, "help readers": 41276, "readers understand": 79508, "influence chatgpt": 45345, "immersive engaging": 43179, "virtual environment": 102939, "environment evaluating": 29615, "ai assistants": 4311, "integrating generative": 46720, "ai educational": 4375, "educational practice": 27212, "ai used": 4608, "used various": 100930, "various areas": 102356, "copilot chatgpt": 19515, "chatgpt ignited": 13940, "technologies large": 95629, "large software": 52345, "google bard": 39133, "industry professionals": 45168, "current practice": 20757, "practice challenges": 73543, "vision future": 102977, "future software": 36781, "detection human": 24308, "human vs": 42417, "models gpt4": 62611, "gpt4 chatgpt": 39792, "chatgpt led": 13987, "concerns academic": 17672, "machinegenerated content": 57769, "studies explored": 91389, "content remains": 18682, "analysis various": 5718, "detection tasks": 24366, "tasks evaluate": 94594, "detection methods": 24323, "methods findings": 59648, "findings highlight": 34671, "strengths limitations": 90955, "limitations different": 54316, "methods terms": 59821, "terms performance": 95827, "performance individual": 71314, "individual datasets": 45079, "datasets aligned": 22141, "human expectations": 42206, "main finding": 57823, "machinegenerated ones": 57772, "difficulty diversity": 25322, "diversity similarity": 26157, "transformers emerged": 98607, "diverse corpora": 26002, "corpora additionally": 19566, "additionally identify": 3315, "identify datasets": 42861, "datasets diverse": 22221, "diverse challenging": 25994, "help large": 41258, "models right": 64117, "response survey": 83163, "ability infer": 1684, "course action": 20025, "appropriate context": 7237, "devices paper": 24763, "contextual knowledge": 18945, "knowledge existing": 48557, "systems lack": 93495, "make powerful": 58019, "generating appropriate": 37864, "action planning": 2947, "llms capacity": 55557, "capacity infer": 12294, "used control": 100767, "furthermore demonstrate": 36597, "demonstrate proofofconcept": 23163, "llm control": 55021, "real devices": 79542, "showing ability": 87409, "finetuning taskspecific": 35274, "behavior scale": 9988, "predictions training": 73751, "data despite": 21151, "despite long": 24084, "work goal": 104112, "approaches data": 7120, "struggle accurately": 91206, "models makes": 63577, "makes impractical": 58059, "datasets work": 22465, "attribution method": 8464, "method effective": 59272, "differentiable models": 25262, "match performance": 58495, "performance attribution": 70999, "various modalities": 102486, "image classifiers": 43028, "classifiers trained": 14836, "visionlanguage models": 103024, "clip language": 14958, "contexts multiple": 18916, "multiple sources": 65260, "example generation": 31160, "developers understand": 24563, "corresponding code": 19789, "code unit": 15556, "explored existing": 32774, "languages generate": 51283, "code examples": 15248, "preliminary investigation": 73872, "generate good": 37465, "target method": 93878, "error logs": 29785, "logs produced": 57289, "data led": 21377, "ai digital": 4370, "generation chatgpt": 38073, "chatgpt serving": 14211, "inherent instability": 45728, "models poses": 63833, "persistent challenge": 71867, "challenge guiding": 12880, "content users": 18703, "propose unified": 77152, "framework improve": 36161, "employs novel": 28480, "aigc model": 4659, "images based": 43083, "based images": 9568, "images users": 43122, "model generates": 60934, "production process": 75736, "model makes": 61120, "content aligned": 18589, "users requirements": 101174, "users feedback": 101110, "quality experiments": 78266, "results verify": 83918, "verify effectiveness": 102769, "highlighting potential": 41636, "potential novel": 73212, "models accurate": 61749, "generation digital": 38123, "mathematical theory": 58594, "established based": 29981, "communication technology": 16286, "information age": 45399, "information content": 45425, "content information": 18648, "information related": 45588, "processing needs": 75510, "years researchers": 104612, "answer information": 6022, "information semantics": 45622, "information knowledge": 45520, "content investigate": 18651, "communication framework": 16266, "framework furthermore": 36143, "propose semantic": 77106, "complex simple": 17004, "semantics finally": 86384, "verify proposed": 102774, "exploring impact": 32847, "instruction data": 46309, "data scaling": 21589, "study realworld": 91807, "success chatgpt": 92184, "key factor": 48295, "achieving remarkable": 2872, "remarkable results": 81822, "significantly enhances": 87918, "makes models": 58066, "generated results": 37774, "current research": 20765, "research rarely": 82753, "studies impact": 91399, "different amounts": 24993, "amounts instruction": 5348, "performance especially": 71182, "cases paper": 12547, "explore performance": 32714, "based instruction": 9580, "different scales": 25187, "evaluation dataset": 30564, "12 major": 225, "results merely": 83720, "data leads": 21373, "continuous improvement": 19026, "improvement tasks": 43948, "tasks openended": 94904, "tasks math": 94855, "math code": 58546, "propose potential": 77089, "potential future": 73095, "selecting highquality": 86143, "highquality training": 41796, "training methods": 98197, "tasks release": 95028, "model checkpoints": 60647, "attention placed": 8361, "llms downstream": 55817, "despite importance": 24067, "tool supports": 97321, "scale help": 85267, "research space": 82787, "corpora using": 19591, "compression rate": 17368, "opt 175b": 68529, "provides framework": 77670, "analysis current": 5475, "current future": 20689, "assess degree": 7841, "degree memorization": 22910, "output llms": 69170, "llms koala": 56268, "public use": 77950, "applications require": 6563, "require manual": 82271, "data annotations": 20982, "tasks notably": 94892, "performance unsupervised": 71653, "unsupervised models": 100310, "tasks conducted": 94481, "trained annotators": 97797, "assistants using": 8061, "using sample": 101747, "demonstrate chatgpt": 23038, "annotation tasks": 5910, "including relevance": 44462, "detection specifically": 24359, "accuracy chatgpt": 2216, "chatgpt exceeds": 13775, "cost chatgpt": 19835, "times cheaper": 97068, "results potential": 83772, "increase efficiency": 44759, "efficiency text": 27726, "classification large": 14755, "models assist": 61865, "analysis large": 5568, "processing generation": 75482, "generation capabilities": 38055, "applied variety": 6635, "explores potential": 32815, "potential integrating": 73144, "integrating llms": 46732, "systems process": 93534, "process refer": 75391, "human analyst": 42077, "experiment explore": 31967, "increasingly complex": 44870, "complex versions": 17027, "using open": 101657, "ais chatgpt": 4843, "chatgpt service": 14210, "systematically assessed": 93362, "determine feasibility": 24409, "llm technology": 55288, "suggest llms": 92378, "llms useful": 57000, "human analysts": 42078, "problems modern": 75170, "modern machine": 64608, "attention computation": 8292, "computation fundamental": 17419, "task training": 94270, "transformer gpt4": 98516, "chatgpt work": 14358, "regression problem": 81102, "problem inspired": 75027, "problem convex": 75004, "convex problem": 19456, "problem use": 75096, "approximate newton": 7263, "newton method": 66654, "method solve": 59431, "formally problem": 35813, "problem given": 75024, "mathbbrn times": 58567, "goal optimal": 39061, "straightforward method": 90770, "method use": 59456, "use naive": 100633, "method let": 59351, "matrix multiplication": 58617, "accuracy error": 2255, "error paper": 29788, "use input": 100581, "algorithm use": 4937, "time solve": 97024, "codex prompt": 15677, "generation empirical": 38133, "declarative language": 22619, "models despite": 62203, "potential provide": 73232, "hindered adoption": 41829, "adoption recent": 3647, "advancements llms": 3838, "gpt3 shown": 39530, "shown capability": 87443, "including semantic": 44473, "finetuned publicly": 34954, "code github": 15345, "code programming": 15445, "languages investigate": 51296, "compiled dataset": 16842, "information target": 45647, "using zero": 101853, "execution accuracy": 31451, "accuracy metrics": 2314, "enabling fewshot": 28634, "constraints furthermore": 18398, "similarity based": 88129, "sentence embedding": 86497, "embedding generated": 28054, "humanwritten ones": 42672, "ones ground": 67931, "ground truth": 40556, "language bias": 49145, "form understanding": 35788, "understanding world": 99907, "returned results": 84122, "narrow set": 65513, "tied search": 96915, "complex topics": 17025, "presents evidence": 74135, "evidence analysis": 30967, "analysis language": 5567, "social implications": 88868, "cultural perspectives": 20598, "online language": 67990, "harnessing power": 41095, "computational biology": 17435, "rise advanced": 84467, "advanced chatbots": 3683, "chatgpt sparked": 14257, "scientific community": 85629, "generalpurpose chatbot": 37346, "chatbot powered": 13416, "gpt4 potential": 40019, "numerous fields": 67425, "fields including": 34427, "article offer": 7548, "based experience": 9523, "chatgpt assist": 13544, "nascent literature": 65524, "future chatgpt": 36706, "chatgpt llm": 13998, "ranging code": 79239, "code refactoring": 15466, "scientific writing": 85670, "engineering hope": 28978, "various implications": 102447, "implications using": 43405, "creative applications": 20252, "bioinformatics tools": 11079, "tools chatgpt": 97372, "chatgpt established": 13763, "github repository": 38847, "chatgpt llms": 13999, "llms increase": 56201, "ultimately advancing": 99341, "scientific discovery": 85637, "life sciences": 53983, "opendomain tasks": 68247, "tasks generate": 94668, "generate highlevel": 37478, "based common": 9473, "sense knowledge": 86438, "knowledge acquired": 48411, "face difficulties": 33441, "specialized tasks": 89642, "tasks lack": 94791, "lack domainspecific": 49002, "domainspecific data": 26620, "data pretraining": 21499, "tasks need": 94886, "need accurate": 65898, "hand existing": 40897, "tasks different": 94545, "easily accessible": 27007, "leverage foundation": 53726, "propose task": 77131, "offtheshelf models": 67895, "ai ecosystem": 4373, "unlike previous": 100177, "improve single": 43805, "using existing": 101433, "existing foundation": 31716, "solvers achieve": 89210, "position paper": 72804, "present vision": 74084, "explain key": 32432, "use study": 100696, "cases illustrate": 12532, "challenges need": 13078, "need address": 65904, "llms gpt4": 56098, "gpt4 powerful": 40021, "process different": 75294, "different kinds": 25082, "difficult interpret": 25299, "model structure": 61456, "lack clarity": 48981, "understanding language": 99788, "lms work": 57187, "potentially dangerous": 73333, "provide explanations": 77472, "growing complexity": 40649, "processes propose": 75445, "lms provide": 57160, "graph kg": 40388, "graph attention": 40361, "extract key": 33235, "task better": 93957, "results generated": 83622, "explanation methods": 32470, "comparison shows": 16726, "shows method": 87596, "method provide": 59397, "potential enhance": 73083, "enhance model": 29182, "reasoning process": 79986, "process natural": 75364, "language improving": 49273, "improving code": 44101, "generation training": 38479, "potential pretrained": 73224, "llms use": 56993, "use natural": 100634, "exciting recent": 31418, "feedback training": 34147, "time instead": 96977, "requires small": 82410, "distribution demonstrate": 25936, "synthesis task": 93217, "task use": 94284, "10 absolute": 97, "mbpp benchmark": 58673, "programs written": 75964, "feedback effective": 34074, "improving llms": 44137, "llms performance": 56512, "performance code": 71060, "tasks questions": 95000, "chatting chatgpt": 14463, "complex systems": 17012, "systems present": 93533, "systems field": 93456, "field using": 34416, "understanding chatgpt": 99689, "chatgpt learned": 13985, "learned language": 52984, "language patterns": 50952, "dataset internet": 21982, "allowing provide": 5182, "provide answers": 77405, "reflect common": 81003, "teaching learning": 95369, "research topics": 82809, "value chatgpt": 102182, "chatgpt source": 14256, "evaluating gpt35": 30431, "gpt4 models": 39981, "models brazilian": 61946, "brazilian university": 11371, "university admission": 100125, "admission exams": 3600, "explore capabilities": 32646, "exame nacional": 31081, "nacional ensino": 65455, "ensino medio": 29434, "medio enem": 58939, "adopted brazilian": 3613, "brazilian universities": 11370, "poses challenging": 72768, "span multiple": 89482, "multiple fields": 65191, "information diverse": 45440, "work analyzed": 103988, "generated gpt35": 37709, "models questions": 63952, "questions presented": 78915, "public training": 77949, "tested including": 95978, "including use": 44511, "use chainofthought": 100498, "chainofthought cot": 12817, "cot prompts": 19962, "prompts generate": 76724, "explanations answers": 32478, "accuracy 87": 2189, "largely surpassing": 52416, "surpassing gpt35": 92960, "points code": 72493, "available httpsgithubcompiresramongpt4enem": 9048, "singular value": 88434, "value decomposition": 102185, "linear algebra": 54519, "common mistakes": 16153, "mistakes difficulties": 60213, "difficulties encountered": 25314, "matrix factorization": 58616, "process output": 75368, "static nature": 90535, "asking provide": 7746, "improving computational": 44103, "skills effective": 88592, "chatgpt relatively": 14164, "critical thinking": 20363, "chatgpt identify": 13938, "documents large": 26251, "agent chatgpt": 4120, "chatgpt prompted": 14119, "community public": 16332, "answers paper": 6203, "ability probing": 1747, "named entity": 65469, "entity recognition": 29571, "comparing stateoftheart": 16698, "systems findings": 93457, "historical text": 41864, "text range": 96380, "entity annotation": 29557, "annotation guidelines": 5898, "public internet": 77927, "impacts performance": 43286, "performance assessing": 70997, "study recent": 91808, "recent release": 80331, "release chatgpt": 81347, "widespread recognition": 103793, "exceptional ability": 31363, "users various": 101200, "training vast": 98350, "incorporates diverse": 44679, "societal norms": 88934, "evaluate effectiveness": 30170, "adaptation paper": 3089, "investigate underlying": 47706, "chatgpt analyzing": 13519, "analyzing responses": 5819, "questions designed": 78824, "designed quantify": 23941, "cultural differences": 20594, "context chatgpt": 18737, "exhibits strong": 31633, "strong alignment": 91004, "cultural contexts": 20593, "contexts furthermore": 18903, "furthermore using": 36668, "different prompts": 25170, "probe model": 74972, "english prompts": 29096, "provides valuable": 77721, "implications chatgpt": 43369, "highlights necessity": 41659, "greater diversity": 40507, "cultural awareness": 20588, "language technologies": 51134, "solve computer": 89171, "computer tasks": 17539, "tasks agents": 94360, "agents capable": 4171, "capable carrying": 12227, "general tasks": 37196, "improve efficiency": 43696, "repetitive tasks": 81916, "assisting complex": 8068, "complex problemsolving": 16976, "agents able": 4160, "able solve": 1885, "solve new": 89181, "tasks presented": 94953, "presented natural": 74096, "language commands": 49158, "approaches problem": 7185, "problem require": 75068, "expert demonstrations": 32355, "reward functions": 84367, "work pretrained": 104212, "llm agent": 54947, "agent execute": 4130, "tasks guided": 94688, "guided natural": 40758, "language using": 51194, "prompting scheme": 76604, "existing llm": 31745, "llm methods": 55168, "automating computer": 8908, "tasks surpasses": 95168, "surpasses supervised": 92946, "learning sl": 53417, "benchmark compare": 10095, "multiple llms": 65219, "llm stateoftheart": 55274, "demonstrations task": 23484, "effectiveness enhancing": 27513, "enhancing llms": 29345, "llms reasoning": 56643, "chain thought": 12801, "thought cot": 96848, "cot prompting": 19955, "external feedback": 33184, "combined cot": 15978, "iterative refinement": 48068, "like humans": 54169, "humans large": 42616, "text introduce": 96312, "initial outputs": 45776, "outputs llms": 69238, "iterative feedback": 48056, "main idea": 57828, "idea generate": 42784, "generate initial": 37500, "llms llms": 56353, "llms provides": 56611, "provides feedback": 77665, "iteratively selfrefine": 48086, "require supervised": 82294, "training reinforcement": 98260, "learning instead": 53219, "instead uses": 46259, "single llm": 88374, "llm generator": 55105, "tasks ranging": 95004, "dialog response": 24831, "generation mathematical": 38257, "reasoning using": 80080, "stateoftheart gpt35": 90349, "gpt35 chatgpt": 39582, "gpt4 llms": 39965, "llms evaluated": 55881, "outputs generated": 69224, "generated llm": 37735, "llm using": 55308, "using conventional": 101385, "20 absolute": 482, "absolute average": 1910, "performance work": 71722, "demonstrates stateoftheart": 23407, "stateoftheart llms": 90375, "like gpt4": 54151, "gpt4 improved": 39936, "time using": 97038, "models sampling": 64136, "writing single": 104494, "single line": 88371, "line code": 54512, "monte carlo": 64726, "carlo simulation": 12431, "llm finetuned": 55085, "interaction chatgpt": 46999, "chatgpt natural": 14030, "producing working": 75719, "evaluation models": 30689, "parallel computing": 70074, "cpus gpus": 20118, "studies assess": 91361, "assess accuracy": 7820, "accuracy llms": 2307, "task collaboration": 93974, "ai particularly": 4496, "careful prompt": 12403, "comprehensive list": 17275, "collaborating ai": 15816, "example chatgpt": 31155, "provide correct": 77437, "correct solution": 19685, "knowledge form": 48572, "mathematical theorems": 58593, "order provide": 68714, "provide solution": 77571, "correct ability": 19659, "users limited": 101135, "limited knowledge": 54435, "fundamentals engineering": 36566, "engineering pe": 29001, "engineering community": 28952, "recently witnessed": 80565, "witnessed emergence": 103862, "chatbot technology": 13423, "chatgpt4 google": 14379, "standardized tests": 90224, "tests including": 96046, "including medical": 44420, "exams diverse": 31304, "engineering questions": 29012, "questions scenarios": 78944, "scenarios used": 85489, "performance commonly": 71070, "commonly present": 16193, "responses analyzed": 83175, "based relevance": 9697, "relevance accuracy": 81426, "chatgpt4 bard": 14378, "fe exam": 33937, "pass fe": 70530, "likely pass": 54258, "exams study": 31311, "teaching assistants": 95363, "survey large": 93033, "grammatical rules": 40345, "poses significant": 72782, "ai algorithms": 4296, "approach language": 6919, "models neural": 63667, "recently pretrained": 80535, "proposed pretraining": 77247, "pretraining transformer": 74616, "largescale corpora": 52501, "capabilities solving": 12083, "solving various": 89257, "lead performance": 52812, "size larger": 88483, "parameter scale": 70122, "exceeds certain": 31325, "certain level": 12764, "abilities present": 1553, "smallscale language": 88807, "significant size": 87853, "recently research": 80550, "llms largely": 56280, "academia industry": 1968, "remarkable progress": 81814, "launch chatgpt": 52691, "chatgpt attracted": 13548, "attracted widespread": 8429, "evolution llms": 31029, "llms making": 56375, "important impact": 43510, "revolutionize way": 84336, "way develop": 103349, "review recent": 84272, "advances llms": 3886, "introducing background": 47542, "techniques particular": 95570, "focus major": 35538, "aspects llms": 7781, "llms pretraining": 56565, "pretraining adaptation": 74507, "tuning utilization": 99109, "summarize available": 92578, "available resources": 9087, "developing llms": 24590, "llms discuss": 55809, "directions large": 25471, "rate news": 79393, "news outlet": 66638, "prone hallucinations": 76864, "hallucinations stateoftheart": 40882, "new bing": 66353, "mitigate issue": 60267, "gathering information": 37029, "information directly": 45438, "providing appropriate": 77735, "assess chatgpt": 7832, "chatgpt prominent": 14111, "llm evaluate": 55063, "credibility news": 20274, "news outlets": 66639, "appropriate instructions": 7240, "instructions chatgpt": 46476, "nonenglish languages": 66894, "explanations results": 32516, "correlate human": 19754, "llms affordable": 55456, "applications future": 6486, "future llms": 36742, "llms enhance": 55862, "enhance alignment": 29138, "alignment human": 5076, "human expert": 42209, "expert judgments": 32367, "information accuracy": 45391, "chat model": 13383, "model parameterefficient": 61210, "parameterefficient tuning": 70155, "chat models": 13385, "rapidly adopted": 79340, "models accessible": 61745, "new research": 66514, "research progress": 82729, "propose pipeline": 77088, "pipeline automatically": 72141, "corpus leveraging": 19641, "leveraging chatgpt": 53828, "subsequently employ": 92023, "tuning enhance": 99031, "llama opensource": 54787, "opensource large": 68346, "resulting model": 83436, "model named": 61147, "multiturn dialogues": 65387, "potential risks": 73250, "new technique": 66552, "models feedback": 62454, "data released": 21556, "released research": 81417, "research purposes": 82743, "online demo": 67982, "benchmarking large": 10293, "detection paper": 24336, "investigates effectiveness": 47737, "prominent models": 76104, "models distinct": 62246, "distinct families": 25866, "sentence transformers": 86528, "additionally examine": 3298, "naive bayes": 65460, "baseline methods": 9793, "methods assess": 59537, "models public": 63941, "samples training": 85145, "set fewshot": 86875, "settings findings": 87056, "majority cases": 57945, "llms surpass": 56895, "surpass performance": 92912, "techniques particularly": 95572, "tasks labeled": 94790, "number models": 67362, "additionally introduce": 3319, "flant5 model": 35398, "specifically adapted": 89776, "surpasses baseline": 92923, "majority scenarios": 57954, "scenarios particularly": 85469, "analysis era": 5499, "era large": 29732, "analysis make": 5577, "llms case": 55560, "process analysis": 75270, "chatgpt investigate": 13963, "complexity prompt": 17049, "results comparative": 83508, "comparative results": 16434, "related issues": 81198, "outperform human": 68942, "significant differences": 87735, "complexity using": 17058, "necessity developing": 65892, "developing domainspecific": 24576, "domainspecific prompt": 26645, "highlight future": 41587, "concerns llm": 17688, "learning conversational": 53089, "conversational tasks": 19404, "trained highresource": 97837, "highresource languages": 41804, "like english": 54116, "tasks focus": 94650, "focus conversational": 35512, "high cost": 41395, "cost obtaining": 19871, "conversational data": 19366, "data results": 21577, "limited coverage": 54412, "crosslingual alignment": 20417, "pretraining parallel": 74586, "conversation dataset": 19322, "contains approximately": 18548, "language facilitate": 49215, "develop efficient": 24446, "method learning": 59350, "learning alignment": 53025, "alignment prompts": 5108, "prompts investigate": 76758, "investigate different": 47637, "different classifiers": 25015, "prompts evaluate": 76707, "conversation tasks": 19339, "classification results": 14786, "demonstrate strong": 23195, "improvements achieved": 43958, "prompts particularly": 76791, "results approach": 83466, "approach compared": 6777, "llms textdavinci003": 56932, "textdavinci003 chatgpt": 96515, "chatgpt zeroshot": 14364, "settings llms": 87074, "exhibit impressive": 31525, "performance english": 71177, "particularly lowresource": 70484, "languages limited": 51313, "limited gpt4": 54426, "gpt4 gpt35": 39914, "openais gpt": 68199, "important indicator": 43512, "practice questions": 73550, "gpt4 technical": 40125, "technical paper": 95410, "questions evaluated": 78842, "questions questions": 78924, "clinical vignettes": 14944, "scores highly": 85767, "highly correlate": 41690, "dramatic improvement": 26782, "improvement gpt4": 43914, "gpt4 vision": 40151, "final results": 34496, "evaluation pipeline": 30712, "access openai": 2076, "gpt4 api": 39762, "multimodal input": 65059, "achieve superhuman": 2600, "research perspective": 82709, "perspective future": 71950, "gpt4 research": 40054, "research stateoftheart": 82790, "llm gpt": 55109, "prospective applications": 77330, "applications diverse": 6453, "key innovations": 48314, "captures knowledge": 12377, "world wide": 104421, "wide web": 103709, "significant roles": 87848, "relevant papers": 81470, "papers arxiv": 69995, "trend analysis": 98845, "analysis word": 5721, "cloud representation": 15061, "representation distribution": 82054, "domains findings": 26522, "research predominantly": 82720, "processing applications": 75455, "applications demonstrating": 6445, "considerable potential": 18166, "potential areas": 73016, "study endeavors": 91599, "insights chatgpts": 46062, "capabilities potential": 12044, "implications ethical": 43379, "direction future": 25447, "future advancements": 36692, "family parameterefficient": 33855, "models success": 64291, "led development": 53518, "development numerous": 24685, "llms taskspecific": 56919, "various finetuning": 102434, "requires finetuning": 82381, "llms achieving": 55436, "comparable better": 16364, "peft methods": 70709, "methods llms": 59716, "llms paper": 56482, "framework integrates": 36172, "integrates various": 46706, "adapters llms": 3118, "llms different": 55798, "framework includes": 36164, "llms llama": 56338, "llama bloom": 54729, "methods conduct": 59572, "tasks arithmetic": 94381, "reasoning commonsense": 79832, "reasoning results": 80013, "demonstrate using": 23220, "llms 7b": 55395, "yields comparable": 104663, "performance powerful": 71477, "powerful llms": 73455, "llms 175b": 55392, "zeroshot inference": 104800, "inference reasoning": 45288, "tasks large": 94802, "learning libraries": 53251, "dl applications": 26180, "emphasizing need": 28302, "need reliable": 65984, "reliable systems": 81528, "constraints constructing": 18394, "computational graphs": 17461, "modern large": 64601, "llms directly": 55807, "llms tend": 56924, "tend generate": 95734, "following similar": 35698, "similar patterns": 88097, "massive training": 58472, "edge cases": 27078, "gap paper": 36954, "llms synthesize": 56900, "traditional techniques": 97709, "leveraging historical": 53851, "historical information": 41863, "information require": 45591, "require intensive": 82263, "intensive human": 46949, "human efforts": 42163, "ensure validity": 29468, "validity generated": 102138, "including finetuning": 44348, "learning generalizable": 53174, "challenging domains": 13169, "codex codegen": 15659, "shows potential": 87605, "potential directly": 73072, "capability recent": 12202, "recent chatgpt": 80231, "chatgpt effective": 13737, "evaluation popular": 30716, "bugs including": 11572, "including 11": 44262, "security vulnerabilities": 86045, "community embraced": 16310, "models resemble": 64080, "combining language": 16013, "like image": 54170, "image captioning": 43020, "descriptions paper": 23719, "paper compares": 69634, "image models": 43055, "models label": 62838, "llm use": 55303, "use multiple": 100632, "enables better": 28576, "mean average": 58692, "average precision": 9172, "serve input": 86767, "ai text": 4583, "gpt4 demonstrate": 39821, "user taking": 101054, "generating novel": 37944, "tailored complex": 93775, "complex constraints": 16918, "constraints cost": 18396, "sizes multiple": 88559, "format task": 35827, "task recently": 94217, "recently language": 80512, "similar problems": 88103, "time ai": 96930, "offers enhanced": 67832, "enhanced capabilities": 29226, "augment human": 8514, "ways work": 103426, "models tuned": 64439, "human translation": 42399, "chatgpt exhibited": 13779, "exhibited remarkable": 31582, "remarkable abilities": 81729, "language processingnlp": 51059, "research advancements": 82475, "framework enhance": 36120, "based opensource": 9648, "opensource llms": 68359, "feedback data": 34073, "data specifically": 21647, "translation data": 98696, "translation process": 98733, "propose instruction": 77007, "including translation": 44504, "translation instruction": 98707, "instruction contrastive": 46308, "contrastive instruction": 19101, "instruction experiments": 46322, "improves translation": 44086, "vanilla llms": 102231, "lead improvement": 52805, "importance learning": 43464, "humans demonstrate": 42589, "potential automatic": 73028, "evaluation tools": 30813, "tools providing": 97462, "quality information": 78297, "lack human": 49020, "refer github": 80923, "github project": 38842, "implementation details": 43327, "comparative analysis": 16418, "chatgpt evolution": 13771, "llms increased": 56202, "generation knowledge": 38220, "models cases": 61968, "anecdotal evidence": 5839, "human intuition": 42258, "knowledge domain": 48524, "domain paper": 26426, "paper highlights": 69749, "translation machine": 98717, "summarization questionanswering": 92557, "compares performance": 16667, "chatgpt presented": 14099, "llms structured": 56868, "structured prompt": 91176, "knowledge bases": 48443, "bases using": 9871, "learning creating": 53091, "time consuming": 96940, "task relies": 94220, "relies manual": 81555, "manual curation": 58261, "rely extensive": 81572, "data able": 20934, "complex nested": 16965, "knowledge extraction": 48568, "extraction approach": 33279, "approach relies": 7006, "llms perform": 56504, "perform zeroshot": 70946, "learning zsl": 53481, "given detailed": 38876, "responses matching": 83259, "uses existing": 101222, "present examples": 73980, "tasks absence": 94334, "data method": 21402, "general strategy": 37193, "leveraging language": 53859, "knowledge curation": 48490, "available open": 9074, "long used": 57345, "used tool": 100918, "contemporary large": 18575, "llms make": 56373, "make possible": 58018, "latent structure": 52642, "structure conceptual": 91126, "representations using": 82133, "using experimental": 101434, "methods nearly": 59735, "nearly identical": 65855, "used human": 100820, "current work": 20800, "work utilizes": 104306, "suite llms": 92474, "llms humans": 56150, "structure robust": 91148, "estimated llm": 30013, "estimated human": 30012, "vary depending": 102637, "particular task": 70424, "task used": 94286, "contemporary llms": 18579, "llms human": 56145, "implications understanding": 43404, "fundamental limitations": 36544, "gpt detectors": 39190, "rapid adoption": 79288, "models brought": 61949, "brought substantial": 11535, "substantial advancements": 92055, "digital communication": 25355, "concerns regarding": 17703, "regarding potential": 81064, "potential misuse": 73194, "misuse aigenerated": 60236, "methods proposed": 59764, "ai humangenerated": 4428, "humangenerated content": 42488, "remain underexplored": 81633, "study evaluate": 91604, "using writing": 101852, "writing samples": 104489, "english writing": 29115, "demonstrate simple": 23190, "strategies mitigate": 90834, "mitigate bias": 60251, "bias effectively": 10836, "effectively bypass": 27408, "linguistic expressions": 54576, "results broader": 83482, "deploying chatgpt": 23577, "chatgpt content": 13656, "caution use": 12706, "settings particularly": 87081, "english speakers": 29104, "global discourse": 39010, "zeroshot multimodal": 104827, "facilitating effective": 33535, "multimedia content": 65024, "content various": 18705, "search engines": 85868, "recommendation systems": 80653, "systems recently": 93547, "extraction multimodal": 33321, "zeroshot fashion": 104766, "engineering llms": 28991, "llms able": 55404, "able extract": 1846, "given textual": 38975, "multimodal data": 65040, "specifically automatically": 89784, "build highquality": 11593, "given new": 38920, "options zeroshot": 68672, "generative method": 38649, "semantic matching": 86322, "solution based": 89079, "modular framework": 64647, "framework equipped": 36125, "pretrained llm": 74370, "llm gpt35": 55111, "gpt35 used": 39682, "embedding model": 28063, "applicable various": 6330, "modalities data": 60431, "strong generalization": 91027, "range applications": 79138, "applications evaluate": 6469, "project page": 76048, "footprint ai": 35717, "models especially": 62347, "especially large": 29891, "large ones": 52294, "equally important": 29684, "training gpt3": 98124, "stateoftheart data": 90331, "data centers": 21040, "kept secret": 48262, "pressing challenges": 74205, "social responsibility": 88911, "discuss unique": 25695, "models runtime": 64131, "efficiency finally": 27683, "finally highlight": 34535, "sustainable ai": 93078, "models gained": 62524, "chatgpt developed": 13710, "extremely popular": 33397, "early adopters": 26968, "fields like": 34430, "customer service": 20843, "service education": 86805, "healthcare finance": 41186, "provide valuable": 77595, "insights potential": 46119, "success failure": 92193, "failure technology": 33717, "different areas": 25001, "areas research": 7450, "chatgpt different": 13715, "conversational qa": 19389, "corpora study": 19588, "similarity scores": 88150, "compare responses": 16491, "responses correct": 83196, "correct answers": 19661, "answers obtain": 6202, "evaluation scores": 30768, "gpt3 gpt4": 39471, "gpt4 additionally": 39756, "study identified": 91666, "instances chatgpt": 46223, "chatgpt provided": 14128, "incorrect answers": 44727, "providing insights": 77764, "model prone": 61292, "despite impressive": 24068, "capabilities large": 11958, "limitations specifically": 54371, "provide specific": 77573, "specific prompts": 89740, "guide chatgpt": 40729, "improving data": 44110, "revisit previous": 84313, "make changes": 57970, "designed facilitate": 23913, "seamless interaction": 85841, "interaction users": 47039, "effective recommendation": 27358, "guides chatgpt": 40768, "generate program": 37557, "enables users": 28619, "users easily": 101099, "roll previous": 84823, "previous versions": 74726, "facilitates efficient": 33525, "web application": 103478, "ml tasks": 60374, "tasks showcase": 95103, "showcase capabilities": 87353, "does chatgpt": 26282, "bias chatgpt": 10831, "chatgpt using": 14335, "value theory": 102199, "possible discrimination": 72897, "llms test": 56926, "value biases": 102181, "biases chatgpt": 10918, "using psychological": 101708, "designed simple": 23947, "number different": 67335, "type definitions": 99205, "prompted chatgpt": 76474, "chatgpt openai": 14045, "analyzed generated": 5792, "bag words": 9293, "text line": 96328, "model suggests": 61467, "high fidelity": 41415, "reflect underlying": 81011, "possible applications": 72891, "applications findings": 6483, "research avenues": 82501, "highlight possible": 41603, "using linguistic": 101568, "values chatgpt": 102206, "chatgpt biased": 13571, "challenges risks": 13122, "bias large": 10857, "continue advance": 19003, "models garnered": 62533, "garnered increasing": 37010, "attention researchers": 8375, "article investigates": 7547, "investigates challenges": 47734, "risks associated": 84508, "chatgpt discuss": 13722, "biases stemming": 10953, "nature training": 65818, "biased model": 10904, "outputs analyze": 69208, "analyze potential": 5779, "potential opportunities": 73213, "opportunities mitigate": 68501, "mitigate biases": 60252, "models various": 64492, "generation chatbots": 38072, "review current": 84253, "identify quantify": 42895, "biases language": 10931, "models emphasizing": 62301, "effort develop": 27874, "systems article": 93392, "aims stimulate": 4829, "researchers developers": 82848, "ethical ai": 30057, "ai learning": 4450, "investigating potential": 47772, "potential synthetic": 73280, "learning videos": 53471, "videos recent": 102898, "tasks previously": 94963, "capabilities ai": 11828, "ways including": 103415, "generation synthetic": 38439, "research paper": 82695, "explores utility": 32829, "utility using": 101902, "aigenerated synthetic": 4673, "content online": 18663, "limited research": 54457, "synthetic media": 93284, "examined impact": 31131, "online learning": 67992, "learning experience": 53141, "mixedmethod approach": 60332, "experience control": 31934, "video experimental": 102881, "experimental condition": 31990, "demonstrated significant": 23337, "improvement pre": 43934, "traditional methods": 97679, "quality educational": 78259, "generating functionally": 37912, "functionally correct": 36514, "code edits": 15237, "llms openais": 56458, "demonstrated potential": 23301, "range programming": 79193, "tasks benchmarks": 94403, "evaluate ability": 30130, "hidden test": 41354, "identify significant": 42900, "advancements llm": 3836, "assessing ability": 7904, "changes paper": 13297, "aims address": 4776, "descriptions code": 23698, "code changes": 15145, "bug fixes": 11556, "popular defects4j": 72626, "defects4j dataset": 22840, "dataset augmented": 21830, "empirically evaluate": 28376, "llms task": 56917, "results llms": 83714, "generating plausible": 37952, "technique achieve": 95429, "accuracy benchmark": 2210, "gpt4 counterparts": 39813, "like python": 54211, "promote development": 76215, "development digital": 24632, "physical realities": 72065, "human perception": 42319, "aim facilitate": 4711, "paving way": 70655, "object oriented": 67481, "demonstrate method": 23123, "method automatically": 59214, "objects corresponding": 67538, "worlds using": 104429, "digital twin": 25371, "languages making": 51322, "accessible practical": 2113, "introduces groundbreaking": 47519, "groundbreaking approach": 40563, "efficient implementation": 27774, "means automated": 58723, "openais large": 68218, "widespread usage": 103795, "individualized learning": 45104, "learning platforms": 53332, "increased demand": 44792, "automated item": 8704, "item generation": 48032, "generation aig": 38020, "new items": 66432, "proposed reduce": 77253, "subject experts": 91940, "step process": 90653, "time use": 97037, "introduced potential": 47509, "efficiency effectiveness": 27680, "presented paper": 74099, "openais latest": 68222, "carefully engineered": 12420, "prompts ensure": 76703, "content structure": 18693, "generated multiple": 37742, "passages final": 70547, "original passage": 68796, "final round": 34497, "grammatical factual": 40343, "factual errors": 33629, "evaluated human": 30341, "human judges": 42262, "bard generate": 9357, "assessment items": 7952, "reliability analysis": 81488, "analysis human": 5540, "bard ai": 9344, "chatbots based": 13430, "different applications": 24997, "diverse areas": 25984, "education ai": 27128, "applications assessment": 6411, "teaching assessment": 95360, "assessment ai": 7938, "automated essay": 8692, "essay scoring": 29929, "tools assist": 97359, "high reliability": 41447, "scores human": 85768, "paper measure": 69811, "measure reliability": 58748, "llms tools": 56941, "writing prompts": 104487, "performance metric": 71400, "openai chatgpt": 68145, "chatgpt google": 13877, "human ratings": 42345, "task work": 94292, "investigate chatgpts": 47629, "ability zeroshot": 1800, "designed different": 23892, "prompt techniques": 76429, "break task": 11381, "evaluate chatgpt": 30152, "chatgpt experiments": 13790, "experiments chatgpts": 32126, "gap supervised": 36979, "supervised methods": 92728, "methods heavily": 59667, "prompts demonstrate": 76682, "chatgpt infer": 13955, "infer small": 45204, "relation classes": 81234, "methods current": 59584, "science large": 85593, "llms significant": 56797, "progress recent": 76008, "years achieving": 104587, "tasks qa": 94992, "major challenges": 57928, "challenges hallucination": 13030, "information training": 45656, "critical domains": 20321, "domains like": 26544, "like climate": 54106, "accurate uptodate": 2432, "reliable sources": 81527, "time essential": 96960, "difficult overcome": 25304, "potential solution": 73267, "llms access": 55409, "access external": 2060, "longterm memory": 57413, "update knowledge": 100348, "knowledge prevent": 48710, "incorrect outdated": 44735, "information study": 45640, "integrating information": 46724, "source domain": 89372, "challenging questions": 13215, "different qa": 25173, "asking gpt4": 7741, "sources evaluated": 89409, "expert knowledge": 32368, "score accuracy": 85703, "accuracy answers": 2204, "evaluation showed": 30777, "accurate answers": 2392, "highlighting effectiveness": 41627, "solution approach": 89077, "approach easily": 6821, "reliable accurate": 81515, "study evaluates": 91609, "evaluates potential": 30391, "critical tool": 20367, "tool evaluating": 97287, "building existing": 11629, "humangenerated dataset": 42492, "capture aspects": 12344, "expressed human": 32907, "explain human": 32431, "llms greatly": 56115, "greatly enhance": 40523, "enhance traditional": 29215, "methods semantic": 59796, "components natural": 17092, "work qualitative": 104244, "way evaluate": 103355, "framework efficiently": 36107, "experiments analyzing": 32108, "analyzing chatgpts": 5803, "introductory computer": 47564, "computer engineering": 17524, "engineering course": 28954, "attention general": 8312, "tool able": 97260, "generate plausible": 37551, "humansounding text": 42657, "answers various": 6230, "questions potential": 78914, "use abuse": 100459, "chatgpt answering": 13524, "questions generating": 78864, "papers academic": 69994, "classroom setting": 14848, "works explored": 104355, "explored use": 32787, "context introductory": 18792, "course work": 20032, "handle questions": 40932, "generate diagrams": 37427, "plausible answers": 72323, "key observations": 48326, "presented work": 74105, "work chatgpt": 104011, "chatgpt tool": 14314, "tool used": 97326, "shortanswer questions": 87318, "generating incorrect": 37930, "chatgpt emerging": 13745, "novel information": 67186, "information chatgpt": 45416, "chatgpt taking": 14296, "objective study": 67509, "evaluate accuracy": 30136, "accuracy completeness": 2226, "individuals seek": 45114, "survey analysis": 93021, "analysis results": 5644, "results indicated": 83688, "responses provided": 83287, "provided chatgpt": 77605, "chatgpt accurate": 13487, "accurate complete": 2403, "great extent": 40471, "generated information": 37721, "extent information": 33162, "information generated": 45492, "prompts related": 76812, "received highest": 80141, "regarding utility": 81077, "utility ai": 101888, "survey evaluating": 93028, "evaluating information": 30437, "chatgpt findings": 13822, "study provide": 91795, "evaluation regarding": 30746, "improving public": 44148, "modeling typical": 61688, "extraction tasks": 33336, "tasks uie": 95216, "model glm": 60943, "potential latest": 73164, "study various": 91893, "structure information": 91136, "information type": 45661, "extensively utilized": 33154, "fully unleashing": 36475, "unleashing power": 100160, "syntactic knowledge": 93174, "better generation": 10721, "generation decoding": 38110, "introduce taskoriented": 47491, "mechanism adjusting": 58791, "benchmarks tasks": 10421, "tasks shows": 95108, "shows significant": 87616, "indepth analyses": 44941, "learns rich": 53504, "bias greatly": 10848, "identifying source": 42936, "evaluating general": 30424, "general abilities": 37102, "abilities foundation": 1508, "models tackle": 64328, "vital aspect": 103164, "pursuit artificial": 78064, "traditional benchmarks": 97656, "accurately represent": 2466, "capabilities paper": 12034, "novel benchmark": 67117, "benchmark specifically": 10250, "designed assess": 23876, "model context": 60708, "entrance exams": 29601, "tests evaluate": 96042, "evaluate stateoftheart": 30288, "stateoftheart foundation": 90344, "including gpt4": 44368, "chatgpt textdavinci003": 14312, "using benchmark": 101311, "sat lsat": 85189, "accuracy rate": 2340, "math test": 58558, "accuracy english": 2253, "english test": 29107, "chinese national": 14567, "extraordinary performance": 33369, "proficient tasks": 75808, "complex reasoning": 16989, "reasoning specific": 80029, "knowledge comprehensive": 48478, "model capabilities": 60626, "capabilities understanding": 12109, "understanding knowledge": 99786, "reasoning calculation": 79794, "limitations providing": 54366, "providing valuable": 77813, "insights future": 46090, "directions enhancing": 25465, "enhancing general": 29330, "general capabilities": 37112, "decisionmaking benchmark": 22593, "robust evaluation": 84653, "evaluation foundation": 30606, "performance realworld": 71518, "small step": 88731, "step generative": 90645, "survey chatgpt": 93023, "released gpt4": 81403, "chatgpt plus": 14086, "release november": 81385, "november 2022": 67294, "2022 chatgpt": 537, "quickly attracted": 78982, "researchers investigate": 82870, "investigate chatgpt": 47628, "google scholar": 39142, "articles chatgpt": 7560, "urgently needed": 100413, "overall work": 69341, "chatgpt comprehensive": 13640, "underlying technology": 99520, "applications challenges": 6422, "significant milestone": 87797, "milestone development": 60013, "models translate": 64430, "translate natural": 98663, "infinite space": 45340, "context data": 18749, "language query": 51074, "using codex": 101366, "executes code": 31444, "code shows": 15502, "shows result": 87614, "based previously": 9665, "previously established": 74751, "scope capabilities": 85677, "use effectively": 100531, "effectively useful": 27478, "educational questions": 27215, "questions generated": 78862, "controllable text": 19240, "generation ctg": 38103, "huge potential": 42048, "students alike": 91284, "diverse question": 26077, "content recent": 18678, "assess quality": 7869, "taxonomy results": 95326, "use classroom": 100505, "argumentative writing": 7472, "visual programming": 103097, "programming rapid": 75929, "llms interactive": 56242, "interactive text": 47116, "chat interface": 13377, "interface chatgpt": 47171, "approach neglects": 6951, "context user": 18871, "support user": 92839, "user control": 100975, "plans address": 72292, "address challenges": 3367, "challenges introduce": 13047, "designed help": 23918, "editing visual": 27113, "users explore": 101106, "explore experiment": 32679, "plans using": 72298, "usability effectiveness": 100419, "planning process": 72274, "better instruction": 10735, "following language": 35682, "models chinese": 61995, "investigating impact": 47766, "impact training": 43264, "evaluation recently": 30745, "recently significant": 80560, "efforts directed": 27905, "capabilities akin": 11832, "opensource conversational": 68324, "scarcity comprehensive": 85373, "indepth evaluations": 44954, "evaluations models": 30869, "performance study": 71599, "influence training": 45359, "quantity quality": 78437, "performance analysis": 70987, "analysis grounded": 5535, "highquality instruction": 41765, "instruction datasets": 46319, "datasets chinese": 22162, "chinese multiturn": 14566, "using evaluation": 101431, "evaluation set": 30771, "set 1000": 86833, "1000 samples": 139, "manual evaluations": 58270, "evaluations quantitative": 30879, "quantitative analyses": 78400, "offering valuable": 67816, "models furthermore": 62520, "furthermore enhance": 36607, "efficiency models": 27702, "llama model": 54779, "performance proprietary": 71504, "proprietary language": 77297, "gpt3 conduct": 39431, "secondary pretraining": 85961, "make model": 58012, "available indepth": 9054, "user response": 101036, "search conversational": 85859, "seen increased": 86085, "increased recent": 44800, "recent attention": 80223, "nlp communities": 66716, "multiturn natural": 65392, "existing systems": 31830, "systems trained": 93587, "conversation logs": 19327, "trained evaluated": 97824, "evaluated deployed": 30333, "key challenge": 48277, "challenge training": 12939, "training evaluating": 98095, "systems require": 93558, "user simulators": 101043, "yesno questions": 104626, "responses general": 83221, "systems significantly": 93573, "significantly improved": 87946, "smaller finetuned": 88749, "unsolved challenges": 100287, "challenges identified": 13036, "blind spot": 11187, "learn specific": 52966, "specific type": 89768, "standard setup": 90207, "cover training": 20051, "suggest new": 92384, "new evaluation": 66393, "leads significant": 52905, "improvements existing": 43970, "systems large": 93498, "additionally analysis": 3273, "analysis provides": 5625, "work chinese": 104012, "widely recognized": 103727, "recognized key": 80627, "technique building": 95436, "models attracted": 61871, "public release": 77944, "llms underexplored": 56980, "foundation llms": 35924, "perform similarly": 70922, "compared english": 16536, "english tasks": 29106, "project attempt": 76044, "attempt create": 8256, "instruction dataset": 46317, "dataset various": 22124, "methods adapted": 59515, "tuning samples": 99093, "summarize existing": 92581, "existing english": 31705, "corpora available": 19567, "continuously updated": 19046, "multitask instruction": 65354, "unified information": 100024, "extraction large": 33309, "multitask capabilities": 65350, "prompts recent": 76809, "models difficulty": 62232, "achieved f1": 2622, "dataset significantly": 22075, "lower stateoftheart": 57575, "model various": 61572, "various information": 102450, "validate proposed": 102103, "proposed method": 77218, "diverse information": 26036, "extraction datasets": 33289, "performance bert": 71018, "gpt35 zeroshot": 39686, "finetuning chinese": 35030, "data instruction": 21332, "following large": 35683, "model recently": 61317, "instructiontuning large": 46617, "models crucial": 62138, "area research": 7433, "resource cost": 82959, "cost limitations": 19863, "limitations researchers": 54368, "tuning techniques": 99106, "techniques lora": 95555, "fullparameter finetuning": 36431, "terms training": 95845, "tuning methods": 99067, "methods utilizing": 59838, "utilizing llama": 102034, "llama base": 54727, "model experimental": 60838, "foundational model": 35981, "important factors": 43506, "provide inspiration": 77510, "especially field": 29879, "field chinese": 34357, "help researchers": 41278, "researchers better": 82836, "better tradeoff": 10797, "strategy training": 90924, "cost model": 19869, "code released": 15470, "popularity generative": 72698, "generative text": 38722, "impact students": 43259, "students academic": 91278, "academic performance": 1990, "student learning": 91257, "learning address": 53017, "address concerns": 3381, "concerns paper": 17695, "approach aims": 6729, "aims identify": 4812, "identify best": 42847, "best set": 10647, "generate questions": 37565, "low confidence": 57509, "effectiveness approach": 27493, "approach evaluated": 6845, "evaluated case": 30325, "study uses": 91880, "questions data": 78817, "optimization algorithm": 68584, "different cognitive": 25018, "cognitive levels": 15745, "levels create": 53691, "create questions": 20173, "chatgpt low": 14000, "answering study": 6155, "step forward": 90641, "offer valuable": 67776, "insights educators": 46079, "thinking students": 96810, "effective text": 27378, "text encoding": 96192, "llama alpaca": 54722, "alpaca large": 5231, "processing research": 75565, "high costs": 41397, "costs associated": 19923, "associated training": 8103, "deploying llms": 23586, "present substantial": 74064, "models llama": 62944, "predominantly focus": 73782, "focus english": 35515, "english corpora": 29057, "limiting usefulness": 54489, "languages paper": 51336, "method augment": 59212, "chinese text": 14577, "ability follow": 1644, "instructions achieve": 46471, "tokens improving": 97205, "semantic understanding": 86359, "pretraining using": 74620, "data finetune": 21234, "finetune model": 34839, "model chinese": 60652, "datasets significantly": 22416, "significantly enhancing": 87924, "enhancing models": 29354, "ability comprehend": 1617, "comprehend execute": 17128, "execute instructions": 31439, "newly proposed": 66600, "proficiency understanding": 75803, "content additionally": 18584, "yield competitive": 104633, "models times": 64366, "times size": 97083, "training scripts": 98279, "github fostering": 38840, "llama series": 54794, "llama2 series": 54849, "diversity pretraining": 26153, "pretraining text": 74613, "capabilities various": 12120, "tasks diverse": 94555, "datasets large": 22314, "datasets end": 22233, "model diverse": 60776, "corpus containing": 19606, "containing 1m": 18529, "perform simple": 70923, "data filtering": 21230, "filtering process": 34477, "space using": 89470, "filter lowquality": 34470, "use pretrain": 100655, "performance drop": 71165, "benchmarks compared": 10318, "learning compress": 53080, "utilize multitask": 101950, "context window": 18876, "computationally inefficient": 17495, "distillation methods": 25820, "methods allow": 59525, "lms prompting": 57156, "require retraining": 82287, "retraining model": 83953, "trains lm": 98367, "smaller sets": 88791, "compute efficiency": 17505, "trained additional": 97795, "standard instruction": 90183, "simply modifying": 88296, "transformer attention": 98488, "prompt compression": 76258, "prompts resulting": 76816, "wall time": 103300, "time speedups": 97029, "output quality": 69184, "chatgpt trust": 14320, "way users": 103405, "acquire information": 2907, "shift advent": 87252, "advent chatgpt": 3955, "unlike conventional": 100164, "conventional search": 19293, "generates answers": 37827, "attracted 100": 8409, "100 million": 127, "million users": 60043, "users short": 101177, "short period": 87295, "period time": 71831, "raised concerns": 79062, "regarding reliability": 81066, "reliability paper": 81504, "paper perform": 69822, "perform largescale": 70890, "curated set": 20639, "datasets domains": 22222, "varies different": 102280, "law science": 52707, "science questions": 85606, "questions demonstrate": 78820, "originally designed": 68824, "impact chatgpts": 43193, "way chatgpt": 103346, "vulnerable adversarial": 103276, "negatively affect": 66072, "affect reliability": 4057, "certain cases": 12751, "believe study": 10041, "underscores need": 99570, "reliability security": 81508, "security large": 86016, "ai seen": 4544, "advances field": 3873, "nlp led": 66743, "led emergence": 53523, "emergence llms": 28174, "way humans": 103367, "content current": 18609, "current studies": 20790, "studies llmbased": 91415, "llmbased generative": 55353, "performance tools": 71634, "tools generating": 97411, "generating relevant": 37968, "relevant content": 81450, "content code": 18598, "code text": 15542, "concerns related": 17706, "design use": 23863, "context work": 18880, "based empirical": 9511, "models measuring": 63597, "indicate average": 44978, "tools useful": 97479, "useful tool": 100956, "analyses suggest": 5410, "tools likely": 97439, "likely key": 54256, "work following": 104107, "following work": 35704, "plan investigate": 72239, "investigate nature": 47673, "tools specific": 97469, "specific audiences": 89663, "perspectives large": 71967, "relevance judgments": 81435, "perspectives paper": 71972, "paper discuss": 69681, "discuss possible": 25675, "possible ways": 72928, "ways llms": 103418, "concerns issues": 17684, "humanmachine collaboration": 42552, "strategies based": 90795, "trained human": 97841, "conclude paper": 17738, "perspectives use": 71975, "experimental evidence": 31999, "digital technology": 25369, "ban chatgpt": 9322, "transformer chatbot": 98497, "individual productivity": 45094, "compile data": 16837, "coding output": 15707, "github users": 38848, "users italy": 101126, "italy european": 48028, "european countries": 30107, "analyse impact": 5389, "data sudden": 21664, "sudden announcement": 92298, "announcement ban": 5972, "ban differenceindifferences": 9326, "differenceindifferences framework": 24970, "synthetic control": 93252, "control approach": 19194, "usage data": 100428, "data shows": 21623, "led significant": 53532, "tools findings": 97406, "findings users": 34772, "success various": 92244, "various realworld": 102547, "realworld tasks": 79708, "plays important": 72383, "daily lives": 20903, "lives work": 54701, "work extensive": 104092, "concerns raised": 17700, "raised potential": 79067, "potential ethical": 73088, "replace human": 81921, "humanai symbiosis": 42434, "largest online": 52599, "based largescale": 9600, "collaborative filtering": 15839, "filtering algorithm": 34473, "algorithm predict": 4930, "predict future": 73652, "higher proficiency": 41518, "health science": 41177, "chatgpt conversational": 13660, "social isolation": 88874, "mental health": 59084, "propose chatgptbased": 76946, "designed provide": 23940, "help reduce": 41277, "evaluated preliminary": 30359, "study results": 91812, "essential acknowledge": 29934, "potential biases": 73042, "privacy concerns": 74889, "news topic": 66648, "topic classification": 97503, "african languages": 4097, "languages severely": 51357, "severely underrepresented": 87137, "covering nlp": 20079, "tasks individual": 94748, "specific datasets": 89679, "tasks named": 94876, "recognition machine": 80602, "standardized benchmark": 90220, "dataset news": 22016, "16 languages": 366, "widely spoken": 103728, "provide evaluation": 77462, "classical machine": 14715, "furthermore explore": 36614, "better suited": 10792, "learning crosslingual": 53092, "training pet": 98232, "sentence transformer": 86527, "embedding api": 28051, "evaluation zeroshot": 30831, "potential prompting": 73230, "prompting chatgpt": 76510, "chatgpt news": 14036, "lowresource african": 57613, "achieving average": 2828, "performance 70": 70963, "setting little": 87004, "10 examples": 107, "examples label": 31240, "approach supporting": 7048, "humanai collaboration": 42428, "llms large": 56273, "ubiquitous society": 99319, "sociotechnical systems": 88958, "systems language": 93496, "models classification": 62001, "classification generation": 14749, "generation shown": 38418, "harm people": 41022, "work draw": 104061, "fair ai": 33725, "humanai communication": 42430, "leverage complementary": 53718, "humans generative": 42601, "conduct user": 17930, "user studies": 101046, "commercial language": 16076, "effectively leverages": 27451, "leverages human": 53790, "testing tool": 96028, "tool participants": 97305, "covering 26": 20072, "different topics": 25231, "topics tasks": 97535, "tasks shown": 95107, "humans including": 42608, "computer programs": 17528, "development large": 24663, "gpt4 generate": 39899, "generate computer": 37407, "codes based": 15622, "instructions study": 46566, "study used": 91879, "used llms": 100844, "experiments based": 32114, "ambiguous instructions": 5315, "instructions gpt4": 46509, "gpt4 successfully": 40108, "successfully generates": 92277, "generates scripts": 37848, "simple instructions": 88208, "instructions natural": 46539, "lowlevel robot": 57590, "robot actions": 84619, "researchers understand": 82892, "showed gpt4": 87392, "contextual understanding": 18954, "understanding inherent": 99771, "inherent knowledge": 45729, "robot behavior": 84620, "significantly increases": 87965, "increases number": 44811, "number researchers": 67373, "task nlp": 94160, "external sources": 33203, "unseen events": 100264, "benchmark evaluation": 10161, "crowdsourced annotations": 20456, "random sampling": 79110, "sampling paper": 85163, "v2 new": 102066, "crowdsourced annotation": 20455, "adversarial samples": 3999, "experiments comparing": 32132, "challenging large": 13185, "llm chatgpt": 55002, "chatgpt codes": 13626, "codes data": 15625, "chatgpt language": 13969, "performance opensource": 71446, "chinese models": 14564, "models excelling": 62373, "limited resources": 54460, "languages believe": 51238, "believe work": 10043, "make chatgpt": 57971, "people use": 70745, "models combining": 62040, "analysis textual": 5702, "textual contents": 96658, "working large": 104326, "datasets recent": 22387, "aibased tools": 4634, "tools demonstrate": 97383, "readily available": 79512, "available ai": 9008, "resources expertise": 83012, "limited generalizability": 54424, "taskspecific models": 95294, "study explored": 91623, "llms supporting": 56894, "analysis researchers": 5641, "researchers use": 82893, "codebooks label": 15588, "fixed set": 35360, "training taskspecific": 98318, "questions coding": 78797, "coding task": 15718, "study combining": 91526, "approach achieved": 6708, "results lay": 83705, "opportunities using": 68514, "model present": 61265, "descriptions user": 23731, "user profiles": 101025, "llm backbone": 54977, "previous methods": 74684, "similar tasks": 88115, "directly prompting": 25517, "utilizes llm": 101993, "llm perform": 55193, "backbone llm": 9247, "based llama": 9605, "research prototype": 82737, "modeling generative": 61642, "domain experts": 26381, "process models": 75362, "models aidriven": 61814, "chatgpt caused": 13597, "applications applications": 6407, "including explanation": 44341, "process mining": 75359, "systematic analysis": 93314, "support conversational": 92797, "closing gap": 15052, "gap providing": 36971, "providing systematic": 77805, "analysis existing": 5512, "application scenarios": 6386, "literature review": 54659, "work suggests": 104287, "evaluation method": 30665, "method output": 59382, "survey users": 93053, "practical implications": 73516, "development research": 24705, "models guarantee": 62639, "generation search": 38410, "large conversational": 51411, "question models": 78690, "technology companies": 95647, "aim combine": 4696, "ai numerous": 4489, "factual claims": 33622, "specific models": 89727, "improve ai": 43664, "chatgpt text": 14309, "text annotation": 96084, "annotation classification": 5885, "studies demonstrated": 91374, "demonstrated promising": 23308, "promising potential": 76188, "various text": 102607, "tasks chatgpt": 94430, "human coders": 42124, "input lead": 45914, "given appropriate": 38857, "zeroshot capabilities": 104732, "capabilities text": 12098, "focusing different": 35623, "parameters prompt": 70266, "prompt variations": 76450, "inputs based": 45985, "texts news": 96587, "news news": 66635, "outputs multiple": 69242, "reliability study": 81511, "humanannotated data": 42437, "data unsupervised": 21718, "application chatgpt": 6344, "ai era": 4384, "era generative": 29730, "based systems": 9727, "systems release": 93551, "models fundamental": 62519, "fundamental building": 36531, "future ai": 36695, "lack systematic": 49059, "design particularly": 23823, "growing capabilities": 40648, "models eventually": 62362, "posing challenges": 72790, "significant concerns": 87721, "concerns responsible": 17708, "rapidly advancing": 79341, "challenges paper": 13087, "evolution ai": 31015, "systems era": 93441, "architecture paper": 7362, "paper identifies": 69750, "key design": 48287, "design decisions": 23768, "associated risks": 8099, "models increases": 62749, "great societal": 40492, "framework used": 36312, "outputs produced": 69249, "produced models": 75686, "models focus": 62495, "focus generative": 35521, "tasks commonly": 94454, "commonly studied": 16196, "results gpt35": 83630, "measuring biases": 58772, "biases racism": 10950, "gpt35 shows": 39666, "models strong": 64263, "strong influence": 91036, "settings results": 87093, "progress understanding": 76012, "engineering demonstrate": 28957, "demonstrate usefulness": 23219, "assignments introductory": 8006, "introductory physics": 47567, "physics course": 72081, "solution path": 89104, "final solution": 34498, "unfortunately providing": 99989, "providing meaningful": 77772, "meaningful feedback": 58710, "resource intensive": 82965, "step using": 90664, "using gpt4": 101492, "providing feedback": 77748, "formative assessment": 35832, "initial round": 45783, "solution approaches": 89078, "answers written": 6231, "effect learning": 27245, "review answers": 84244, "task timeconsuming": 94268, "possible solution": 72921, "automate detection": 8659, "llm paper": 55185, "mathematics using": 58609, "gpt3 bloom": 39416, "used zero": 100937, "zero shots": 104711, "compared performance": 16601, "results various": 83911, "questions contain": 78807, "questions answers": 78780, "closer examination": 15041, "examination chatgpt": 31086, "model faces": 60856, "models prompting": 63917, "llms excel": 55891, "excel tasks": 31335, "challenges complex": 12977, "theoryofmind tom": 96777, "tom tasks": 97252, "involving humans": 47866, "humans making": 42623, "crucial enhance": 20486, "enhance llm": 29176, "area study": 7434, "study measures": 91740, "tom performance": 97249, "performance gpt4": 71277, "davinci2 davinci3": 22494, "davinci3 gpt35turbo": 22497, "effectiveness incontext": 27531, "learning improving": 53210, "reasoning stepbystep": 80032, "stepbystep thinking": 90670, "instructions llms": 46534, "trained reinforcement": 97899, "accuracy incontext": 2292, "learning gpt4": 53185, "gpt4 performed": 40014, "best zeroshot": 10660, "fell short": 34173, "human accuracy": 42065, "accuracy gpt4": 2277, "gpt4 reaching": 40040, "demonstrate appropriate": 23024, "appropriate prompting": 7244, "prompting enhances": 76524, "tom reasoning": 97250, "contextdependent nature": 18887, "nature llm": 65808, "llm cognitive": 55008, "cognitive capacities": 15744, "differentiate chatgptgenerated": 25269, "medical texts": 58925, "background large": 9268, "content large": 18652, "chatgptgenerated texts": 14408, "texts clinical": 96547, "clinical notes": 14930, "rigorous validation": 84459, "erroneous medical": 29763, "content generated": 18631, "chatgpt potentially": 14093, "potentially lead": 73345, "significant harm": 87758, "public objective": 77936, "responsible ethical": 83347, "analyzing differences": 5807, "texts written": 96613, "learning workflows": 53477, "texts generated": 96568, "methods construct": 59576, "construct suite": 18438, "datasets containing": 22192, "features types": 34035, "perplexity finally": 71855, "finally design": 34519, "design implement": 23791, "methods detect": 59596, "chatgpt results": 14183, "results medical": 83719, "useful information": 100948, "information medical": 45542, "information specific": 45637, "context problem": 18827, "bertbased model": 10571, "model effectively": 60788, "chatgpt f1": 13802, "extraction capabilities": 33284, "assessment performance": 7968, "performance explainability": 71198, "capability large": 12178, "chatgpt comprehend": 13639, "comprehend user": 17137, "provide reasonable": 77555, "focus assessing": 35502, "using finegrained": 101447, "finegrained information": 34795, "experts findings": 32411, "reveal chatgpts": 84135, "exhibits excellent": 31605, "research indicates": 82633, "provides highquality": 77673, "trustworthy explanations": 98948, "explanations decisions": 32486, "overconfident predictions": 69371, "resulting low": 83434, "calibration furthermore": 11765, "chatgpt demonstrates": 13700, "demonstrates high": 23378, "original text": 68816, "manually annotate": 58288, "finegrained tasks": 34806, "contains 14": 18544, "14 datasets": 305, "datasets promote": 22375, "datasets code": 22164, "openais gpt4": 68210, "gpt4 large": 39949, "generated artificial": 37656, "created chatgpt": 20191, "chatgpt research": 14177, "english study": 29105, "artificially constructed": 7684, "human languages": 42279, "word frequencies": 103904, "second frequent": 85933, "chatgpt fundamentally": 13834, "way human": 103366, "certain tokens": 12780, "chatgpt trained": 14316, "corpora text": 19589, "languages exhibit": 51269, "aim understand": 4742, "chatgpt exhibit": 13777, "exhibit similar": 31554, "statistical properties": 90555, "artificial human": 7593, "development performance": 24692, "engineering exam": 28967, "assessment proficiency": 7971, "engineering practice": 29004, "practice recent": 73551, "years advancements": 104588, "advancements artificial": 3799, "ai led": 4451, "gpt4 demonstrating": 39832, "demonstrating potential": 23437, "applications various": 6593, "various fields": 102431, "education study": 27187, "investigates feasibility": 47742, "feasibility effectiveness": 33942, "gpt4 based": 39783, "model achieving": 60506, "achieving satisfactory": 2873, "satisfactory performance": 85200, "improvement models": 43925, "exam questions": 31078, "viable approach": 102848, "approach enhance": 6835, "enhance ai": 29136, "ai performance": 4505, "findings reflect": 34728, "mathematical capabilities": 58571, "iterations chatgpt": 48050, "chatgpt models": 14019, "models showcasing": 64174, "showcasing potential": 87380, "potential solving": 73270, "solving complex": 89219, "engineering problems": 29006, "problems paper": 75178, "directions emphasizing": 25463, "emphasizing importance": 28300, "importance addressing": 43439, "ai challenges": 4324, "education enhancing": 27149, "enhancing accessibility": 29302, "study contributes": 91549, "contributes valuable": 19154, "models educational": 62273, "ai continues": 4351, "continues evolve": 19018, "findings offer": 34704, "offer foundation": 67744, "foundation research": 35969, "responsible effective": 83345, "effective integration": 27315, "various disciplines": 102403, "improving student": 44159, "student outcomes": 91263, "outcomes chatgpt": 68845, "chatgpt pass": 14068, "lexglue benchmark": 53912, "benchmark following": 10173, "demonstrate emergent": 23073, "openais gpt35": 68205, "gpt35 model": 39643, "model gpt35turbo": 60959, "available chatgpt": 9018, "benchmark zeroshot": 10277, "providing examples": 77745, "instructionfollowing format": 46452, "chatgpt achieves": 13491, "microf1 score": 59992, "tasks surpassing": 95169, "surpassing baseline": 92952, "notably model": 67041, "datasets achieving": 22132, "microf1 scores": 59993, "datasets respectively": 22400, "respectively code": 83059, "code base": 15135, "positive negative": 72826, "various professional": 102528, "licensing examinations": 53968, "suggests chatgpt": 92435, "computer program": 17526, "approaching artificial": 7229, "demonstrate current": 23051, "critical errors": 20325, "generate possible": 37554, "responses question": 83292, "utility learning": 101895, "learning tool": 53454, "tool chatgpt": 97276, "generates false": 37833, "intelligence education": 46842, "education artificial": 27129, "future technology": 36785, "breakthrough large": 11396, "models chatbots": 61981, "chatbots gpt4": 13443, "respectively compared": 83060, "conventional ai": 19273, "typically designed": 99285, "limited range": 54454, "tasks demand": 94514, "driven recent": 26848, "humanlevel intelligence": 42513, "reasoning problemsolving": 79985, "human emotions": 42164, "emotions social": 28272, "key concepts": 48283, "future education": 36719, "future educational": 36720, "pedagogy curriculum": 70688, "assessments highlights": 7988, "intelligent tutoring": 46926, "systems educational": 93432, "student needs": 91262, "offering tailored": 67811, "tailored learning": 93780, "learning experiences": 53142, "experiences provide": 31949, "feedback student": 34141, "student performance": 91265, "teaching methods": 95373, "student progress": 91268, "progress paper": 76007, "paper emphasizes": 69689, "capabilities extend": 11896, "extend understanding": 32947, "critical educational": 20323, "settings paper": 87080, "data bias": 21027, "bias fairness": 10840, "fairness privacy": 33740, "emphasizes need": 28295, "ensure responsible": 29459, "academic settings": 1996, "interdisciplinary collaborations": 47141, "advance research": 3667, "research application": 82489, "semantic compression": 86299, "compression large": 17356, "models rise": 64118, "rise large": 84476, "llms revolutionizing": 56736, "retrieval question": 84011, "tasks addition": 94347, "inaccurate information": 44189, "known hallucinations": 48848, "hallucinations llms": 40873, "llms inherently": 56225, "number input": 67349, "output tokens": 69201, "tokens processed": 97221, "potentially effective": 73336, "effective tasks": 27373, "require processing": 82284, "common approach": 16128, "approach reducing": 7005, "reducing size": 80892, "size data": 88459, "data long": 21386, "intent conveyed": 46954, "present results": 74050, "results experiments": 83599, "llms focusing": 55995, "specifically gpt35": 89830, "second investigate": 85935, "quantify capability": 78389, "capability llms": 12189, "prompts present": 76794, "novel metrics": 67213, "semantic reconstruction": 86336, "llms studied": 56872, "indicate gpt4": 44998, "gpt4 effectively": 39846, "text preserving": 96359, "providing path": 77783, "path leverage": 70586, "tokens present": 97219, "recently various": 80564, "illustrative examples": 43011, "evaluate chatgpts": 30153, "ir tasks": 47893, "tasks derive": 94526, "developing effective": 24577, "retrieval methods": 83994, "tools based": 97365, "llms design": 55785, "considering different": 18212, "different combinations": 25019, "popular ir": 72633, "setting evaluation": 86990, "requirements relevant": 82351, "relevant information": 81463, "information high": 45501, "high recall": 41445, "information low": 45537, "low precision": 57524, "provides preliminary": 77693, "preliminary evidence": 73865, "new information": 66426, "direct usage": 25436, "new concept": 66367, "applications machine": 6522, "document classification": 26201, "scheme leverage": 85527, "sequential data": 86704, "data easily": 21168, "achieve dramatic": 2512, "perplexity reduction": 71857, "development advanced": 24604, "advanced generative": 3696, "generative chat": 38610, "chatgpt raised": 14142, "general artificial": 37109, "intelligence chatgpt": 46838, "chatgpt consistent": 13652, "passing test": 70554, "asking chatgpt": 7740, "explores possibility": 32814, "model recognizing": 61319, "distinct types": 25882, "effective applied": 27262, "understanding development": 99712, "propose test": 77136, "accuracy large": 2300, "large chinese": 51403, "including medicine": 44421, "bestperforming models": 10671, "models nearly": 63661, "highest average": 41543, "gpt35turbo model": 39707, "model achieved": 60486, "clinical medicine": 14928, "models subtasks": 64290, "models performed": 63801, "performed poorly": 71763, "legal domain": 53557, "knowledge multiple": 48684, "accurately identify": 2455, "shortcomings models": 87324, "models mark": 63580, "milestone field": 60014, "field artificial": 34346, "ability interact": 1688, "interact users": 46986, "series challenging": 86724, "models conversation": 62124, "allows multiple": 5203, "models interact": 62799, "provide feedback": 77475, "based chatgpt": 9464, "chatgpt specifically": 14261, "individual instances": 45083, "diverse viewpoints": 26127, "languagebased feedback": 51212, "experiments datasets": 32149, "multidimensional evaluation": 64893, "evaluation text": 30810, "existing automatic": 31664, "human judgements": 42261, "chatgpt specific": 14258, "instructions test": 46568, "transfer evaluation": 98406, "evaluation style": 30799, "different levels": 25096, "metrics chatgpt": 59893, "correlations human": 19782, "models multidimensional": 63644, "generation harnessing": 38190, "power llms": 73381, "llms practice": 56547, "practical guide": 73513, "guide practitioners": 40747, "downstream natural": 26702, "tasks provide": 94982, "usage llms": 100446, "llms perspectives": 56519, "tasks firstly": 94649, "firstly offer": 35325, "discuss influence": 25666, "data test": 21690, "test data": 95882, "detailed discussion": 24161, "discussion use": 25730, "cases large": 12535, "tasks knowledgeintensive": 94788, "tasks traditional": 95206, "traditional natural": 97683, "tasks emergent": 94576, "present various": 74081, "various use": 102621, "limitations llms": 54348, "try understand": 98976, "data specific": 21646, "specific challenges": 89670, "task furthermore": 94073, "explore impact": 32687, "biases llms": 10937, "efficiency cost": 27676, "cost latency": 19861, "ensure comprehensive": 29444, "comprehensive understanding": 17314, "comprehensive guide": 17266, "aims provide": 4822, "provide researchers": 77561, "best practices": 10631, "working llms": 104328, "llms enabling": 55856, "successful implementation": 92261, "models wide": 64535, "list practical": 54625, "regularly updated": 81118, "multimodal systems": 65102, "systems generative": 93463, "chatgpt dalle": 13673, "impact opens": 43242, "new opportunities": 66470, "raises ethical": 79079, "emerging field": 28220, "ai alignment": 4297, "aims make": 4819, "make ai": 57962, "reflect human": 81006, "values paper": 102222, "focuses evaluating": 35604, "ethics multimodal": 30097, "multimodal ai": 65028, "involving text": 47876, "images relatively": 43110, "relatively underexplored": 81336, "underexplored area": 99441, "focused language": 35588, "models create": 62133, "create multimodal": 20167, "algorithms including": 4971, "multilayer perceptron": 64934, "automatically assess": 8844, "data classification": 21048, "realm computational": 79610, "computational social": 17484, "social science": 88914, "navigate complex": 65822, "data aim": 20959, "aim establish": 4706, "set guidelines": 86882, "synthetically generated": 93306, "data gpt4": 21282, "gpt4 llama2": 39960, "tasks varying": 95246, "varying complexity": 102645, "examine impact": 31114, "performance findings": 71219, "trained humanlabeled": 97844, "data consistently": 21105, "exhibit superior": 31559, "proves beneficial": 77390, "multiclass tasks": 64884, "leverage gpt4": 53730, "short compared": 87276, "compared specialized": 16636, "moderately sized": 64579, "analyzing chatgpt": 5802, "evaluating chatgpt": 30401, "tasks studies": 95145, "studies investigated": 91406, "changes time": 13300, "time paper": 97001, "dataset called": 21844, "pairs collected": 69485, "including questions": 44458, "questions reasoning": 78927, "reasoning classification": 79826, "questions longform": 78889, "longform generation": 57377, "comprehensive automatic": 17205, "evaluation provide": 30740, "provide evidence": 77464, "chatgpt evolving": 13772, "extracting knowledge": 33268, "features improve": 34005, "improve robustness": 43796, "versions chatgpt": 102820, "chatgpt vs": 14352, "benchmarking study": 10303, "task transformerbased": 94274, "demonstrated exceptional": 23250, "research evaluating": 82583, "identifying informative": 42923, "accurately reflect": 2465, "content study": 18694, "study seeks": 91829, "gap comparing": 36916, "comparing chatgpts": 16672, "generation performance": 38322, "models testing": 64353, "significant challenges": 87710, "challenges field": 13020, "generation long": 38248, "datasets scientific": 22408, "articles news": 7568, "news domains": 66625, "analyzing performance": 5817, "performance short": 71563, "short long": 87289, "documents results": 26267, "outperforms current": 69036, "ai write": 4613, "comparison humanwritten": 16716, "versus chatgptgenerated": 102834, "chatgpt similar": 14237, "similar generative": 88070, "hundreds millions": 42689, "public discourse": 77918, "result significant": 83407, "education information": 27154, "information generation": 45495, "generation future": 38174, "largescale study": 52573, "study comparing": 91533, "student essays": 91250, "systematically assess": 93361, "large corpus": 51413, "rated using": 79407, "using standard": 101785, "criteria large": 20293, "number human": 67346, "consideration linguistic": 18181, "linguistic characteristics": 54563, "characteristics generated": 13329, "generated essays": 37696, "results results": 83818, "rated higher": 79406, "quality humanwritten": 78291, "writing style": 104499, "models exhibits": 62391, "clearly demonstrate": 14891, "demonstrate models": 23136, "chatgpt outperform": 14053, "outperform humans": 68944, "humans generating": 42600, "available use": 9097, "models way": 64531, "concepts use": 17640, "tools free": 97408, "learning objectives": 53308, "teach models": 95336, "models search": 64149, "capabilities recent": 12065, "dialog ability": 24821, "search queries": 85887, "time resource": 97014, "automatic data": 8768, "pipeline generates": 72158, "prompt large": 76353, "create conversational": 20149, "versions question": 102831, "use improve": 100577, "improve query": 43787, "query generation": 78527, "models communicate": 62049, "external search": 33202, "search apis": 85854, "dialog responses": 24833, "method allows": 59201, "scale experiments": 85265, "humangenerated data": 42489, "data successfully": 21663, "generate data": 37421, "dialog models": 24830, "domains existing": 26515, "existing dialog": 31701, "data demonstrated": 21146, "datasets perform": 22364, "perform thorough": 70934, "analysis generated": 5526, "humans high": 42605, "distinguish humanwritten": 25896, "engineering large": 28986, "study chatgpts": 91520, "problems various": 75219, "automatic identification": 8796, "strong weak": 91081, "processes remain": 75446, "remain challenging": 81614, "limitation current": 54281, "llm approaches": 54967, "approaches particularly": 7181, "practical problems": 73523, "chatgpt solving": 14253, "areas llms": 7445, "llms effective": 55829, "distillation approach": 25810, "powerful large": 73448, "included prompt": 44240, "prompt instructions": 76350, "designers use": 23970, "constraints explore": 18397, "explore using": 32757, "generation contrastive": 38098, "examples generating": 31222, "generate set": 37593, "approach produces": 6983, "diverse training": 26123, "classification process": 14776, "process prompt": 75378, "prompt gpt4": 76335, "distilled model": 25839, "distilled models": 25840, "llms instruction": 56232, "superior generative": 92641, "capabilities models": 12004, "alleviate issue": 5133, "issue explore": 47932, "distilling knowledge": 25844, "instructiontuned llms": 46603, "llms smaller": 56821, "smaller ones": 88780, "carefully develop": 12419, "instructions based": 46474, "instructions addition": 46472, "broad set": 11497, "analysis instruction": 5558, "responses instructions": 83244, "instructions using": 46575, "using gpt35turbo": 101491, "models collectively": 62036, "encoderdecoder decoderonly": 28719, "varying sizes": 102659, "sizes evaluate": 88550, "15 different": 324, "benchmarks human": 10351, "human assessment": 42093, "assessment results": 7975, "smaller size": 88792, "size generative": 88472, "ai perceptions": 4504, "academia chatgpt": 1967, "processing tool": 75586, "engage humanlike": 28906, "humanlike conversations": 42528, "coherent contextually": 15779, "contextually relevant": 18977, "relevant responses": 81475, "various prompts": 102541, "capable understanding": 12272, "understanding natural": 99821, "text input": 96306, "appropriate responses": 7249, "tool represents": 97310, "major step": 57942, "technology paper": 95653, "paper specifically": 69956, "specifically focuses": 89824, "engineering education": 28962, "quickly changing": 78984, "capability critical": 12153, "data survey": 21673, "measure effects": 58736, "effects chatgpt": 27600, "use survey": 100698, "focus temporal": 35561, "temporal causal": 95708, "discourse relations": 25590, "quantitatively evaluate": 78426, "chatgpt interactive": 13961, "causal relations": 12672, "relations given": 81270, "promising performance": 76179, "thorough evaluations": 96829, "sets 11": 86956, "11 datasets": 186, "datasets including": 22299, "ensure reliability": 29456, "tailored prompt": 93784, "task including": 94096, "including zeroshot": 44520, "zeroshot prompt": 104849, "icl prompt": 42763, "baseline scores": 9806, "scores popular": 85776, "relation classification": 81235, "time study": 97031, "study discover": 91583, "exhibits exceptional": 31607, "exceptional proficiency": 31384, "possess level": 72855, "temporal order": 95718, "capable identifying": 12244, "explicit discourse": 32526, "discourse relation": 25589, "remains formidable": 81658, "formidable challenge": 35844, "subpar performance": 91998, "performance dialogue": 71136, "structural understanding": 91122, "understanding dialogue": 99714, "automated circuit": 8679, "circuit discovery": 14637, "considerable effort": 18155, "behaviors transformer": 10013, "researchers choose": 82839, "dataset elicit": 21917, "elicit desired": 27984, "apply activation": 6651, "activation patching": 2981, "automate process": 8664, "behavior models": 9983, "computational graph": 17460, "propose algorithms": 76929, "results validate": 83908, "analysis strengths": 5684, "peft techniques": 70710, "techniques llms": 95554, "llms foundation": 56007, "increasingly critical": 44872, "techniques require": 95584, "small percentage": 88718, "currently popular": 20819, "popular method": 72652, "adapting large": 3128, "benchmark various": 10276, "representative llm": 82143, "llm flant5": 55088, "generation datasets": 38108, "provide framework": 77483, "optimal finetuning": 68561, "given task": 38969, "task type": 94279, "data availability": 21015, "data required": 21568, "methods perform": 59747, "significantly fewer": 87930, "parameters maintaining": 70250, "maintaining improving": 57895, "mathematical abilities": 58569, "abilities pretrained": 1554, "surprisingly adept": 92997, "tasks explicitly": 94615, "explicitly trained": 32555, "understood paper": 99914, "basic mathematical": 9879, "abilities acquired": 1492, "acquired pretrained": 2917, "concretely use": 17775, "examine ability": 31093, "finally related": 34561, "diverse contexts": 26000, "integrating chatgpt": 46711, "python api": 78095, "enhanced creativity": 29229, "skills chatgpt": 88591, "plays crucial": 72378, "crucial role": 20524, "aligns principles": 5127, "learning allowing": 53027, "learning strategies": 53425, "emphasizes importance": 28292, "learning journey": 53225, "educational process": 27213, "explore various": 32761, "various resources": 102557, "new ideas": 66423, "personalized manner": 71916, "innovative approach": 45850, "enables students": 28614, "motivation work": 64791, "essential skills": 29956, "thinking problemsolving": 96807, "solutions evaluate": 89137, "make informed": 58001, "selfdirected learning": 86219, "learning environments": 53132, "environments integration": 29647, "integration chatgpt": 46759, "effective learning": 27320, "individual needs": 45091, "needs preferences": 66040, "abilities leading": 1530, "capabilities chatgpt": 11852, "educational institutions": 27205, "institutions create": 46267, "learning environment": 53131, "approach aligns": 6732, "learning promoting": 53357, "everchanging world": 30944, "models instruction": 62790, "tuning instructiontuned": 99052, "instructiontuned lms": 46604, "lms chatgpt": 57107, "chatgpt flan": 13828, "datasets contain": 22190, "opensource datasets": 68328, "datasets allowing": 22142, "appears input": 6312, "downstream user": 26756, "user provides": 101028, "provides input": 77677, "joe biden": 48142, "evaluate method": 30226, "opensource instructiontuned": 68342, "arbitrary phrases": 7319, "negative polarity": 66066, "degenerate outputs": 22882, "worryingly larger": 104438, "defenses based": 22854, "reducing model": 80886, "capacity provide": 12309, "code generated": 15267, "rigorous evaluation": 84447, "generation program": 38347, "long studied": 57335, "recent approaches": 80221, "focused directly": 35578, "directly using": 25526, "benchmarks curated": 10322, "used measure": 100848, "limited quantity": 54452, "functional correctness": 36500, "limitation existing": 54283, "following question": 35694, "era llms": 29742, "answer propose": 6037, "framework rigorously": 36262, "given evaluation": 38884, "dataset large": 21988, "automatic test": 8832, "humaneval benchmark": 42471, "popular llms": 72643, "previously undetected": 74764, "synthesized llms": 93238, "llms reducing": 56674, "outperform chatgpt": 68924, "chatgpt humaneval": 13936, "humaneval humaneval": 42475, "popular code": 72622, "true performance": 98913, "new direction": 66378, "direction improve": 25449, "accelerate future": 2005, "unleash power": 100157, "fewshot relation": 34304, "models revolutionized": 64112, "tasks little": 94833, "generation fewshot": 38163, "performance propose": 71499, "generation observe": 38305, "par previous": 70014, "previous solutions": 74701, "obtain new": 67653, "fewshot results": 34306, "datasets hope": 22289, "work inspire": 104131, "inspire future": 46160, "research capabilities": 82506, "plms achieved": 72406, "success nlp": 92225, "high deployment": 41408, "deployment costs": 23597, "costs low": 19930, "efficiency finetuning": 27684, "finetuning specific": 35256, "task essential": 94040, "plms pretrained": 72430, "models consider": 62092, "consider language": 18136, "interactive manner": 47108, "model demonstrates": 60747, "demonstrates strong": 23408, "gpt3 instructgpt": 39480, "range language": 79165, "compared 175b": 16503, "learning knowledge": 53227, "difficult problem": 25305, "variety possible": 102318, "language questions": 51077, "questions additionally": 78767, "schema items": 85518, "different knowledge": 25083, "specialized training": 89646, "training different": 98075, "questions diverse": 78830, "trainingfree framework": 98361, "framework propose": 36242, "enables fewshot": 28585, "kbqa tasks": 48249, "leverages large": 53796, "generate logical": 37523, "specific question": 89743, "results public": 83796, "incontext demonstrations": 44559, "outperform stateoftheart": 68969, "model par": 61204, "models believe": 61912, "serve important": 86766, "research code": 82511, "programming tool": 75937, "tool code": 97277, "learning new": 53302, "new programming": 66498, "programming skills": 75931, "skills requires": 88608, "emergence advanced": 28161, "advanced natural": 3725, "chatgpt api": 13526, "ai computer": 4344, "science education": 85577, "education paper": 27167, "tool visual": 97332, "api provide": 6274, "programming code": 75889, "integrating visual": 46749, "provided code": 77606, "relevant source": 81478, "designed prompts": 23939, "selected code": 86132, "code openly": 15425, "openly accessible": 68286, "accessible github": 2109, "evaluation indicates": 30639, "concise accurate": 17720, "explanations compared": 32483, "compared vanilla": 16658, "vanilla chatgpt": 102228, "students teachers": 91341, "given codes": 38866, "possible future": 72902, "enhancing performance": 29361, "evaluating effectiveness": 30414, "real users": 79555, "fewshot event": 34231, "event detection": 30920, "detection empirical": 24294, "unified view": 100043, "experimental settings": 32077, "presents thorough": 74177, "thorough empirical": 96824, "evaluation compare": 30548, "representative methods": 82147, "methods datasets": 59587, "analysis experiments": 5514, "promptbased methods": 76468, "chatgpt significantly": 14235, "design elements": 23775, "build unified": 11614, "unified framework": 100019, "combination different": 15949, "different modules": 25123, "effective baseline": 27267, "f1 gains": 33416, "extraction using": 33339, "groundbreaking achievements": 40560, "fullysupervised baselines": 36481, "finetuned bert": 34868, "extraction major": 33316, "major shortcomings": 57941, "shortcomings llms": 87323, "llms low": 56364, "entity relation": 29585, "demonstrations incontext": 23472, "gap llms": 36947, "addresses aforementioned": 3508, "aforementioned issues": 4086, "widelyused datasets": 103754, "datasets observe": 22353, "achieves improvements": 2753, "achieves sota": 2792, "sota performances": 89322, "competitive performances": 16816, "rapidly improving": 79351, "successfully applied": 92269, "ask paper": 7721, "report differences": 81966, "grade distribution": 40280, "understand impact": 99613, "report experience": 81969, "chatgpt education": 13733, "discourse analysis": 25585, "rapid advancements": 79297, "advancements generative": 3819, "education sector": 27184, "acknowledge address": 2893, "concerns arise": 17676, "arise use": 7479, "twitter data": 99159, "data identify": 21299, "identify key": 42875, "related use": 81224, "education employed": 27148, "analysis social": 5679, "network analysis": 66127, "analysis identify": 5543, "identify influential": 42872, "users conversation": 101087, "twitter users": 99163, "users generally": 101115, "positive attitude": 72819, "chatgpt concerns": 13643, "impact learning": 43224, "learning outcomes": 53315, "challenges users": 13138, "individual users": 45099, "tech companies": 95394, "summary study": 92602, "study underscores": 91872, "underscores importance": 99566, "importance responsible": 43477, "ethical use": 30091, "ai education": 4374, "collaboration stakeholders": 15831, "ai policy": 4510, "learning chatgpt": 53065, "chatgpt bing": 13572, "bing chat": 11066, "study study": 91853, "investigates potential": 47756, "concept comprehension": 17601, "stem education": 90598, "education using": 27190, "constructionist theoretical": 18479, "theoretical framework": 96736, "framework singlecase": 36273, "singlecase study": 88407, "study methodology": 91741, "used analyse": 100735, "analyse extensive": 5385, "extensive interaction": 33105, "interaction logs": 47019, "logs students": 57291, "students ai": 91281, "systems simulated": 93574, "experiences results": 31951, "highlight ability": 41572, "collaborative learning": 15842, "educational activities": 27192, "potential limitations": 73169, "limitations like": 54345, "concerns ai": 17675, "study concludes": 91536, "concludes chatgpt": 17744, "promising avenues": 76153, "avenues revolutionise": 9119, "revolutionise stem": 84325, "education constructionist": 27139, "constructionist lens": 18477, "lens fostering": 53623, "outperforming larger": 69002, "data smaller": 21634, "deploying large": 23582, "llms challenging": 55571, "train smaller": 97777, "using llmgenerated": 101577, "achieve comparable": 2491, "mechanism trains": 58810, "llms achieves": 55435, "data needed": 21439, "needed finetuning": 66014, "distillation method": 25819, "method extracts": 59306, "supervision training": 92763, "training small": 98297, "multitask framework": 65353, "compared finetuning": 16547, "distillation mechanism": 25818, "achieves better": 2718, "performance fewer": 71213, "prompted llms": 76484, "llms achieve": 55415, "performance using": 71658, "reduce model": 80791, "llms finetuned": 55984, "outperforms fewshot": 69054, "540b palm": 1067, "palm model": 69553, "data benchmark": 21022, "model struggles": 61458, "dataset release": 22054, "entity tracking": 29593, "systematic investigations": 93341, "discourse entities": 25586, "present task": 74069, "extent language": 33163, "given english": 38882, "initial state": 45787, "task investigate": 94109, "exhibit ability": 31500, "investigate smaller": 47699, "performance degrades": 71127, "evaluated different": 30334, "different set": 25192, "training longer": 98185, "taken results": 93806, "suggest language": 92372, "models learn": 62886, "does make": 26308, "abstractive summarization": 1949, "pipeline tailoring": 72175, "outputs large": 69234, "chatgpt implicit": 13943, "implicit user": 43424, "user preferences": 101021, "challenge despite": 12870, "impressive generative": 43604, "enhance output": 29189, "generator produces": 38738, "produces initial": 75698, "editing instructions": 27099, "based user": 9751, "chatgpt serves": 14209, "generation train": 38478, "learning leveraging": 53250, "feedback largescale": 34102, "model optimize": 61171, "generation experimental": 38153, "summarization datasets": 92529, "approach generating": 6873, "generating outputs": 37947, "learning gpt": 53182, "ai tasks": 4572, "fields numerous": 34439, "numerous ai": 67414, "models designed": 62201, "designed specific": 23949, "tasks applications": 94374, "considerable human": 18159, "right model": 84435, "architecture optimization": 7360, "aspects reasoning": 7787, "reasoning comprehension": 79838, "consequently propose": 18126, "prompts automatically": 76654, "utilizing llms": 102035, "llms automate": 55501, "training pipeline": 98234, "trains models": 98368, "models optimized": 63725, "takes user": 93827, "user requests": 101034, "composes corresponding": 17108, "corresponding prompt": 19802, "automatically conduct": 8847, "processing model": 75505, "hyperparameter tuning": 42723, "robust language": 84663, "language capabilities": 49148, "datasets approach": 22148, "vision natural": 102997, "challenging areas": 13149, "experiments ablation": 32098, "general effective": 37124, "beneficial ai": 10436, "popularity large": 72699, "applications ensuring": 6467, "concern particular": 17663, "given llms": 38911, "llms great": 56114, "potential serve": 73259, "generalpurpose ai": 37341, "daily life": 20902, "suggestions real": 92429, "tackling challenge": 93747, "introduces framework": 47518, "framework testing": 36302, "llms propose": 56603, "test suite": 95952, "moral scenarios": 64746, "scenarios test": 85486, "test llms": 95913, "automated test": 8742, "test oracle": 95920, "oracle detect": 68674, "llms yield": 57057, "requiring human": 82436, "expertise costly": 32384, "task automatically": 93946, "llms blackbox": 55537, "blackbox api": 11128, "generates valid": 37857, "nucleus sampling": 67324, "sampling language": 85158, "text based": 96097, "set words": 86952, "probability work": 74964, "work assess": 103996, "various linguistic": 102473, "conformal prediction": 18058, "prediction calibration": 73683, "prediction sets": 73719, "confidence level": 18015, "word distribution": 103896, "opt models": 68544, "inverse scaling": 47609, "automated code": 8681, "information technology": 45650, "recent improvement": 80263, "improvement code": 43892, "models mainly": 63571, "languages domain": 51260, "domain specific": 26452, "essential component": 29937, "component modern": 17079, "cloud platforms": 15060, "markup language": 58416, "generation tool": 38474, "aimed improving": 4753, "transformerbased model": 98576, "model extended": 60847, "training new": 98216, "dataset containing": 21880, "performance metrics": 71401, "domain results": 26443, "accurately generate": 2453, "prompts performance": 76793, "better existing": 10711, "data compare": 21083, "baselines including": 9836, "shot settings": 87348, "opportunities natural": 68502, "processing generative": 75483, "series developed": 86729, "research article": 82495, "challenges face": 13013, "compared gpt4": 16558, "gpt4 predecessor": 40022, "better multilingual": 10751, "capabilities improved": 11938, "language translation": 51147, "poses challenges": 72765, "challenges limitations": 13060, "computational requirements": 17477, "data requirements": 21569, "concerns using": 17716, "entity matching": 29565, "entity descriptions": 29559, "rely finetuning": 81575, "finetuning transformer": 35282, "drawbacks using": 26804, "models entity": 62337, "matching models": 58521, "amounts finetuning": 5344, "ii finetuned": 42971, "models robust": 64126, "entities paper": 29542, "training dataefficient": 98065, "alternative traditional": 5277, "perform experiments": 70867, "ii incontext": 42973, "knowledge chatgpt": 48468, "finetuned roberta": 34963, "roberta model": 84607, "reaching similar": 79483, "performance adding": 70973, "adding incontext": 3166, "prompts improves": 76746, "improves f1": 44024, "selection using": 86179, "demonstrations leads": 23476, "performance finally": 71217, "chatgpt guided": 13922, "prompts providing": 76804, "providing incontext": 77757, "literature using": 54667, "specifically gpt4": 89832, "aims generate": 4810, "effectiveness prompt": 27567, "engineering techniques": 29030, "models output": 63743, "prompt containing": 76263, "employed advanced": 28420, "advanced prompt": 3732, "engineering methods": 28994, "conducted empirical": 17951, "evaluation generated": 30617, "undergraduate students": 99474, "hypothesis testing": 42739, "testing assessed": 95995, "ability distinguish": 1634, "distinguish genuine": 25894, "works generated": 104359, "model findings": 60881, "findings demonstrate": 34652, "reliably differentiate": 81534, "indicating effectiveness": 45039, "effectiveness gpt4": 27527, "offers comparative": 67824, "analysis related": 5637, "related work": 81226, "exploring potential": 32861, "models context": 62109, "context literary": 18809, "body research": 11244, "limitations models": 54351, "recognition ner": 80605, "semantic ambiguity": 86291, "previous systems": 74722, "suffer insufficient": 92310, "limited context": 54409, "length single": 53610, "retrieval strategy": 84027, "strategy paper": 90909, "multilingual ner": 64990, "analysis previous": 5613, "systems reveal": 93564, "reveal performance": 84167, "performance bottleneck": 71027, "retrieval knowledge": 83989, "model enhance": 60806, "retrieval context": 83975, "various search": 102565, "search strategies": 85896, "refine quality": 80978, "code scripts": 15495, "task additionally": 93926, "compared chatgpt": 16514, "results room": 83828, "improvement chatgpt": 43891, "chatgpt extraction": 13801, "chatgpt works": 14359, "writing ai": 104465, "ai recent": 4526, "ai raised": 4525, "questions use": 78966, "use present": 100654, "present set": 74055, "set best": 86845, "ai likely": 4455, "grow capable": 40636, "coming years": 16050, "integrating ai": 46709, "scholarly writing": 85540, "memory capacity": 59016, "capacity chatgpt": 12285, "chatgpt empirical": 13746, "intelligence artificial": 46835, "information paper": 45565, "paper systematically": 69972, "examining performance": 31147, "performance verbal": 71703, "various conditions": 102388, "conditions experiments": 17814, "reveal chatgpt": 84134, "strikingly similar": 90990, "investigate impact": 47653, "different instruction": 25079, "performance observe": 71436, "observe fundamental": 67581, "fundamental patterns": 36548, "empirical findings": 28327, "tasks serve": 95099, "capacity large": 12296, "hold potential": 41889, "informing future": 45696, "efforts aimed": 27892, "aimed enhancing": 4750, "enhancing ai": 29305, "tuning successful": 99104, "soft prompts": 88966, "total parameters": 97563, "quite sensitive": 78993, "sensitive hyperparameters": 86460, "tuning simple": 99098, "efficient method": 27798, "prompt embeddings": 76283, "embeddings using": 28099, "using shallow": 101761, "residual connection": 82918, "superglue benchmark": 92625, "benchmark notably": 10220, "notably method": 67040, "points improvement": 72505, "improvement prompt": 43936, "allows reduce": 5208, "prompt length": 76366, "hurting performance": 42699, "performance addition": 70974, "addition approach": 3175, "approach robust": 7013, "rate prompt": 79396, "responses llms": 83255, "efficient approach": 27742, "based prompt": 9673, "engineering leverages": 28989, "introduce iterative": 47438, "mechanism potential": 58806, "removing need": 81870, "need manual": 65973, "intervention experiments": 47340, "experiments findings": 32197, "results par": 83758, "examples provided": 31275, "demonstrate superiority": 23205, "superiority proposed": 92681, "proposed solution": 77255, "solution improving": 89098, "instructions instruction": 46519, "improve crosstask": 43684, "models complete": 62062, "complete target": 16875, "tasks following": 94654, "instructions general": 46504, "intermediate steps": 47220, "propose incorporate": 77002, "help language": 41256, "decompose tasks": 22688, "detailed specific": 24187, "tasks stepbystep": 95141, "chatgpt combined": 13630, "original instructions": 68784, "instructions tune": 46573, "models extensive": 62424, "highquality stepbystep": 41792, "instructions improve": 46516, "analysis indicates": 5554, "indicates importance": 45032, "research release": 82760, "quality evaluation": 78264, "literature paper": 54653, "knowledge acquisition": 48412, "gpt4 compared": 39802, "considerably smaller": 18178, "weaker counterparts": 103437, "gpt2 powerful": 39330, "powerful models": 73457, "models exempt": 62376, "ask extent": 7713, "extent models": 33168, "knowledge introduce": 48638, "filtering generated": 34474, "generated knowledge": 37723, "knowledge framework": 48573, "everyday objects": 30961, "entity pairs": 29569, "10x larger": 182, "diverse existing": 26020, "resources human": 83013, "improvement demonstrate": 43897, "models offer": 63694, "currently dominant": 20808, "models reducing": 64031, "reducing cost": 80864, "llms users": 57002, "cost associated": 19834, "popular llm": 72642, "llm apis": 54963, "models heterogeneous": 62659, "discuss types": 25694, "strategies users": 90854, "reduce inference": 80784, "inference cost": 45231, "associated using": 8105, "llms prompt": 56592, "adaptation llm": 3083, "llm cascade": 54997, "simple flexible": 88196, "combinations llms": 15964, "use different": 100524, "different queries": 25174, "reduce cost": 80770, "accuracy experiments": 2262, "individual llm": 45087, "llm gpt4": 55113, "cost reduction": 19879, "ideas findings": 42796, "software architecture": 88978, "models serve": 64166, "stages design": 90131, "systematically explored": 93371, "models software": 64221, "propose taxonomy": 77133, "models design": 62200, "design options": 23820, "architectural design": 7328, "decisions designing": 22613, "systems highlights": 93477, "professional certification": 75756, "test large": 95907, "passing score": 70553, "data analytics": 20970, "offensive security": 67727, "models displayed": 62242, "professional domains": 75759, "including nursing": 44433, "financial industry": 34603, "service tasks": 86808, "tasks suggesting": 95157, "suggesting potential": 92416, "applications human": 6496, "services models": 86817, "language reader": 51078, "openai model": 68172, "model improvement": 60990, "opensource benchmark": 68312, "professional skills": 75763, "emergent capabilities": 28199, "large code": 51405, "fewshot information": 34246, "information extractors": 45478, "massive corpora": 58448, "corpora demonstrated": 19573, "impressive fewshot": 43601, "llms natural": 56420, "prompted solve": 76488, "task usually": 94288, "plain text": 72230, "text paper": 96349, "structured output": 91173, "output form": 69152, "code instead": 15361, "instead natural": 46252, "utilize generative": 101934, "code codellms": 15153, "codellms codex": 15613, "tasks particular": 94934, "recognition relation": 80614, "tasks designing": 94530, "tasks experiment": 94606, "results seven": 83835, "seven benchmarks": 87116, "benchmarks method": 10380, "method consistently": 59241, "outperforms finetuning": 69057, "specially designed": 89652, "designed tasks": 23956, "settings conduct": 87044, "conduct series": 17913, "analyses demonstrate": 5393, "tasks fast": 94632, "serving large": 86822, "llms power": 56542, "interactive ai": 47087, "exemplified chatgpt": 31477, "interactive nature": 47110, "inference existing": 45241, "llm serving": 55257, "llm inference": 55125, "output token": 69200, "based new": 9635, "length information": 53591, "assign appropriate": 7997, "efficient gpu": 27772, "gpu memory": 40263, "memory management": 59047, "based nvidia": 9637, "chatgpt capabilities": 13584, "capabilities impact": 11937, "llms recently": 56654, "recently popular": 80534, "popular topic": 72687, "investing heavily": 47805, "amounts data": 5340, "used wide": 100932, "including language": 44393, "generation question": 38374, "required train": 82325, "train run": 97770, "run models": 84948, "models substantial": 64287, "cost hardware": 19850, "impact llms": 43227, "llms ai": 55458, "research focusing": 82607, "range capabilities": 79141, "integrating models": 46736, "systems exhibit": 93444, "based visual": 9760, "visual signals": 103123, "understanding instruction": 99772, "users use": 101193, "languages lowresource": 51317, "user observe": 101015, "languages little": 51315, "corpus resources": 19651, "image caption": 43019, "caption model": 12322, "dataset machine": 21999, "language encoder": 49201, "alignment different": 5062, "vision action": 102959, "instruction visual": 46419, "action decision": 2942, "agent large": 4138, "action decisions": 2943, "qualitative results": 78209, "results promising": 83783, "lowrank adaptation": 57597, "contrastive objective": 19109, "text embeddings": 96187, "useful features": 100944, "applications sentence": 6569, "sentence similarity": 86521, "semantic search": 86346, "produce semantically": 75653, "semantically meaningful": 86367, "second finetune": 85932, "adapter lora": 3113, "adam optimizer": 3029, "similarity classification": 88131, "results quality": 83799, "learned embeddings": 52980, "proportional number": 76916, "unlabeled training": 100149, "data parameter": 21470, "finetuning design": 35046, "able run": 1883, "previous solution": 74700, "english multilingual": 29087, "bot human": 11316, "human detecting": 42152, "detecting chatgpt": 24240, "question large": 78682, "recently demonstrated": 80468, "generation enabling": 38136, "applications including": 6499, "malicious purposes": 58159, "purposes fraud": 78057, "attacks crucial": 8207, "crucial develop": 20484, "methods detecting": 59597, "conversational bots": 19361, "manner specifically": 58248, "specifically target": 89879, "target single": 93888, "questions divided": 78831, "divided categories": 26170, "easy humans": 27033, "ascii art": 7700, "difficult humans": 25297, "approach shows": 7018, "different strengths": 25209, "questions effectiveness": 78835, "effectiveness providing": 27575, "providing new": 77777, "online service": 68007, "service providers": 86807, "opensourced dataset": 68420, "detection datasets": 24287, "health management": 41169, "plays critical": 72376, "critical role": 20352, "measures taken": 58770, "reliability reducing": 81505, "based artificial": 9443, "ai remarkable": 4531, "remarkable achievements": 81733, "big data": 10985, "various industries": 102449, "emergence largescale": 28173, "ai new": 4486, "new era": 66388, "models rapidly": 63975, "research paradigm": 82703, "multimodal multitask": 65091, "model paradigm": 61205, "chatgpt represents": 14175, "paradigm offering": 70047, "hope general": 41952, "change ai": 13267, "elucidate future": 28023, "future development": 36708, "latest developments": 52660, "challenges future": 13024, "chainofthought prompting": 12833, "prompting code": 76511, "llms prompts": 56599, "prompts inputs": 76754, "asks llms": 7751, "generate cots": 37420, "output code": 69144, "code cot": 15178, "generation low": 38250, "low accuracy": 57496, "propose structured": 77127, "novel prompting": 67233, "generation named": 38290, "code contains": 15169, "contains rich": 18560, "structural information": 91121, "information code": 45417, "intermediate reasoning": 47213, "ask llms": 7719, "use program": 100661, "generate final": 37457, "final code": 34483, "code based": 15138, "compared cot": 16524, "generation apply": 38032, "codex evaluate": 15662, "benchmarks humaneval": 10353, "mbpp mbcpp": 58675, "shows human": 87585, "human developers": 42154, "developers prefer": 24557, "prefer programs": 73788, "achieves substantial": 2806, "data subsets": 21662, "remarkable improvement": 81776, "emergence new": 28177, "capabilities increasing": 11944, "inevitably leads": 45187, "training times": 98328, "significant efforts": 87744, "efforts underway": 27922, "training efficient": 98089, "training pipelines": 98235, "attention paid": 8355, "data key": 21350, "key question": 48333, "ask possible": 7722, "highly informative": 41699, "data maintaining": 21392, "building recent": 11646, "subset selection": 92043, "highly representative": 41711, "corpora demonstrate": 19572, "framework applied": 36039, "efficiently train": 27863, "train multiple": 97763, "bert biobert": 10505, "data perform": 21474, "perform rigorous": 70916, "evaluation resulting": 30752, "models framework": 62510, "interactive web": 47122, "longform question": 57380, "answering longform": 6124, "answering lfqa": 6123, "answering complex": 6088, "responses facto": 83214, "supporting facts": 92855, "unique feature": 100083, "real time": 79553, "time following": 96966, "information using": 45668, "finetune pretrained": 34847, "models imitate": 62700, "imitate human": 43157, "human behaviors": 42108, "based collected": 9472, "models generates": 62559, "cases dataset": 12520, "better chatgpt": 10699, "chatgpt case": 13590, "chatgpt numerous": 14040, "numerous studies": 67441, "studies highlighted": 91396, "surpasses human": 92936, "domains paper": 26565, "perspective demonstrating": 71945, "typical tasks": 99281, "specifically domain": 89810, "domain computer": 26363, "encompassing wide": 28770, "problems different": 75128, "different complexities": 25020, "using major": 101603, "languages python": 51348, "python java": 78103, "competitive edge": 16798, "certain aspects": 12747, "fact average": 33557, "average score": 9177, "obtained chatgpt": 67668, "lower average": 57553, "human score": 42361, "paper elaborates": 69687, "critical insights": 20335, "insights limitations": 46109, "limitations potential": 54358, "aibased language": 4629, "principles guide": 74832, "guide selection": 40750, "provide experimental": 77469, "flexibly adjust": 35435, "context question": 18834, "results strong": 83860, "questionanswering performance": 78741, "models conducting": 62088, "conducting extensive": 17998, "human experiments": 42208, "experiments models": 32250, "answering behavior": 6079, "tend include": 95735, "irrelevant information": 47901, "gpt3 highly": 39473, "form prompt": 35780, "small language": 88684, "models speak": 64235, "tools natural": 97448, "struggle produce": 91224, "produce coherent": 75608, "125m parameters": 242, "parameters gptneo": 70227, "small gpt2": 88679, "rarely generate": 79362, "coherent consistent": 15778, "text words": 96485, "raises question": 79085, "ability produce": 1749, "larger scales": 52473, "architectures layers": 7395, "global attention": 39008, "attention work": 8387, "dataset short": 22071, "short stories": 87300, "evaluate lms": 30225, "10 million": 112, "consistent stories": 18275, "capabilities introduce": 11952, "models suggest": 64297, "framework uses": 36313, "uses gpt4": 101231, "written students": 104526, "human teacher": 42390, "teacher new": 95345, "requires models": 82400, "output structures": 69196, "score model": 85727, "model providing": 61300, "scores different": 85754, "different capabilities": 25011, "facilitate development": 33487, "analysis research": 5640, "especially lowresource": 29898, "specialized domains": 89623, "capabilities lms": 11996, "lms improving": 57133, "improving small": 44156, "augmentation large": 8538, "llms remarkable": 56699, "remarkable advancements": 81737, "increasing size": 44858, "size poses": 88507, "challenges terms": 13131, "terms computational": 95800, "models slms": 64214, "known efficiency": 48843, "limited capacity": 54403, "capacity training": 12313, "domain using": 26469, "using llmbased": 101576, "approach develop": 6804, "models specifically": 64240, "specifically tailored": 89878, "specialized applications": 89618, "dataset demonstrate": 21897, "effectiveness llms": 27550, "llms refining": 56676, "refinement process": 80987, "leads improved": 52897, "notably best": 67028, "16 billion": 359, "parameters outperforms": 70258, "gpt4 pubmedqa": 40039, "available facilitate": 9033, "facilitate explorations": 33493, "history ai": 41868, "ai comparative": 4340, "evaluation gpt": 30622, "gpt 35": 39174, "35 gpt4": 827, "predictive accuracy": 73757, "fact checking": 33558, "checking rapid": 14483, "rapid proliferation": 79334, "information digital": 45437, "digital era": 25360, "promise various": 76135, "fields potential": 34442, "largely untapped": 52427, "evaluates performance": 30388, "llms gpt": 56073, "35 gpt": 826, "events based": 30929, "based given": 9551, "novel metric": 67212, "assess models": 7862, "facts results": 33617, "substantial potential": 92103, "demonstrating superior": 23452, "paper underscores": 69984, "knowledge gaps": 48577, "exploring security": 32868, "security risks": 86035, "chatgpt increasing": 13953, "increasing popularity": 44847, "growing concerns": 40652, "concerns safety": 17710, "safety security": 85053, "risks ethical": 84513, "implications paper": 43394, "provide overview": 77534, "associated chatgpt": 8077, "chatgpt including": 13947, "generation private": 38333, "private data": 74923, "services information": 86814, "information gathering": 45490, "content present": 18671, "study examining": 91618, "content filters": 18625, "bypass safeguards": 11711, "implications security": 43401, "analysis security": 5664, "security implications": 86013, "potential strategies": 73276, "mitigate risks": 60281, "researchers policymakers": 82877, "security challenges": 86002, "challenges posed": 13096, "contributes ongoing": 19147, "ongoing discussion": 67967, "ethical security": 30084, "implications llms": 43392, "llms underscoring": 56981, "underscoring need": 99584, "need continued": 65923, "continued research": 19016, "evaluation platform": 30714, "interaction user": 47038, "user interface": 101003, "digital world": 25372, "facilitating efficient": 33536, "navigation complex": 65828, "researchers exploring": 82857, "graphical user": 40428, "interfaces guis": 47187, "interfaces nlis": 47188, "limited capabilities": 54401, "models traditional": 64373, "work mainly": 104172, "mainly focuses": 57851, "focuses tasks": 35619, "single step": 88396, "llms exhibited": 55908, "robust reasoning": 84684, "reasoning planning": 79977, "planning abilities": 72250, "abilities potential": 1551, "interactions complex": 47050, "complex environments": 16933, "environments remains": 29657, "assess llms": 7858, "environments introduce": 29648, "set based": 86842, "benchmark covering": 10109, "interaction capabilities": 46998, "comprehensive evaluations": 17250, "llm agents": 54948, "agents including": 4194, "gpt llama": 39206, "acquire insights": 2908, "potentials challenges": 73357, "challenges llms": 13065, "java methods": 48121, "code target": 15534, "target audience": 93854, "researchers studying": 82889, "contrast existing": 19070, "models prioritize": 63892, "researchers including": 82865, "including open": 44436, "new examples": 66401, "relatively modest": 81319, "budget model": 11550, "9b tokens": 1469, "resource requirements": 82974, "java projects": 48123, "test examples": 95890, "examples training": 31295, "data open": 21451, "available huggingface": 9052, "assessing potential": 7931, "certain forms": 12760, "linguistic annotation": 54560, "like speech": 54226, "lack direct": 48997, "timeconsuming errorprone": 97044, "address study": 3493, "annotation using": 5916, "llms compare": 55647, "chatbot human": 13411, "based local": 9610, "outperformed chatgpt": 68977, "chatgpt accuracy": 13486, "suggest ai": 92348, "making process": 58134, "approaches large": 7157, "chatbot chatgpt": 13405, "knowledge enhancement": 48547, "generative commonsense": 38614, "commonsense question": 16225, "presents considerable": 74127, "challenges producing": 13106, "background knowledge": 9265, "knowledge encoding": 48539, "enables generation": 28590, "different answers": 24994, "ranking propose": 79277, "approach grounded": 6877, "architecture specifically": 7373, "questions terms": 78963, "dense passage": 23506, "passage retrieval": 70544, "capturing relevant": 12382, "relevant knowledge": 81464, "knowledge different": 48503, "bart gpt2": 9384, "networks used": 66208, "used generating": 100813, "experiments benchmark": 32115, "obtains substantial": 67690, "improvements compared": 43965, "compared strong": 16642, "obtains best": 67686, "best performance": 10622, "uncovering potential": 99430, "analysis dialogue": 5488, "remarkable capability": 81760, "tasks ability": 94333, "higher level": 41509, "paper aim": 69590, "deep semantic": 22803, "structures underlying": 91201, "instruct chatgpt": 46272, "chatgpt complete": 13637, "craft prompt": 20124, "output format": 69153, "input conduct": 45882, "experiments popular": 32261, "datasets experimental": 22251, "results showcase": 83838, "showcase chatgpt": 87355, "demonstrates proficiency": 23393, "proficiency identifying": 75792, "complex topic": 17024, "investigation indicates": 47788, "chatgpt reasonable": 14150, "impact incontext": 43214, "learning chainofthought": 53061, "chainofthought chatgpt": 12816, "chatgpt conduct": 13646, "various prompt": 102534, "prompt components": 76255, "provide research": 77560, "foundation future": 35913, "argumentation tasks": 7470, "knowledge support": 48776, "new unsupervised": 66568, "unsupervised method": 100308, "method constructing": 59246, "large knowledge": 51451, "quality work": 78381, "knowledge paths": 48695, "reduce noise": 80794, "intrinsic evaluation": 47385, "evaluation quality": 30742, "largescale knowledge": 52523, "knowledge selection": 48756, "recall precision": 80115, "argument quality": 7468, "rating task": 79423, "task outperforming": 94171, "outperforming strong": 69011, "tasks prompt": 94975, "surge recent": 92895, "primarily driven": 74780, "driven advancements": 26840, "advancements pretrained": 3851, "models critical": 62136, "critical issue": 20336, "robustness models": 84733, "languages japanese": 51297, "evaluation representative": 30748, "representative large": 82140, "scrutinized using": 85829, "aim assess": 4689, "analyze performance": 5777, "performance current": 71116, "current multilingual": 20739, "multilingual models": 64983, "context experimental": 18763, "stability issues": 90084, "consistency models": 18242, "light findings": 54004, "potential research": 73241, "current stage": 20772, "interpretability scale": 47282, "scale identifying": 85269, "identifying causal": 42916, "causal mechanisms": 12662, "explanations large": 32502, "large generalpurpose": 51434, "generalize unseen": 37303, "unseen inputs": 100266, "gradient descent": 40293, "grounded theory": 40582, "present paper": 74033, "search steps": 85895, "learned parameters": 52988, "parameters approach": 70174, "causal structure": 12676, "structure large": 91140, "alpaca model": 5233, "7b parameters": 1302, "numerical reasoning": 67408, "reasoning problem": 79983, "causal model": 12664, "alignment neural": 5099, "neural representations": 66285, "instructions findings": 46502, "models tool": 64370, "larger llms": 52450, "llms released": 56687, "released publicly": 81415, "guidelines creating": 40764, "creating synthetic": 20234, "synthetic datasets": 93274, "engineering design": 28958, "vast domainspecific": 102680, "scarcity datasets": 85375, "datasets poses": 22368, "challenge researchers": 12929, "viable alternative": 102847, "highquality datasets": 41749, "realworld data": 79659, "data suitable": 21669, "applications study": 6578, "aims knowledge": 4815, "knowledge gap": 48576, "gap proposing": 36968, "proposing comprehensive": 77285, "tradeoffs methods": 97645, "size diversity": 88464, "diversity does": 26142, "sampling strategy": 85169, "overall paper": 69306, "paper offers": 69816, "offers valuable": 67867, "insights researchers": 46131, "way effective": 103351, "applications ai": 6405, "field code": 34358, "data dataset": 21141, "methods publicly": 59769, "gpt3 zeroshot": 39562, "peoples daily": 70751, "learningbased techniques": 53493, "techniques automated": 95481, "aims generating": 4811, "generating humanlike": 37924, "heavy reliance": 41218, "data make": 21394, "urgent need": 100406, "need effective": 65938, "inspired success": 46189, "llm gpt3": 55110, "qa task": 78156, "asking llm": 7742, "llm chat": 54999, "information llm": 45533, "feedback llm": 34104, "dynamic context": 26910, "llm develop": 55037, "matching network": 58522, "best baseline": 10590, "faster speed": 33912, "speed best": 89979, "performance including": 71308, "meaningful test": 58715, "test case": 95870, "risks llms": 84526, "llms empirical": 55845, "study robustness": 91822, "recent popularity": 80308, "llms brought": 55545, "brought significant": 11534, "fields particularly": 34441, "opensourced models": 68431, "lack research": 49043, "research thoroughly": 82803, "analyzes potential": 5799, "related literature": 81205, "era llm": 29741, "mainstream llms": 57864, "chatgpt llama": 13994, "llama opt": 54788, "consists data": 18328, "evaluates llms": 30382, "query input": 78528, "llm respond": 55242, "poor consistency": 72591, "input addition": 45874, "yield correct": 104635, "memorization llms": 59000, "llms raises": 56625, "raises concerns": 79075, "feasibility using": 33947, "evaluation extensive": 30597, "enhancing large": 29338, "advancements large": 3829, "interactions artificial": 47046, "intelligence systems": 46893, "despite notable": 24086, "memory mechanism": 59048, "increasingly evident": 44880, "psychological counseling": 77878, "tailored llms": 93781, "enables models": 28605, "synthesizing information": 93245, "updating mechanism": 100364, "closedsource models": 15009, "chatgpt opensource": 14050, "llmbased chatbot": 55342, "chatbot named": 13414, "experiment involves": 31969, "analysis realworld": 5633, "realworld user": 79715, "users diverse": 101097, "results analysis": 83463, "analysis reveal": 5647, "strong capability": 91016, "understand user": 99655, "data mixtures": 21411, "greatly affect": 40521, "lm performance": 57076, "propose domain": 76963, "proxy model": 77839, "using group": 101503, "distributionally robust": 25960, "robust optimization": 84678, "domains produce": 26572, "train larger": 97751, "experiments use": 32325, "weights training": 103568, "accuracy 65": 2182, "baseline accuracy": 9763, "fewer training": 34202, "training steps": 98310, "matches performance": 58511, "using domain": 101420, "weights tuned": 103569, "assessment large": 7955, "varying prompts": 102657, "prompts regarding": 76811, "reliably generate": 81538, "generate factually": 37451, "answers existing": 6181, "existing llms": 31748, "generate distinct": 37432, "responses different": 83200, "prompts paper": 76790, "knowledge contained": 48481, "given set": 38956, "facts propose": 33614, "statistical approach": 90545, "approach assess": 6745, "knowledge llms": 48664, "llm generating": 55102, "text corresponding": 96155, "diverse prompts": 26073, "prompts subject": 76828, "contains comprehensive": 18551, "comprehensive set": 17298, "use method": 100626, "method evaluate": 59291, "20 llms": 493, "llms various": 57020, "various sizes": 102570, "including llama": 44405, "results human": 83646, "assessment llms": 7960, "llms results": 56722, "backbone architecture": 9242, "scaling law": 85339, "instructionfollowing data": 46448, "data compromises": 21093, "compromises models": 17407, "models capability": 61958, "correct text": 19687, "noun compounds": 67077, "interpretation task": 47295, "standard task": 90209, "al 2013": 4860, "gpt3 solves": 39535, "investigate task": 47703, "commonsense ability": 16208, "generalize knowledge": 37296, "knowledge similar": 48758, "gpt3s performance": 39735, "performance perfect": 71467, "access vast": 2092, "amounts knowledge": 5350, "extent gpt3": 33160, "gpt3 reasoning": 39519, "outputs gpt3": 69226, "significant overlap": 87803, "large web": 52394, "web corpus": 103485, "world models": 104410, "models embodied": 62291, "enhance language": 29169, "capabilities numerous": 12026, "simple reasoning": 88233, "planning physical": 72271, "physical environments": 72062, "environments understanding": 29659, "understanding object": 99831, "household activities": 42010, "limitation arises": 54280, "arises fact": 7482, "embodied knowledge": 28110, "skills paper": 88606, "enhancing lms": 29347, "lms finetuning": 57125, "models gain": 62523, "retaining general": 83940, "capabilities approach": 11836, "approach deploys": 6798, "embodied agent": 28103, "world model": 104406, "acquires diverse": 2919, "random exploration": 79102, "exploration experiences": 32592, "used finetune": 100804, "finetune lms": 34838, "abilities reasoning": 1560, "reasoning acting": 79774, "knowledge tasks": 48779, "lowrank adapters": 57604, "adapters lora": 3119, "experiments approach": 32110, "approach substantially": 7042, "improves base": 44014, "base lms": 9414, "small lms": 88698, "6b 13b": 1201, "enhanced approach": 29225, "approach match": 6942, "match outperform": 58493, "models fit": 62489, "models participate": 63773, "questions input": 78873, "generate diverse": 37433, "questions evaluate": 78840, "students responses": 91332, "based evaluation": 9517, "report large": 81980, "generate high": 37475, "questions high": 78868, "high correlation": 41394, "cover topics": 20050, "ability significantly": 1770, "significantly degraded": 87907, "text increases": 96301, "low high": 57514, "significantly biased": 87889, "able effectively": 1842, "generation aims": 38021, "aims automatically": 4782, "code highlevel": 15347, "task specifications": 94250, "significantly increase": 87963, "productivity software": 75745, "recently approaches": 80455, "remarkable code": 81763, "simple tasks": 88242, "competitionlevel problems": 16782, "problems remains": 75199, "challenging paper": 13203, "generation leverages": 38238, "algorithmic reasoning": 4947, "reasoning thoughts": 80071, "solving problem": 89244, "enhances ability": 29275, "llms solve": 56831, "solve competitionlevel": 89166, "competitionlevel programming": 16783, "benchmark achieving": 10066, "performance furthermore": 71234, "furthermore experiments": 36613, "leetcode contests": 53544, "chatgpt level": 13989, "level comparable": 53649, "comparable human": 16375, "task leads": 94125, "committing errors": 16121, "tasks process": 94969, "process challenging": 75276, "translation cases": 98692, "study seek": 91828, "popular transformer": 72690, "discriminative models": 25640, "identification task": 42816, "task large": 94120, "detection large": 24311, "tasks extensively": 94624, "increasing concerns": 44826, "misuse llms": 60243, "including finetuned": 44347, "finetuned classifiers": 34874, "methods study": 59809, "equip llms": 29692, "relying external": 81601, "incontext example": 44562, "automatically construct": 8849, "construct prompts": 18434, "humanwritten examples": 42667, "examples limited": 31246, "number llm": 67358, "taskspecific prompt": 95299, "experiments realworld": 32280, "baselines enables": 9831, "gpt35 successfully": 39669, "successfully evade": 92276, "furthermore comprehensive": 36586, "text achieves": 96071, "exhibits potential": 31622, "reliable evaluation": 81518, "evaluation tool": 30812, "transferable prompt": 98447, "llms contribute": 55685, "massive scale": 58467, "commodity hardware": 16125, "hardware single": 41014, "memory power": 59058, "compression methods": 17363, "methods widely": 59842, "widely employed": 103722, "employed reduce": 28434, "size inference": 88476, "inference latency": 45260, "llm deployment": 55035, "hardware paper": 41009, "new perspective": 66482, "observe certain": 67574, "llm significantly": 55260, "case questions": 12465, "propose soft": 77120, "learning method": 53262, "learning process": 53349, "process aiming": 75268, "aiming enhance": 4764, "performance prompts": 71498, "prompts experimental": 76713, "greatly improves": 40527, "llama7b model": 54895, "model joint": 61036, "4bit quantization": 996, "weight pruning": 103525, "popular benchmarks": 72619, "benchmarks demonstrate": 10325, "demonstrate learned": 23115, "datasets tasks": 22434, "compression levels": 17359, "novel tasks": 67260, "engineers researchers": 29039, "article explores": 7540, "potential leveraging": 73166, "alleviate burden": 5131, "propose llmbased": 77016, "power systems": 73399, "routine tasks": 84888, "unit commitment": 100096, "endtoend framework": 28873, "framework systematically": 36295, "systematically assesses": 93363, "chatgpt 40": 13473, "success rate": 92233, "consistency robustness": 18247, "robustness complex": 84705, "knowledge propose": 48720, "propose humanintheloop": 76993, "framework enable": 36112, "recommendation problem": 80650, "problem decomposition": 75008, "features like": 34010, "llms currently": 55706, "currently fall": 20811, "knowledge complete": 48476, "framework finetuning": 36139, "diverse opinions": 26064, "multiagent systems": 64868, "potential addressing": 72984, "addressing challenge": 3527, "capabilities comprehending": 11865, "comprehending human": 17144, "text typically": 96469, "typically rely": 99299, "finetuning llms": 35133, "llms autonomously": 55507, "llm specifically": 55270, "specifically approach": 89780, "approach employs": 6828, "question dataset": 78657, "dataset create": 21886, "highest agreement": 41542, "process yields": 75420, "framework achieves": 36015, "parameters showcasing": 70282, "showcasing ability": 87372, "ability identify": 1679, "identify agreement": 42843, "agreement various": 4281, "various opinions": 102518, "questions llms": 78888, "capabilities previous": 12052, "works prompt": 104379, "generate response": 37575, "response based": 83120, "based dialogue": 9500, "dialogue context": 24853, "underlying linguistic": 99504, "dialogue scenarios": 24892, "challenging existing": 13174, "enhances llms": 29286, "llms inference": 56219, "reasoning step": 80031, "aiming provide": 4773, "provide personalized": 77536, "approach build": 6763, "build benchmark": 11581, "questions consisting": 78805, "experiments proposed": 32266, "proposed benchmark": 77188, "oneshot settings": 67953, "outperforms standard": 69115, "standard prompting": 90201, "developers chatgpt": 24546, "empirical investigation": 28333, "engineering se": 29018, "se tasks": 85836, "application artificial": 6340, "issues areas": 47971, "development recent": 24703, "generating programming": 37956, "software testing": 89040, "software engineers": 89014, "primary focus": 74805, "focus enhancing": 35516, "enhancing accuracy": 29303, "accuracy ai": 2200, "nonfunctional requirements": 66910, "requirements including": 82343, "human bias": 42112, "bias safety": 10885, "comprehensive comparison": 17222, "comparison software": 16727, "aibased solutions": 4630, "evaluation criteria": 30559, "understanding task": 99887, "ai furthermore": 4405, "facilitates effective": 33524, "effective implementation": 27307, "processes paper": 75443, "contrasting performance": 19095, "performance software": 71575, "study includes": 91674, "chatgptgenerated code": 14402, "code produced": 15443, "public debate": 77917, "debate use": 22529, "ai large": 4446, "work test": 104292, "research process": 82727, "process llms": 75353, "llms leads": 56284, "elements research": 27970, "student llm": 91259, "moral acceptability": 64740, "accuracy quality": 2337, "lower quality": 57573, "ai use": 4607, "exploring efficacy": 32844, "efficacy chatgpt": 27629, "critical component": 20312, "professional settings": 75762, "team members": 95381, "important element": 43502, "teams team": 95388, "increase volume": 44786, "difficult identify": 25298, "improvement address": 43878, "specifically chatgpt": 89787, "chatgpt analyze": 13518, "based learning": 9603, "learning contexts": 53085, "contexts study": 18926, "study aimed": 91479, "ability accurately": 1583, "framework consisting": 36079, "suggest chatgpt": 92352, "chatgpt achieve": 13489, "90 accuracy": 1400, "contributes growing": 19142, "growing body": 40645, "research use": 82818, "chatgpt facilitating": 13806, "analysis student": 5686, "algorithms study": 4983, "study examines": 91617, "chatgpt preregistered": 14097, "preregistered study": 73910, "academic subjects": 1997, "gpt model": 39211, "model update": 61550, "ai chatbot": 4328, "accurate advice": 2389, "reason significantly": 79732, "definition generation": 22874, "case semantic": 12469, "semantic change": 86295, "analysis propose": 5621, "propose using": 77158, "using automatically": 101306, "generated natural": 37743, "given collection": 38867, "collection usage": 15912, "usage examples": 100431, "examples target": 31290, "target word": 93895, "word senses": 103926, "label demonstrate": 48890, "demonstrate resulting": 23180, "social scientists": 88917, "word meaning": 103908, "analysis possible": 5608, "sentence embeddings": 86499, "making new": 58123, "new promising": 66499, "high school": 41453, "school graduation": 85548, "graduation examination": 40321, "dataset developed": 21909, "evaluating large": 30442, "llms introduced": 56248, "introduced article": 47501, "article dataset": 7535, "dataset covers": 21885, "vietnamese national": 102907, "national high": 65527, "range topics": 79220, "assesses llms": 7901, "comprehension visual": 17190, "visual question": 103103, "accompanying images": 2131, "images using": 43123, "chatgpt bingchat": 13575, "evaluated llms": 30346, "vietnamese students": 102911, "bingchat perform": 11071, "human level": 42288, "areas including": 7442, "mathematics physics": 58605, "physics chemistry": 72078, "chemistry biology": 14504, "seeks provide": 86076, "provide adequate": 77400, "abilities llms": 1533, "promote future": 76216, "future developments": 36710, "making dataset": 58093, "dataset available": 21833, "involving mathematics": 47870, "natural sciences": 65778, "taskagnostic distillation": 94300, "encoderdecoder language": 28721, "tasks intriguing": 94764, "shifted focus": 87261, "focus taskspecific": 35560, "studies mainly": 91416, "largely neglect": 52410, "methods fail": 59642, "fail handle": 33679, "successfully tackles": 92286, "generally effective": 37325, "effective competitive": 27274, "competitive compared": 16796, "results imply": 83656, "opportunities challenges": 68487, "distilling large": 25845, "llama comprehensive": 54736, "sentence representations": 86516, "representations bert": 82089, "applications retrieval": 6565, "capture meaning": 12360, "machines understand": 57785, "understand reason": 99646, "years significant": 104615, "progress developing": 75976, "developing methods": 24591, "methods learning": 59710, "learning sentence": 53407, "unsupervised supervised": 100313, "sentence representation": 86515, "representation learning": 82061, "provide systematic": 77580, "key contributions": 48286, "highlights importance": 41654, "area natural": 7427, "challenges remain": 13117, "research suggesting": 82795, "potential avenues": 73034, "avenues improving": 9117, "improving quality": 44149, "summarization chatgpt": 92522, "chatgpt far": 13815, "support software": 92830, "various automatic": 102362, "summarization techniques": 92570, "generate concise": 37408, "concise natural": 17721, "given code": 38864, "recently emergence": 80483, "chatgpt popular": 14089, "attracted wide": 8425, "wide attention": 103646, "unclear chatgpt": 99397, "performs automatic": 71797, "focus evaluating": 35517, "python dataset": 78100, "summarization models": 92549, "prompt guide": 76337, "prompt ask": 76233, "metrics including": 59931, "including bleu": 44285, "meteor rougel": 59174, "rougel measure": 84866, "measure quality": 58747, "comments generated": 16068, "chatgpt sota": 14255, "codebert codet5": 15581, "results terms": 83891, "terms bleu": 95796, "bleu rougel": 11177, "chatgpts code": 14428, "summarization performance": 92553, "significantly worse": 88036, "present cases": 73943, "discuss advantages": 25650, "advantages disadvantages": 3936, "disadvantages chatgpt": 25539, "chatgpt code": 13624, "summarization based": 92518, "findings outline": 34710, "open challenges": 68049, "opportunities chatgptbased": 68492, "chatgptbased code": 14394, "chatgpt replace": 14171, "classification higher": 14752, "emergence generative": 28166, "including ones": 44435, "evaluation tasks": 30807, "human workers": 42419, "investigate case": 47626, "case task": 12503, "generation intent": 38213, "collection methodology": 15899, "crowdsourcing study": 20461, "similar scale": 88108, "seed data": 86055, "lead robust": 52817, "models emulate": 62310, "thematic analysis": 96720, "analysis semistructured": 5666, "semistructured interviews": 86421, "limits approach": 54494, "llms emerged": 55837, "presents results": 74165, "results reflection": 83806, "experiment use": 31981, "gpt 35turbo": 39182, "research subject": 82794, "analysis commonly": 5461, "used social": 100897, "explicit latent": 32533, "analysis based": 5443, "human interpretation": 42256, "systems used": 93592, "used qualitative": 100885, "produced model": 75685, "paper used": 69987, "used existing": 100794, "datasets open": 22356, "open access": 68041, "researchers used": 82894, "results produced": 83779, "produced llm": 75683, "llm results": 55246, "objective paper": 67505, "llm data": 55031, "data manipulation": 21398, "decomposed prompting": 22690, "related languages": 81201, "languages using": 51372, "languages languages": 51303, "lexical similarity": 53927, "similarity machine": 88140, "leverages small": 53814, "test sentences": 95938, "procedure requires": 75255, "learn generate": 52945, "task machine": 94135, "approach fewshot": 6859, "sequence word": 86671, "evaluation conducted": 30552, "conducted multiple": 17974, "related language": 81200, "families demonstrate": 33833, "fewshot baseline": 34213, "baseline approaches": 9766, "prompting bloom": 76506, "model average": 60583, "average improvement": 9161, "chrf scores": 14615, "response length": 83147, "inference pipeline": 45279, "pipeline large": 72161, "llms revolutionized": 56732, "revolutionized field": 84341, "tasks inference": 94749, "inference process": 45284, "llms comes": 55645, "comes significant": 16040, "costs paper": 19932, "propose efficient": 76966, "efficient llm": 27791, "pipeline harnesses": 72160, "harnesses power": 41082, "llms approach": 55486, "approach begins": 6757, "llms accurately": 55414, "minimal overhead": 60098, "leveraging information": 53854, "information introduce": 45516, "introduce efficient": 47421, "efficient sequence": 27819, "scheduling technique": 85512, "queries similar": 78515, "approach realworld": 6997, "llamabased model": 54899, "inference acceleration": 45208, "acceleration techniques": 2029, "making valuable": 58145, "valuable addition": 102142, "addition existing": 3185, "quantization llm": 78445, "sparse finetuning": 89530, "language explanations": 49210, "explaining decisions": 32458, "crucial ensuring": 20488, "ensuring trustworthiness": 29490, "explanations nles": 32508, "recently gained": 80494, "gained increasing": 36830, "demands large": 22978, "datasets humanwritten": 22292, "humanwritten nles": 42671, "groundtruth answers": 40597, "applications models": 6528, "available finetuning": 9035, "learning recently": 53376, "plms typically": 72439, "parameters making": 70252, "expensive propose": 31923, "strategy leverages": 90901, "model datasets": 60733, "datasets compare": 22175, "compare stateoftheart": 16495, "techniques perform": 95573, "perform automatic": 70820, "evaluations assess": 30834, "leads competitive": 52892, "competitive results": 16821, "results task": 83889, "road map": 84587, "empower data": 28489, "technological advances": 95618, "chatgpt search": 14200, "usergenerated data": 101066, "computing systems": 17579, "usergenerated content": 101065, "openai google": 68153, "data computing": 21098, "computing data": 17561, "important dimensions": 43501, "interactive generation": 47102, "arbitrarily long": 7314, "long text": 57338, "context transformer": 18867, "recurrence mechanism": 80718, "built large": 11666, "chatgpt uses": 14334, "arbitrary length": 7318, "initial step": 45788, "writing systems": 104502, "demonstrate possibility": 23146, "usage generative": 100432, "personalized interactive": 71913, "demonstrates utility": 23419, "model designs": 60757, "llms facilitate": 55962, "facilitate interpretation": 33498, "annotated corpora": 5861, "methods approaches": 59534, "approaches limited": 7168, "limited terms": 54473, "enable finegrained": 28548, "models discover": 62237, "latent concepts": 52629, "contextualized representations": 18965, "concepts using": 17641, "chatgpt produces": 14108, "produces accurate": 75691, "compared humanannotated": 16571, "showcase gptbased": 87357, "facilitate exploration": 33492, "exploration experimentation": 32593, "framework efficient": 36106, "model parallel": 61206, "despite commendable": 24031, "commendable performance": 16060, "generative tasks": 38718, "tasks face": 94625, "challenges stemming": 13127, "inference models": 45270, "preceding tokens": 73589, "request require": 82216, "require thousands": 82297, "thousands tokens": 96870, "tokens generating": 97201, "generating token": 37991, "load entire": 57189, "entire model": 29521, "weights making": 103559, "various generation": 102442, "falling short": 33796, "achieving optimal": 2869, "address shortcomings": 3490, "shortcomings propose": 87325, "framework dedicated": 36086, "exhibits optimal": 31621, "efficiency significantly": 27720, "tasks brings": 94414, "solutions provided": 89155, "leveraging advanced": 53818, "tensor parallel": 95764, "scenarios offering": 85463, "offering robust": 67807, "robust performance": 84679, "cases chatgpt": 12514, "chatgpt personal": 14080, "personal data": 71880, "need efficient": 65939, "automated machine": 8709, "learning automl": 53042, "prediction tasks": 73726, "necessitates human": 65885, "intelligent agent": 46915, "agent capable": 4119, "capable assisting": 12225, "assisting users": 8069, "tasks intuitive": 94768, "intuitive natural": 47584, "natural conversations": 65549, "indepth knowledge": 44960, "knowledge underlying": 48794, "processes agents": 75427, "challenge accurately": 12851, "sets model": 86965, "effectively paper": 27461, "pioneering step": 72134, "utilize large": 101941, "build natural": 11602, "natural interface": 65552, "allows approach": 5190, "dialogue states": 24899, "data visualization": 21749, "summary recommendation": 92600, "multiple llm": 65215, "llm instances": 55130, "novel concept": 67131, "llms solving": 56834, "critical weaknesses": 20372, "weaknesses current": 103456, "current llms": 20720, "chatgpt highlighted": 13930, "opportunities improvement": 68497, "encyclopedic knowledge": 28814, "ability foundation": 1646, "range linguistic": 79169, "dataset contains": 21881, "paired counterfactuals": 69477, "benchmark diverse": 10144, "24 models": 635, "metas llama": 59167, "llama achieves": 54720, "highest scores": 41552, "reveals significant": 84224, "limitations ability": 54295, "overall findings": 69292, "models far": 62450, "generate solutions": 37597, "evaluation effectiveness": 30580, "java programming": 48122, "programming course": 75892, "study assess": 91497, "assess efficacy": 7846, "efficacy employing": 27633, "employing chatgpt": 28442, "chatgpt largescale": 13982, "largescale deep": 52507, "based textual": 9735, "textual input": 96678, "evaluation involves": 30642, "correct solutions": 19686, "chatgpt accurately": 13488, "programming solutions": 75932, "additionally model": 3326, "chatgpt struggles": 14273, "descriptions class": 23697, "conclusion chatgpt": 17752, "chatgpt holds": 13933, "potential valuable": 73313, "students seeking": 91334, "programming challenges": 75886, "challenges explore": 13012, "alternative approaches": 5262, "coding problems": 15710, "problems understanding": 75211, "design coding": 23763, "chat data": 13366, "data exploration": 21215, "health using": 41182, "models introduction": 62811, "pandemic highlighted": 69574, "highlighted importance": 41620, "data scientific": 21598, "public researchers": 77946, "face tradeoff": 33453, "flexibility data": 35426, "underlying large": 99500, "llm explore": 55073, "sequencing data": 86701, "realworld users": 79716, "provided correct": 77608, "incorrect answer": 44726, "prompts tested": 76838, "10 different": 104, "languages despite": 51258, "english instructions": 29076, "conclusion llms": 17756, "llms enable": 55853, "enable new": 28560, "information systems": 45644, "facilitate analysis": 33481, "interactive exploration": 47101, "quick direct": 78979, "access latest": 2068, "largescale dataset": 52504, "memory models": 59050, "new largescale": 66443, "nearly million": 65858, "words average": 103948, "document length": 26212, "comprehension dataset": 17162, "dataset using": 22120, "project gutenberg": 76046, "types multiplechoice": 99251, "dataset order": 22022, "questions known": 78877, "memory needed": 59051, "memory performance": 59056, "performance evaluation": 71185, "evaluation validate": 30826, "validate data": 102092, "smallscale experiments": 88806, "experiments human": 32216, "human labelers": 42272, "adequately represent": 3574, "represent source": 82041, "used diagnose": 100778, "models memory": 63605, "memory demand": 59031, "lastly provide": 52614, "expand dataset": 31869, "conversational artificial": 19359, "development powerful": 24696, "produce text": 75660, "indistinguishable humangenerated": 45070, "increasing accessibility": 44817, "tools perform": 97453, "courses students": 20036, "regarding use": 81074, "use tools": 100712, "remain unknown": 81637, "designed specifically": 23951, "indepth survey": 44965, "students educators": 91301, "chatgpts use": 14455, "comparable superior": 16409, "current aitext": 20657, "reliably detect": 81532, "evade detection": 30121, "use tool": 100711, "offer insights": 67749, "insights guide": 46098, "educational frameworks": 27204, "work revisit": 104256, "context large": 18796, "native speakers": 65541, "dataset comes": 21862, "label experiments": 48892, "finegrained linguistic": 34797, "analysis provide": 5623, "demonstrate time": 23213, "time knowledge": 96979, "distinct languages": 25869, "associated code": 8078, "significant time": 87862, "editing code": 27097, "code variety": 15561, "bug fixing": 11557, "adding new": 3169, "new features": 66403, "methods predict": 59752, "code knowledge": 15371, "generative capability": 38607, "llms helps": 56124, "evaluate wellknown": 30304, "wellknown llms": 103596, "codex codet5": 15660, "zeroshot finetuning": 104783, "finetuning settings": 35239, "settings respectively": 87092, "datasets knowledge": 22308, "enables generate": 28589, "symbolic neural": 93129, "humanintheloop approach": 42497, "approach evaluating": 6846, "demographic factors": 23001, "factors like": 33601, "age gender": 4103, "change way": 13277, "little investigation": 54680, "investigation large": 47789, "adapt changes": 3036, "gap consider": 36923, "target demographic": 93861, "acquisition language": 2928, "skills humans": 88600, "conduct evaluation": 17861, "evaluation domain": 30579, "domain expert": 26377, "clinical evaluation": 14924, "ability humans": 1678, "skills findings": 88596, "findings affirm": 34639, "importance considering": 43443, "considering demographic": 18211, "alignment conversational": 5059, "goals using": 39085, "tools code": 97373, "package available": 69452, "zeroshot benchmark": 104730, "benchmark long": 10209, "understanding introduce": 99784, "benchmark natural": 10218, "understanding long": 99808, "test small": 95948, "small validation": 88737, "adapt tasks": 3054, "add new": 3158, "new datasets": 66374, "including novel": 44432, "evaluation opensource": 30700, "opensource closed": 68314, "models finding": 62471, "outperforms chatgpt": 69025, "improvement multiple": 43926, "naive baseline": 65459, "moving target": 64814, "chat language": 13378, "highquality instructional": 41770, "conversations finetuning": 19415, "finetuning instruction": 35098, "chatgpt scaling": 14195, "diversity quality": 26154, "leading improved": 52848, "designed diverse": 23893, "diverse informative": 26037, "human ai": 42073, "ai assistant": 4310, "framework generate": 36146, "multiturn conversation": 65382, "contains 15": 18545, "15 million": 329, "million highquality": 60032, "covers wide": 20098, "reveals superiority": 84227, "key metrics": 48323, "leading opensource": 52872, "opensource dataset": 68327, "dataset building": 21842, "finetune llama": 34831, "create powerful": 20172, "powerful conversational": 73430, "evaluations indicate": 30858, "outperforms opensource": 69092, "including vicuna": 44515, "previously recognized": 74760, "stateoftheart opensource": 90427, "opensource model": 68380, "enhance ability": 29129, "hypothesis generation": 42736, "link prediction": 54614, "problems experimental": 75137, "modeling framework": 61639, "uses retrieval": 101253, "optimizes novelty": 68654, "evaluations reveal": 30883, "reveal gpt4": 84150, "gpt4 tends": 40126, "tends generate": 95750, "low technical": 57536, "technical depth": 95403, "issue work": 47964, "step evaluating": 90637, "developing language": 24583, "enhanced crosslingual": 29230, "llms data": 55710, "augmentation multilingual": 8547, "reasoning datasets": 79854, "data extremely": 21224, "gpt4 augment": 39770, "subsequently evaluate": 92026, "effectiveness finetuning": 27518, "finetuning smaller": 35254, "models mbert": 63591, "mbert xlmr": 58669, "target languages": 93876, "incorporating data": 44693, "score improvement": 85720, "furthermore conduct": 36588, "evaluation asking": 30513, "logical coherence": 57253, "coherence generated": 15772, "languages results": 51356, "results evaluation": 83592, "gpt4 excel": 39865, "excel producing": 31333, "producing natural": 75716, "natural coherent": 65548, "struggle generate": 91217, "certain languages": 12763, "like tamil": 54233, "observe chatgpt": 67575, "chatgpt falls": 13811, "falls short": 33799, "original dataset": 68767, "examples gpt4": 31224, "gpt4 exhibit": 39867, "hallucination large": 40839, "form factual": 35772, "based gpt4": 9559, "quality significantly": 78359, "latency cost": 52622, "cost privacy": 19877, "deployment using": 23621, "using novel": 101649, "novel hybrid": 67181, "evaluation methodology": 30667, "simulated conversations": 88312, "outperforms retrievalbased": 69110, "significantly informative": 87970, "engaging just": 28925, "just like": 48222, "conversations human": 19418, "users recent": 101170, "prompt complexity": 76254, "instructiontuned large": 46588, "exhibited impressive": 31578, "understanding capacity": 99685, "capacity generate": 12290, "responses follow": 83217, "follow specific": 35655, "prompts computational": 76670, "computational demands": 17455, "models applications": 61840, "setting paper": 87014, "evaluate zeroshot": 30307, "performance publicly": 71509, "tasks investigating": 94771, "effects various": 27624, "various prompting": 102537, "strategies experiments": 90811, "experiments investigate": 32227, "impact prompt": 43250, "label definitions": 48889, "prompt use": 76446, "influence integrating": 45350, "indicate zeroshot": 45023, "llms unable": 56977, "unable match": 99357, "performance smaller": 71573, "finetuned baseline": 34866, "additionally different": 3292, "different prompting": 25166, "classification accuracy": 14720, "accuracy f1": 2263, "scores exceeding": 85755, "10 evaluating": 106, "answering systems": 6158, "leap forward": 52927, "models offers": 63697, "improve trustworthiness": 43821, "systems promising": 93536, "answer retrieved": 6056, "language different": 49190, "data languages": 21361, "stateoftheart crosslingual": 90330, "retrieved passages": 84090, "matching gold": 58517, "gold reference": 39096, "despite able": 24021, "retrieved text": 84092, "techniques natural": 95563, "models palm": 63748, "current academic": 20653, "systems substantial": 93581, "mitigate issues": 60268, "approach distilling": 6808, "student models": 91261, "models weaknesses": 64532, "experience generating": 31937, "generating targeted": 37985, "knowledge tracing": 48785, "personalized learning": 71914, "gpt3 math": 39493, "assessing student": 7935, "student model": 91260, "samples generated": 85118, "outperforms llms": 69079, "parameters furthermore": 70220, "various components": 102386, "simulation framework": 88326, "methods learn": 59709, "learn human": 52946, "chatgpt seen": 14204, "strong instructionfollowing": 91037, "instructionfollowing abilities": 46440, "llms involves": 56253, "involves complex": 47837, "requiring training": 82445, "training human": 98129, "challenges high": 13032, "cost data": 19841, "reference method": 80936, "method implementations": 59324, "research development": 82547, "learning feedback": 53155, "low cost": 57510, "design llm": 23807, "high agreement": 41374, "humans second": 42637, "second propose": 85948, "human instructions": 42246, "realworld interactions": 79676, "ppo dpo": 73488, "expert iteration": 32366, "feedback finally": 34081, "real human": 79545, "model substantially": 61463, "10 improvement": 109, "chatgpt analysis": 13517, "robustness errors": 84711, "errors chatgpt": 29808, "field large": 34382, "paper assess": 69616, "assess capabilities": 7823, "perspectives including": 71966, "including performance": 44445, "error types": 29796, "performance 17": 70954, "17 datasets": 392, "fewshot chainofthought": 34216, "huge performance": 42045, "performance gap": 71241, "gap chatgpt": 36913, "sota results": 89324, "strategy evaluation": 90883, "evaluation accurately": 30502, "performance analyze": 70988, "analyze robustness": 5782, "invalid responses": 47589, "chatgpt understand": 14323, "task finally": 94061, "analyze errors": 5759, "error type": 29795, "quality annotated": 78220, "data indicates": 21322, "data chatgpt": 21045, "released github": 81401, "dataset rich": 22064, "math reasoning": 58554, "reasoning problems": 79984, "problems automatic": 75114, "personalized accessible": 71906, "sufficiently large": 92344, "large highquality": 51446, "datasets collecting": 22173, "datasets remains": 22392, "raises privacy": 79083, "leads insufficient": 52898, "generate dialogues": 37430, "teachers large": 95351, "llm prompted": 55216, "student errors": 91249, "tutoring dialogues": 99141, "multistep math": 65328, "learning opportunities": 53313, "using various": 101839, "models effective": 62275, "dataset released": 22056, "models inference": 62773, "applied tasks": 6633, "like question": 54212, "present series": 74054, "series behavioral": 86723, "studies llm": 91414, "llm families": 55077, "families llama": 33836, "llama gpt35": 54756, "gpt35 palm": 39652, "behavior using": 9992, "experiments establish": 32186, "pretraining predict": 74588, "entities used": 29555, "memorized data": 59004, "patterns usage": 70641, "hypothesis training": 42740, "demonstrate llms": 23120, "perform significantly": 70919, "future llm": 36739, "llm evaluation": 55064, "code functionality": 15263, "lack guaranteed": 49013, "guaranteed correctness": 40699, "correctness require": 19743, "human verification": 42414, "verification address": 102738, "challenges propose": 13107, "framework synthesizes": 36293, "guide generation": 40734, "verify correctness": 102768, "prompting llm": 76565, "integrated existing": 46683, "existing code": 31683, "performance experiments": 71196, "pass rate": 70533, "rate chatgpt": 79376, "code interpreter": 15366, "problems problem": 75188, "problem set": 75075, "set used": 86949, "prompts used": 76844, "factchecking large": 33568, "essential task": 29959, "commonly utilized": 16203, "claims prior": 14680, "mainly focused": 57850, "focused finetuning": 35583, "languages models": 51326, "models specific": 64238, "datasets computationally": 22183, "computationally intensive": 17496, "exploring incontext": 32848, "assess capacity": 7831, "capacity llms": 12301, "framework comprising": 36075, "framework provides": 36245, "efficient way": 27838, "systems lowresource": 93510, "improvement compared": 43893, "compared sota": 16634, "approach future": 6868, "research evaluate": 82581, "generated response": 37771, "remarkable language": 81778, "llms better": 55533, "human alignment": 42076, "challenges using": 13139, "llms referencefree": 56675, "examples unique": 31297, "correct semantic": 19684, "comprehensively evaluate": 17324, "construct adversarial": 18412, "challenging requires": 13222, "help external": 41244, "llms identify": 56155, "risks using": 84539, "quality dialogue": 78254, "instructing large": 46299, "models distinguished": 62248, "aligned large": 5023, "drastically improved": 26793, "crafting prompts": 20132, "llms answer": 55474, "utilize incontext": 101937, "learning automatically": 53041, "automatically synthesize": 8899, "specific instruction": 89710, "based augmented": 9445, "strategy produce": 90910, "new set": 66523, "gpt4based evaluation": 40168, "evaluation expert": 30594, "expert data": 32354, "data significantly": 21625, "existing opensource": 31785, "96 original": 1449, "chatgpts capability": 14426, "capability data": 12155, "models sparse": 64233, "sparse mixtureofexperts": 89538, "neural architecture": 66215, "learnable parameters": 52977, "llms increasing": 56203, "increasing inference": 44832, "cost instruction": 19855, "technique training": 95463, "training llms": 98181, "llms follow": 55998, "combining approaches": 16004, "moe models": 64691, "particular conduct": 70397, "conduct empirical": 17854, "zeroshot generalization": 104786, "generalization downstream": 37255, "tasks iii": 94709, "iii instruction": 42981, "tasks scenario": 95080, "models overall": 63745, "computational capacity": 17440, "tuning second": 99094, "used independently": 100824, "taskspecific finetuning": 95286, "surpasses performance": 92939, "design principles": 23826, "prohibitively high": 76040, "rely powerful": 81584, "model guide": 60967, "significant drop": 87741, "drop performance": 26864, "performance domains": 71158, "scientific claims": 85627, "claims good": 14675, "verification models": 102749, "models exist": 62392, "considerable margin": 18162, "accuracy 84": 2187, "dataset compared": 21864, "15 datasets": 323, "method leverages": 59353, "leverages power": 53807, "prompting gpt35": 76539, "gpt35 achieving": 39576, "accuracy despite": 2238, "despite using": 24138, "times parameters": 97080, "lms struggle": 57173, "contain hallucinations": 18512, "hallucinations mitigate": 40876, "issue present": 47951, "output distribution": 69147, "used context": 100766, "context experiments": 18765, "training significantly": 98294, "different lm": 25106, "families including": 33834, "including opt": 44441, "opt gpt": 68536, "llama flant5": 54748, "summarization tasks": 92569, "factuality metrics": 33653, "metrics furthermore": 59922, "particularly effective": 70453, "models prior": 63890, "leading substantial": 52885, "improvements tasks": 44004, "llms produce": 56579, "techniques aim": 95473, "generated answers": 37653, "address issue": 3418, "input question": 45943, "perform finegrained": 70875, "challenge dataset": 12869, "ability determine": 1626, "determine extent": 24408, "expensive computational": 31906, "text documents": 96183, "propose adapt": 76922, "adapt pretrained": 3052, "compressing long": 17350, "long contexts": 57305, "model soft": 61436, "used language": 100834, "opt llama2": 68541, "llama2 models": 54844, "models sequences": 64164, "accuracy reducing": 2346, "reducing inference": 80877, "explore benefits": 32644, "large corpora": 51412, "passage reranking": 70543, "task overall": 94173, "speeding inference": 89984, "generation chinese": 38074, "chinese texts": 14578, "corpus benchmark": 19598, "divide document": 26165, "document coherent": 26204, "structure document": 91129, "understand overall": 99633, "context document": 18753, "lack largescale": 49032, "applications gap": 6488, "benchmark paper": 10222, "paper firstly": 69737, "firstly propose": 35326, "propose hierarchical": 76992, "corpus construction": 19605, "annotation method": 5900, "chatgpt validate": 14341, "fundamental tasks": 36560, "task discourse": 94026, "models guide": 62640, "guide text": 40753, "framework leverages": 36195, "chatgpt compared": 13632, "traditional unsupervised": 97713, "unsupervised methods": 100309, "builds small": 11656, "emergent capability": 28200, "capability llm": 12188, "llm embeddings": 55052, "users preference": 101159, "textual instruction": 96680, "data prompt": 21512, "questions does": 78832, "does better": 26281, "similar data": 88062, "data points": 21480, "belong different": 10054, "finetuning small": 35253, "query chatgpt": 78520, "chatgpt second": 14202, "second prompt": 85947, "chatgpt helps": 13927, "chatgpt answers": 13525, "quality average": 78228, "average cost": 9145, "consider problem": 18140, "extracts comprehensive": 33359, "different conventional": 25030, "entities relations": 29548, "seek develop": 86063, "llm able": 54929, "using instruction": 101524, "tuning particular": 99075, "particular construct": 70398, "tuning dataset": 99024, "annotations diverse": 5928, "instructionfollowing capabilities": 46446, "capabilities experiments": 11895, "outperforms traditional": 69133, "methods llm": 59715, "llm baselines": 54984, "impressive generalization": 43602, "capabilities unseen": 12111, "unseen instructions": 100267, "emerges promising": 28211, "solution tackle": 89122, "general zeroshot": 37203, "icl prompting": 42764, "performances llms": 71740, "llms typically": 56975, "lack guidance": 49014, "applying existing": 6681, "automatic prompt": 8815, "design methods": 23810, "methods general": 59657, "groundtruth labels": 40599, "unavailable study": 99374, "study address": 91470, "design approach": 23749, "approach specifically": 7031, "achieve universal": 2604, "task possible": 94192, "select suitable": 86129, "queries zeroshot": 78518, "modelgenerated responses": 61619, "automated way": 8751, "palm palm": 69556, "palm models": 69554, "standard zeroshot": 90214, "zeroshot baselines": 104729, "baselines comparable": 9826, "fewshot baselines": 34214, "generation reasoning": 38384, "gpt large": 39203, "impressive capability": 43596, "capability resolve": 12205, "data collecting": 21068, "collecting humanwritten": 15887, "humanwritten data": 42666, "data high": 21290, "quality especially": 78261, "studies used": 91460, "used powerful": 100871, "dialogues automatically": 24925, "suffer generating": 92306, "dialogues model": 24935, "errors caused": 29807, "llms leverage": 56294, "given reference": 38947, "knowledge generate": 48579, "capability previous": 12200, "highquality dialogue": 41751, "dialogue datasets": 24859, "datasets generated": 22276, "generated gpt4": 37712, "dataset 100k": 21799, "dialogues based": 24926, "based factual": 9531, "range coding": 79142, "scenarios code": 85404, "datasets released": 22391, "applications healthcare": 6494, "sensitive personal": 86463, "personal information": 71886, "information prompts": 45580, "samples incontext": 85123, "provided prompt": 77632, "understand input": 99615, "based internal": 9581, "knowledge specifically": 48766, "prompted summarize": 76489, "different subgroups": 25213, "attributes gender": 8453, "gender identity": 37091, "probe chatgpts": 74969, "observe significant": 67596, "potentials chatgpt": 73358, "posted internet": 72939, "explore effective": 32671, "users access": 101073, "knowledge high": 48617, "high efficiency": 41411, "finetuning strategies": 35265, "years nonetheless": 104605, "methods face": 59639, "face drawbacks": 33442, "transferability especially": 98444, "ability complex": 1616, "expensive large": 31914, "chatgpt gpt35": 13885, "gpt4 work": 40155, "work systematically": 104288, "systematically investigate": 93373, "explore capability": 32648, "utilization chatgpt": 101906, "chatgpt applying": 13530, "field shown": 34410, "gpt4 good": 39908, "demonstrated powerful": 23303, "powerful capabilities": 73423, "including context": 44311, "context understanding": 18869, "understanding code": 99691, "generation data": 38106, "raise concerns": 79056, "controversial topic": 19264, "great attention": 40465, "work aim": 103981, "aim answer": 4688, "comparative studies": 16435, "gpt4 data": 39818, "perform endtoend": 70865, "domains propose": 26573, "tackle problems": 93737, "carefully designing": 12417, "prompts gpt4": 76732, "gpt4 conduct": 39806, "gpt4 experimental": 39875, "results gpt4": 83631, "gpt4 achieve": 39744, "humans provide": 42632, "discussions results": 25733, "conclusion gpt4": 17755, "control language": 19210, "extremely costly": 33387, "broader community": 11514, "gpt4 propose": 40034, "propose inferencetime": 77003, "model decoding": 60737, "decoding time": 22680, "learning challenging": 53063, "challenging text": 13246, "tasks toxicity": 95205, "toxicity reduction": 97604, "lexically constrained": 53934, "constrained generation": 18376, "brings significant": 11474, "improvements offtheshelf": 43985, "competitive baseline": 16789, "expensive finetuning": 31910, "finetuning particular": 35172, "outperform gpt3": 68939, "brings major": 11472, "performance boost": 71025, "lightweight alternative": 54032, "semantic textual": 86357, "textual similarity": 96697, "measures degree": 58763, "degree similarity": 22913, "pair sentences": 69473, "broad application": 11483, "application fields": 6353, "depending specific": 23545, "specific aspect": 89661, "proposing novel": 77287, "described natural": 23664, "man throws": 58177, "large small": 52344, "enables finegrained": 28586, "evaluation diverse": 30578, "diverse natural": 26053, "flant5 gpt4": 35394, "correlation scores": 19778, "evaluation semantic": 30770, "examples code": 31197, "train test": 97784, "models science": 64143, "science era": 85582, "era chatgpt": 29723, "challenges research": 13118, "ai chatgpt": 4332, "science research": 85608, "challenges ethical": 13006, "advent generative": 3956, "new emerging": 66386, "responsible research": 83352, "vision challenges": 102962, "challenges artificial": 12966, "ai machine": 4458, "scientific inquiry": 85648, "years development": 104594, "prominent ai": 76087, "model study": 61461, "challenges chatgpt": 12975, "chatgpt article": 13534, "development technology": 24720, "technology popular": 95655, "internet things": 47251, "things iot": 96788, "chatgpt considering": 13651, "robotics computer": 84633, "gap finally": 36930, "discuss important": 25665, "tools copilot": 97378, "study potential": 91777, "bias problem": 10876, "problem pretrained": 75060, "code prompts": 15450, "quantify severity": 78395, "biases generated": 10923, "code develop": 15226, "dataset metrics": 22003, "evaluate overall": 30242, "different demographics": 25045, "incoder codegen": 44529, "conduct analysis": 17824, "useful insights": 100949, "insights choice": 46064, "models low": 63556, "bias work": 10900, "contains examples": 18554, "examples potentially": 31267, "harms offensive": 41065, "social groups": 88864, "objectives language": 67522, "models resulted": 64090, "sentence document": 86496, "challenge model": 12906, "question generated": 78671, "multidocument qa": 64900, "relations introduces": 81271, "introduces natural": 47525, "increases pretraining": 44812, "unlike prior": 100181, "focus classification": 35507, "classification summarization": 14798, "tasks pretraining": 94958, "generation qa": 38367, "generation summarization": 38436, "model termed": 61501, "qa summarization": 78154, "queryfocused summarization": 78553, "outperforms zeroshot": 69137, "zeroshot gpt35": 104793, "pose significant": 72747, "goal prioritization": 39065, "sample complexity": 85083, "limits effectiveness": 54497, "effectiveness complex": 27503, "openworld games": 68439, "academic paper": 1987, "paper use": 69986, "play game": 72341, "latex source": 52687, "game context": 36883, "agents current": 4176, "current observation": 20748, "directed acyclic": 25439, "acyclic graph": 3022, "graph dag": 40371, "identify optimal": 42890, "llm responses": 55244, "topological order": 97546, "order llms": 68705, "directly translating": 25523, "actions experiments": 2962, "study quality": 91805, "quality incontext": 78294, "forms prompts": 35853, "environment experiments": 29616, "experiments suggest": 32307, "llms prompted": 56595, "gpt4 outperforms": 39999, "baselines trained": 9856, "steps training": 90698, "test bed": 95867, "llms false": 55972, "proprietary llms": 77306, "finetune outputs": 34845, "stronger model": 91092, "chatgpt alpaca": 13515, "proprietary models": 77311, "using weaker": 101849, "weaker opensource": 103441, "model work": 61596, "work critically": 104038, "critically analyze": 20374, "imitation data": 43163, "tokens evaluate": 97195, "targeted automatic": 93901, "base lm": 9413, "tasks heavily": 94695, "data performance": 21475, "performance discrepancies": 71148, "models adept": 61794, "overall conclude": 69284, "gap open": 36951, "open closed": 68053, "lms current": 57112, "current methods": 20729, "tackle difficult": 93721, "difficult challenge": 25284, "developing better": 24571, "better base": 10688, "proprietary systems": 77320, "abilities large": 1524, "intrigued claims": 47375, "emergent reasoning": 28204, "trained general": 97833, "general web": 37202, "web corpora": 103484, "corpora paper": 19584, "paper set": 69949, "set investigate": 86890, "planning capabilities": 72255, "capabilities aim": 11831, "aim evaluate": 4707, "generating plans": 37951, "planning tasks": 72284, "tasks potential": 94947, "external planners": 33200, "conduct systematic": 17921, "similar ones": 88094, "ones employed": 67926, "evaluate llms": 30218, "llms distinct": 55812, "reveal llms": 84159, "llms ability": 55399, "executable plans": 31432, "gpt4 having": 39925, "average success": 9179, "setting demonstrate": 86983, "improve search": 43802, "process underlying": 75413, "help provide": 41275, "generated plans": 37751, "llm better": 54989, "plan generation": 72238, "chatgptlike systems": 14413, "systems support": 93583, "field automated": 34351, "order advantage": 68687, "advantage tools": 3928, "hallucinations large": 40868, "models evaluation": 62360, "detection mitigation": 24326, "mitigation large": 60310, "lms susceptible": 57174, "producing text": 75718, "text contains": 96146, "hallucinated content": 40818, "content important": 18644, "comprehensive investigation": 17272, "task opendomain": 94169, "opendomain text": 68248, "demonstrate applicability": 23014, "applicability approach": 6319, "answering analysis": 6077, "framework designed": 36090, "designed effectively": 23894, "detect mitigate": 24226, "detector achieves": 24382, "achieves high": 2743, "accuracy 80": 2185, "score prompting": 85734, "iteratively refines": 48084, "entire framework": 29520, "framework applicable": 36038, "blackbox lms": 11141, "method complements": 59237, "large portion": 52303, "using online": 101655, "online text": 68015, "text approach": 96086, "humanmachine dialogue": 42553, "systems designed": 93426, "users multiple": 101143, "finetune plms": 34846, "using dataset": 101398, "experiment different": 31966, "knowledge extracted": 48567, "generation including": 38203, "graph representation": 40407, "participants evaluate": 70365, "knowledge integrated": 48634, "integrated gradients": 46685, "generation errors": 38140, "errors human": 29817, "chatgpt current": 13670, "chatgpt captured": 13589, "captured publics": 12373, "attention remarkable": 8372, "humans chatgpt": 42581, "observed languages": 67618, "english spanish": 29103, "despite differences": 24037, "intelligence language": 46861, "testing language": 96010, "scenarios current": 85413, "factors evaluation": 33591, "evaluation question": 30743, "generation qg": 38368, "question based": 78644, "given context": 38870, "target answer": 93853, "according various": 2156, "various purposes": 102544, "questions different": 78827, "different concepts": 25022, "written different": 104512, "different ways": 25255, "similarity metrics": 88143, "fully evaluate": 36446, "evaluate potential": 30262, "semantically syntactically": 86373, "questions adopt": 78770, "popular evaluation": 72630, "scores experiments": 85758, "using multiple": 101625, "evaluation showing": 30778, "higher correlation": 41493, "correlation human": 19771, "lowquality model": 57594, "highquality dataset": 41746, "model summarization": 61470, "sentence summarization": 86526, "tasks unlike": 95226, "prior works": 74873, "works rely": 104385, "produces highquality": 75697, "method multiple": 59363, "multiple benchmarks": 65146, "benchmarks spanning": 10412, "generation sentence": 38414, "summarization model": 92548, "including models": 44424, "models distilled": 62245, "distilled chatgpt": 25836, "chatgpt distilled": 13725, "distilled dataset": 25838, "13 times": 264, "larger datasets": 52436, "datasets chatgpt": 22160, "study utility": 91887, "chatgpt chat": 13601, "openai november": 68174, "november 30": 67298, "30 2022": 740, "gpt3 family": 39455, "family large": 33847, "serve foundation": 86762, "finetuned supervised": 34976, "supervised reinforcement": 92736, "received widespread": 80152, "responses diverse": 83202, "domains knowledge": 26536, "study explore": 91620, "explore chatgpt": 32654, "used help": 100819, "common software": 16175, "tasks covering": 94500, "resolution software": 82934, "code review": 15487, "log summarization": 57239, "performed using": 71769, "respective state": 83050, "andor human": 5833, "chatgpt does": 13727, "chatgpt present": 14098, "present form": 73987, "suited tasks": 92485, "adapting blackbox": 3121, "small finetuned": 88675, "traditionally assumed": 97717, "whitebox access": 103630, "access model": 2072, "recent trend": 80390, "quality models": 78323, "weights available": 103543, "cost finetuning": 19847, "practitioners work": 73579, "lightweight method": 54043, "intermediate activations": 47203, "approach finetunes": 6862, "finetunes small": 35001, "combines large": 15993, "large blackbox": 51401, "blackbox lm": 11140, "validate approach": 102089, "large lm": 52241, "performance cases": 71034, "smaller large": 88758, "models partially": 63772, "interpretation large": 47292, "large body": 51402, "body literature": 11242, "literature suggests": 54664, "llms acquire": 55437, "rich linguistic": 84421, "linguistic representations": 54596, "way present": 103395, "question asking": 78642, "llms display": 55810, "biases using": 10960, "experiments recent": 32282, "psycholinguistic studies": 77874, "studies suggest": 91451, "semantic biases": 86294, "fails generate": 33703, "meaningful patterns": 58713, "sensitive syntactic": 86468, "syntactic patterns": 93178, "local context": 57194, "semantic patterns": 86331, "patterns data": 70627, "improve planning": 43771, "wide spread": 103701, "gpt2 empirically": 39273, "empirically demonstrate": 28374, "demonstrate performance": 23144, "capabilities finetuned": 11908, "finetuned llm": 34928, "train verifier": 97788, "valid invalid": 102084, "randomly sampling": 79130, "dataset generate": 21954, "generate examples": 37444, "invalid trajectories": 47590, "significant gains": 87752, "domain additionally": 26352, "additionally finetuning": 3312, "finetuning base": 35019, "base gpt2": 9400, "lastly investigate": 52613, "sampling temperature": 85172, "explorationexploitation tradeoff": 32610, "convey meaning": 19459, "content moderation": 18659, "present largescale": 74006, "develop typology": 24487, "rich contextual": 84410, "information examples": 45457, "gpt3 identify": 39474, "harmful content": 41029, "content containing": 18603, "online risks": 68005, "language work": 51209, "work sheds": 104262, "sheds light": 87232, "light theoretical": 54024, "science provides": 85604, "improved instruction": 43839, "conversation paper": 19331, "analyzing generated": 5812, "generated output": 37746, "model reveal": 61361, "primary challenge": 74800, "correct order": 19673, "hypothesize models": 42746, "lack understanding": 49067, "understanding user": 99899, "propose explore": 76974, "intent detection": 46955, "state tracking": 90282, "newly collected": 66589, "incorporating user": 44722, "state information": 90275, "chatgpt completely": 13638, "analyze outputs": 5776, "makes mistakes": 58065, "instructions release": 46558, "data makes": 21395, "descriptive text": 23740, "text gpt2": 96286, "gpt2 gpt35": 39293, "astonishing performance": 8127, "chatgpt introduced": 13962, "llms stay": 56860, "ecosystem online": 27071, "images paper": 43107, "language online": 50944, "content training": 18699, "content distribution": 18615, "model collapse": 60670, "variational autoencoders": 102262, "gaussian mixture": 37039, "mixture models": 60352, "learned generative": 52982, "benefits training": 10490, "largescale data": 52503, "data collected": 21066, "genuine human": 38775, "human interactions": 42255, "systems increasingly": 93486, "models fair": 62444, "uncover systematic": 99425, "systematic bias": 93318, "bias evaluation": 10837, "evaluation paradigm": 30705, "adopting large": 3624, "language modelsllms": 50931, "quality responses": 78347, "generated candidate": 37665, "models quality": 63946, "ranking candidate": 79267, "altering order": 5255, "evaluation result": 30751, "making model": 58121, "model appear": 60549, "queries chatgpt": 78474, "chatgpt evaluator": 13770, "calibration framework": 11764, "framework simple": 36271, "effective strategies": 27370, "multiple evaluation": 65185, "determine final": 24410, "measure difficulty": 58735, "question prompt": 78695, "successfully mitigates": 92282, "bias resulting": 10884, "gpt4 generated": 39903, "assessments study": 7990, "assessments use": 7992, "use open": 100641, "ais generative": 4844, "evaluates ability": 30373, "ai detection": 4362, "research involved": 82647, "assessment process": 7970, "faculty members": 33667, "reveals detection": 84207, "use adversarial": 100462, "needed using": 66025, "academic misconduct": 1986, "suggesting need": 92415, "need increased": 65961, "mean score": 58694, "providing comprehensive": 77738, "comprehensive training": 17311, "students research": 91330, "research contributes": 82525, "contributes understanding": 19152, "understanding relationship": 99864, "content academic": 18583, "dont know": 26665, "knowledge allows": 48419, "excel various": 31336, "tasks current": 94503, "performance existing": 71189, "existing knowledge": 31729, "vast knowledge": 102682, "llms limited": 56334, "understand limitations": 99622, "paramount importance": 70306, "aims evaluate": 4800, "questions introduce": 78874, "introduce automated": 47396, "responses models": 83261, "providing novel": 77779, "unique dataset": 100081, "unanswerable questions": 99366, "diverse categories": 25993, "counterparts extensive": 20005, "demonstrate incontext": 23107, "learning instruction": 53220, "considerable gap": 18157, "human proficiency": 42336, "limits knowledge": 54501, "news claims": 66614, "scientific evidence": 85642, "evidence present": 30983, "requires systems": 82416, "news using": 66649, "particularly challenging": 70436, "text written": 96488, "everyday language": 30958, "journal articles": 48165, "articles written": 7577, "sentencelevel evidence": 86536, "achieve f1": 2518, "indomain data": 45121, "data good": 21278, "performance data": 71120, "models released": 64045, "reveals bias": 84202, "highschool students": 41815, "increasingly integrated": 44888, "integrated lives": 46691, "important understand": 43545, "biases present": 10945, "present outputs": 74032, "order avoid": 68690, "harmful stereotypes": 41044, "ways thinking": 103421, "challenge requires": 12927, "developing new": 24593, "semantic bias": 86293, "keeping mind": 48254, "llms act": 55438, "negative effects": 66059, "stem subjects": 90605, "stem fields": 90602, "cuttingedge language": 20869, "approach network": 6952, "use behavioral": 100481, "understand llms": 99623, "data obtained": 21447, "probing llms": 74982, "task previously": 94199, "overall negative": 69304, "fields math": 34433, "perceived negatively": 70763, "differences llms": 24981, "newer versions": 66583, "versions gpt4": 102823, "gpt4 produce": 40027, "architecture llms": 7355, "llms lead": 56282, "stereotypes society": 90703, "nearest neighbors": 65847, "models retrieval": 64099, "retrieved data": 84079, "data input": 21327, "added training": 3161, "training test": 98320, "computation memory": 17424, "memory grows": 59039, "training setup": 98290, "build largescale": 11595, "largescale distributed": 52510, "dataset test": 22103, "finetunes model": 34998, "text surprisingly": 96452, "performance 20": 70956, "gap small": 36975, "gptneo model": 40233, "model 10": 60450, "10 times": 119, "quality size": 78361, "work establishes": 104071, "establishes baseline": 29992, "study comprehensive": 91534, "chatgpt benchmark": 13565, "chatgpt brought": 13580, "recently evaluation": 80489, "academic datasets": 1976, "difficulty evaluating": 25324, "truth paper": 98954, "aim present": 4724, "evaluation chatgpts": 30540, "diverse academic": 25979, "covering tasks": 20083, "like questionanswering": 54214, "reasoning mathematical": 79937, "mathematical problemsolving": 58583, "bias detection": 10835, "tasks analyze": 94371, "weaknesses chatgpt": 103455, "research using": 82821, "report new": 81984, "emergent ability": 28195, "multiquery instructions": 65314, "chatgpt instructiontuned": 13958, "shows chatgpt": 87566, "performing wide": 71794, "performance benchmark": 71013, "ability reliably": 1763, "solve challenging": 89164, "tasks providing": 94988, "providing thorough": 77808, "thorough assessment": 96822, "sets stage": 86973, "chatgptlike llms": 14412, "paradigm effective": 70027, "effective knowledge": 27317, "using generative": 101463, "flexible framework": 35431, "leverage capabilities": 53712, "llms incorporate": 56198, "data information": 21325, "knowledge level": 48659, "unique aspect": 100073, "feedback loop": 34106, "explore new": 32709, "new methods": 66454, "methods knowledge": 59698, "llm era": 55062, "offering effective": 67786, "knowledge sharing": 48757, "scenarios conduct": 85409, "materials various": 58541, "results demonstrated": 83570, "demonstrated proposed": 23310, "compared outputs": 16600, "insights large": 46108, "complex concepts": 16917, "llms offer": 56443, "exhibit humanlike": 31524, "humanlike performance": 42534, "diverse psychological": 26074, "gpt4 multiple": 39983, "multiple dimensions": 65175, "dimensions including": 25393, "identify main": 42879, "main findings": 57824, "findings models": 34702, "align human": 4991, "outperforming gpt35": 69000, "gpt35 gpt4s": 39631, "additional visual": 3268, "visual learning": 103084, "dimensions like": 25394, "highlight limitations": 41595, "integration diverse": 46761, "diverse modalities": 26050, "learning number": 53306, "recent benchmarks": 80224, "models handle": 62645, "negation benchmarks": 66049, "benchmarks lack": 10363, "lack controlled": 48992, "infer model": 45201, "model learned": 61056, "gaps present": 36997, "benchmark contains": 10107, "roberta deberta": 84598, "strategies successful": 90849, "including using": 44512, "stepbystep reasoning": 90668, "reasoning better": 79791, "model correctly": 60719, "correctly reason": 19724, "reason negation": 79730, "nli examples": 66695, "examples outside": 31260, "ai requires": 4532, "llms powerful": 56543, "powerful tool": 73473, "augmenting text": 8604, "prompt quality": 76404, "challenges persist": 13093, "using llm": 101574, "llm validate": 55313, "validate llms": 102098, "labels generated": 48944, "generated humans": 37716, "way using": 103407, "recent social": 80349, "science articles": 85562, "highly contingent": 41689, "contingent dataset": 18987, "type annotation": 99201, "annotation task": 5909, "deployment llms": 23606, "llms automated": 55502, "improve learning": 43726, "outcomes task": 68853, "challenges resource": 13121, "time constraints": 96939, "gpt4 offer": 39988, "offer potential": 67759, "potential solutions": 73268, "issues study": 48019, "explores ability": 32794, "ability gpt4": 1672, "enhance learning": 29174, "iterative prompt": 48066, "original intent": 68785, "questions research": 78941, "research highlights": 82620, "llms educational": 55827, "limitations particularly": 54357, "geometry problems": 38794, "emphasize need": 28286, "evaluation research": 30750, "research future": 82608, "work includes": 104127, "includes systematic": 44259, "systematic studies": 93352, "studies measure": 91417, "measure impact": 58740, "impact tool": 43262, "students learning": 91315, "broader range": 11519, "assessing chatgpts": 7908, "chatgpts impact": 14434, "events large": 30931, "existed years": 31642, "release recent": 81391, "society large": 88942, "impressive proficiency": 43639, "impacts chatgpt": 43279, "learning community": 53077, "ai evaluations": 4391, "technology article": 95643, "social impact": 88866, "ai development": 4366, "responsible implementation": 83350, "implementation ai": 43323, "attention comprehensive": 8291, "ai predicting": 4514, "critical students": 20358, "students writing": 91349, "complex problem": 16973, "example adding": 31154, "issue developed": 47929, "chainofthought prompts": 12840, "prompts facilitate": 76719, "benchmark demonstrate": 10135, "models commonly": 62045, "commonly trained": 16197, "data curated": 21131, "curated highquality": 20634, "highquality corpora": 41744, "curation process": 20645, "performant models": 71750, "abilities larger": 1529, "models requiring": 64076, "data lead": 21371, "significantly outperforming": 87984, "outperforming models": 69004, "models stateoftheart": 64254, "pile despite": 72111, "despite extensive": 24050, "trillion tokens": 98884, "600 billion": 1116, "billion tokens": 11028, "ai product": 4518, "ai genai": 4410, "genai models": 37081, "existing data": 31691, "applications genai": 6489, "genai tools": 37084, "diffusion chatgpt": 25336, "design generative": 23785, "practical application": 73494, "research agenda": 82479, "design large": 23801, "international conference": 47244, "database systems": 21773, "systems advanced": 93388, "2023 held": 556, "does llm": 26307, "chatgpt bring": 13579, "llms database": 55714, "gpt4 outperform": 39997, "outperform traditional": 68972, "traditional ai": 97653, "llms specifically": 56847, "common natural": 16154, "professional academic": 75754, "academic benchmarks": 1972, "benchmarks gpt4": 10346, "gpt4 directly": 39839, "directly used": 25525, "used practical": 100872, "applications replace": 6562, "replace traditional": 81926, "domains requires": 26584, "experimental validation": 32083, "gpt4 traditional": 40131, "diagnostic accuracy": 24802, "accuracy clinical": 2217, "clinical setting": 14935, "setting experimental": 86991, "results real": 83802, "real clinical": 79539, "clinical datasets": 14916, "datasets llms": 22328, "performance traditional": 71637, "gpt4 evaluated": 39859, "evaluated comparison": 30330, "limitations gpt4": 54327, "gpt4 current": 39815, "propose future": 76985, "directions enhance": 25464, "models mathematics": 63589, "llms building": 55547, "standard methodology": 90192, "evaluating llms": 30450, "llms relies": 56692, "relies static": 81558, "informed decision": 45691, "used static": 100902, "fails account": 33701, "humans interact": 42613, "llms conduct": 55663, "undergraduatelevel mathematics": 99476, "generally positive": 37336, "positive correlation": 72820, "understanding gpt4": 99759, "interactive evaluation": 47098, "promising way": 76209, "capability models": 12193, "use evaluating": 100538, "programming capability": 75885, "burgeoning field": 11693, "ai understanding": 4605, "crucial paper": 20511, "problems varying": 75220, "varying difficulty": 102648, "difficulty levels": 25329, "reveal distinct": 84144, "struggle provide": 91225, "provide solutions": 77572, "problem complexity": 75000, "problem difficulty": 75015, "time required": 97011, "required solution": 82322, "research emphasizes": 82571, "thinking capabilities": 96801, "emulate human": 28518, "problemsolving techniques": 75241, "measure enhance": 58737, "programming problem": 75923, "difficulty results": 25332, "results research": 83815, "research offer": 82686, "offer invaluable": 67751, "invaluable insights": 47593, "insights improving": 46103, "improving ai": 44096, "ai programming": 4520, "programming capabilities": 75884, "frontier ai": 36394, "problemsolving abilities": 75226, "concern study": 17666, "technique proposed": 95457, "chatgpt assessment": 13542, "posing questions": 72794, "employ chatgpt": 28389, "including prompts": 44454, "prompts responses": 76815, "aigenerated answers": 4663, "components present": 17094, "present techniques": 74070, "chatgpt prompts": 14120, "prompts comments": 76668, "learning proposed": 53365, "students divided": 91299, "groups despite": 40623, "answers preventing": 6205, "accuracy responses": 2353, "long run": 57321, "gpt4 dalle": 39817, "dalle brought": 20908, "new forms": 66407, "prompts serve": 76820, "directly prompt": 25516, "eliminating need": 28011, "opening door": 68275, "llm empowered": 55054, "empowered software": 28500, "humanai collaborative": 42429, "collaborative intelligence": 15841, "engineering methodology": 28993, "ensembling large": 29430, "performance leveraging": 71356, "leveraging diverse": 53836, "diverse strengths": 26110, "multiple opensource": 65232, "llms framework": 56009, "framework consists": 36080, "consists modules": 18339, "comparison method": 16717, "subtle differences": 92166, "encodes input": 28743, "candidates using": 11815, "using crossattention": 101391, "exhibits highest": 31614, "strengths mitigating": 90960, "largescale evaluation": 52515, "evaluation introduce": 30641, "mixture multiple": 60353, "datasets featuring": 22259, "individual llms": 45088, "llms baseline": 55516, "methods various": 59841, "various metrics": 102484, "code evaluating": 15244, "evaluating gpt": 30430, "gpt data": 39189, "studies focused": 91393, "gpts ability": 40240, "code visualizations": 15564, "generation evaluate": 38143, "abilities various": 1576, "tasks data": 94508, "data interpretation": 21343, "visualization design": 103136, "visual data": 103057, "utilized gpt35": 101969, "complete assignments": 16864, "quantitative assessment": 78403, "assessment based": 7939, "based established": 9516, "capabilities completing": 11864, "findings gpt4": 34670, "70 accuracy": 1209, "completing various": 16894, "communication paper": 16276, "paper concludes": 69638, "concludes discussing": 17747, "limitations gpt": 54325, "knowledge recently": 48737, "released chatgpt": 81396, "unprecedented capabilities": 100224, "work probe": 104214, "conversational understanding": 19406, "ideal testing": 42791, "chatgpts reasoning": 14447, "using concepts": 101378, "scenarios evaluate": 85424, "ability acquire": 1587, "new knowledge": 66433, "ultimate goal": 99338, "acquire reason": 2910, "newly introduced": 66599, "knowledge human": 48618, "chatgpt prior": 14106, "information introduced": 45517, "syntactic generalization": 93172, "generalization capacity": 37253, "capacity pretrained": 12305, "models japanese": 62824, "knowledge grammatical": 48589, "rules contextual": 84936, "information social": 45628, "social relationships": 88910, "relationships remains": 81287, "llms flexibly": 55992, "flexibly handle": 35437, "humans analyze": 42573, "dataset problem": 22035, "sentence structures": 86525, "leading llms": 52860, "showed finetuned": 87389, "model demonstrated": 60744, "demonstrated overall": 23299, "tested data": 95974, "efficient instruction": 27778, "instruction optimization": 46348, "instruction followers": 46332, "challenging best": 13154, "different situations": 25195, "blackbox llms": 11139, "opensource llm": 68356, "generate instruction": 37504, "instruction using": 46418, "using opensource": 101668, "llm zeroshot": 55323, "bayesian optimization": 9914, "new soft": 66526, "improving zeroshot": 44170, "llms apis": 55479, "apis including": 6291, "outperforms sota": 69113, "variety downstream": 102295, "good teacher": 39127, "measuring zeroshot": 58784, "providing actionable": 77732, "observation expert": 67555, "expert feedback": 32361, "teacher training": 95348, "explore generative": 32684, "coaching tasks": 15096, "ai scoring": 4542, "segments based": 86115, "instructional strategies": 46426, "strategies providing": 90843, "generates responses": 37847, "highlights challenges": 41648, "feedback teachers": 34144, "research address": 82473, "obstacles improve": 67638, "ai coach": 4333, "experts paper": 32418, "chatgpt automated": 13552, "writing mathematics": 104478, "chatgpt enhance": 13755, "enhance productivity": 29201, "processes improve": 75435, "improve writing": 43826, "furthermore highlight": 36624, "excessive reliance": 31399, "reliance chatgpt": 81543, "chatgpt fields": 13819, "code limited": 15383, "objectives chatgpt": 67516, "chatgpt proves": 14123, "beneficial applications": 10437, "applications used": 6590, "used judiciously": 100833, "scenarios reliability": 85478, "nonexperts chatgpt": 66905, "experimental studies": 32080, "effectively using": 27480, "chatgpt recommendations": 14160, "iterative interaction": 48061, "respective domains": 83048, "brought immense": 11531, "set new": 86904, "web crawls": 103486, "enables learn": 28596, "learn general": 52943, "semantic relationships": 86338, "models expensive": 62398, "train deploy": 97734, "lack access": 48977, "data design": 21149, "trend large": 98846, "generalpurpose models": 37360, "modestly sized": 64632, "practices pretraining": 73566, "pretraining large": 74557, "2048 tokens": 574, "tokens training": 97239, "previous sota": 74702, "sota model": 89316, "quality prediction": 78334, "introduce models": 47448, "consistently outperform": 18301, "sufficient strong": 92340, "results models": 83732, "released public": 81414, "demonstrate pretraining": 23155, "data yield": 21762, "input generation": 45903, "generation considering": 38093, "support limited": 92815, "inputs furthermore": 45994, "substantial number": 92096, "guided test": 40760, "historical data": 41861, "data known": 21352, "study regarding": 91810, "root cause": 84842, "cause analysis": 12686, "rules based": 84935, "vulnerabilities evaluation": 103256, "stateoftheart conventional": 90328, "stateoftheart llmbased": 90374, "acquisition children": 2927, "children language": 14525, "learning stages": 53423, "largely unknown": 52426, "compare learning": 16467, "deep language": 22752, "training gpt2": 98123, "aged 18": 4109, "months years": 64737, "scratch evaluate": 85804, "training step": 98309, "benchmarks compare": 10317, "language production": 51060, "models tend": 64345, "tend learn": 95736, "tasks learned": 94811, "improve training": 43818, "shed new": 87223, "new light": 66447, "algorithms learn": 4978, "multihop reasoning": 64920, "reasoning question": 79998, "answering language": 6116, "prompts random": 76807, "knowledge entities": 48549, "entities pretrained": 29543, "reasoning questionanswering": 80000, "encoded knowledge": 28677, "knowledge learning": 48658, "questions random": 78926, "random walk": 79114, "paths lead": 70591, "applying methods": 6693, "lms shows": 57169, "improvements standard": 43999, "questions require": 78937, "lossless text": 57482, "text compression": 96140, "provide new": 77527, "token given": 97134, "lossless compression": 57481, "compression scheme": 17373, "aims translate": 4831, "queries multiple": 78500, "languages nls": 51331, "evaluated datasets": 30332, "datasets limited": 22325, "comprehensive unified": 17315, "unified evaluation": 100011, "unified benchmark": 100009, "benchmark crosslingual": 10112, "domains use": 26604, "benchmark study": 10255, "study wide": 91896, "models mbart": 63590, "experiment settings": 31976, "covering various": 20085, "multilingual crosslingual": 64952, "samples dataset": 85108, "zeroshot experiments": 104765, "achieve highest": 2532, "highest performance": 41549, "compared popular": 16605, "popular models": 72655, "multilingual training": 65017, "training improve": 98134, "improve average": 43668, "models bloom": 61943, "training crosslingual": 97985, "significant multilingual": 87799, "models mitigated": 63622, "fewshot training": 34323, "chinese social": 14575, "regarding chatgpt": 81050, "education chatgpt": 27135, "academic community": 1974, "latest version": 52682, "output study": 69197, "media posts": 58847, "chatgpt educational": 13736, "purposes study": 78059, "study serves": 91832, "effort investigate": 27877, "public opinion": 77937, "gpt4 social": 40091, "media users": 58854, "advanced ai": 3672, "chatgpt make": 14002, "public attitudes": 77908, "direction release": 25451, "gpt4 present": 40025, "ethical application": 30059, "enhancing incontext": 29332, "learning answer": 53028, "answering recent": 6150, "recent emergence": 80250, "general performance": 37171, "learning effective": 53119, "construct fewshot": 18420, "fewshot prompt": 34284, "new questions": 66510, "questions popular": 78911, "output paper": 69175, "novel way": 67284, "model correct": 60718, "correct incorrect": 19669, "dataset new": 22015, "new prompting": 66501, "llms incontext": 56194, "chatgpt lack": 13967, "analyses provide": 5408, "means evaluating": 58725, "llm output": 55182, "text methods": 96333, "methods used": 59834, "llms fall": 55970, "short comparison": 87277, "comparison humangenerated": 16714, "text work": 96486, "work apply": 103991, "evaluate individual": 30204, "generated human": 37714, "chatgpt perform": 14070, "supervised classification": 92697, "analyze text": 5786, "al 2004": 4859, "results illustrate": 83652, "performance use": 71655, "approach results": 7010, "analysis illustrate": 5544, "linguistic differences": 54573, "chatgpt fun": 13833, "human communication": 42134, "far large": 33870, "able capture": 1830, "information especially": 45453, "gained immense": 36828, "public attention": 77907, "gpt3based model": 39722, "generation explanation": 38156, "seek understand": 86068, "model accessible": 60479, "evidence indicates": 30976, "newly generated": 66598, "explanations invalid": 32500, "chatgpt classification": 13618, "abilities recently": 1563, "including passing": 44443, "benchmark tests": 10268, "performance led": 71351, "agi provide": 4262, "new opensource": 66468, "benchmark assess": 10077, "using task": 101808, "relatively easily": 81308, "humans advanced": 42570, "advanced training": 3756, "combining multiple": 16019, "multiple words": 65284, "test requires": 95930, "raters provide": 79411, "04 scale": 31, "binary judgments": 11057, "gpt35 bard": 39579, "versions results": 102832, "humans models": 42624, "gpt4 makes": 39967, "substantial improvement": 92086, "worse human": 104440, "used understand": 100928, "limitations weaknesses": 54380, "llms potentially": 56541, "potentially improve": 73343, "improve test": 43813, "holistic evaluation": 41917, "models instructiontuned": 62794, "applications conversational": 6437, "agents models": 4208, "solve complex": 89167, "like mathematics": 54193, "capabilities lack": 11953, "understanding regarding": 99863, "blackbox nature": 11145, "nature models": 65811, "evaluation studies": 30797, "evaluation suite": 30801, "suite designed": 92470, "models unlike": 64457, "assessment models": 7965, "approach analyze": 6735, "analyze various": 5787, "factors affecting": 33587, "including pretraining": 44449, "pretraining foundation": 74539, "instructiontuning data": 46611, "quality instruction": 78298, "data crucial": 21130, "opensource community": 68323, "highlight need": 41599, "evaluation support": 30803, "support claims": 92792, "aim foster": 4712, "foster deeper": 35897, "deeper understanding": 22815, "models advancements": 61799, "advancements capabilities": 3804, "speech pretrained": 89959, "llms tasks": 56918, "tasks overall": 94917, "finegrained assessment": 34784, "models speech": 64246, "information utilize": 45669, "processed tokens": 75425, "process includes": 75332, "includes pretraining": 44256, "token detection": 97129, "detection module": 24331, "finetuning text": 35278, "employ llms": 28405, "data greatly": 21283, "reduced performance": 80819, "performance improved": 71298, "chatgpt renowned": 14170, "llm potential": 55202, "dialogues paper": 24938, "educational applications": 27193, "2023 shared": 560, "aims assess": 4781, "producing suitable": 75717, "evaluating various": 30494, "various baseline": 102363, "prompts prompt": 76797, "openai models": 68173, "generation challenge": 38068, "achieved second": 2665, "second place": 85945, "fewshot promptbased": 34289, "promptbased approach": 76455, "openai textdavinci003": 68180, "capabilities largelanguage": 11964, "particularly openais": 70488, "opinion summarization": 68474, "rapid growth": 79328, "information internet": 45515, "products services": 75751, "difficult timeconsuming": 25310, "information making": 45540, "making decisions": 58094, "widely explored": 103724, "help users": 41287, "information generating": 45494, "generating short": 37973, "salient content": 85074, "multiple documents": 65179, "documents recent": 26263, "llms text": 56928, "require massive": 82274, "data resources": 21573, "resources challenging": 83001, "offline applications": 67874, "summarization approaches": 92515, "approaches lack": 7156, "capture diverse": 12351, "diverse aspects": 25986, "users specific": 101180, "preferences paper": 73825, "summaries given": 92499, "reviews particular": 84295, "providing users": 77812, "specific aspects": 89662, "generated summaries": 37789, "conducted using": 17990, "datasets evaluate": 22237, "demonstrate model": 23133, "approaches adaptive": 7099, "generating summaries": 37980, "focus particular": 35544, "enabling users": 28664, "make wellinformed": 58040, "wellinformed decisions": 103590, "instruction tuned": 46365, "tuned models": 99005, "ability enhance": 1637, "using examples": 101432, "learning requires": 53385, "downstream training": 26753, "realworld situations": 79702, "scarcity data": 85374, "finetuning work": 35292, "sample efficiency": 85086, "sota supervised": 89326, "single task": 88397, "task learning": 94126, "learning mtl": 53291, "setting instruction": 87000, "models equipped": 62339, "train data": 97733, "surpass sota": 92914, "tuned model": 99004, "achieve sota": 2585, "100 training": 135, "learning additionally": 53016, "observe consistent": 67578, "instructions finally": 46501, "contrary previous": 19061, "previous results": 74697, "chatbot arena": 13402, "based chat": 9460, "chat assistants": 13361, "inadequacy existing": 44194, "preferences address": 73814, "using strong": 101796, "strong llms": 91047, "llms judges": 56257, "models openended": 63711, "position verbosity": 72806, "ability propose": 1752, "battle platform": 9907, "platform results": 72309, "strong llm": 91046, "gpt4 match": 39970, "crowdsourced human": 20459, "preferences achieving": 73813, "achieving 80": 2818, "approximate human": 7262, "expensive obtain": 31918, "additionally benchmark": 3278, "benchmark traditional": 10270, "variants llama": 102254, "llama vicuna": 54805, "understanding interplay": 99780, "interplay generative": 47264, "societal impacts": 88931, "content creators": 18607, "future models": 36747, "trained mix": 97873, "causing potential": 12701, "raises questions": 79086, "evolve improve": 31041, "societal implications": 88932, "implications possible": 43395, "explore effect": 32669, "various image": 102446, "image datasets": 43034, "datasets results": 22403, "quality diversity": 78256, "diversity generated": 26145, "undesired effects": 99942, "models reliability": 64049, "performance despite": 71132, "applications llms": 6521, "llms reliable": 56689, "lot work": 57487, "improve factual": 43700, "ethical standards": 30089, "finetuning prompting": 35208, "analysis responses": 5642, "different categories": 25013, "potential vulnerabilities": 73320, "changes available": 13284, "available work": 9101, "work analyze": 103987, "model responds": 61347, "certain sensitive": 12777, "model response": 61348, "analysis available": 5442, "study offers": 91757, "analysis chatgpts": 5455, "mathematics abilities": 58600, "questions vietnamese": 78972, "examination vnhsge": 31090, "range subjects": 79210, "knowledge comprehension": 48477, "high application": 41377, "diverse mathematical": 26048, "mathematical concepts": 58572, "demonstrate chatgpts": 23042, "difficulty level": 25328, "best questions": 10643, "rate 10": 79366, "study shown": 91842, "shown chatgpt": 87445, "questions subjects": 78958, "subjects including": 91965, "questions topics": 78965, "topics including": 97531, "success rates": 92239, "rates lower": 79414, "potential effective": 73076, "effective teaching": 27374, "teaching tool": 95376, "work needed": 104184, "challenges presented": 13104, "model detecting": 60761, "ensure correct": 29447, "code increasingly": 15358, "increasingly challenging": 44868, "challenging recognizing": 13220, "detecting correcting": 24241, "differences code": 24975, "rely primarily": 81586, "contrast paper": 19081, "code comments": 15156, "detect correct": 24212, "code segments": 15498, "achieves new": 2760, "stateoftheart result": 90463, "accuracy inconsistency": 2291, "summarization task": 92567, "use evaluation": 100539, "understanding functionality": 99739, "demonstration video": 23466, "transfer ability": 98395, "source language": 89380, "multilingual pretrained": 64996, "englishcentric models": 29120, "gap study": 36978, "following research": 35697, "models does": 62256, "models second": 64150, "tasks multilingual": 94872, "multilingual reasoning": 65002, "experiments types": 32321, "types reasoning": 99261, "does outperform": 26315, "outperform englishcentric": 68931, "model furthermore": 60916, "language important": 49272, "types tasks": 99268, "exhibit different": 31509, "transfer abilities": 98394, "abilities findings": 1506, "experiments provide": 32272, "insights enhancing": 46085, "enhancing multilingual": 29357, "models augmenting": 61875, "approach provide": 6990, "solution effective": 89086, "effective scalable": 27366, "llm pretrained": 55207, "language corpus": 49174, "proved effective": 77373, "inputs paper": 46004, "models variations": 64490, "quality conduct": 78240, "experiments explore": 32194, "power generative": 73372, "generative llm": 38640, "llm models": 55171, "models experiment": 62400, "target programs": 93884, "vulnerability detection": 103270, "perform similar": 70921, "similar better": 88055, "syntax rules": 93194, "information large": 45524, "chatgpt reflect": 14161, "profound changes": 75818, "linguistic fluency": 54578, "extent current": 33158, "current potential": 20756, "active area": 2989, "common people": 16158, "science mathematics": 85599, "llm like": 55154, "help gain": 41247, "gain insight": 36812, "insight capabilities": 46041, "capabilities general": 11916, "information encoded": 45448, "encoded language": 28678, "aspects physical": 7783, "chatgpt access": 13485, "investigate llms": 47668, "task benchmark": 93954, "models act": 61779, "including alpaca": 44268, "flant5 gpt2": 35391, "manually evaluated": 58308, "evaluated terms": 30366, "ability based": 1598, "automated human": 8701, "responses gpt35": 83229, "gpt35 using": 39683, "using ensemble": 101429, "responses given": 83228, "given dialogue": 38877, "dialogue contexts": 24854, "participating teams": 70387, "metrics better": 59888, "linguistic bias": 54561, "learning generative": 53178, "models perspective": 63807, "potential significantly": 73261, "significantly shape": 88022, "linguistic landscape": 54588, "use various": 100720, "existing linguistic": 31743, "biases paper": 10942, "reflected generated": 81014, "models reinforcing": 64038, "highlights pervasive": 41662, "pervasive nature": 71999, "linguistic cognitive": 54564, "development future": 24647, "reproduce biases": 82188, "implications potential": 43396, "benefits ease": 10469, "threats linguistic": 96886, "linguistic diversity": 54575, "rigorous research": 84456, "improved model": 43848, "model transparency": 61539, "training techniques": 98319, "techniques development": 95502, "development methods": 24678, "distinguish human": 25895, "fairness bias": 33732, "effective safe": 27365, "use powerful": 100652, "powerful technologies": 73470, "richness diversity": 84431, "diversity human": 26148, "translation large": 98712, "models nonenglish": 63681, "analysis recent": 5634, "years large": 104599, "gpt4 metas": 39972, "llama googles": 54754, "dominant approach": 26659, "approach building": 6764, "building ai": 11619, "generate language": 37517, "automated systems": 8741, "interactions online": 47072, "chatbots content": 13438, "moderation systems": 64589, "systems search": 93566, "primarily designed": 74779, "recently researchers": 80551, "extend capabilities": 32928, "provides simple": 77703, "explanation large": 32466, "work gap": 104110, "data english": 21186, "english languages": 29081, "languages multilingual": 51328, "models attempt": 61869, "attempt bridge": 8255, "companies researchers": 16356, "developing deploying": 24574, "models ethical": 62353, "ethical aspects": 30060, "chatgpt software": 14251, "engineering research": 29016, "research chatgpt": 82510, "chatgpt improve": 13944, "improve software": 43806, "research practices": 82718, "offering efficient": 67787, "synthesis based": 93204, "interactions chatgpt": 47049, "ethical challenges": 30061, "privacy data": 74893, "data security": 21601, "security risk": 86034, "risk generating": 84496, "potentially detrimental": 73334, "research aims": 82485, "ethical principles": 30080, "achieve objective": 2554, "literature survey": 54665, "principles empirically": 74830, "conducting comprehensive": 17995, "research develop": 82543, "based decision": 9494, "model conducted": 60693, "models aim": 61815, "aim help": 4717, "researchers devise": 82849, "establish benchmark": 29967, "benchmark incorporating": 10193, "incorporating chatgpt": 44691, "humanauthored text": 42448, "summarization sentence": 92562, "media attention": 58827, "remarkable capacity": 81762, "text short": 96414, "short natural": 87292, "aim conduct": 4697, "inspection chatgpts": 46152, "controllable generation": 19235, "tasks respect": 95062, "ability adapt": 1588, "output different": 69146, "different target": 25217, "additionally evaluate": 3297, "evaluate faithfulness": 30185, "faithfulness generated": 33753, "humanauthored texts": 42449, "texts findings": 96565, "stylistic variations": 91918, "considerably larger": 18177, "demonstrated chatgpt": 23239, "chatgpt generated": 13860, "human samples": 42360, "suit specific": 92451, "based general": 9545, "augment pretrained": 8519, "llm web": 55319, "search retrieval": 85893, "specifically identify": 89834, "identify address": 42842, "accuracy efficiency": 2250, "efficiency costeffectiveness": 27677, "propose systematic": 77129, "systems conduct": 93415, "conduct multidimensional": 17902, "designs existing": 23983, "progress artificial": 75970, "new frontiers": 66412, "automating tasks": 8915, "design implementation": 23792, "evolution generative": 31021, "ai agents": 4292, "agents motivated": 4209, "llms telecom": 56921, "telecom domain": 95673, "domain particular": 26427, "finetune llms": 34837, "including bert": 44281, "languages demonstrate": 51257, "consider training": 18142, "selected models": 86134, "finetuning bert": 35024, "accuracy gpt2": 2275, "bert model": 10535, "model 50": 60470, "parameters achieves": 70169, "achieves similar": 2788, "llm effectively": 55048, "effectively identify": 27438, "developed framework": 24502, "wireless networks": 103850, "paves way": 70650, "compute efficient": 17506, "algorithm performs": 4929, "local search": 57207, "tune models": 98998, "effectively solve": 27473, "simple baseline": 88170, "size vs": 88537, "hoffmann et": 41878, "automated process": 8725, "learning problem": 53346, "democratizing large": 22996, "applications built": 6419, "represent revolution": 82038, "revolution ai": 84318, "significant risks": 87843, "risks presence": 84531, "presence biased": 73919, "biased private": 10906, "harmful text": 41045, "suite opensource": 92477, "llms based": 55512, "goal project": 39066, "create worlds": 20188, "opensource alternative": 68310, "closedsource approaches": 15000, "opensource finetuned": 68332, "models 40": 61717, "commercial use": 16099, "fully permissive": 36464, "apache 20": 6259, "private document": 74925, "search using": 85905, "opensource language": 68343, "boost ai": 11268, "development make": 24676, "make accessible": 57960, "lower entry": 57560, "models needs": 63666, "ai llms": 4457, "exhibit similarities": 31555, "analysis individual": 5555, "objective develop": 67494, "facilitating automated": 33528, "study present": 91779, "present database": 73965, "database comprising": 21768, "rules manually": 84938, "analysis process": 5615, "models gpt35": 62603, "gpt4 developed": 39837, "additionally provided": 3342, "python library": 78106, "article highlights": 7544, "aipowered chatbots": 4837, "chatbots education": 13440, "study dataset": 91563, "pass examination": 70529, "technologys potential": 95667, "educational landscape": 27206, "chatgpt performance": 14072, "performance revealed": 71544, "proficiency range": 75801, "including mathematics": 44419, "suggests potential": 92444, "provide effective": 77456, "potential support": 73278, "increasingly common": 44869, "ultimately enhancing": 99342, "enhancing educational": 29322, "educational experience": 27202, "similar systems": 88113, "ai rise": 4538, "rise generative": 84473, "systems ai": 93389, "ai code": 4334, "systems provide": 93540, "questions requests": 78936, "article focuses": 7541, "issues raised": 48015, "relationship ai": 81277, "looking ahead": 57424, "propose following": 76978, "licenses opensource": 53963, "limit access": 54274, "use opensource": 100646, "mit license": 60248, "code developers": 15227, "benefit humanity": 10450, "legislative action": 53573, "pushing limits": 78079, "limits chatgpt": 54495, "baselines work": 9860, "token limit": 97142, "does allow": 26278, "nature chatgpt": 65799, "llms models": 56404, "models hallucination": 62642, "focus certain": 35505, "modules include": 64675, "strategy employs": 90877, "employs multiple": 28479, "multiple prompts": 65248, "prompts input": 76753, "demonstrations using": 23486, "using finetuned": 101448, "employing reasoning": 28463, "reasoning strategies": 80035, "strategies tailored": 90851, "tailored addressing": 93773, "taskspecific complexity": 95279, "strategy address": 90861, "address hallucination": 3408, "hallucination issue": 40837, "robustness model": 84732, "predictions conduct": 73735, "datasets 10": 22129, "10 representative": 117, "representative nlp": 82150, "including question": 44456, "answering commonsense": 6085, "analysis named": 5584, "dependency parsing": 23538, "semantic role": 86342, "role labeling": 84785, "using proposed": 101702, "techniques able": 95468, "able significantly": 1884, "significantly boost": 87890, "existing sota": 31818, "extensive discourse": 33014, "science higher": 85588, "education primary": 27171, "focus limited": 35534, "empirical research": 28339, "effects large": 27614, "llmbased chatbots": 55343, "study involving": 91718, "research ai": 82481, "study focused": 91644, "ethical legal": 30078, "effective use": 27383, "use findings": 100552, "highlight transformative": 41614, "transformative potential": 98473, "analytical tasks": 5735, "related bias": 81184, "need addressed": 65905, "impact generative": 43209, "ai science": 4541, "helps identify": 41307, "identify areas": 42846, "areas future": 7439, "considerations regarding": 18189, "different scientific": 25189, "scientific domains": 85640, "support chatgpt": 92790, "chatgpt artificial": 13535, "artificial intelligencebased": 7674, "intelligencebased chatbot": 46910, "chatbot developed": 13407, "attention entire": 8302, "international community": 47243, "community impressive": 16322, "generating comprehensive": 37880, "comprehensive systematic": 17305, "responses user": 83322, "user input": 100994, "input natural": 45925, "opportunities potential": 68505, "issues concerns": 47980, "raised regarding": 79070, "various scientific": 102562, "scientific disciplines": 85634, "disciplines paper": 25563, "implications arising": 43367, "new technology": 66555, "understanding generative": 99758, "progress large": 75988, "assessments higher": 7986, "courses paper": 20035, "paper studies": 69960, "developments large": 24745, "llm abilities": 54927, "python programming": 78108, "chatgpt resulted": 14182, "heated debates": 41208, "potential uses": 73301, "programming classes": 75888, "gpt4 largely": 39955, "notable improvements": 67006, "analysis context": 5470, "systems specifically": 93577, "report performance": 81986, "comparing previous": 16692, "previous generations": 74679, "ranging simple": 79241, "questions code": 78796, "complex programming": 16978, "distributed multiple": 25925, "multiple files": 65192, "additionally analyze": 3274, "limitations model": 54350, "feedback provided": 34124, "completely failing": 16885, "programming class": 75887, "gpt4 identified": 39932, "certain limitations": 12765, "rate improvement": 79389, "strongly suggests": 91115, "potential handle": 73114, "assessment widely": 7982, "courses findings": 20034, "findings leveraged": 34697, "educators institutions": 27228, "design programming": 23830, "technological developments": 95620, "programming knowledge": 75904, "autonomous gpt": 8935, "study inspired": 91680, "application based": 6342, "novel tool": 67270, "tool called": 97274, "collection processing": 15906, "processing analysis": 75454, "complex health": 16938, "autonomous manner": 8938, "comprehensive data": 17225, "data variety": 21743, "sources including": 89412, "mayo clinic": 58656, "national institute": 65531, "identification salient": 42815, "approach yielded": 7090, "insights public": 46128, "signifies transformative": 88039, "ai facilitating": 4395, "understanding complex": 99698, "manner setting": 58247, "groundwork future": 40602, "cognitive ability": 15735, "llms adaptive": 55442, "adaptive testing": 3146, "perspective large": 71953, "humanlike cognitive": 42524, "cognitive abilities": 15732, "abilities different": 1501, "models benchmarks": 61914, "test questions": 95929, "different fields": 25067, "results traditional": 83894, "traditional metrics": 97681, "metrics accuracy": 59875, "accuracy recall": 2343, "recall f1": 80109, "propose adaptive": 76924, "testing framework": 96007, "framework llm": 36202, "accuracy approach": 2205, "dynamically adjusts": 26943, "questions difficulty": 78829, "models abilities": 61726, "abilities using": 1575, "using fewer": 101440, "importantly allows": 43548, "allows llms": 5200, "humans easily": 42590, "diagnostic reports": 24808, "reports chatgpt": 82008, "behaves like": 9955, "questions conduct": 78802, "conduct finegrained": 17889, "llms aspects": 55490, "subject knowledge": 91943, "students different": 91297, "using efficient": 101424, "models developing": 62216, "preliminary tests": 73883, "interactive personalized": 47111, "advances language": 3877, "new possibility": 66487, "possibility developing": 72875, "chatbots using": 13461, "study simple": 91849, "examine chatgpts": 31102, "level education": 53654, "education ability": 27126, "results encouraging": 83581, "posed limited": 72757, "highly structured": 41717, "lead unexpected": 52829, "provide initial": 77501, "development effective": 24634, "alignment instruction": 5082, "interactive translation": 47118, "prowess language": 77827, "instructionfollowing llms": 46460, "plays vital": 72391, "vital role": 103165, "aligning llms": 5048, "preferences existing": 73816, "llms usually": 57011, "focused english": 35580, "inferior performance": 45332, "performance nonenglish": 71429, "languages order": 51334, "order improve": 68702, "languages necessary": 51329, "data foundation": 21246, "human workload": 42420, "propose transfer": 77144, "transfer capabilities": 98397, "generation instruction": 38210, "llama foundation": 54749, "foundation llm": 35923, "llm automatically": 54975, "automatically constructing": 8851, "translation instructions": 98708, "performance gpt35turbo": 71275, "despite utilizing": 24139, "smaller parameter": 88785, "size 13": 88453, "results translation": 83896, "gpt4 automatic": 39773, "estimate performance": 30008, "performance general": 71248, "instruction test": 46362, "set called": 86847, "achieves 89": 2701, "demonstrates outstanding": 23387, "outstanding performance": 69271, "performance knowledge": 71328, "assessment chinese": 7942, "chinese gaokao": 14550, "models scientific": 64144, "writing support": 104501, "regression model": 81101, "corpus scientific": 19652, "score indicates": 85721, "sentence likely": 86506, "impact context": 43195, "classification performance": 14770, "finally propose": 34558, "train various": 97787, "various large": 102466, "arxiv papers": 7695, "peer reviewed": 70696, "cases demonstrate": 12521, "using context": 101382, "achieving 90": 2819, "produce output": 75649, "standard large": 90189, "t5 large": 93637, "perform best": 70824, "input sentence": 45950, "code provided": 15455, "gained significant": 36835, "attention impressive": 8320, "impressive natural": 43610, "utilizing models": 102036, "ethical moral": 30079, "utmost importance": 102052, "latest llms": 52677, "llms study": 56874, "address gaps": 3406, "evaluation llms": 30654, "llms crucial": 55702, "crucial areas": 20472, "toxicity language": 97602, "models employing": 62309, "toxic prompt": 97591, "extent bias": 33156, "bias models": 10867, "toxicity values": 97606, "values different": 102210, "different groups": 25073, "models active": 61781, "tasks implementation": 94713, "aims enhance": 4796, "enhance understanding": 29218, "development language": 24661, "socially responsible": 88926, "need introduce": 65965, "new large": 66439, "code significantly": 15504, "competing models": 16776, "model 13b": 60458, "13b parameters": 301, "1b tokens": 468, "despite small": 24125, "small scale": 88724, "finetuning stage": 35260, "dataset coding": 21858, "trained pipeline": 97886, "achieves 45": 2696, "generate better": 37385, "llm reinforcement": 55230, "rl emerged": 84552, "powerful paradigm": 73462, "generation particular": 38320, "users finetuning": 101111, "properties text": 76908, "generation seek": 38411, "seek investigate": 86065, "rl algorithms": 84548, "proximal policy": 77831, "policy optimization": 72548, "optimization ppo": 68610, "blackbox guide": 11132, "guide llm": 40742, "llm propose": 55222, "guided feedback": 40756, "algorithms llm": 4980, "llm finetuning": 55087, "llm interact": 55136, "interact llm": 46982, "procedure guide": 75252, "used complete": 100761, "partial sentences": 70348, "llm expert": 55071, "tldr summarization": 97111, "tasks rl": 95074, "rl baseline": 84550, "ppo demonstrating": 73487, "explores new": 32813, "corpora pretraining": 19585, "pretraining transformerbased": 74618, "focus task": 35558, "matching involves": 58519, "involves establishing": 47841, "task utilizing": 94289, "utilizing external": 102013, "source knowledge": 89379, "advance field": 3664, "avenues exploration": 9113, "gptbased models": 40209, "models baseline": 61907, "chatgpt external": 13798, "tasks believe": 94399, "concepts relationships": 17636, "additionally experiment": 3299, "based food": 9541, "scope research": 85679, "research include": 82630, "avenues future": 9114, "implications improving": 43387, "applications opportunities": 6536, "llms scalable": 56745, "machine intelligence": 57688, "explore opportunities": 32711, "llms challenges": 55570, "pilot experiments": 72115, "anthropics claude": 6235, "llms augment": 55499, "intelligence help": 46857, "summarization capabilities": 92519, "capabilities enable": 11884, "immense promise": 43172, "notably llm": 67039, "llm context": 55020, "quality results": 78350, "discuss risks": 25688, "characterizing mitigating": 13350, "systems employ": 93436, "llms finally": 55979, "finally conclude": 34513, "increasingly explored": 44881, "role enhancing": 84771, "tasks emergence": 94572, "employing advanced": 28440, "advanced deep": 3688, "techniques generate": 95525, "generate contextaware": 37411, "personalized responses": 71919, "llmbased ai": 55334, "assistants provide": 8056, "provide natural": 77525, "study llm": 91735, "work efficiency": 104064, "efficiency collaborative": 27673, "specifically present": 89858, "present llmbased": 74008, "generate personalized": 37547, "style based": 91905, "based prior": 9668, "twostep process": 99196, "process involves": 75339, "involves generating": 47845, "agree disagree": 4273, "provide generalized": 77485, "message generation": 59119, "conducted experiment": 17955, "participants completed": 70361, "indicate proposed": 45017, "reduces overall": 80841, "nasa tlx": 65521, "work performance": 104203, "task provide": 94209, "provide qualitative": 77550, "directions improving": 25470, "partial code": 70345, "api documentation": 6269, "qa sites": 78153, "errors facilitate": 29815, "architecture combines": 7336, "combines design": 15991, "design ideas": 23790, "hierarchical task": 41367, "breakdown prompt": 11383, "ai nonai": 4487, "technically propose": 95427, "methods experimental": 59631, "sota accuracy": 89302, "languages java": 51298, "accuracy 805": 2186, "errors surpassing": 29844, "surpassing sota": 92973, "sota methods": 89315, "demonstrates effectiveness": 23371, "opens possibilities": 68301, "analysis methods": 5581, "emergence foundation": 28164, "gpt4 texttoimage": 40129, "texttoimage models": 96626, "models dalle": 62146, "possibilities various": 72870, "tasks people": 94938, "models production": 63903, "ai services": 4546, "apis like": 6292, "like langchain": 54178, "application development": 6346, "propose concept": 76950, "concept ai": 17598, "development environment": 24637, "quality ai": 78219, "requirement analysis": 82329, "study evaluated": 91608, "efficiency correctness": 27675, "correctness prompt": 19741, "tool user": 97327, "story quality": 90756, "agile software": 4265, "user stories": 101044, "play vital": 72353, "communication collaboration": 16258, "methods evaluating": 59627, "timeconsuming develop": 97043, "explores using": 32827, "chatgpt user": 14331, "existing benchmark": 31671, "evaluation aligns": 30508, "aligns human": 5126, "best strategy": 10649, "improve output": 43742, "trustworthiness ai": 98939, "ai implications": 4430, "nonexperts using": 66906, "reliability applicability": 81489, "applicability ai": 6318, "story evaluation": 90753, "recommendations future": 80660, "spurious correlations": 90053, "models visual": 64512, "spurious features": 90055, "drawing inspiration": 26810, "users receive": 101169, "receive feedback": 80132, "feedback trained": 34146, "nli model": 66696, "model challenging": 60641, "newly created": 66591, "based feedback": 9532, "investigation discover": 47786, "models group": 62635, "semantic relevance": 86339, "logical fallacies": 57258, "bias based": 10829, "various research": 102555, "creating adversarial": 20211, "adversarial test": 4001, "test suites": 95953, "using variational": 101836, "llms seen": 56756, "layers language": 52749, "language network": 50942, "layer stacking": 52733, "layer obtain": 52728, "perform prompt": 70910, "present extension": 73982, "prompts learned": 76771, "latent variable": 52643, "distribution test": 25950, "multiple reasoning": 65249, "performance single": 71570, "gpt4 llm": 39964, "llm network": 55174, "smaller powerful": 88787, "scientific paper": 85656, "peer reviews": 70697, "scientific knowledge": 85649, "choose best": 14604, "best possible": 10629, "update manuscript": 100349, "response introduce": 83141, "models release": 64043, "review comments": 84250, "evaluating models": 30460, "struggle identify": 91221, "tasked generating": 94311, "feedback underlying": 34150, "underlying intent": 99495, "technical details": 95404, "dataset analysis": 21822, "work area": 103993, "prompt gpt3": 76334, "generation artificial": 38038, "demonstrating impressive": 23432, "models limitations": 62935, "limitations comes": 54307, "strategies paper": 90838, "explore role": 32743, "role cognitive": 84762, "llms advent": 55455, "driven large": 26843, "llms stirred": 56862, "human understanding": 42404, "compare contrast": 16452, "comprehension capabilities": 17155, "capabilities humans": 11936, "humans llms": 42620, "small sample": 88723, "llms asked": 55489, "asked classify": 7729, "compared results": 16628, "classification reasoning": 14780, "indicated significant": 45027, "chatgpt 35": 13471, "slightly lower": 88639, "lower alignment": 57552, "alignment gpt4": 5075, "cases ai": 12509, "models showed": 64175, "comparison human": 16713, "human llms": 42296, "functional components": 36499, "effective human": 27306, "continuously evaluate": 19041, "feedback natural": 34112, "feedback offers": 34115, "rich insights": 84419, "studies focus": 91392, "feedback used": 34152, "specific examples": 89693, "examples introduce": 31238, "feedback use": 34151, "feedback formalize": 34082, "order produce": 68712, "produce better": 75606, "better models": 10750, "metric design": 59861, "responses conduct": 83190, "conduct case": 17831, "improving search": 44155, "search query": 85888, "written ones": 104521, "importance human": 43457, "building systems": 11651, "use largescale": 100604, "simulation tasks": 88332, "gpt4 received": 40041, "received significant": 80150, "domains emphasis": 26513, "llms scientific": 56749, "focus modeling": 35540, "providing practical": 77786, "practical guidance": 73512, "steps involved": 90688, "conceptual model": 17646, "modeling process": 61669, "outputs model": 69240, "model users": 61558, "users identify": 101117, "task seeks": 94234, "providing guidance": 77755, "datasets case": 22158, "research delves": 82536, "datasets specifically": 22422, "leveraging openais": 53886, "datasets present": 22371, "present effective": 73971, "effective solution": 27368, "data privacy": 21502, "characteristics make": 13334, "largely depends": 52405, "quality measured": 78314, "diversity relevance": 26155, "relevance coherence": 81427, "dataset experiment": 21931, "guidance chatgpt": 40715, "refining prompts": 81000, "creation comprehensive": 20237, "comprehensive dataset": 17226, "dataset hypothetical": 21969, "urban planning": 100400, "planning scenario": 72279, "subjected evaluation": 91949, "parameters employing": 70205, "visualization techniques": 103138, "world data": 104400, "data potential": 21487, "significant research": 87838, "research underscores": 82813, "underscores potential": 99572, "chatgpt enhancing": 13759, "way myriad": 103388, "employing large": 28451, "computer scientists": 17536, "developed large": 24505, "prediction models": 73705, "learning chain": 53060, "examine llms": 31118, "achieve goal": 2522, "review recently": 84273, "conference papers": 18007, "novel functional": 67172, "experiments chatgpt": 32122, "llms behave": 55520, "ethical dilemmas": 30068, "capable solving": 12264, "based reasoning": 9692, "process external": 75317, "experimental result": 32012, "llms research": 56712, "models sequential": 64165, "facilitated development": 33516, "models prediction": 63854, "processing computer": 75470, "prediction problems": 73715, "problems natural": 75173, "learning problems": 53347, "issues involving": 47996, "especially transformer": 29923, "spawning numerous": 89586, "survey presents": 93040, "comprehensive overview": 17283, "overview recent": 69433, "aimed solving": 4756, "decisionmaking tasks": 22609, "categorizing based": 12631, "paper puts": 69930, "various potential": 102523, "improve effectiveness": 43693, "network architectures": 66130, "training systems": 98314, "risks language": 84518, "design tools": 23860, "risks large": 84520, "science tools": 85617, "ability support": 1779, "laboratory work": 48965, "work llms": 104170, "llms particular": 56494, "expand capabilities": 31868, "seen date": 86084, "interventions help": 47346, "help manage": 41265, "manage risks": 58179, "help understand": 41286, "understand capabilities": 99597, "models effectiveness": 62278, "access tools": 2089, "mitigating risks": 60306, "remarkably improved": 81844, "models adapt": 61783, "adapt existing": 3041, "understand work": 99658, "complex diverse": 16928, "llms finding": 55981, "finding best": 34622, "amazon mechanical": 5303, "designed reduce": 23943, "demonstrating promising": 23441, "promising application": 76145, "application llms": 6370, "prompt code": 76248, "table qa": 93680, "adversarial perturbations": 3988, "data table": 21680, "extent existing": 33159, "qa models": 78140, "table columns": 93677, "benchmark called": 10085, "header table": 41139, "table content": 93678, "content question": 18676, "question results": 78703, "generate adversarial": 37373, "examples enhance": 31210, "enhance training": 29216, "improves robustness": 44077, "large vision": 52370, "pretraining paper": 74584, "novel design": 67145, "leverage dynamic": 53719, "incorporate additional": 44661, "additional parameters": 3254, "enhance inference": 29167, "inference results": 45293, "experiments largescale": 32238, "accuracy imagenet": 2287, "achieves higher": 2745, "llama code": 54734, "models solving": 64227, "solving programming": 89246, "llms source": 56836, "code recently": 15465, "llms transformerbased": 56965, "solving wide": 89261, "problems extent": 75143, "extent llms": 33166, "llms understand": 56982, "understand problem": 99642, "descriptions generate": 23704, "code relevant": 15472, "problem training": 75092, "data based": 21020, "question conduct": 78652, "experiments understand": 32324, "capable tackling": 12266, "tackling code": 93748, "results codegen": 83500, "descriptions significantly": 23728, "significantly impact": 87935, "chatgpt higher": 13928, "outstanding capability": 69270, "capability solving": 12211, "prompts given": 76729, "performance careful": 71031, "highquality code": 41739, "generation sota": 38424, "robust perturbations": 84680, "arithmetic operations": 7490, "efficient alternative": 27740, "finetuning parameterefficient": 35168, "dataset underlying": 22113, "underlying pretrained": 99516, "model remains": 61339, "remains unchanged": 81706, "representing diverse": 82173, "diverse skills": 26107, "weight space": 103528, "capabilities specifically": 12085, "addition negation": 3199, "approach requires": 7008, "training enables": 98090, "highly flexible": 41697, "apply different": 6656, "additionally extend": 3308, "llama empirical": 54741, "produces new": 75699, "existing ones": 31782, "models support": 64303, "coding widely": 15722, "unstructured text": 100295, "chatgpt class": 13617, "processing reasoning": 75561, "llms reduce": 56673, "reduce time": 80806, "time takes": 97035, "study using": 91881, "set additionally": 86839, "benchmark using": 10274, "sets assess": 86957, "gpt35 performs": 39655, "overall gpt35": 69296, "perform deductive": 70854, "levels agreement": 53688, "additionally demonstrate": 3288, "assess use": 7880, "vs human": 103247, "related research": 81214, "research methods": 82672, "effective language": 27318, "model application": 60551, "highperformance computing": 41725, "computing recent": 17573, "lms gpt4": 57132, "used multiple": 100857, "including natural": 44427, "applying analyzing": 6677, "computing hpc": 17563, "support paper": 92822, "paper design": 69674, "framework facilitate": 36136, "datasets ai": 22139, "components different": 17086, "software stack": 89033, "apis using": 6298, "tasks evaluated": 94596, "framework results": 36260, "evaluate set": 30284, "scientific machine": 85653, "learning scientific": 53403, "advanced recently": 3747, "recently different": 80476, "science engineering": 85581, "engineering objective": 28998, "wide applicability": 103641, "industrial applications": 45152, "applications digital": 6452, "integrate various": 46671, "various stages": 102579, "role conductor": 84763, "examples demonstrate": 31200, "facilitate broader": 33482, "summary report": 92601, "design optimization": 23819, "computing tasks": 17580, "using research": 101738, "research assistant": 82498, "tool educational": 97283, "educational tool": 27222, "fluid mechanics": 35488, "mechanics materials": 58789, "materials science": 58538, "biology bioinformatics": 11084, "physics exams": 72086, "exams large": 31306, "models emergence": 62293, "universities regarding": 100122, "completion paper": 16900, "10 distinct": 105, "2018 2022": 523, "undergraduate postgraduate": 99473, "conditions including": 17815, "ensure fair": 29449, "evaluation ai": 30506, "gpt35 scored": 39662, "respectively suggesting": 83093, "scores gpt4": 85763, "contrary expectations": 19059, "factbased questions": 33565, "did significantly": 24955, "gpt4 findings": 39888, "suggest current": 92357, "physics questions": 72090, "attributed training": 8448, "data generators": 21274, "generators various": 38746, "tasks previous": 94959, "explored different": 32772, "approaches training": 7215, "using generated": 101462, "rely simple": 81589, "systematic biases": 93319, "investigate training": 47704, "prompts specifying": 76825, "attributes like": 8456, "potential yield": 73324, "yield diverse": 104637, "high cardinality": 41382, "prompts outperform": 76788, "prompts terms": 76836, "performance additionally": 70975, "comprehensive empirical": 17230, "aspects like": 7779, "highlight key": 41594, "observations firstly": 67563, "exhibit significant": 31551, "significant biases": 87696, "regional bias": 81089, "plays pivotal": 72386, "pivotal role": 72205, "enhancing model": 29352, "performance lastly": 71347, "prompts achieve": 76646, "performance simple": 71568, "chatgpt biomedical": 13577, "models biomedical": 61938, "biomedical tasks": 11105, "tasks assessed": 94385, "performance commercial": 71068, "commercial large": 16077, "llms gpt35turbo": 56096, "gpt35turbo gpt4": 39702, "gpt4 tasks": 40122, "answer generation": 6009, "demonstrated competitive": 23243, "systems remarkably": 93557, "achieved simple": 2671, "simple zeroshot": 88249, "gpt35turbo able": 39696, "qa setting": 78152, "answers task": 6225, "models fell": 62455, "compared systems": 16646, "systems code": 93409, "github chatgpt": 38835, "states medical": 90521, "medical licensing": 58900, "licensing examination": 53967, "chatgpt rapid": 14144, "certain domains": 12756, "analysis focuses": 5522, "focuses chatgpts": 35600, "education particularly": 27169, "delivers accurate": 22943, "cases makes": 12543, "makes significant": 58072, "logical inference": 57262, "genuine understanding": 38776, "understanding mathematics": 99810, "rely visual": 81599, "comprehension additionally": 17153, "teacher students": 95347, "arabic nlp": 7306, "requiring finetuning": 82434, "finetuning including": 35093, "gpt4 despite": 39834, "performance gpt35": 71271, "models seven": 64170, "seven distinct": 87119, "analysis translation": 5708, "outperforms gpt35": 69065, "seven tasks": 87125, "analysis sentiment": 5668, "analysis task": 5696, "task providing": 94210, "insights llms": 46110, "exceptional results": 31389, "results challenging": 83488, "dataset additionally": 21817, "model pipelines": 61249, "autoregressive plms": 8974, "plms like": 72427, "techniques like": 95549, "generation instead": 38209, "regression despite": 81098, "quality language": 78304, "models rarely": 63977, "rarely evaluated": 79360, "evaluated models": 30350, "models introduced": 62809, "unclear existing": 99400, "systems high": 93474, "world use": 104418, "indepth empirical": 44950, "limitations capabilities": 54302, "given generation": 38889, "mediqachat 2023": 58942, "highquality synthetic": 41793, "doctorpatient conversations": 26197, "llms cooperation": 55688, "conversation data": 19321, "demonstrate approaches": 23023, "approaches yield": 7226, "reasonable performance": 79739, "evaluated automatic": 30316, "metrics rouge": 59965, "furthermore conducted": 36591, "conducted comparative": 17941, "method chatgpt": 59228, "potential utilizing": 73310, "datasets generative": 22281, "gpt4 human": 39928, "computing education": 17562, "programming recent": 75930, "works studied": 104388, "works limited": 104365, "outdated models": 68859, "benchmarks stateoftheart": 10414, "models comprehensive": 62069, "scenarios work": 85494, "systematically evaluate": 93365, "chatgpt based": 13561, "variety scenarios": 102328, "evaluate using": 30300, "introductory python": 47573, "buggy programs": 11565, "online platform": 67997, "scenarios results": 85483, "gpt4 struggles": 40106, "directions developing": 25461, "models news": 63674, "comparative performance": 16433, "bing ai": 11065, "evaluate proficiency": 30264, "prominent large": 76094, "35 40": 821, "news items": 66630, "conditions responses": 17817, "true false": 98909, "based accuracy": 9428, "facts provided": 33615, "showed moderate": 87397, "moderate proficiency": 64577, "proficiency models": 75795, "models average": 61889, "ai domain": 4372, "cognitive skills": 15756, "advancements ai": 3797, "ai capabilities": 4318, "finally experimental": 34527, "experimental data": 31992, "work openly": 104191, "available kaggle": 9058, "leverage pretrained": 53755, "task major": 94138, "queries short": 78513, "ner model": 66113, "proposed knowledge": 77214, "modelbased approaches": 61606, "knowledge collect": 48472, "search results": 85891, "methods automatically": 59543, "generate labels": 37516, "labels using": 48956, "modelbased knowledge": 61609, "enhancement method": 29263, "based adversarial": 9432, "adversarial data": 3971, "employ threestage": 28414, "threestage training": 96895, "framework train": 36303, "various ner": 102502, "ner tasks": 66121, "harnessing llms": 41092, "design using": 23864, "gpt4 support": 40114, "evaluated capability": 30322, "capability generative": 12168, "gpt4 automatically": 39776, "university course": 100127, "emerging technology": 28236, "course design": 20026, "focus specific": 35555, "specific cognitive": 89672, "generated based": 37662, "gpt4 conceptual": 39805, "level sophistication": 53679, "analysis showed": 5675, "lower levels": 57566, "levels results": 53703, "classifierfree guidance": 14829, "texttoimage generation": 96623, "generation lightweight": 38243, "pure language": 78028, "qa reasoning": 78149, "generation machine": 38254, "translation achieving": 98684, "achieving sota": 2881, "model twice": 61543, "like chainofthought": 54060, "chainofthought selfconsistency": 12842, "tasks used": 95230, "increase faithfulness": 44762, "prompts human": 76741, "query comprehensive": 78521, "showing promising": 87424, "results training": 83895, "typically requires": 99301, "requires large": 82391, "large parallel": 52301, "online code": 67976, "development processes": 24701, "conducted extensive": 17963, "t5 sequencetosequence": 93651, "new pretraining": 66493, "complete query": 16871, "predict masked": 73654, "identifies potential": 42837, "potential locations": 73188, "leverages pretrained": 53809, "generate appropriate": 37381, "based information": 9572, "information gain": 45488, "baselines significantly": 9852, "compared supervised": 16644, "embedding layer": 28055, "tensortrain decomposition": 95769, "llms capture": 55558, "capture subtle": 12367, "significantly enhance": 87914, "associated high": 8084, "parameters prohibitively": 70265, "high model": 41432, "model storage": 61454, "proposes approach": 77267, "token embedding": 97130, "matrix product": 58622, "manner experimental": 58234, "gpt2 demonstrate": 39267, "approach embedding": 6826, "performance original": 71448, "original gpt2": 68776, "generate effective": 37438, "effective test": 27376, "limited availability": 54397, "reported bugs": 82000, "approaches typically": 7217, "problem test": 75090, "inspiration recent": 46156, "generation propose": 38358, "desired results": 24009, "precise prompts": 73600, "specialized prompts": 89640, "prompts overcome": 76789, "overcome challenges": 69347, "challenges new": 13080, "prompt selection": 76410, "feedback prompts": 34123, "process compared": 75278, "demonstrates advantages": 23364, "approaches additionally": 7100, "easy integration": 27035, "integration llms": 46776, "llms evaluating": 55882, "models emergent": 62297, "dangerous capabilities": 20923, "agents reason": 4224, "undesirable behaviors": 99935, "behaviors paper": 10010, "gpt4 claude": 39793, "simple pattern": 88224, "pattern matching": 70616, "dataset prompt": 22037, "prompt consistent": 76260, "evaluations demonstrate": 30842, "use textual": 100710, "evaluations chatgpt": 30838, "performance user": 71657, "language modelpowered": 49602, "traditional search": 97699, "investigate differences": 47636, "user behavior": 100971, "tasks carry": 94419, "online experiment": 67986, "groups using": 40631, "chatgptlike tool": 14414, "tool using": 97329, "tool findings": 97291, "chatgpt group": 13921, "time tasks": 97036, "tasks significant": 95111, "notably chatgpt": 67029, "user search": 101040, "education levels": 27162, "answering straightforward": 6153, "straightforward questions": 90772, "providing general": 77751, "factchecking tasks": 33571, "users perceive": 101154, "higher information": 41508, "information quality": 45583, "compared google": 16553, "similar level": 88083, "trust tools": 98933, "tools furthermore": 97409, "furthermore participants": 36644, "participants using": 70380, "better user": 10809, "user experiences": 100987, "satisfaction perceived": 85195, "perceived ease": 70761, "opportunities integrating": 68499, "designs prompt": 23986, "work researchers": 104252, "ai human": 4427, "recent introduction": 80269, "introduction large": 47556, "integrate llms": 46667, "present prompt": 74041, "framework generating": 36148, "generating prompts": 37958, "prompts llms": 76775, "prompts generated": 76725, "feedback based": 34065, "users text": 101189, "templates help": 95700, "perform like": 70891, "types feedback": 99235, "discussion prompt": 25725, "help developers": 41242, "developers integrate": 24554, "uncertainty estimation": 99389, "estimation large": 30027, "remarkable potential": 81809, "potential natural": 73205, "challenge lies": 12900, "susceptibility hallucinations": 93064, "erodes trust": 29758, "uncertainty quantification": 99390, "llms remains": 56696, "significant hurdle": 87761, "address critical": 3384, "tokens autoregressive": 97179, "llmgenerated text": 55377, "tokens carry": 97184, "phenomenon linguistic": 72027, "existing methodologies": 31754, "methodologies treat": 59480, "estimating uncertainty": 30019, "bias propose": 10879, "propose jointly": 77010, "experiments involving": 32230, "popular offtheshelf": 72659, "offtheshelf llms": 67893, "llms vicuna": 57033, "vicuna wizardlm": 102872, "like opt": 54206, "opt llama": 68540, "33b parameters": 810, "evaluation various": 30828, "tasks encompassing": 94584, "encompassing domains": 28766, "science qa": 85605, "qa medical": 78137, "medical qa": 58908, "llms learning": 56287, "learning prompt": 53358, "understand ai": 99594, "pilot study": 72117, "holds great": 41899, "negative sentiments": 66070, "ai methods": 4463, "methods demonstrate": 59589, "demonstrate remarkable": 23178, "factor contributing": 33578, "perception llms": 70790, "crucial address": 20471, "llms time": 56936, "time reduce": 97009, "negative attitudes": 66053, "attitudes ai": 8405, "necessitates comprehensive": 65883, "public llm": 77932, "llm constraints": 55019, "techniques prompting": 95575, "highlevel concepts": 41559, "llms followed": 56003, "chatgpt creating": 13669, "emerged including": 28139, "including high": 44380, "interaction quality": 47031, "quality llm": 78310, "better grasp": 10725, "leading unsatisfactory": 52886, "aim explore": 4709, "modeling knowledge": 61647, "gpt3 yields": 39561, "yields competitive": 104664, "competitive accuracy": 16787, "accuracy methods": 2312, "require pretraining": 82283, "large text": 52351, "contrast general": 19071, "general topic": 37199, "extract meaningful": 33237, "need pretraining": 65980, "tasks develop": 94540, "making ideal": 58104, "constrained settings": 18379, "datasets method": 22335, "existing supervised": 31829, "accuracy robustness": 2355, "robustness efficiency": 84710, "classification methods": 14762, "approach chatgpt": 6772, "research demonstrated": 82538, "demonstrated high": 23265, "gaining attention": 36848, "transparency reproducibility": 98774, "superior data": 92636, "fewshot approaches": 34212, "different temperature": 25224, "temperature parameters": 95682, "range text": 79219, "findings chatgpt": 34644, "llms outperform": 56477, "demonstrate competitive": 23046, "scenarios prompt": 85474, "advancements gpt4": 3825, "comparable humans": 16377, "business processes": 11703, "benefit natural": 10455, "process querying": 75385, "querying language": 78556, "event log": 30924, "prompt size": 76418, "constraints paper": 18403, "paper apply": 69612, "apply llms": 6662, "mining artifacts": 60125, "strategies implement": 90823, "event logs": 30925, "analysis questions": 5632, "formulate prompts": 35866, "quality answers": 78222, "performance comparison": 71094, "english dataset": 29060, "chatgpt microsoft": 14013, "microsoft bing": 59998, "bard paper": 9368, "llms openai": 56453, "dataset performance": 22029, "bard chatgpt": 9350, "respectively results": 83090, "students english": 91304, "language proficiency": 51061, "contribute understanding": 19131, "understanding potential": 99840, "language education": 49198, "effective tools": 27380, "school level": 85551, "autoregressive large": 8966, "progress various": 76013, "high computation": 41385, "tokenbytoken generation": 97161, "generation address": 38014, "cost using": 19887, "enable faster": 28547, "reduced computation": 80813, "methods promising": 59762, "online inference": 67988, "readily applied": 79511, "wait token": 103292, "severely limits": 87136, "techniques paper": 95568, "kv caching": 48884, "need recompute": 65983, "middle layers": 60003, "upper layers": 100378, "inference speedups": 45297, "achieved using": 2687, "techniques data": 95496, "education large": 27159, "models rapid": 63965, "rapid advances": 79305, "stateoftheart tools": 90502, "tools streamline": 97471, "streamline complex": 90936, "processes result": 75448, "llms transforming": 56967, "assessing managing": 7922, "concrete data": 17772, "education pedagogy": 27170, "llms play": 56525, "play significant": 72351, "significant role": 87847, "learning tools": 53455, "personalized education": 71910, "llms education": 55826, "education calls": 27134, "calls careful": 11782, "tasks efficiently": 94570, "benefits llms": 10479, "rise llms": 84480, "llms heralds": 56125, "heralds transformative": 41323, "paper seeks": 69946, "light emerging": 54003, "emerging trends": 28239, "uncharted territory": 99395, "various knowledge": 102455, "knowledge domains": 48525, "rests assumption": 83384, "learning goals": 53181, "based preliminary": 9657, "effective control": 27277, "supervision required": 92761, "transformers large": 98620, "exhibit emergent": 31514, "tasks basic": 94397, "trained extensive": 97829, "extensive text": 33135, "explicitly encoded": 32543, "prediction objective": 73709, "operations addition": 68457, "using nexttoken": 101643, "conventional training": 19298, "data effective": 21169, "building prior": 11645, "chainofthought style": 12843, "intermediate step": 47219, "pretraining approach": 74508, "examine effects": 31105, "effects fewshot": 27607, "additionally discuss": 3294, "length generalization": 53590, "generalization challenges": 37254, "challenges work": 13142, "particular characteristics": 70395, "market dynamics": 58393, "accurately identifying": 2456, "skills required": 88607, "techniques increasingly": 95536, "support effort": 92804, "automatically extracting": 8866, "challenging vast": 13256, "vast number": 102687, "provides useful": 77717, "useful reference": 100953, "job posts": 48137, "problem work": 75102, "propose endtoend": 76969, "train classifier": 97732, "second llm": 85938, "using synthetic": 101802, "data achieves": 20943, "score 10": 85692, "10 points": 115, "points previous": 72506, "framing task": 36331, "programming prompting": 75927, "llm lead": 55149, "prompts especially": 76705, "weaker llms": 103438, "integrating large": 46727, "extremely promising": 33398, "texts language": 96580, "abilities knowledge": 1519, "knowledge topic": 48784, "topic text": 97519, "simplification task": 88269, "text better": 96100, "specific target": 89758, "core information": 19546, "information bypassing": 45413, "require domain": 82242, "especially relevant": 29910, "cancer patients": 11796, "patients reading": 70612, "novel treatment": 67274, "task advance": 93930, "run using": 84950, "introduce approach": 47394, "approach extends": 6853, "causal mediation": 12663, "identify model": 42886, "performing specific": 71788, "specific subtask": 89756, "proof concept": 76873, "apply method": 6663, "automatically discover": 8856, "variable values": 102243, "arithmetic tasks": 7495, "method successfully": 59436, "residual stream": 82921, "ai chat": 4327, "behaviors generative": 10002, "engage online": 28911, "online information": 67989, "information recently": 45586, "technology openai": 95652, "new technologies": 66554, "search information": 85877, "information research": 45593, "early investigation": 26977, "people make": 70739, "chat search": 13390, "chat systems": 13391, "search tools": 85904, "participants used": 70379, "openai gpt35": 68161, "api bing": 6266, "bing web": 11068, "search tasks": 85901, "integrated ai": 46674, "assessing efficacy": 7912, "efficacy large": 27640, "generating accurate": 37861, "al 2023": 4872, "innovative use": 45869, "use nlp": 100638, "task study": 94257, "study attempt": 91502, "generative abilities": 38523, "providing informative": 77761, "present extensive": 73983, "evaluation benchmarking": 30529, "finetuned flant5": 34887, "experimental findings": 32000, "indicate efficacy": 44988, "gpt4 finetuned": 39892, "models measured": 63596, "measured using": 58755, "characteristics including": 13331, "challenges finetuning": 13021, "poor generalizability": 72593, "models finally": 62467, "finally note": 34546, "combining open": 16020, "answering paper": 6133, "demonstrate gpt35": 23093, "evidencebased answers": 30999, "reducing risk": 80891, "risk hallucinations": 84498, "dataset 100": 21796, "questions covering": 78811, "annotators results": 5969, "produce comprehensive": 75612, "tool generating": 97292, "code critical": 15180, "critical machine": 20338, "treat code": 98798, "sequences text": 86687, "trained huge": 97839, "huge corpora": 42035, "achieving state": 2882, "art performance": 7528, "unlike natural": 100175, "language current": 49177, "llms exploit": 55935, "code treat": 15553, "semantic properties": 86334, "properties code": 76894, "abstract syntax": 1935, "syntax tree": 93197, "tree ast": 98818, "unfortunately process": 99988, "process generating": 75322, "propose tool": 77140, "developers create": 24549, "various se": 102563, "salient features": 85076, "code need": 15420, "currently supports": 20821, "snippets using": 88837, "easily extendable": 27014, "languages built": 51242, "arise ai": 7476, "outside field": 69266, "context popular": 18824, "discourse ai": 25583, "foundation large": 35920, "used create": 100768, "volume research": 103215, "ai ai": 4295, "field research": 34407, "risks individuals": 84516, "language interface": 49292, "behavioral analysis": 9994, "involves translating": 47857, "descriptive language": 23739, "analysis challenging": 5451, "interactive behavior": 47090, "comprehension capability": 17159, "window size": 103831, "implement novel": 43320, "shortterm longterm": 87337, "users directly": 101095, "directly use": 25524, "learning computer": 53081, "refine results": 80979, "challenge tasks": 12938, "tasks note": 94893, "models core": 62127, "vision modules": 102996, "intelligent code": 46919, "code demos": 15223, "llms need": 56426, "investigate large": 47662, "gpt4 synthesize": 40118, "manual effort": 58263, "combine gpt4": 15971, "correct errors": 19666, "effective results": 27363, "results use": 83904, "human prompts": 42338, "prompts experiments": 76715, "research presents": 82721, "comprehensive methodology": 17278, "chatgpt widely": 14354, "used large": 100839, "llm study": 55275, "study develops": 91578, "models information": 62779, "information functional": 45487, "prompts chatgpts": 76663, "enhance effectiveness": 29155, "chatbot systems": 13422, "demonstrated using": 23359, "applying proposed": 6698, "proposed methodology": 77235, "extracts entities": 33361, "generates relevant": 37846, "responses study": 83312, "llms googles": 56072, "googles bard": 39147, "utilization various": 101926, "llmbased systems": 55360, "versatile approach": 102784, "approach opens": 6960, "empowering developers": 28503, "developers enhance": 24552, "domains languages": 26538, "chatgpts proficiency": 14445, "transformative influence": 98472, "influence large": 45351, "llms profoundly": 56584, "profoundly reshaping": 75826, "models demonstrating": 62195, "demonstrating remarkable": 23442, "paper carry": 69626, "carry comprehensive": 12439, "coding capabilities": 15698, "capabilities based": 11844, "challenges focus": 13023, "language problems": 50961, "structures algorithms": 91190, "chatgpt ability": 13475, "generate correct": 37417, "code quality": 15462, "runtime errors": 84962, "code chatgpt": 15146, "fails solve": 33707, "problem hand": 75025, "gain insights": 36814, "chatgpt directly": 13720, "comparisons human": 16738, "performance feasible": 71212, "questions context": 78808, "vast array": 102674, "main topics": 57842, "problems having": 75149, "having varying": 41128, "degrees difficulty": 22915, "chatgpt experiment": 13787, "technology acceptance": 95637, "model research": 61345, "presents findings": 74137, "theoretical concepts": 96734, "identified study": 42830, "model tam": 61489, "demonstrate validity": 23222, "achieving 71": 2817, "reveal potential": 84168, "generated samples": 37775, "particularly regarding": 70496, "responses constructs": 83192, "promise tool": 76132, "investigation needed": 47794, "needed address": 66009, "text generators": 96284, "generators large": 38742, "conversational interfaces": 19374, "release openais": 81387, "proprietary large": 77299, "generation finetuned": 38167, "finetuned reinforcement": 34958, "proprietary software": 77319, "opensource projects": 68397, "contribution paper": 19170, "data licensing": 21380, "points data": 72496, "curation model": 20643, "training finetuning": 98116, "organizing knowledge": 68751, "knowledge research": 48745, "sr provide": 90070, "tedious manual": 95669, "studies costly": 91371, "models set": 64167, "propose approach": 76933, "approach leverage": 6931, "assess consistency": 7838, "negotiation dialogues": 66096, "support systems": 92834, "help human": 41250, "approaches focus": 7146, "taskoriented dialogues": 94323, "produce unstructured": 75665, "continuous monitoring": 19030, "state space": 90280, "use gpt3": 100567, "synthesized dataset": 93236, "baseline task": 9809, "corpus pretraining": 19647, "t5small t5base": 93668, "dst task": 26885, "training solely": 98302, "smaller training": 88797, "encourage research": 28794, "tracking study": 97628, "action recognition": 2950, "adaptation task": 3099, "innovative application": 45849, "loss training": 57477, "action labels": 2945, "specifically models": 89852, "constraints using": 18410, "generated dataset": 37687, "dataset observe": 22018, "improvement model": 43924, "models adaptability": 61784, "slight decrease": 88630, "findings shed": 34748, "light potential": 54013, "potential challenges": 73050, "challenges incorporating": 13043, "llms knowledge": 56263, "terms top1": 95844, "finding answers": 34620, "commonsense scenarios": 16243, "adversely affect": 4019, "responses propose": 83284, "fewshot generation": 34238, "generation gpt3": 38185, "highlights significance": 41669, "response large": 83143, "effective prompt": 27346, "extraction language": 33307, "prompting prompt": 76594, "output prompts": 69182, "guide models": 40746, "hidden user": 41356, "adversarial users": 4005, "extraction attacks": 33282, "attacks recover": 8235, "present framework": 73988, "different sources": 25202, "high probability": 41441, "secret prompt": 85975, "experiments real": 32279, "despite existing": 24048, "zeroshot natural": 104828, "data underlying": 21714, "kgtotext generation": 48383, "graph data": 40372, "shown models": 87503, "use pretraining": 100660, "amounts text": 5357, "task relatively": 94219, "relatively small": 81324, "small sets": 88729, "paper build": 69625, "build concept": 11584, "concept using": 17610, "zeroshot generation": 104791, "achieves near": 2756, "performance measures": 71396, "additionally compare": 3280, "statements significant": 90297, "text large": 96319, "public goods": 77923, "chatgpt efficiently": 13740, "efficiently provide": 27858, "provide users": 77593, "users information": 101118, "information various": 45671, "asking people": 7744, "online users": 68017, "users interact": 101125, "drastically reduce": 26794, "available humangenerated": 9053, "data knowledge": 21351, "knowledge resources": 48746, "present significant": 74056, "data future": 21248, "chatgpt changed": 13600, "russian chinese": 84967, "access chatgpt": 2055, "chatgpt limited": 13992, "similar forums": 88068, "model estimates": 60820, "time larger": 96985, "used programming": 100880, "posts chatgpt": 72963, "scores suggesting": 85783, "suggesting chatgpt": 92407, "suggest users": 92396, "questions better": 78790, "chatgpt efficient": 13739, "certain programming": 12772, "investigating chatgpts": 47763, "potential assist": 73022, "requirements elicitation": 82338, "apply nlp": 6668, "tools techniques": 97475, "generative aibased": 38584, "significant recognition": 87836, "tasks explore": 94617, "elicit requirements": 27989, "questions conducted": 78803, "responses containing": 83193, "seven different": 87118, "quality attributes": 78226, "comparing quality": 16694, "based results": 9702, "issues related": 48017, "llms future": 56016, "research focus": 82602, "leverage emergent": 53720, "llms effectively": 55830, "natural languagebased": 65767, "improving consistency": 44104, "grounded knowledge": 40574, "ability care": 1603, "measure functional": 58738, "lead poor": 52813, "conditions requiring": 17816, "multiple assessors": 65140, "varying levels": 102652, "lack necessary": 49035, "developed dialogue": 24497, "way dialogue": 103350, "consists major": 18338, "major modules": 57936, "modules natural": 64678, "respectively order": 83083, "consistent underlying": 18278, "base dialogue": 9398, "dialogue requires": 24888, "understanding users": 99901, "classification generated": 14748, "responses based": 83180, "details using": 24205, "using recently": 101729, "llms achieved": 55422, "achieved significant": 2667, "significant success": 87858, "hallucination problems": 40849, "problems especially": 75135, "especially scenarios": 29912, "scenarios requiring": 85480, "requiring deep": 82429, "partially addressed": 70350, "graphs kg": 40435, "kg llm": 48375, "llm reasoning": 55226, "treats llm": 98812, "perform reasoning": 70914, "reasoning based": 79786, "retrieved knowledge": 84086, "iteratively executes": 48074, "reasoning paths": 79969, "use number": 100640, "experiments examine": 32190, "deep reasoning": 22799, "reasoning power": 79979, "leveraging llms": 53872, "provides flexible": 77668, "plugandplay framework": 72446, "framework different": 36098, "llms kgs": 56261, "cost performance": 19875, "small llm": 88692, "models exceed": 62369, "certain scenarios": 12776, "cost llm": 19864, "trainingfree method": 98363, "rely additional": 81567, "comparative assessment": 16429, "nlg evaluation": 66686, "comparisons using": 16740, "llms enabled": 55854, "application systems": 6390, "systems automated": 93393, "automated assessment": 8674, "highly challenging": 41684, "score prediction": 85733, "relative comparisons": 81291, "multiple perspectives": 65237, "biases prompt": 10948, "terms number": 95825, "llms flant5": 55991, "flant5 llama2chat": 35397, "performance competitive": 71096, "competitive stateoftheart": 16822, "methods additionally": 59518, "exhibit strong": 31557, "debiasing methods": 22540, "methods improve": 59673, "code understanding": 15555, "challenging especially": 13172, "new complex": 66366, "comments documentation": 16067, "typically scarce": 99303, "navigate large": 65823, "process writing": 75419, "llmbased conversational": 55347, "openais gpt35turbo": 68208, "model highlevel": 60975, "explicit prompts": 32538, "code provide": 15454, "provide details": 77451, "used code": 100759, "domainspecific terms": 26652, "openended prompts": 68261, "llm program": 55212, "evaluate user": 30299, "developers use": 24564, "interaction llms": 47018, "promising future": 76165, "future direction": 36712, "tool builders": 97272, "giant models": 38823, "source community": 89366, "article present": 7549, "present comparative": 73948, "methods discuss": 59605, "scenarios small": 85484, "models needed": 63665, "examines efficacy": 31138, "sota large": 89308, "exhibits proficiency": 31624, "conduct comparative": 17834, "achievements various": 2694, "demonstrates superior": 23414, "exhibits better": 31598, "utilizes advanced": 101977, "advanced gpt4": 3700, "contrast chatgpt": 19067, "chatgpt built": 13581, "built gpt35": 11663, "comprehension reasoning": 17181, "reasoning generation": 79895, "automated jailbreak": 8707, "multiple large": 65209, "chatbots large": 13445, "revolutionized artificial": 84339, "text llm": 96329, "llm chatbots": 55001, "particular seen": 70419, "humanmachine interactions": 42555, "interactions llm": 47068, "jailbreak attacks": 48093, "attacks malicious": 8224, "malicious users": 58166, "users manipulate": 101140, "prompts elicit": 76694, "existing attempts": 31662, "attempts mitigate": 8270, "mitigate threats": 60284, "research reveals": 82766, "substantial gap": 92082, "gap understanding": 36985, "vulnerabilities largely": 103262, "defensive measures": 22856, "llm service": 55254, "providers paper": 77638, "framework offers": 36217, "offers indepth": 67839, "indepth understanding": 44966, "propose innovative": 77005, "innovative methodology": 45862, "injection techniques": 45829, "bard bing": 9348, "uncovers intricate": 99432, "intricate details": 47362, "attack successfully": 8186, "introduce automatic": 47398, "method jailbreak": 59341, "jailbreak prompts": 48097, "prompts leveraging": 76772, "leveraging finetuned": 53843, "validate potential": 102102, "potential automated": 73027, "various commercial": 102384, "commercial llm": 16081, "achieves promising": 2773, "effectiveness existing": 27514, "need robust": 65990, "robust defenses": 84649, "marks significant": 58413, "significant step": 87854, "step understanding": 90661, "understanding mitigating": 99814, "realm llm": 79613, "using dalle": 101395, "generative aipowered": 38585, "role artificial": 84756, "model openai": 61167, "chatgpts language": 14435, "transform text": 98461, "descriptions image": 23710, "visual representations": 103117, "image generation": 43042, "generation texttoimage": 38471, "types datasets": 99228, "aigenerated images": 4670, "compared ground": 16562, "images captured": 43087, "comparison based": 16703, "signaltonoise ratio": 87649, "increase average": 44750, "quality method": 78317, "method resulted": 59415, "decrease average": 22714, "similarity original": 88146, "original images": 68782, "images similar": 43114, "measures human": 58764, "images generated": 43092, "compared generated": 16551, "potential generating": 73106, "generating realistic": 37964, "accelerating development": 2015, "ai generation": 4418, "ai supported": 4561, "employ machine": 28406, "context predict": 18826, "forms generative": 35850, "generates textual": 37854, "textual visual": 96702, "visual outputs": 103094, "human responses": 42356, "responses proposes": 83286, "information narrative": 45550, "ai gained": 4408, "positive reception": 72833, "early chatgpt": 26970, "truth reference": 98955, "current capabilities": 20670, "search methods": 85881, "contextual relevance": 18952, "creativity generative": 20268, "scenarios information": 85443, "requests considered": 82220, "idea generation": 42785, "generated ideas": 37719, "usage paper": 100449, "generate search": 37585, "enabling individuals": 28639, "efficiently create": 27844, "llm services": 55256, "march 2023": 58352, "june 2023": 48209, "gpt4 diverse": 39842, "math problems": 58551, "opinion surveys": 68475, "medical license": 58899, "visual reasoning": 103111, "reasoning performance": 79973, "gpt4 vary": 40148, "example gpt4": 31162, "gpt4 march": 39968, "84 accuracy": 1358, "interestingly gpt35": 47165, "answer sensitive": 6058, "sensitive questions": 86466, "survey questions": 93045, "mistakes code": 60212, "gpt4s ability": 40174, "follow user": 35657, "user instructions": 100996, "short time": 87313, "highlighting need": 41633, "need continuous": 65924, "open foundation": 68065, "finetuned chat": 34870, "work develop": 104050, "release llama": 81376, "llms ranging": 56628, "billion 70": 11016, "70 billion": 1210, "parameters finetuned": 70214, "llms called": 55549, "called llama": 11775, "llama 2chat": 54711, "outperform opensource": 68956, "tested based": 95970, "helpfulness safety": 41300, "description approach": 23676, "approach finetuning": 6863, "order enable": 68695, "community build": 16304, "work contribute": 104031, "responsible development": 83343, "development llms": 24674, "llms understanding": 56984, "processing machine": 75502, "learning led": 53247, "users ability": 101072, "ability models": 1721, "toxic harmful": 97586, "harmful responses": 41043, "remains open": 81684, "elicit toxic": 27990, "considered safe": 18205, "existing tools": 31840, "design new": 23816, "new attack": 66335, "sentences dataset": 86551, "dataset extensive": 21937, "models triggered": 64437, "rate conversation": 79378, "attack bypass": 8161, "defense methods": 22852, "dynamic interactive": 26923, "used industry": 100825, "industry researchers": 45170, "researchers develop": 82847, "detecting mitigating": 24247, "responses conversational": 83195, "dialogue improve": 24871, "biomedical literature": 11097, "biomedical research": 11104, "research yields": 82829, "wealth information": 103465, "information accessible": 45390, "essential tool": 29960, "knowledge clinical": 48470, "clinical biomedical": 14909, "recent improvements": 80264, "improvements artificial": 43960, "response present": 83151, "tailored general": 93778, "specific information": 89707, "information needs": 45555, "pubmed search": 78019, "continued challenges": 19012, "clinical research": 14934, "precision medicine": 73611, "practical considerations": 73506, "tools finally": 97405, "provide perspective": 77537, "breakthroughs large": 11402, "comprehensive view": 17317, "available tools": 9094, "enhancing conversational": 29317, "conversational quality": 19390, "learning chatbots": 53064, "asr error": 7798, "correction integration": 19702, "nlp technologies": 66823, "technologies educational": 95625, "results particularly": 83760, "learning domain": 53115, "improve language": 43720, "learners paper": 53001, "explores use": 32822, "use gpt4": 100568, "evaluate impact": 30202, "correction models": 19707, "conversation quality": 19333, "standard error": 90169, "methods need": 59736, "need indomain": 65962, "data ready": 21536, "ai software": 4552, "worlds largest": 104428, "techniques chatgpt": 95486, "days release": 22502, "main reason": 57838, "provided official": 77630, "low quality": 57525, "humanwritten chatgptgenerated": 42664, "chatgptgenerated answers": 14401, "answers semantically": 6220, "chatgptgenerated ones": 14405, "multiple aspects": 65139, "overall score": 69321, "release data": 81363, "origin llms": 68755, "tree graph": 98820, "late 2022": 52617, "2022 large": 540, "llms prominent": 56587, "prominent llms": 76097, "new llms": 66449, "llms know": 56262, "llm backbones": 54978, "llms available": 55508, "advantage relatively": 3927, "communities llms": 16295, "using ngrams": 101645, "methods successfully": 59811, "successfully identify": 92278, "families llms": 33837, "public web": 77952, "rapidly generates": 79349, "generates variety": 37858, "available following": 9036, "following link": 35686, "chatgpt digital": 13719, "forensic investigation": 35743, "good bad": 39107, "topic discussion": 97505, "llms bert": 55530, "gpts llama": 40241, "solutions based": 89129, "paper assesses": 69617, "assesses impact": 7900, "impact chatgpt": 43192, "chatgpt field": 13818, "gpt4 series": 40071, "assess capability": 7830, "cases including": 12533, "anomaly detection": 5980, "incident response": 44218, "conclusions drawn": 17762, "evidence need": 30982, "sufficient knowledge": 92337, "tool identify": 97296, "supporting tool": 92861, "surpassing stateoftheart": 92974, "approaches effectiveness": 7131, "effectiveness code": 27500, "potential code": 73055, "detection remains": 24349, "remains unexplored": 81720, "unexplored work": 99971, "analysis code": 5457, "multiplication convolution": 65299, "propose preliminary": 77091, "strategy code": 90866, "detection results": 24353, "poor accuracy": 72590, "high number": 41433, "number false": 67340, "false positives": 33815, "strategy substantially": 90920, "substantially reduces": 92138, "reduces false": 80831, "results pose": 83770, "pose considerable": 72741, "stateoftheart code": 90323, "study introduce": 91681, "framework assess": 36041, "gpt4 emulating": 39852, "methodology encompasses": 59489, "utilization llms": 101917, "patient outcomes": 70605, "investigation using": 47799, "real data": 79540, "intensive care": 46948, "analysis offers": 5592, "llms field": 55978, "patient care": 70601, "healthcare solutions": 41195, "solutions evaluating": 89138, "aim contribute": 4699, "ongoing discourse": 67966, "discourse surrounding": 25592, "integration artificial": 46753, "healthcare settings": 41194, "promoting responsible": 76225, "instructionfollowing evaluation": 46451, "tasks accurately": 94339, "accurately evaluating": 2450, "evaluating ability": 30394, "benchmarks primarily": 10396, "primarily focus": 74783, "align model": 5003, "necessarily imply": 65865, "ability instruction": 1685, "evaluation protocol": 30737, "protocol called": 77353, "task label": 94114, "label words": 48901, "aligning model": 5050, "seamlessly integrated": 85846, "examine models": 31120, "models reliance": 64052, "families datasets": 33832, "abilities models": 1537, "different families": 25064, "families scales": 33841, "strongest gpt4": 91100, "struggles perform": 91237, "better random": 10775, "improve instructionfollowing": 43717, "compiler errors": 16845, "models compiler": 62060, "compiler error": 16844, "error messages": 29787, "compilation errors": 16835, "studies indicate": 91401, "lack sufficient": 49057, "fix errors": 35349, "study systematically": 91859, "determine effective": 24406, "methods impact": 59672, "impact model": 43232, "version prompt": 102813, "effectiveness adding": 27489, "adding code": 3165, "search method": 85880, "method results": 59417, "furthermore gpt4": 36623, "surpasses gpt35": 92933, "superior outcomes": 92644, "results offer": 83750, "valuable guidance": 102149, "underscoring transformative": 99587, "potential advanced": 72986, "aiassisted programming": 4622, "retrieval augmentation": 83962, "tasks opendomain": 94901, "rely external": 81574, "information assistance": 45408, "knowledge including": 48622, "unclear llms": 99403, "able perceive": 1870, "augmentation study": 8553, "present initial": 73996, "boundaries llms": 11337, "llms retrieval": 56725, "affects llms": 4064, "llms opendomain": 56464, "focus primary": 35548, "primary research": 74811, "questions analyze": 78776, "llms evidence": 55888, "evidence llms": 30979, "questions accuracy": 78764, "responses furthermore": 83220, "proves effective": 77392, "approach enhancing": 6841, "llms awareness": 55510, "awareness knowledge": 9216, "additionally llms": 3323, "llms propensity": 56601, "code reproduce": 15479, "reproduce work": 82192, "standardized evaluation": 90222, "evaluation long": 30658, "long context": 57301, "context language": 18794, "recently growing": 80503, "extending context": 32963, "length large": 53594, "llms aiming": 55462, "aiming effectively": 4763, "process long": 75354, "long inputs": 57314, "extended context": 32952, "addressing key": 3545, "key aspects": 48272, "dataset construction": 21879, "construction evaluation": 18465, "metrics hand": 59926, "encompassing diverse": 28765, "tokens hand": 97203, "results popular": 83767, "evaluation employing": 30583, "study popular": 91773, "commercial llms": 16082, "opensource counterparts": 68325, "benchmark empirical": 10146, "insights study": 46139, "lay groundwork": 52713, "language modelbased": 49574, "provide immediate": 77494, "immediate feedback": 43166, "uses large": 101235, "learning study": 53430, "solve challenges": 89163, "model ensuring": 60811, "learning used": 53465, "answers chatgpt": 6173, "question paper": 78692, "proposes method": 77272, "answers students": 6224, "use additional": 100460, "fairness chatgpt": 33733, "prompts research": 76813, "research investigates": 82644, "potential largescale": 73161, "specifically openais": 89855, "supplemented domainspecific": 92775, "parallel performance": 70082, "traditional machine": 97674, "20 data": 486, "points compared": 72495, "llms particularly": 56495, "minimizing false": 60118, "enhancing fairness": 29328, "risk analysis": 84489, "underscore potential": 99546, "analogous tasks": 5380, "laying groundwork": 52769, "future explorations": 36727, "harnessing capabilities": 41084, "llms diverse": 55813, "diverse ml": 26049, "distillation large": 25815, "driving domain": 26856, "expert systems": 32375, "effort domain": 27875, "possible automate": 72892, "engineering llm": 28990, "chatgpt assess": 13540, "possible human": 72907, "early intervention": 26976, "butterfly effect": 11706, "develop webbased": 24490, "hope findings": 41950, "knowledgebased systems": 48824, "assistance human": 8027, "identified crucial": 42823, "crucial human": 20492, "visual linguistic": 103085, "realworld challenges": 79651, "challenges arise": 12965, "resolution complex": 82932, "acquired knowledge": 2915, "realization artificial": 79583, "intelligence despite": 46841, "prevalence large": 74630, "like gpt35": 54144, "comprehension generation": 17166, "generation interaction": 38214, "interaction reasoning": 47032, "constraints context": 18395, "processing extensive": 75480, "llms augmented": 55500, "integration knowledge": 46768, "novel methodology": 67210, "central approach": 12732, "based multiple": 9627, "feedback comprehensive": 34069, "methodology conducted": 59486, "surpassing existing": 92957, "solutions including": 89145, "approach efficient": 6824, "compared direct": 16532, "processing text": 75584, "text llms": 96330, "questions recent": 78928, "processing demonstrated": 75473, "llms improve": 56164, "range educational": 79154, "recent chatbots": 80230, "significant implications": 87767, "way obtain": 103391, "scientific facts": 85643, "spread misinformation": 90038, "tools critical": 97381, "tend produce": 95739, "policy interventions": 72541, "currently exists": 20810, "dataset chatgpt": 21850, "responses possibly": 83275, "controversial topics": 19265, "malicious actors": 58154, "llms assessing": 55493, "assessing large": 7916, "ability predict": 1743, "enormous potential": 29401, "leveraging generative": 53844, "humans benefit": 42578, "decisions consider": 22612, "implications ai": 43364, "decisionmaking crucial": 22594, "dictator game": 24947, "gpt4 bard": 39782, "behavioral patterns": 9997, "nonetheless gpt4": 66897, "gpt4 consistently": 39807, "bias significant": 10889, "ai developers": 4365, "developers users": 24565, "planning long": 72267, "recently achieved": 80445, "achieved better": 2616, "generalization sample": 37282, "web automation": 103481, "automation performance": 8922, "realworld websites": 79717, "inductive bias": 45145, "agent learns": 4142, "tasks real": 95005, "html documents": 42018, "programs generated": 75947, "generated design": 37690, "new pretrained": 66489, "documents using": 26270, "local global": 57198, "attention mechanisms": 8340, "planning summarization": 72283, "recipe improves": 80576, "model solve": 61438, "solve various": 89202, "higher success": 41526, "rate prior": 79395, "task planning": 94187, "evaluation potential": 30718, "llms coding": 55636, "languages typically": 51369, "lack data": 48993, "processing techniques": 75583, "techniques study": 95596, "study focuses": 91645, "opensource software": 68407, "proprietary llm": 77305, "gpt35 findings": 39601, "providing precise": 77788, "code llm": 15393, "capability identify": 12174, "unit tests": 100099, "tests study": 96054, "leveraging power": 53887, "lowresource programming": 57635, "execution code": 31453, "additional overhead": 3253, "code requires": 15484, "using machine": 101598, "lower cost": 57558, "context task": 18859, "task code": 93972, "understand code": 99600, "code propose": 15452, "benchmark task": 10261, "llms formalize": 56006, "formalize task": 35807, "evaluate capability": 30149, "code execution": 15249, "tests code": 96039, "code humaneval": 15351, "humaneval dataset": 42474, "coverage information": 20060, "coderelated tasks": 15618, "including openais": 44438, "gpt4 gpt35turbo": 39917, "bard anthropics": 9345, "holistic exploration": 41918, "llm paradigm": 55186, "decomposes complex": 22693, "significantly reducing": 88020, "syntactic information": 93173, "ways data": 103410, "lastly conduct": 52607, "investigate efficacy": 47642, "chatgpt handling": 13923, "yields suboptimal": 104681, "results code": 83499, "factuality detection": 33649, "detection generative": 24306, "multitask multidomain": 65363, "models facilitated": 62437, "challenges identifying": 13037, "errors generated": 29816, "text particular": 96352, "wider range": 103768, "increasing risk": 44852, "containing factual": 18535, "texts tend": 96606, "evidence available": 30968, "detecting factual": 24242, "qa code": 78124, "reasoning scientific": 80019, "efficacy proposed": 27650, "method release": 59410, "chatgpt systems": 14294, "potential artificial": 73018, "chatgpt support": 14289, "various subjects": 102588, "using general": 101460, "subject specific": 91947, "prompts study": 76826, "study assesses": 91499, "assesses accuracy": 7898, "largely correct": 52404, "helpful responses": 41297, "tool enhancing": 97286, "users remain": 101171, "responses despite": 83199, "despite limitations": 24081, "study suggests": 91857, "suggests careful": 92434, "chatgpt valuable": 14342, "leveraging gpt": 53846, "growing field": 40655, "electronic design": 27953, "design automation": 23752, "automation eda": 8917, "high learning": 41421, "learning curve": 53094, "difficulties selecting": 25315, "selecting appropriate": 86140, "methods traditional": 59824, "facilitate task": 33510, "planning execution": 72262, "different plugins": 25146, "simplifying complex": 88281, "intuitive languagebased": 47582, "chatgpt rich": 14192, "gap complex": 36917, "userfriendly interaction": 101060, "software systems": 89037, "llms highly": 56138, "studies gpt4": 91394, "llm capable": 54995, "researchers field": 82860, "field adversarial": 34341, "adversarial machine": 3983, "learning case": 53058, "evaluate robustness": 30282, "scheme does": 85525, "robustness compared": 84704, "model instead": 61014, "instead prompt": 46255, "surprisingly effective": 92998, "efficient language": 27781, "conclude discussing": 17730, "present evaluation": 73978, "novel research": 67240, "simplification ls": 88266, "complex word": 17030, "analysis contextual": 5471, "sentence meaning": 86509, "novel multilingual": 67216, "multilingual ls": 64978, "multilingual neural": 64991, "feeding input": 34165, "sentence encoder": 86500, "modeling generate": 61640, "substitutes based": 92152, "approach surpasses": 7049, "methods zeroshot": 59845, "development evaluation": 24642, "domainspecific language": 26632, "presents development": 74129, "intricate field": 47363, "competencies large": 16766, "dedicated model": 22726, "outputs relevant": 69252, "domainadaptive pretraining": 26477, "pretraining instructiontuning": 74549, "extensive dataset": 33012, "dataset includes": 21973, "web content": 103483, "strategy designed": 90871, "designed ensure": 23904, "knowledge effectively": 48528, "effectively address": 27395, "address user": 3498, "datasets universal": 22449, "domain dataset": 26370, "critical review": 20349, "models sensitivity": 64160, "specialized ai": 89617, "paper examines": 69702, "generalpurpose model": 37359, "model like": 61067, "data presents": 21497, "llms addressing": 55448, "challenges related": 13116, "bias sensitivity": 10887, "descriptions dataset": 23702, "dataset offers": 22020, "differences gpt35": 24978, "specialized model": 89634, "task requirements": 94223, "cost complexity": 19840, "despite versatility": 24142, "versatility llms": 102798, "specialized models": 89635, "tasks demanding": 94515, "precision accuracy": 73606, "balance capabilities": 9302, "need domainspecific": 65936, "domainspecific expertise": 26625, "key technology": 48350, "align models": 5004, "major approaches": 57920, "finetuning sft": 35240, "sft reinforcement": 87153, "produce best": 75605, "best commercial": 10591, "development efforts": 24636, "alpaca vicuna": 5234, "llms instructiontuned": 56235, "languages hindering": 51286, "world recent": 104413, "explore instruction": 32691, "tuning llms": 99064, "llms multiple": 56414, "used approach": 100743, "significant gap": 87753, "performance multilingual": 71410, "multilingual instruction": 64963, "overcome issue": 69351, "introduces instruction": 47523, "multilingual llm": 64975, "llm research": 55239, "present benchmark": 73938, "languages experiments": 51273, "demonstrate advantages": 23012, "sft different": 87148, "different base": 25009, "resources released": 83030, "realistic text": 79575, "presents case": 74113, "humanlike content": 42526, "stateoftheart llm": 90371, "discriminate human": 25634, "human accounts": 42064, "wild findings": 103823, "threats posed": 96887, "social bots": 88847, "observe performance": 67594, "plausible incorrect": 72326, "llms multiplechoice": 56415, "propose strategy": 77125, "guiding llms": 40784, "question bank": 78643, "examples evaluate": 31211, "llmbased solutions": 55359, "solutions using": 89158, "quality annotations": 78221, "annotations human": 5938, "average 53": 9132, "model gains": 60921, "comparing zeroshot": 16701, "zeroshot chatgpt": 104747, "chatgpt fewshot": 13817, "fewshot chatgpt": 34220, "longterm action": 57408, "action anticipation": 2938, "future actions": 36691, "anticipation lta": 6247, "lta task": 57657, "aims predict": 4820, "sequences crucial": 86678, "humanmachine interaction": 42554, "interaction propose": 47030, "propose formulate": 76980, "temporal dynamics": 95712, "hypothesize large": 42742, "data recipes": 21547, "potential help": 73120, "infer goal": 45198, "leverage llms": 53746, "propose twostage": 77147, "twostage framework": 99179, "asks llm": 7750, "llm predict": 55205, "goal plan": 39063, "prompting empirical": 76521, "ego4d lta": 27925, "v1 v2": 102061, "performance benchmarks": 71015, "currently forefront": 20813, "forefront intertwining": 35736, "systems human": 93478, "communication everyday": 16264, "aligning human": 5038, "great importance": 40473, "increase reasoning": 44774, "abilities future": 1510, "human operators": 42310, "ability bypass": 1599, "strategies study": 90848, "strategies emerged": 90804, "agents performance": 4217, "deception scenarios": 22567, "utilizing chainofthought": 102002, "machine behavior": 57684, "behavior llms": 9981, "nascent field": 65523, "field machine": 34388, "learning llms": 53255, "area ongoing": 7432, "ongoing research": 67971, "propose incontext": 76999, "incontext learningbased": 44656, "learningbased method": 53486, "performance approach": 70990, "approach involves": 6913, "involves adapting": 47835, "representation method": 82065, "models constructing": 62106, "enables llms": 28599, "learning scaling": 53398, "scaling llms": 85341, "experiments incontext": 32223, "learning enables": 53128, "finetuning helps": 35085, "methods scaling": 59792, "size scaling": 88526, "performance semantic": 71555, "outperforms counterparts": 69035, "tasks finetune": 94642, "llms current": 55705, "opt model": 68543, "model incorporating": 61001, "method surpasses": 59437, "achieving new": 2865, "grading openended": 40312, "increasingly sophisticated": 44908, "professionals face": 75770, "process studying": 75406, "effective feedback": 27299, "challenge work": 12942, "exploration using": 32605, "technical training": 95425, "study utilized": 91889, "utilized chatgpt": 101963, "identifying semantic": 42935, "details responses": 24202, "metrics observe": 59951, "subject matter": 91944, "matter experts": 58625, "given chatgpt": 38863, "tackle task": 93739, "language sentences": 51097, "description logic": 23684, "llms best": 55532, "model convert": 60715, "convert natural": 19442, "domain range": 26436, "human supervised": 42380, "supervised manner": 92726, "developed tool": 24534, "dataset generative": 21959, "llms transformative": 56962, "transformative impact": 98470, "ushering new": 101269, "results natural": 83738, "language text": 51138, "remain lacking": 81622, "lacking paper": 49075, "generative retrieval": 38714, "building endtoend": 11628, "endtoend generative": 28874, "retrieving candidate": 84107, "unlike recent": 100186, "efforts focus": 27910, "built dataset": 11660, "retrieval dataset": 83978, "constructed based": 18441, "automatically collect": 8846, "ask human": 7716, "evaluate llm": 30216, "based criteria": 9489, "serves catalyst": 86791, "user language": 101007, "model gained": 60920, "gained popularity": 36833, "popularity powerful": 72704, "problemsolving information": 75231, "data study": 21659, "language targeted": 51123, "creating novel": 20229, "engines language": 29043, "bias potential": 10873, "potential amplify": 72999, "biases contribute": 10919, "penetration testing": 70726, "testing large": 96012, "models field": 62464, "field software": 34411, "software security": 89030, "security testing": 86042, "requires high": 82384, "high levels": 41425, "involves manual": 47852, "manual testing": 58282, "steps paper": 90691, "potential usage": 73295, "distinct use": 25883, "llm analyze": 54960, "machine state": 57738, "attack vectors": 8194, "discuss promising": 25683, "promising initial": 76169, "avenues improvement": 9116, "legal reasoning": 53563, "expertlevel performance": 32400, "tasks wide": 95253, "range different": 79150, "need align": 65908, "important know": 43516, "art models": 7524, "models reason": 63989, "legal issues": 53562, "issues paper": 48004, "paper employ": 69690, "employ methods": 28408, "googles gemini": 39153, "gemini pro": 37063, "claude 21": 14852, "llama chat": 54730, "models differ": 62223, "lead models": 52810, "llmgenerated responses": 55376, "responses highly": 83235, "highly correlated": 41691, "responses systematic": 83317, "replacing human": 81938, "llms psychological": 56613, "psychological research": 77880, "models scales": 64140, "revolutionized various": 84356, "applications artificial": 6409, "surpassing human": 92963, "current landscape": 20698, "accessible efficient": 2107, "training scale": 98275, "making accessible": 58082, "accessible ai": 2102, "offers key": 67845, "replicates training": 81950, "optimizations training": 68626, "unified way": 100044, "efficiency scalability": 27718, "enabling training": 28662, "parameters record": 70274, "record time": 80693, "fraction cost": 36001, "access advanced": 2054, "development field": 24644, "detection study": 24362, "study question": 91806, "advanced models": 3722, "models 18": 61713, "metrics provide": 59959, "ability ai": 1590, "chatgpt automatic": 13554, "llms playing": 56526, "playing increasingly": 72370, "dataset collected": 21859, "title abstract": 97105, "web science": 103493, "science based": 85566, "developed finetuning": 24501, "finetuning general": 35076, "general llms": 37158, "field experiments": 34370, "academic papers": 1988, "comparable chatgpt": 16366, "chatgpt slightly": 14248, "ernie bot": 29752, "llama13b model": 54811, "model displays": 60773, "displays emergent": 25773, "llms sparked": 56837, "sparked debate": 89514, "given sufficient": 38964, "sufficient training": 92341, "human abilities": 42062, "abilities emerge": 1504, "emerge generic": 28122, "despite exceptional": 24046, "llms wide": 57043, "involving natural": 47873, "example ability": 31152, "given enormous": 38883, "train llms": 97755, "novel high": 67178, "included training": 44243, "assessed ability": 7885, "interpretations novel": 47298, "english despite": 29062, "gpt4 superior": 40112, "provided group": 77617, "college students": 15925, "gpt4 humans": 39931, "addition novel": 3200, "novel english": 67153, "gpt4 produced": 40029, "gpt4 acquired": 39754, "acquired emergent": 2913, "interpret complex": 47268, "agents recent": 4225, "recent advent": 80215, "advent large": 3958, "agents chatgpt": 4172, "key information": 48310, "information ongoing": 45558, "conversation provide": 19332, "responses contextually": 83194, "limited memory": 54444, "irrelevant parts": 47902, "conversation strategies": 19335, "resulting poor": 83441, "poor mental": 72596, "interact exploring": 46975, "paper delves": 69665, "delves integration": 22960, "agent systems": 4147, "systems evaluating": 93443, "interactive decisionmaking": 47095, "unique strengths": 100090, "original language": 68787, "rate 98": 79372, "tasks simulated": 95117, "household environment": 42011, "highlight chatgpts": 41581, "performing intricate": 71781, "intricate tasks": 47372, "tasks effectively": 94566, "realworld settings": 79699, "advancements task": 3858, "enhanced reasoning": 29248, "compact models": 16349, "tasks primarily": 94964, "small scales": 88725, "efficiency paper": 27704, "efficiently trains": 27865, "leveraging chain": 53824, "thought prompting": 96860, "llms pipeline": 56522, "size using": 88536, "outperforms vanilla": 69135, "showing superior": 87430, "superior ability": 92631, "ability extract": 1642, "extract contextual": 33223, "information results": 45597, "data better": 21026, "achieve improved": 2539, "role chatgpt": 84761, "particularly tools": 70505, "chatgpt pivotal": 14082, "steep learning": 90581, "traditionally associated": 97716, "complex data": 16922, "analysis generating": 5527, "offering realtime": 67805, "realtime assistance": 79624, "assistance chatgpt": 8025, "enabling wider": 28665, "datasets notable": 22350, "chatgpt aids": 13510, "complex patterns": 16970, "delves challenges": 22957, "biases analysis": 10912, "capabilities promise": 12055, "understanding tools": 99894, "capabilities constraints": 11867, "answers stack": 6222, "behavior programmers": 9987, "programmers recent": 75871, "popularity chatgpt": 72696, "despite popularity": 24095, "conducted evaluate": 17952, "programming questions": 75928, "gap conducted": 36920, "conducted indepth": 17970, "questions stack": 78954, "examined correctness": 31130, "correctness consistency": 19731, "comprehensiveness conciseness": 17334, "conducted largescale": 17971, "largescale linguistic": 52542, "analysis user": 5713, "understand characteristics": 99599, "incorrect information": 44733, "study participants": 91765, "preferred chatgpt": 73834, "language style": 51116, "raise awareness": 79055, "seemingly correct": 86078, "models chatgpt35": 61993, "led paradigm": 53527, "day new": 22500, "different large": 25090, "primary objective": 74809, "objective assess": 67490, "assess effectiveness": 7842, "effectiveness models": 27557, "prompting models": 76579, "exercise tasks": 31489, "tasks past": 94936, "proficiency different": 75785, "science domains": 85576, "domains showcase": 26586, "models highlighting": 62664, "highlighting limitations": 41631, "context degree": 18750, "65 billion": 1157, "analysis position": 5607, "paper advocate": 69588, "designed based": 23883, "based factors": 9530, "based insights": 9578, "education address": 27127, "explore strengths": 32744, "ai based": 4314, "current advances": 20654, "advances ai": 3862, "ai providing": 4522, "examples english": 31209, "approach inspired": 6903, "january 2023": 48112, "2023 present": 559, "present data": 73964, "december 2022": 22562, "2022 march": 544, "chatgpt answer": 13523, "questions finally": 78853, "approach ai": 6727, "gpt4 visual": 40153, "programming generative": 75900, "potential drastically": 73075, "drastically improve": 26792, "generating personalized": 37949, "personalized feedback": 71911, "feedback content": 34070, "programming domains": 75896, "popularly used": 72710, "education main": 27164, "study stateoftheart": 91851, "models advanced": 61797, "advanced capabilities": 3682, "capabilities visual": 12135, "using reference": 101731, "reference tasks": 80944, "hour code": 41998, "maze challenge": 58658, "challenge codedotorg": 12862, "crucial visual": 20547, "provide exciting": 77467, "work developing": 104052, "scientific progress": 85658, "systems gpt3": 93471, "systems make": 93511, "paper summarize": 69966, "current paradigm": 20752, "gpt4 reliable": 40049, "evaluating consistency": 30409, "consistency gpt4": 18233, "gpt4 text": 40128, "ratings generated": 79425, "gpt4 stateoftheart": 40101, "stateoftheart artificial": 90309, "model multiple": 61145, "multiple iterations": 65204, "content style": 18695, "analysis conducted": 5465, "order learn": 68704, "interrater reliability": 47315, "reliability consistency": 81493, "revealed high": 84188, "scores ranging": 85777, "suggesting gpt4": 92412, "gpt4 capable": 39790, "prompt style": 76424, "effectively distinguishes": 27416, "criteria evaluation": 20288, "prompt used": 76447, "used study": 100904, "assess robustness": 7873, "reliability ai": 81487, "benchmarking llms": 10297, "data ubiquitous": 21712, "specialized tools": 89645, "retrieve information": 84069, "text information": 96305, "idea research": 42788, "research current": 82531, "current widely": 20799, "providing information": 77760, "research benchmark": 82503, "gpt4 multiplechoice": 39984, "questions mcq": 78893, "furthermore evaluated": 36609, "outperformed zeroshot": 68987, "zeroshot approaches": 104726, "accuracy simple": 2362, "ones using": 67938, "gpt35turbo llm": 39706, "recent explosion": 80257, "llms software": 56826, "highly unstable": 41721, "empirical analyses": 28309, "generation research": 38400, "research literature": 82658, "report results": 81993, "generation problems": 38336, "problems code": 75117, "apps humaneval": 7289, "high degrees": 41406, "test output": 95922, "setting temperature": 87029, "researchers need": 82875, "drawing conclusions": 26807, "tested chatgpt": 95973, "chatgpt argue": 13533, "key reasoning": 48336, "involving steps": 47875, "reasoning propose": 79993, "simple tests": 88244, "reasoning apply": 79783, "apply chatgpt": 6654, "type reasoning": 99215, "values focused": 102216, "indicate potential": 45013, "application generative": 6356, "revised responses": 84303, "required information": 82314, "information use": 45664, "building cooperative": 11627, "cooperative behavior": 19496, "early realization": 26981, "various generative": 102443, "evaluate capabilities": 30145, "identify novel": 42889, "novel uses": 67280, "chatgpt claims": 13616, "aim achieve": 4684, "knowledge embedded": 48529, "networks approach": 66171, "approximately 200000": 7270, "pubmed abstracts": 78016, "constructed dataset": 18444, "dataset generated": 21955, "chatgpt35 turbo": 14374, "turbo model": 99118, "records chatgpt": 80698, "chatgpt dataset": 13677, "dataset 1000": 21797, "conclusion study": 17758, "study demonstrated": 91568, "new biological": 66354, "follow human": 35647, "users view": 101201, "scaling instruction": 85329, "models 540b": 61718, "540b parameters": 1069, "parameters second": 70280, "wrong language": 104532, "tasks adding": 94346, "lightweight finetuning": 54038, "finetuning step": 35263, "step significantly": 90656, "code generating": 15273, "generating synthetic": 37983, "chatgptlike large": 14411, "community evaluate": 16313, "methods suffer": 59812, "abilities vulnerable": 1579, "taskbased evaluation": 94306, "evaluation llm": 30653, "agents complete": 4173, "simulated environment": 88314, "solve problems": 89188, "problems present": 75185, "test specific": 95949, "interested researchers": 47147, "memory planning": 59057, "wireless communication": 103848, "understanding developing": 99711, "communication technologies": 16285, "advancements foundation": 3817, "consists key": 18333, "technical specifications": 95424, "reference responses": 80941, "responses created": 83197, "relevant accurate": 81444, "answers average": 6171, "average bleu": 9142, "score bertscore": 85705, "augmentation method": 8542, "method gpt2": 59319, "valuable task": 102173, "processing nlpbased": 75553, "applications particularly": 6540, "particularly field": 70464, "detection relies": 24348, "represent range": 82036, "model iterative": 61033, "designed improve": 23921, "better evaluate": 10708, "performance method": 71398, "proposed data": 77189, "intense debate": 46941, "new language": 66435, "public domain": 77919, "permissively licensed": 71843, "allows use": 5212, "european union": 30114, "90 performance": 1401, "lm trained": 57081, "diverse corpus": 26003, "text analyze": 96082, "approach works": 7088, "performance scales": 71552, "size results": 88524, "suggest possible": 92385, "build high": 11591, "leverage models": 53747, "outputs work": 69261, "specifically tuned": 89886, "extending capabilities": 32961, "model identify": 60981, "diverse errors": 26018, "errors provide": 29839, "provide suggestions": 77579, "quality feedback": 78270, "feedback human": 34092, "established models": 29989, "gpt4 evaluation": 39861, "reaches average": 79478, "compared competitive": 16517, "alternatives human": 5282, "papers rapid": 70003, "information field": 45482, "field generative": 34371, "subfields natural": 91931, "presents significant": 74170, "information overload": 45564, "focuses identifying": 35606, "specific emphasis": 89691, "widely discussed": 103721, "discussed research": 25703, "compile list": 16839, "citation counts": 14645, "half 2023": 40801, "papers related": 70005, "popularity recently": 72706, "data core": 21123, "core issues": 19547, "papers llm": 70000, "llm efficiency": 55049, "efficiency evaluation": 27681, "embodied agents": 28104, "examine characteristics": 31099, "characteristics papers": 13336, "focus llm": 35535, "higher number": 41512, "dataset empirical": 21918, "models analyze": 61832, "software supply": 89034, "supply chain": 92781, "chain security": 12800, "security failures": 86012, "cyber attacks": 20880, "attacks like": 8220, "resulted significant": 83422, "financial data": 34598, "need stronger": 65994, "prevent future": 74645, "require manually": 82273, "reduce costs": 80771, "costs allow": 19922, "techniques large": 95544, "study assessed": 91498, "accuracy 68": 2183, "accuracy 58": 2180, "performance context": 71112, "context study": 18857, "work ai": 103980, "approach quantify": 6995, "quantify influence": 78392, "significant decrease": 87730, "quality standards": 78363, "adapting novel": 3135, "offering services": 67809, "yield substantial": 104650, "substantial benefits": 92062, "work research": 104251, "profound influence": 75821, "regulatory bodies": 81129, "evolving landscape": 31053, "trustworthy llms": 98949, "llms survey": 56897, "models alignment": 61823, "making models": 58122, "models behave": 61910, "accordance human": 2142, "human intentions": 42252, "critical task": 20360, "gpt4 release": 40048, "major challenge": 57927, "practitioners lack": 73577, "llm outputs": 55183, "outputs align": 69207, "align social": 5011, "norms values": 66990, "llms address": 55446, "issue paper": 47943, "key dimensions": 48291, "crucial consider": 20481, "assessing llm": 7919, "seven major": 87121, "major categories": 57926, "safety fairness": 85028, "designed conducted": 23889, "widelyused llms": 103755, "indicate general": 44992, "aligned models": 5028, "tend perform": 95738, "better terms": 10795, "importance conducting": 43442, "improvements llm": 43977, "llm alignment": 54957, "practitioners field": 73575, "understanding addressing": 99668, "addressing concerns": 3532, "crucial achieving": 20468, "ethically sound": 30095, "audio generation": 8482, "generation selfsupervised": 38412, "types audio": 99220, "audio speech": 8487, "speech music": 89954, "music sound": 65415, "models type": 64441, "unified perspective": 100036, "proposes framework": 77271, "framework utilizes": 36317, "generation framework": 38171, "language audio": 49141, "selfsupervised pretrained": 86273, "process translate": 75411, "learning latent": 53245, "latent diffusion": 52630, "diffusion model": 25340, "model conditioned": 60690, "advantages incontext": 3942, "stateoftheart competitive": 90326, "performance previous": 71490, "code pretrained": 15436, "model demo": 60741, "ways using": 103423, "systems submitted": 93580, "chatbot responses": 13420, "improvement baseline": 43886, "baseline using": 9812, "using dynamic": 101423, "dynamic fewshot": 26917, "vector store": 102705, "performance approaches": 70991, "systems just": 93492, "showing potential": 87423, "task ablation": 93917, "llama models": 54783, "models closing": 62010, "examples way": 31302, "drug development": 26874, "development chatbots": 24619, "chatgpt cuttingedge": 13672, "openai ushered": 68182, "ushered new": 101265, "potential pitfalls": 73222, "rigorous scientific": 84457, "application field": 6352, "field drug": 34366, "focused specifically": 35593, "study employs": 91597, "employs gpt4": 28473, "researchers working": 82896, "objective generate": 67500, "generate optimal": 37542, "desired properties": 24008, "study introduces": 91684, "approach drug": 6817, "innovative methodologies": 45861, "creating effective": 20220, "effective drug": 27292, "research sheds": 82775, "synergy human": 93157, "expertise ai": 32382, "ai assistance": 4309, "enhance design": 29152, "development potential": 24695, "solutions paper": 89151, "explores integration": 32804, "integration advanced": 46751, "security analysis": 85998, "unauthorized access": 99371, "ensuring integrity": 29484, "ensuring security": 29489, "task owing": 94174, "llms exemplified": 55898, "openai bard": 68143, "bard google": 9358, "showcased remarkable": 87365, "remarkable proficiency": 81812, "proficiency various": 75806, "including security": 44472, "security vulnerability": 86050, "detection prevention": 24343, "leverages knowledge": 53793, "common weakness": 16182, "security measures": 86022, "framework implemented": 36160, "implemented using": 43351, "multiple chatgpt": 65152, "bard models": 9367, "specifications provided": 89900, "optimization methods": 68602, "require expert": 82244, "knowledge design": 48502, "prompt set": 76415, "set identify": 86886, "highquality prompts": 41784, "costly inefficient": 19911, "performance learning": 71350, "gradient information": 40295, "cost low": 19865, "low readability": 57529, "address research": 3486, "research gap": 82609, "method design": 59259, "multiround dialogue": 65316, "dialogue alignment": 24846, "gpt4 furthermore": 39894, "efficient prompt": 27815, "rl framework": 84555, "policy gradients": 72539, "policy network": 72547, "subsequent experiments": 92011, "robustness generalization": 84717, "similarity loss": 88139, "improved loss": 43845, "task writing": 94293, "writing natural": 104480, "generating descriptions": 37887, "descriptions using": 23733, "propose evaluate": 76970, "similarity metric": 88142, "output sentence": 69189, "prediction training": 73728, "training batch": 97949, "compared baselines": 16510, "approach baselines": 6756, "vast majority": 102685, "lexical richness": 53924, "gpt generative": 39195, "chatgpt triggered": 14319, "text significant": 96415, "effect language": 27244, "focusing specific": 35635, "language words": 51208, "words use": 103964, "chatgpt increase": 13952, "words included": 103956, "work perform": 104202, "humans performing": 42628, "performing tasks": 71790, "answers different": 6177, "types questions": 99259, "humans dataset": 42588, "paraphrases sentences": 70312, "sentences questions": 86567, "questions used": 78967, "used analysis": 100739, "chatgpt tends": 14305, "words lower": 103959, "humans results": 42636, "extract general": 33231, "needed understand": 66024, "types text": 99269, "commit message": 16111, "commit messages": 16113, "messages crucial": 59123, "crucial software": 20531, "collaborate effectively": 15812, "important information": 43513, "writing highquality": 104475, "highquality commit": 41740, "messages tedious": 59130, "tedious timeconsuming": 95670, "wide adoption": 103640, "shift focus": 87257, "generation commit": 38086, "context significantly": 18850, "messages paper": 59128, "evaluate novel": 30239, "novel ideas": 67182, "datasets lack": 22310, "lack historical": 49018, "languages use": 51370, "historical context": 41860, "models gpt35turbo": 62609, "gpt35turbo results": 39709, "results contexts": 83523, "shows better": 87565, "information improves": 45507, "models generation": 62561, "generation completion": 38088, "increasing use": 44862, "use internet": 100584, "combat problem": 15942, "created comprehensive": 20192, "comprehensive pipeline": 17287, "editing model": 27104, "approach utilizes": 7083, "model controlled": 60713, "methodology achieves": 59483, "score 85": 85700, "dataset achieve": 21812, "field previous": 34401, "previous attempts": 74663, "detection approach": 24264, "ai platforms": 4508, "quantitative finance": 78411, "platforms chatgpt": 72313, "ai answer": 4301, "questions various": 78971, "various difficulty": 102401, "30 percent": 748, "score 15": 85694, "common challenges": 16132, "serve valuable": 86781, "valuable tools": 102175, "overcome limitations": 69356, "potentially enabling": 73338, "enabling students": 28660, "score 90": 85701, "dialogue large": 24874, "demonstrating capabilities": 23423, "closely resemble": 15033, "resemble humans": 82901, "humans wide": 42653, "use chat": 100499, "responding human": 83113, "human inquiries": 42243, "shown proficiency": 87516, "proficiency answering": 75777, "answering general": 6103, "general questions": 37188, "questionanswering dialogue": 78737, "diagnostic scenarios": 24809, "medical consultations": 58870, "typically necessitate": 99295, "dialogue tod": 24915, "guide users": 40754, "finetuning models": 35145, "possess capability": 72851, "capability paper": 12194, "innovative method": 45860, "method extends": 59302, "scenarios experiments": 85428, "applications time": 6583, "contamination large": 18566, "llms potential": 56539, "major issue": 57932, "llms real": 56636, "tasks propose": 94979, "propose straightforward": 77123, "straightforward effective": 90766, "contamination llms": 18569, "llms core": 55689, "approach starts": 7035, "identifying potential": 42930, "instance level": 46210, "level using": 53683, "using information": 101520, "information approach": 45406, "prompt consisting": 76261, "average overlap": 9167, "score reference": 85736, "instruction compared": 46306, "compared general": 16550, "general instruction": 37133, "classifier based": 14821, "best method": 10608, "achieves accuracy": 2704, "accuracy 92": 2191, "seven datasets": 87117, "manual evaluation": 58266, "evaluation human": 30633, "ag news": 4100, "retrieval multihop": 83999, "answering multihop": 6131, "multihop qa": 64916, "involves finding": 47844, "reasoning answer": 79781, "answer complex": 5992, "approaches developed": 7127, "retrieval modules": 83998, "selecting relevant": 86146, "limited performance": 54450, "methods selecting": 59795, "irrelevant passages": 47903, "framework multihop": 36209, "space reducing": 89465, "missing relevant": 60205, "classification heads": 14751, "qa incorporate": 78135, "achieves nearly": 2758, "nearly 50": 65852, "50 improvement": 1015, "baselines challenging": 9821, "providing highquality": 77756, "highquality context": 41743, "performance substantially": 71602, "analysis offer": 5590, "insights different": 46078, "gaps paper": 36996, "presents paradigm": 74156, "illustrate value": 43000, "reddit posts": 80745, "event dataset": 30919, "online discourse": 67984, "framework dataset": 36085, "events establish": 30930, "establish strong": 29977, "learning deep": 53100, "learning classifiers": 53071, "thoroughly investigate": 96843, "llms capabilities": 55550, "capabilities ongoing": 12027, "alignment using": 5122, "chatgpts output": 14436, "alignment evaluation": 5068, "insights capabilities": 46059, "capabilities conversational": 11870, "paper create": 69661, "dataset based": 21836, "provide baseline": 77408, "results performing": 83764, "performing crosslingual": 71778, "encoderonly model": 28736, "model additionally": 60518, "provide results": 77562, "attention ability": 8277, "ability called": 1600, "updating parameters": 100366, "parameters llm": 70246, "possible achieve": 72890, "highly accurate": 41679, "accurate inference": 2413, "inference based": 45216, "developing field": 24580, "llms serves": 56762, "inference model": 45269, "bias hand": 10849, "llms accuracy": 55413, "dramatically improved": 26786, "perform desired": 70855, "tasks crafting": 94501, "crafting appropriate": 20129, "icl code": 42757, "inputs training": 46013, "outputs code": 69210, "code necessary": 15419, "model contextual": 60709, "understanding despite": 99710, "seemingly simple": 86079, "simple approach": 88168, "property inference": 76911, "bias inherent": 10852, "code open": 15423, "model powered": 61255, "autonomous agent": 8927, "tools enhance": 97396, "critical concern": 20313, "llms showcased": 56768, "exceptional capabilities": 31366, "processing comprehension": 75469, "tools research": 97464, "empowered large": 28495, "design flow": 23780, "effectively managing": 27455, "planning script": 72280, "script generation": 85821, "task execution": 94046, "experimental evaluations": 31998, "demonstrated proficiency": 23306, "proficiency handling": 75790, "handling diverse": 40946, "diverse requirements": 26090, "model exhibited": 60832, "exhibited superior": 31590, "models optimization": 63723, "behavior large": 9975, "models pressing": 63864, "problem existing": 75019, "engineering guided": 28975, "forward pass": 35889, "specified natural": 89907, "past work": 70572, "steering vectors": 90592, "method instead": 59336, "pairs prompts": 69515, "gpt2 openwebtext": 39324, "approach yields": 7093, "inferencetime control": 45328, "properties output": 76907, "method requires": 59412, "language specification": 51106, "models outofdistribution": 63733, "outofdistribution detection": 68880, "ood detection": 68030, "llms catalyzed": 55562, "ml community": 60368, "community showcasing": 16336, "showcasing exceptional": 87374, "capabilities diverse": 11880, "research probed": 82724, "transformers like": 98627, "stark differences": 90250, "scales pretraining": 85315, "question applicability": 78640, "applicability findings": 6320, "findings llms": 34700, "paper embarks": 69688, "domain llms": 26416, "focusing llama": 35630, "thoroughly evaluate": 96838, "finetuning scenarios": 35233, "scenarios notably": 85462, "finetuning generative": 35078, "finetuning aligning": 35009, "objective llms": 67503, "cosine distance": 19822, "detector demonstrates": 24383, "superior efficacy": 92639, "detectors provide": 24391, "provide intriguing": 77511, "explanation phenomenon": 32472, "embedding spaces": 28068, "bert family": 10511, "enhances understanding": 29298, "llms detect": 55789, "enhancing adaptability": 29304, "dynamic environments": 26914, "evaluation nlp": 30697, "specialized fields": 89626, "expensive create": 31908, "tasks effectiveness": 94567, "education domain": 27146, "explored work": 32790, "work examine": 104074, "proficiency llms": 75794, "nlp computer": 66719, "automated benchmarks": 8678, "benchmarks reveal": 10409, "gpt35 palm2": 39653, "palm2 llama2": 69562, "truth compare": 98951, "compare human": 16461, "gptbased evaluation": 40204, "analysis findings": 5518, "humanauthored ones": 42447, "limitations observed": 54354, "notably gpt4": 67032, "content occasionally": 18661, "missing details": 60202, "errors compared": 29810, "humans gpt4": 42604, "gpt4 systematic": 40119, "bias using": 10898, "gpt evaluation": 39191, "outofthebox large": 68902, "model open": 61166, "open domain": 68061, "opendomain nlp": 68239, "tasks llms": 94835, "tasks restricted": 95065, "input format": 45900, "tasks highly": 94700, "highly related": 41709, "prompts demonstrations": 76684, "atomic tasks": 8150, "label sets": 48897, "model instructiontuned": 61019, "data synthesized": 21676, "domains experimental": 26516, "ability capable": 1601, "tasks unseen": 95228, "domains conduct": 26506, "scaling data": 85324, "tasks model": 94866, "review automation": 84247, "automation large": 8918, "domainspecific pretrained": 26642, "success models": 92220, "models frequently": 62514, "demand extensive": 22965, "pretraining scratch": 74596, "contrast large": 19074, "given remarkable": 38951, "potential automating": 73031, "review tasks": 84279, "gap present": 36959, "leverages capabilities": 53777, "realm code": 79609, "resource constraints": 82957, "diverse publicly": 26075, "datasets notably": 22351, "parameters limited": 70244, "models ablation": 61738, "ablation experiments": 1805, "including input": 44390, "input representation": 45945, "continuous progress": 19032, "teaching llms": 95371, "llms socratic": 56825, "socratic questioning": 88961, "unparalleled performance": 100218, "real user": 79554, "user chatgpt": 100973, "chatgpt conversations": 13662, "challenges gathering": 13028, "conversations involving": 19421, "involving human": 47865, "human participation": 42316, "aim automatically": 4690, "generate conversational": 37415, "data primarily": 21501, "learning humans": 53197, "resulting limited": 83433, "target human": 93872, "learning goal": 53180, "goal train": 39075, "synthetic conversation": 93253, "dataset subsequently": 22091, "subsequently dataset": 92022, "equivalent training": 29711, "set sizes": 86934, "latest llama": 52674, "7b models": 1296, "mtbench benchmark": 64848, "larger scale": 52472, "analysis demonstrates": 5484, "demonstrates scalability": 23399, "user prompts": 101027, "production language": 75734, "trained specific": 97910, "specific downstream": 89688, "models hugging": 62679, "workflows data": 104320, "learning frameworks": 53168, "incredible power": 44920, "users propose": 101164, "propose contextaware": 76952, "leverages language": 53794, "expert models": 32371, "models model": 63635, "individual input": 45082, "input prompts": 45941, "predict downstream": 73650, "using objective": 101652, "objective function": 67499, "user goals": 100991, "goals constraints": 39082, "tradeoff task": 97640, "task accuracy": 93918, "goals including": 39083, "include code": 44229, "text clinical": 96127, "gpt35 turbo": 39675, "dynamic model": 26924, "identifying optimal": 42928, "optimal model": 68564, "35 turbo": 833, "llm systems": 55281, "evolving language": 31054, "exploring effectiveness": 32843, "knowledge test": 48780, "models proficient": 63905, "questions knowledge": 78876, "information present": 45573, "present training": 74075, "confronted questions": 18067, "research proposes": 82735, "method enables": 59278, "questions employing": 78837, "methodology includes": 59493, "integration context": 46760, "context embeddings": 18757, "answers using": 6229, "applied method": 6623, "method controlled": 59249, "scenario using": 85396, "context models": 18816, "context highlighting": 18782, "improvement research": 43940, "performance overall": 71453, "potential improvements": 73133, "improvements gpt": 43971, "models questionanswering": 63951, "foreign languages": 35740, "particular linguistic": 70413, "domain context": 26366, "context ii": 18783, "ensuring effective": 29481, "approach lies": 6935, "associated cost": 8080, "depending model": 23544, "size number": 88497, "llama llama2": 54770, "scenarios involving": 85446, "memory resources": 59063, "tokens required": 97226, "required represent": 82320, "present methodology": 74010, "methodology named": 59498, "research demonstrates": 82539, "methodology applied": 59485, "continuous pretraining": 19031, "exclusively using": 31429, "3billionparameter model": 886, "model known": 61041, "features new": 34017, "significant reduction": 87837, "reduction number": 80904, "achieved similar": 2670, "3b model": 881, "english pretrained": 29095, "models promptbased": 63915, "controlled generation": 19247, "gpt4 attracted": 39769, "attracted great": 8416, "surprising performance": 92992, "important topic": 43543, "scenarios like": 85454, "like generating": 54123, "autoregressive generation": 8955, "llms extremely": 55957, "length propose": 53605, "propose promptbased": 77093, "control method": 19219, "method achieve": 59184, "reward signal": 84379, "reward models": 84376, "instruction enable": 46321, "rulebased inference": 84927, "standard prompt": 90200, "control information": 19208, "information users": 45667, "users input": 101120, "input experiments": 45897, "experiments method": 32247, "datasets like": 22324, "ability unseen": 1792, "systems prompting": 93537, "prompting need": 76582, "language provide": 51071, "provide examples": 77466, "method takes": 59442, "prompts provided": 76803, "provided llms": 77625, "multistep process": 65331, "retrieval existing": 83984, "datasets pretrained": 22373, "models dataset": 62153, "dataset generation": 21956, "llms supervised": 56892, "retrieved generated": 84084, "generated datasets": 37688, "llm gpt35turbo": 55112, "average 20": 9127, "smaller data": 88745, "performance enabling": 71175, "assess model": 7861, "better large": 10740, "foundational language": 35973, "models foundational": 62509, "xlnet t5": 104564, "significant advantage": 87676, "predictive uncertainty": 73770, "recognize potential": 80624, "potential smaller": 73263, "research perform": 82707, "reality check": 79580, "coordination cooperation": 19506, "utilize bert": 101928, "using datasets": 101402, "discovery chatgpt": 25612, "chatgpt ai": 13505, "using artificial": 101298, "openai paper": 68176, "generated outputs": 37748, "outputs chatgpt": 69209, "chatgpt demonstrate": 13681, "gpt4 use": 40140, "use builtin": 100485, "capabilities gpt4": 11932, "gpt4 generates": 39904, "demonstrate promising": 23160, "potential humanai": 73122, "systems effectively": 93433, "effectively integrate": 27446, "ais capabilities": 4842, "capabilities human": 11935, "domains studies": 26592, "gpt4 different": 39838, "assessment findings": 7948, "focusing language": 35629, "considerations furthermore": 18184, "improving translation": 44163, "strong general": 91025, "specialized capabilities": 89620, "capabilities machine": 11998, "tuning standard": 99103, "instruction input": 46345, "input response": 45946, "mechanism llms": 58805, "llms limitations": 56333, "focus llms": 35536, "tend focus": 95733, "alleviate issues": 5135, "instructionfollowing dataset": 46449, "results correct": 83525, "translation apply": 98686, "apply methods": 6665, "methods mainstream": 59723, "bloom llama": 11216, "demonstrate significant": 23184, "improvements translation": 44005, "particularly zeroshot": 70510, "outperforms baseline": 69014, "bleu scores": 11179, "english german": 29072, "different backbones": 25008, "based word": 9761, "word alignment": 103888, "models decisionmaking": 62162, "optimization models": 68604, "wide applications": 103643, "applications fields": 6480, "health care": 41157, "models mathematical": 63588, "problem making": 75046, "making best": 58084, "set requirements": 86930, "models practice": 63850, "interpret models": 47272, "necessitating significant": 65890, "optimization paper": 68606, "interactive conversations": 47093, "optimization model": 68603, "potential sources": 73272, "model feasible": 60871, "built gpt4": 11664, "prompts enhance": 76701, "improving understanding": 44167, "models enabling": 62314, "quickly identify": 78986, "identify sources": 42902, "modern societies": 64620, "dynamic field": 26918, "growing need": 40660, "models represented": 64067, "represented chatgpt": 82164, "chatgpt suffer": 14283, "suffer limited": 92314, "limited accessibility": 54385, "including training": 44503, "weights large": 103555, "large opensource": 52300, "like llama": 54184, "llama shown": 54795, "struggle understanding": 91232, "intent paper": 46957, "utilizes chatgpt": 101978, "data domain": 21165, "finetuning approach": 35013, "enhance opensource": 29188, "opensource foundation": 68333, "model llama": 61074, "llama evaluate": 54742, "capabilities additionally": 11821, "capabilities code": 11856, "impact varying": 43269, "run single": 84949, "accessible broader": 2105, "weights data": 103548, "data public": 21525, "humanwritten messages": 42670, "messages large": 59125, "used produce": 100879, "creative content": 20253, "quality content": 78241, "influenced prompt": 45363, "using instructions": 101526, "crowdsourcing tasks": 20462, "tasks specific": 95132, "examples guide": 31225, "prove effective": 77370, "prompts explore": 76716, "used previous": 100877, "help generate": 41248, "used pipeline": 100869, "pipeline generate": 72156, "generate messages": 37529, "messages using": 59131, "collective diversity": 15915, "gpt4 using": 40144, "using pipeline": 101678, "baseline gpt4": 9781, "gpt4 prompts": 40033, "prompts llm": 76774, "produce diverse": 75618, "baseline prompts": 9802, "prompts discuss": 76690, "messages generated": 59124, "ai future": 4406, "augmenting chatgpt": 8592, "chatbot combines": 13406, "combines power": 15998, "llm specific": 55268, "specific knowledge": 89716, "using specific": 101784, "data preprocessing": 21493, "responses illustrating": 83240, "process hope": 75328, "wider community": 103767, "community engagement": 16312, "refine llm": 80976, "broadening application": 11507, "primary goal": 74806, "goal work": 39077, "tool capable": 97275, "generating precise": 37954, "democratizing access": 22995, "continuously improve": 19044, "additional features": 3240, "pull requests": 78023, "reference material": 80935, "advancements integration": 3826, "generation despite": 38114, "hard generate": 40979, "task difficulties": 94023, "texts paper": 96589, "logic language": 57242, "models valid": 64487, "information natural": 45551, "construct logical": 18427, "guide language": 40737, "graphs language": 40438, "convergence experimental": 19306, "traditional language": 97672, "instructional texts": 46427, "mechanism language": 58803, "blackbox models": 11144, "programming assistant": 75881, "chatgpt stack": 14267, "resolve issues": 82939, "efficient personalized": 27812, "programming assistance": 75880, "unclear effective": 99399, "effective enhancing": 27294, "programmer productivity": 75867, "productivity paper": 75744, "paper conducted": 69649, "conducted exploratory": 17962, "study compare": 91527, "overflow chatgpt": 69382, "groups students": 40629, "solve different": 89172, "tasks algorithmic": 94363, "algorithmic challenges": 4942, "library usage": 53956, "compared quality": 16621, "quality code": 78236, "time taken": 97032, "taken complete": 93802, "groups results": 40628, "results concerning": 83515, "debugging tasks": 22547, "tasks regarding": 95023, "regarding task": 81067, "tasks additionally": 94349, "additionally conducted": 3284, "survey participants": 93039, "complete programming": 16869, "models loss": 63555, "loss functions": 57464, "techniques reduce": 95578, "reduce size": 80805, "size complexity": 88454, "project investigates": 76047, "specifically focusing": 89825, "improve knowledge": 43719, "transformer layer": 98522, "methods tuning": 59829, "loss evaluate": 57461, "tasks glue": 94678, "effectiveness knowledge": 27537, "accurate models": 2417, "emergence machine": 28175, "learning surge": 53434, "surge leveraging": 92893, "capabilities problemsolving": 12053, "problemsolving various": 75243, "emerged crucial": 28127, "crucial challenging": 20478, "researchers aim": 82835, "aim utilize": 4745, "utilize machine": 101949, "learning tackle": 53438, "tackle challenge": 93712, "designed semantic": 23946, "clone detection": 14969, "detection presents": 24342, "presents limitations": 74145, "limitations hinder": 54331, "dataset suffers": 22094, "suffers lack": 92326, "lack reusable": 49045, "examples aligning": 31186, "realworld software": 79704, "detection approaches": 24265, "approaches work": 7225, "testing automated": 95996, "automated validation": 8750, "created benchmark": 20190, "java python": 48124, "python benchmark": 78096, "language support": 51120, "language variety": 51202, "opensourced large": 68426, "models survey": 64310, "language multimodal": 50936, "tasks extend": 94620, "domains despite": 26510, "gpt4 face": 39883, "inherent limitations": 45734, "considerable size": 18171, "size high": 88474, "development usage": 24726, "models arises": 61854, "models facilitate": 62436, "facilitate easier": 33488, "extensive survey": 33131, "survey aim": 93019, "aim equip": 4705, "thorough understanding": 96834, "models cater": 61971, "broader scientific": 11522, "aimed provide": 4755, "provide efficiency": 77457, "resources schedule": 83033, "rise chatgpt": 84471, "programs possible": 75957, "possible provide": 72912, "paper begins": 69623, "findings field": 34667, "development ethical": 24641, "optimization using": 68623, "learning important": 53208, "important challenge": 43493, "compiler optimization": 16846, "little domain": 54678, "deep reinforcement": 22800, "based search": 9711, "search optimal": 85884, "deep rl": 22802, "performance open": 71441, "research direction": 82554, "train agents": 97729, "observe average": 67572, "diverse benchmark": 25990, "benchmark including": 10191, "graphs using": 40450, "emerged prominent": 28149, "develop endtoend": 24447, "intelligent systems": 46925, "capable autonomously": 12226, "depends heavily": 23549, "emergence powerful": 28183, "models presents": 63862, "promising avenue": 76151, "accurate generalizable": 2411, "extensively explored": 33147, "novel multimodal": 67217, "domain generates": 26395, "transformer decoder": 98499, "employs t5": 28483, "showcase practical": 87360, "applications benefit": 6414, "enable automated": 28535, "findings validate": 34773, "validate efficacy": 102096, "approach underscoring": 7066, "underscoring potential": 99585, "spoken language": 90017, "llms bringing": 55544, "efficacy realworld": 27654, "scenarios demand": 85414, "potential value": 73315, "especially development": 29870, "development artificial": 24610, "learning focus": 53164, "evaluating efficacy": 30415, "efficacy llms": 27644, "llms realm": 56637, "multiplechoice question": 65288, "including understanding": 44509, "language knowledge": 49300, "knowledge addition": 48413, "addition investigate": 3194, "investigate influence": 47657, "techniques zero": 95614, "fewshot method": 34277, "cot think": 19966, "think stepbystep": 96793, "external tools": 33205, "tools google": 97414, "llms 20": 55393, "distinct models": 25872, "using methods": 101613, "methods achieved": 59511, "compared zeroshot": 16663, "practical questions": 73524, "different sizes": 25197, "good understanding": 39128, "understanding concepts": 99699, "limitations reasoning": 54367, "reasoning realworld": 80004, "realworld problems": 79687, "additionally explore": 3303, "preliminary findings": 73870, "conversational communication": 19363, "language description": 49183, "description source": 23687, "single sentence": 88394, "sentence long": 86507, "short descriptions": 87280, "code does": 15234, "ability write": 1799, "descriptions automatically": 23694, "automatically use": 8901, "untrusted parties": 100327, "organizations paper": 68742, "output generated": 69156, "related knowledge": 81199, "distillation model": 25822, "model small": 61434, "single 16gb": 88344, "16gb gpu": 386, "gpu evaluation": 40256, "aims investigate": 4814, "investigate mathematical": 47669, "problemsolving capabilities": 75228, "reasoning study": 80039, "draws inspiration": 26831, "problems presented": 75186, "information representation": 45590, "representation paper": 82069, "problems chatgpt": 75116, "chatgpt remarkably": 14169, "recursively summarizing": 80734, "remarkable conversational": 81766, "conversational abilities": 19343, "abilities enabling": 1505, "enabling engage": 28632, "given long": 38912, "past information": 70567, "generate inconsistent": 37496, "inconsistent responses": 44553, "responses address": 83172, "recursively generate": 80733, "generate summaries": 37606, "ability specifically": 1774, "llms memorize": 56389, "new memory": 66451, "using previous": 101692, "contexts finally": 18902, "finally chatbot": 34508, "generate highly": 37479, "highly consistent": 41687, "consistent response": 18274, "method open": 59373, "closed llms": 14986, "llms experiments": 55926, "experiments widelyused": 32345, "dataset method": 22001, "method generate": 59314, "generate consistent": 37409, "conversation strategy": 19336, "dialogue performance": 24884, "method potential": 59388, "enable llm": 28556, "llm model": 55170, "extremely long": 33395, "context code": 18738, "task automation": 93949, "aims enable": 4795, "approaches suffer": 7210, "suffer poor": 92318, "limited language": 54442, "manual efforts": 58265, "efforts required": 27918, "recent advance": 80169, "advance large": 3666, "perspective task": 71961, "unified language": 100027, "llms domainspecific": 55816, "analysis main": 5576, "main components": 57817, "memory injection": 59043, "knowledge llm": 48663, "inference integrate": 45250, "vicuna evaluate": 102861, "performance new": 71426, "llms typified": 56976, "marked significant": 58384, "significant advancement": 87661, "advancement artificial": 3764, "intelligence trained": 46900, "trained vast": 97928, "llms exploring": 55939, "potential data": 73065, "critical stage": 20356, "data mining": 21406, "analytics applications": 5739, "applications delve": 6444, "error detection": 29780, "detection data": 24285, "data imputation": 21317, "tasks alongside": 94367, "inherent capabilities": 45721, "llms highlight": 56131, "particularly terms": 70504, "llmbased framework": 55352, "framework data": 36084, "feature selection": 33977, "selection improve": 86155, "performance efficiency": 71170, "experimental study": 32081, "12 datasets": 221, "datasets gpt4": 22284, "gpt4 emerged": 39847, "achieving 100": 2814, "100 accuracy": 122, "score datasets": 85711, "suggesting llms": 92414, "potential tasks": 73284, "underscores promise": 99576, "promise llms": 76125, "llms domain": 55815, "generation evidence": 38148, "complex computer": 16916, "plain english": 72228, "modern languages": 64600, "tools powerful": 97456, "provide broad": 77417, "broad access": 11480, "access computer": 2056, "knowledge individual": 48626, "presents series": 74167, "chatgpt explore": 13795, "tools ability": 97349, "produce valid": 75666, "outputs situations": 69255, "results certain": 83487, "produce correct": 75613, "correct reasoning": 19681, "information limited": 45532, "problem complex": 74999, "reason infer": 79726, "false statements": 33819, "statements hallucinations": 90293, "process creating": 75286, "paper adopts": 69587, "critical approach": 20304, "chatgpt showing": 14219, "tool people": 97306, "problems rarely": 75195, "rarely present": 79363, "data rarely": 21533, "formulas using": 35861, "common language": 16150, "language technical": 51133, "misinformation large": 60175, "tasks knowledge": 94787, "potentially leading": 73346, "address limitation": 3444, "combining power": 16021, "evidence retrieval": 30986, "involves leveraging": 47849, "relevant evidence": 81458, "serves valuable": 86802, "supplementary information": 92773, "opensourced language": 68424, "llama using": 54802, "accurately evaluate": 2449, "experiments widely": 32343, "tasks integrating": 94761, "integrating external": 46718, "sufficient context": 92333, "context available": 18732, "outcomes findings": 68848, "combating misinformation": 15944, "information online": 45559, "online platforms": 67998, "context input": 18789, "input prompting": 45940, "single data": 88355, "strategy improving": 90892, "improving efficiency": 44115, "data longer": 21387, "longer contexts": 57363, "inevitably lead": 45186, "worse performance": 104441, "loss propose": 57472, "early stopping": 26988, "technique comprehensive": 95438, "entailment rte": 29494, "requires fewer": 82380, "fewer llm": 34193, "llm calls": 54993, "efficiency large": 27692, "rights duties": 84443, "human decisionmaking": 42148, "value pluralism": 102196, "view multiple": 102915, "multiple correct": 65168, "correct values": 19689, "systems better": 93402, "explore extent": 32680, "interaction introduce": 47013, "highquality human": 41761, "social demographic": 88854, "multitask model": 65362, "humans prefer": 42630, "values output": 102221, "addition demonstrate": 3179, "work serve": 104258, "step making": 90649, "explicit implicit": 32530, "implicit values": 43425, "make decisions": 57988, "comprehend human": 17131, "llms accomplish": 55411, "tasks growing": 94687, "growing trend": 40667, "agent framework": 4132, "equips llms": 29702, "tooluse abilities": 97486, "external apis": 33176, "framework realworld": 36251, "applications based": 6413, "provides userfriendly": 77720, "design support": 23852, "enabling seamless": 28659, "seamless integration": 85840, "llms tooluse": 56942, "framework proposed": 36243, "tool retrieval": 97315, "retrieval tool": 84033, "evaluation practical": 30719, "practical realworld": 73525, "applications finally": 6481, "finally showcase": 34566, "community based": 16301, "framework able": 36012, "years ago": 104589, "crucial understand": 20544, "steps necessary": 90690, "necessary achieve": 65867, "analysis highlights": 5538, "ai approach": 4307, "agi prompting": 4261, "prompting finetuning": 76533, "taxonomy construction": 95320, "relations entities": 81268, "frequently applied": 36380, "various software": 102574, "software modeling": 89022, "modeling natural": 61656, "structural constraints": 91117, "studies large": 91409, "user inputs": 100995, "prompting effectively": 76519, "effectively guide": 27433, "gpt3 diverse": 39444, "tasks explicit": 94614, "retraining existing": 83950, "typically involve": 99291, "model adjusting": 60522, "present general": 73990, "general framework": 37128, "takes account": 93815, "systematic comparison": 93320, "finetuning approaches": 35014, "approaches performed": 7184, "taxonomy dataset": 95322, "dataset result": 22060, "explicit training": 32540, "dataset prompting": 22038, "finetuningbased approaches": 35297, "approaches performance": 7182, "satisfy constraints": 85207, "produced prompting": 75687, "evaluation findings": 30601, "findings provide": 34718, "provide guidance": 77487, "potential enhancements": 73085, "digital divide": 25359, "data major": 21393, "use digital": 100525, "digital technologies": 25368, "highlighting role": 41640, "survey data": 93026, "chatgpt activity": 13496, "commonly associated": 16187, "affect chatgpt": 4049, "positively associated": 72840, "efforts address": 27891, "digital literacy": 25364, "ethical social": 30086, "social issues": 88875, "trust chatgpt": 98929, "chatgpt perceived": 14069, "human aigenerated": 42074, "content paper": 18666, "gpt language": 39200, "model family": 60868, "information sources": 45635, "exercise caution": 31488, "caution critical": 12705, "engaging content": 28922, "models automated": 61877, "scientific hypotheses": 85646, "reasoning type": 80073, "propose hypotheses": 76995, "hypotheses explain": 42730, "past research": 70569, "annotations dataset": 5923, "dataset carefully": 21846, "setting ground": 86996, "making task": 58141, "challenging work": 13258, "work tackle": 104289, "nlp dataset": 66722, "dataset social": 22081, "science academic": 85560, "corpus contains": 19607, "information make": 45539, "develop research": 24476, "50 papers": 1017, "goal create": 39049, "systems automatically": 93396, "hypotheses given": 42731, "different previous": 25156, "dataset requires": 22058, "opendomain data": 68233, "performance gain": 71235, "framework finally": 36137, "finally framework": 34532, "framework exhibits": 36130, "exhibits superior": 31637, "terms gpt4": 95821, "work showing": 104265, "novel existing": 67158, "existing literature": 31744, "llms search": 56751, "graphs large": 40440, "ability generalizability": 1650, "generalizability llms": 37233, "llms lack": 56269, "knowledge perform": 48697, "additional modules": 3250, "graph neural": 40394, "networks gnns": 66189, "mitigate problem": 60277, "incorporating additional": 44689, "need retraining": 65989, "novel domains": 67148, "strong abilities": 91002, "retrieval paper": 84003, "teach llms": 95334, "strong generalizability": 91026, "generalizability specifically": 37236, "specifically design": 89802, "empowers llms": 28513, "knowledge ability": 48409, "manner additionally": 58230, "explainability llms": 32442, "reasoning processes": 79989, "improves llm": 44038, "llm baseline": 54983, "baseline performance": 9801, "relatively large": 81313, "open information": 68071, "extracting structured": 33275, "typically form": 99290, "chatgpt general": 13847, "stateoftheart supervised": 90489, "tasks key": 94786, "key issues": 48317, "llms struggle": 56869, "generate structured": 37604, "model second": 61382, "second llms": 85939, "llms generates": 56056, "llms improving": 56169, "task particularly": 94180, "propose various": 77164, "strategies enhance": 90806, "enhance llms": 29178, "instructionfollowing ability": 46441, "module enhance": 64661, "approach holds": 6883, "quantitatively qualitatively": 78433, "transforming way": 98649, "way interact": 103374, "interact information": 46978, "information conduct": 45422, "conduct research": 17911, "llms remain": 56695, "progress opensource": 76003, "longer sequence": 57369, "context address": 18725, "series 7b": 86721, "7b parameter": 1299, "models 8k": 61725, "instructional data": 46421, "data creating": 21128, "commercial applications": 16072, "evaluation standard": 30789, "llms targeted": 56916, "targeted evaluation": 93903, "chatgpt policy": 14088, "creative work": 20260, "assess potential": 7868, "potential complex": 73058, "tasks ask": 94383, "matter seconds": 58626, "significant expert": 87750, "productivity gains": 75742, "especially problematic": 29904, "agents large": 4198, "models latest": 62882, "latest advancements": 52651, "ai deep": 4358, "model llmbased": 61107, "llmbased agents": 55332, "gpt4 commercial": 39800, "agent development": 4127, "development tools": 24723, "humanlike conversation": 42527, "llms aid": 55460, "generating training": 37992, "extracting entities": 33264, "llms assist": 55494, "questionanswering capabilities": 78733, "domain demonstrate": 26372, "llms entirely": 55869, "need deep": 65926, "hybrid approach": 42702, "approach llms": 6939, "llms integrated": 56238, "privacy safeguards": 74912, "nlp multimodal": 66754, "multimodal tasks": 65103, "despite successes": 24130, "llms high": 56128, "objective evaluations": 67497, "evaluations paper": 30873, "solution significantly": 89118, "llm training": 55295, "tokens trained": 97238, "iq tests": 47887, "range evaluations": 79157, "evaluations existing": 30848, "existing evaluations": 31711, "evaluations focus": 30852, "evaluations include": 30857, "layers improves": 52748, "improves factuality": 44026, "llms prone": 56600, "content deviates": 18611, "seen pretraining": 86088, "pretraining propose": 74590, "reducing hallucinations": 80874, "llms does": 55814, "conditioning retrieved": 17812, "retrieved external": 84082, "additional finetuning": 3241, "later layers": 52647, "earlier layers": 26962, "llms generally": 56039, "transformer layers": 98523, "knowledge reduce": 48738, "generation incorrect": 38205, "incorrect facts": 44732, "improves truthfulness": 44088, "performance llama": 71359, "llama family": 54746, "models truthfulqa": 64438, "making llms": 58120, "llms reliably": 56690, "developerchatgpt conversations": 24542, "devgpt dataset": 24751, "dataset curated": 21891, "interact chatgpt": 46972, "llm dataset": 55032, "conversations collected": 19410, "collected github": 15877, "providing rich": 77794, "resource understanding": 82978, "enables study": 28615, "study developer": 91576, "broader implications": 11518, "engineering particularly": 29000, "chatgpt developers": 13712, "affect human": 4051, "subsequent analysis": 92010, "spatial temporal": 89579, "temporal resolution": 95723, "new tools": 66561, "framework realtime": 36250, "realtime monitoring": 79629, "systems engineering": 93438, "cyberphysical systems": 20883, "systems cps": 93418, "applications users": 6591, "users ask": 101075, "systems reliability": 93552, "response investigate": 83142, "investigate question": 47695, "consisting different": 18319, "categories questions": 12615, "provide corresponding": 77439, "question answered": 78571, "formulate evaluation": 35863, "tasks test": 95190, "test systems": 95954, "experiments sota": 32301, "gpt3 flan": 39460, "flan t5": 35386, "performance baseline": 71009, "interesting findings": 47152, "overall believe": 69278, "work findings": 104095, "findings encourage": 34663, "encourage facilitate": 28786, "research important": 82628, "important area": 43489, "help develop": 41241, "develop robust": 24478, "research results": 82765, "current best": 20668, "approaches looking": 7172, "research does": 82563, "efforts spent": 27920, "using emerging": 101428, "emerging large": 28224, "engineering chatgpt": 28951, "report experiments": 81973, "future open": 36748, "writing language": 104476, "models reduce": 64027, "content diversity": 18616, "collaborative writing": 15848, "writing model": 104479, "model assistance": 60571, "different users": 25248, "produced content": 75673, "diverse perspectives": 26067, "work measure": 104176, "controlled experiment": 19245, "setups using": 87114, "using base": 101309, "base llm": 9411, "model help": 60972, "develop set": 24480, "diversity metrics": 26149, "instructgpt gpt3": 46288, "lexical content": 53914, "remains unaffected": 81703, "model collaboration": 60669, "adapting models": 3133, "come cost": 16029, "diverse content": 25999, "language queries": 51073, "medical systematic": 58920, "using bertbased": 101317, "review process": 84270, "makes approach": 58045, "title paper": 97106, "queries generated": 78490, "alpaca best": 5226, "best approach": 10588, "approach viable": 7087, "information available": 45411, "performance cybersecurity": 71119, "peer review": 70694, "review method": 84266, "method employed": 59276, "field cybersecurity": 34363, "defacto standard": 22829, "aims shed": 4826, "reviewing academic": 84285, "specifically investigate": 89839, "comparing results": 16696, "obtained human": 67672, "human reviewers": 42359, "study construct": 91547, "construct comprehensive": 18415, "collected data": 15874, "data evaluate": 21192, "prediction capabilities": 73684, "chatgpt twostage": 14321, "classification approach": 14722, "evaluation review": 30761, "outcome prediction": 68840, "approach performs": 6972, "analyzing experimental": 5810, "results identify": 83650, "explore areas": 32641, "irreplaceable role": 47906, "human intellect": 42248, "power smaller": 73398, "smaller transformerbased": 88798, "million parameter": 60035, "model python": 61304, "python coding": 78099, "coding performance": 15708, "performance close": 71056, "stateoftheart work": 90512, "use existing": 100542, "data way": 21753, "way enhance": 103353, "traditional web": 97714, "data follow": 21241, "approach focusing": 6866, "sense reasoning": 86440, "language create": 49176, "create new": 20169, "tasks comparable": 94457, "llms complex": 55653, "llms good": 56070, "good ability": 39104, "think step": 96791, "step perform": 90652, "including hallucinations": 44376, "toxic biased": 97583, "biased generations": 10903, "data opensource": 21453, "capability pretrained": 12199, "versatile capabilities": 102785, "llms attracted": 55497, "attention industry": 8324, "vertical domains": 102837, "comprehensive capabilities": 17216, "network operations": 66154, "designed evaluating": 23909, "knowledge inference": 48627, "multilingual context": 64949, "covering different": 20075, "available llms": 9065, "open models": 68087, "llama demonstrate": 54737, "using chatgptgenerated": 101358, "chatgptgenerated text": 14407, "times significant": 97081, "advancements witnessed": 3860, "field language": 34381, "particularly emergence": 70454, "data extracted": 21221, "allowing users": 5186, "text various": 96479, "purposes including": 78058, "including articles": 44271, "trained diverse": 97818, "like reddit": 54216, "datasets incorporate": 22301, "incorporate text": 44674, "generated previous": 37755, "previous iterations": 74682, "light development": 54001, "artificial text": 7681, "text pretraining": 96363, "model roberta": 61364, "roberta pretrained": 84609, "chatgpt employed": 13749, "articles training": 7574, "evaluated performance": 30355, "potential gender": 73102, "gender bias": 37089, "using sentiment": 101755, "pretraining does": 74525, "conclusion findings": 17753, "process does": 75296, "does yield": 26336, "evaluating chatbots": 30400, "enables people": 28608, "generalpurpose large": 37351, "chatbots potential": 13454, "important address": 43486, "address mitigate": 3458, "user satisfaction": 101038, "society paper": 88943, "current practices": 20758, "chatbot testing": 13424, "identifies gaps": 42836, "gaps open": 36995, "user trust": 101055, "path forward": 70585, "integrated various": 46693, "various sectors": 102567, "sectors understanding": 85983, "crucial particularly": 20512, "particularly realm": 70495, "realm autonomous": 79607, "framework investigate": 36177, "gpt4 palm": 40005, "palm llama": 69552, "comparing responses": 16695, "preferences llms": 73822, "llm human": 55118, "humans insights": 42611, "ethical frameworks": 30069, "network configuration": 66135, "errors examine": 29813, "examine effectiveness": 31104, "models translating": 64433, "scratch modifying": 85807, "generation network": 38295, "approaches better": 7111, "llms thoroughly": 56935, "thoroughly examine": 96839, "examine challenges": 31098, "produce fully": 75629, "fully functional": 36453, "evaluate feasibility": 30186, "solution using": 89125, "learning predict": 53338, "role affecting": 84754, "generated sentence": 37778, "determine optimal": 24413, "set concepts": 86853, "generated pretrained": 37752, "generated sentences": 37779, "considering multiple": 18219, "multiple language": 65206, "model consistently": 60698, "study finetuned": 91640, "finetuned using": 34989, "llms variants": 57017, "task finetuned": 94064, "manually writing": 58316, "provides best": 77643, "lm used": 57085, "fluent large": 35480, "models incorporating": 62743, "incorporating feedback": 44698, "tools various": 97480, "daily applications": 20899, "generation hallucinated": 38189, "hallucinated information": 40820, "crucial details": 20483, "concerns study": 17713, "study makes": 91737, "makes key": 58061, "build dataset": 11586, "critic model": 20298, "capable evaluating": 12232, "correctness fluency": 19736, "llms qa": 56617, "realtime feedback": 79626, "aspects generated": 7773, "model iteratively": 61035, "performance llm": 71361, "efficacy approach": 27628, "showing substantial": 87429, "unveiling potential": 100336, "generating semantic": 37971, "code comprehension": 15166, "used text": 100916, "language semantic": 51095, "generation approach": 38034, "assistance study": 8034, "set code": 86850, "assessed gpt3s": 7888, "offering insights": 67793, "compelling results": 16756, "impressive accuracy": 43578, "score achieved": 85704, "achieved fewshot": 2624, "furthermore model": 36640, "automated dialogue": 8690, "knowledge understanding": 48796, "understanding conversational": 99702, "focused building": 35573, "detecting specific": 24251, "interactions paper": 47073, "ability stateoftheart": 1775, "models approximate": 61847, "performance reducing": 71528, "satisfactory results": 85201, "short human": 87286, "shows promising": 87608, "outperforms specialized": 69114, "indepth examination": 44955, "guidance future": 40718, "research enhance": 82579, "capabilities leveraging": 11972, "annotation evaluation": 5894, "using covid19": 101390, "challenges healthcare": 13031, "healthcare industry": 41188, "society rapid": 88944, "vaccinerelated tweets": 102074, "expensive study": 31925, "comparing performance": 16686, "curated goldstandard": 20633, "goldstandard dataset": 39101, "used gpt4": 100817, "gpt4 provide": 40036, "prompting text": 76634, "text encoders": 96191, "lack knowledge": 49026, "knowledge leveraging": 48660, "maintaining strong": 57902, "dependent world": 23541, "claim evaluating": 14662, "models newly": 63673, "challenge sets": 12932, "require world": 82301, "domains health": 26525, "data sourced": 21642, "media content": 58828, "performance closedsource": 71059, "outperform best": 68923, "average 223": 9128, "knowledge results": 48748, "suggest generative": 92366, "strategies achieve": 90789, "complex domainspecific": 16930, "conversations developers": 19413, "developers data": 24550, "interfaces tools": 47191, "converts natural": 19452, "prompts executable": 76710, "openais api": 68186, "tools especially": 97397, "settings complex": 87043, "operating systems": 68448, "lack unified": 49068, "integration challenging": 46757, "opening avenues": 68274, "exploring large": 32853, "investigates applicability": 47728, "series flant5": 86733, "careful framework": 12402, "framework prompt": 36240, "geometric interpretation": 38788, "transformers transformers": 98639, "significantly advanced": 87874, "advanced field": 3692, "internal mechanisms": 47232, "novel geometric": 67175, "geometric perspective": 38789, "transformer operations": 98540, "primary contribution": 74803, "layer normalization": 52724, "latent features": 52634, "representation words": 82079, "contextual embeddings": 18939, "parameter gpt2": 70105, "early layers": 26980, "build prior": 11608, "present intuitive": 74002, "understanding transformers": 99895, "high low": 41426, "languages large": 51304, "learn perform": 52958, "llms mt": 56408, "mt capabilities": 64835, "capabilities exist": 11892, "variety languages": 102305, "languages recent": 51351, "recent llm": 80289, "mt performance": 64836, "languages know": 51300, "llms languages": 56272, "cost analysis": 19833, "reveal gpt": 84148, "languages hrls": 51287, "languages lrls": 51319, "ability translate": 1787, "chatgpt especially": 13762, "especially disadvantaged": 29871, "entity linker": 29563, "entity linking": 29564, "texttotext pretrained": 96645, "produce entity": 75621, "label spans": 48899, "text question": 96377, "contrast results": 19087, "different kg": 25081, "kg embeddings": 48374, "embeddings used": 28098, "term generative": 95774, "ai refers": 4530, "meaningful content": 58708, "images audio": 43082, "data widespread": 21757, "dalle gpt4": 20910, "way work": 103408, "article provide": 7553, "current generative": 20691, "research different": 82553, "discuss opportunities": 25672, "community make": 16328, "assessment chatgpt": 7941, "log data": 57236, "data recent": 21542, "applied wide": 6642, "range software": 79206, "analysis potential": 5609, "chatgpt writing": 14361, "summarization text": 92571, "generation analysis": 38026, "received little": 80144, "little attention": 54674, "logs generated": 57288, "generated largescale": 37733, "largescale software": 52570, "hard understand": 40990, "despite complexity": 24032, "complexity provide": 17050, "provide crucial": 77442, "crucial information": 20495, "problems systems": 75208, "investigate current": 47632, "tasks log": 94837, "lack consistency": 48991, "consistency responses": 18245, "scalability issues": 85232, "issues outline": 48003, "role llms": 84793, "llms log": 56355, "improve current": 43686, "chain does": 12798, "urgent question": 100411, "related technologies": 81220, "technologies including": 95627, "including conversational": 44313, "conversational text": 19405, "image generators": 43047, "generators like": 38745, "coding assistants": 15692, "assistants like": 8053, "like github": 54127, "systems compose": 93413, "direct indirect": 25423, "aim bring": 4695, "generations new": 38519, "downstream uses": 26758, "technology generative": 95650, "ai able": 4287, "questions definitive": 78819, "code refinement": 15467, "study code": 91522, "ensuring quality": 29485, "software projects": 89026, "errorprone task": 29800, "task significantly": 94241, "impact development": 43199, "development process": 24700, "process recently": 75386, "potential automate": 73026, "review processes": 84271, "performs code": 71807, "code reviews": 15489, "study select": 91830, "construct new": 18430, "dataset high": 21963, "baseline comparison": 9771, "comparison chatgpt": 16704, "specifically results": 89872, "em bleu": 28032, "stateoftheart method": 90390, "propose strategies": 77124, "mitigate challenges": 60255, "challenges study": 13128, "process highlights": 75326, "evaluation traditional": 30814, "traditional chinese": 97657, "benchmark suite": 10256, "suite evaluation": 92471, "models essential": 62351, "task field": 94060, "context traditional": 18864, "diverse benchmarks": 25991, "benchmarks evaluate": 10335, "despite existence": 24047, "dataset address": 21818, "novel set": 67249, "set benchmarks": 86844, "leverage existing": 53721, "datasets tailored": 22432, "chinese benchmarks": 14537, "benchmarks encompass": 10334, "including contextual": 44312, "questionanswering summarization": 78746, "table understanding": 93689, "offer comprehensive": 67738, "framework enabling": 36115, "assessment language": 7953, "capabilities different": 11878, "proprietary model": 77310, "model benchmarks": 60602, "highlight model": 41597, "comparable gpt35": 16372, "evaluated capabilities": 30321, "connecting large": 18095, "models evolutionary": 62364, "evolutionary algorithms": 31037, "tasks rely": 95031, "crafted prompts": 20126, "substantial human": 92083, "optimization called": 68588, "algorithms eas": 4965, "exhibit good": 31519, "fast convergence": 33890, "language expressions": 49213, "simultaneously leverage": 88342, "llms efficient": 55833, "efficient optimization": 27807, "optimization performance": 68609, "generates new": 37841, "new prompts": 66505, "development set": 24710, "set optimize": 86909, "optimize prompts": 68633, "covering language": 20077, "tasks bigbench": 94408, "bigbench hard": 10994, "hard bbh": 40973, "bbh tasks": 9916, "outperforms humanengineered": 69068, "humanengineered prompts": 42469, "methods automatic": 59540, "inspire research": 46164, "combination llms": 15954, "llms conventional": 55687, "task current": 94000, "does address": 26277, "address explainability": 3396, "systems explanations": 93448, "use complex": 100511, "framework augment": 36043, "transfer dataset": 98404, "explanations model": 32505, "refine generated": 80973, "generated explanations": 37699, "explanations propose": 32514, "expert human": 32362, "using incontext": 101517, "feedback prompting": 34122, "chatgpt act": 13495, "act critic": 2933, "use resulting": 100678, "resulting dataset": 83427, "models settings": 64169, "settings chatgpt": 87041, "poorly task": 72606, "dataset leads": 21993, "improvements shown": 43997, "models smaller": 64217, "expert preferences": 32372, "text detectors": 96178, "evaluated chatgpt": 30327, "electrical engineering": 27948, "selected set": 86136, "set 13": 86835, "chatgpt solve": 14252, "multiple times": 65274, "interpreter able": 47302, "problems tested": 75209, "improvement performance": 43931, "performance chatgpt4": 71053, "findings observations": 34703, "provide recommendations": 77557, "unlocking potential": 100202, "intermediate layers": 47211, "models dynamic": 62267, "enabling dynamic": 28629, "inference leveraging": 45263, "generative nlp": 38678, "making large": 58114, "approach boosts": 6760, "boosts model": 11303, "model efficiency": 60790, "need multiple": 65975, "unlock power": 100199, "layers transformers": 52763, "target output": 93882, "components original": 17093, "model minimizing": 61132, "storage requirements": 90735, "method demonstrated": 59255, "tune llama": 98995, "llama 13b": 54706, "stanford alpaca": 90241, "alpaca dataset": 5227, "dataset instruction": 21978, "results superior": 83881, "comparison standard": 16728, "tuning additional": 99014, "usage inference": 100441, "adaptation performance": 3090, "rlhf stage": 84575, "rlhf large": 84569, "model aligned": 60535, "human intents": 42253, "ppo training": 73489, "generally requires": 37338, "requires largescale": 82392, "report empirically": 81967, "empirically investigate": 28379, "investigate efficient": 47645, "using lowrank": 101595, "adaptation lora": 3085, "llama 7b": 54714, "a100 gpus": 1477, "finetuning despite": 35047, "despite tuning": 24137, "checkpoint model": 14488, "does harm": 26296, "harm performance": 41023, "set lora": 86896, "jensenshannon divergence": 48130, "performance ppo": 71478, "responses training": 83320, "research efficient": 82568, "really help": 79602, "recently developed": 80472, "product openai": 75726, "language based": 49144, "based chatbot": 9462, "analyzing potential": 5818, "field computational": 34359, "analyzing data": 5806, "feature extraction": 33966, "extraction paper": 33323, "different perspectives": 25144, "science computational": 85570, "coding assistance": 15690, "cases code": 12515, "chatgpt perspective": 14081, "integrated human": 46686, "total number": 97562, "gradient optimization": 40298, "hard interpret": 40980, "model analyze": 60542, "inspired social": 46187, "psychology literature": 77889, "embeddings based": 28074, "models develop": 62213, "fairness training": 33743, "process chatgpt": 75277, "evidence support": 30992, "questions specifically": 78952, "supporting evidence": 92854, "answers evidence": 6180, "evidence chatgpt": 30969, "provides correct": 77655, "correct partially": 19674, "partially correct": 70351, "half cases": 40802, "insights generated": 46095, "reveal common": 84138, "references chatgpt": 80955, "provided model": 77626, "does exist": 26291, "does support": 26332, "suggest model": 92381, "producing correct": 75708, "answers unable": 6226, "answers prompts": 6208, "formal verification": 35801, "properties written": 76909, "experienced users": 31946, "work attempted": 103998, "does eliminate": 26289, "eliminate manual": 28001, "reasoning writing": 80088, "increased need": 44796, "heterogeneous hardware": 41335, "llms set": 56763, "set explore": 86874, "explore llms": 32703, "correctness completeness": 19730, "sva evaluate": 93084, "evaluate gpt4": 30196, "gpt4 iteratively": 39943, "iteratively craft": 48072, "syntax semantic": 93195, "semantic rules": 86345, "needed prompt": 66021, "creating better": 20213, "framework integrating": 36173, "safety properties": 85049, "properties addition": 76893, "lastly use": 52615, "cases evaluate": 12525, "gpt4 create": 39814, "errors particularly": 29832, "multilingual speech": 65009, "recognition language": 80599, "crucial component": 20479, "interaction paper": 47027, "simple parameterefficient": 88223, "parameterefficient methods": 70149, "approaches using": 7221, "using parameterefficient": 101673, "methods experiments": 59633, "systems knowledge": 93494, "work content": 104030, "systems research": 93560, "language especially": 49205, "content dialogue": 18612, "issue introduce": 47936, "dataset aimed": 21819, "detection leveraging": 24315, "involving gpt4": 47864, "process entails": 75303, "interaction data": 47000, "data breaking": 21032, "singleturn dialogues": 88429, "employed annotate": 28421, "annotate unlabeled": 5855, "sets constructed": 86958, "constructed using": 18454, "performance assessed": 70996, "assessed study": 7895, "study emphasizes": 91594, "importance ai": 43440, "prioritizing user": 74882, "content detection": 18610, "present method": 74009, "given domain": 38881, "querying large": 78558, "model apply": 60554, "method various": 59464, "llms considerable": 55668, "tax law": 95311, "law example": 52702, "wrong answer": 104530, "improving conversational": 44107, "reasoning critical": 79848, "reasoning remains": 80009, "method improving": 59330, "improving commonsense": 44102, "components component": 17084, "graph synthesized": 40411, "language dataset": 49179, "second contribution": 85922, "training response": 98266, "learning empirical": 53125, "achieves relative": 2774, "57 time": 1089, "code dataset": 15207, "dataset evaluation": 21929, "evaluation gpt3": 30624, "prediction study": 73722, "study investigated": 91700, "investigated potential": 47726, "using structured": 101797, "finetuning paradigms": 35167, "designing efficient": 23977, "natural science": 65777, "chatgpt powerful": 14094, "able comprehend": 1834, "comprehend generate": 17129, "text chatgpt": 96106, "chatgpt expected": 13786, "expected large": 31894, "impact society": 43256, "essential step": 29958, "answering capabilities": 6082, "capabilities perform": 12039, "perform systematic": 70927, "empirical assessment": 28314, "abilities answer": 1493, "domains collected": 26499, "assessed quality": 7893, "using systematic": 101805, "significantly decreases": 87904, "complexity level": 17043, "knowledge critical": 48488, "just examples": 48218, "reducing need": 80887, "need extensive": 65945, "engineering powerful": 29003, "llms closedsource": 55624, "limited capability": 54402, "models containing": 62108, "public benchmarks": 77912, "benchmarks like": 10369, "like mmlu": 54198, "mmlu cmmlu": 60415, "community better": 16302, "training dynamics": 98082, "ai vs": 4610, "interactive llms": 47107, "llms cognitive": 55637, "bard llama": 9363, "careful attention": 12399, "substantial differences": 92074, "human beings": 42111, "incremental improvement": 44925, "improvement llms": 43923, "llms viable": 57031, "practical terms": 73535, "amounts compute": 5339, "resources does": 83005, "social ethical": 88859, "regarding llms": 81061, "care taken": 12395, "llms quite": 56620, "quite different": 78989, "different case": 25012, "learning teaching": 53444, "ai teaching": 4573, "assistants recent": 8057, "ai conversational": 4353, "novice learners": 67302, "perception ai": 70782, "human tas": 42388, "solve programming": 89189, "tasks producing": 94971, "par human": 70013, "guidelines better": 40763, "log analysis": 57235, "capabilities processing": 12054, "processing understanding": 75590, "applications educational": 6459, "questions creating": 78815, "solution question": 89111, "crucial step": 20533, "solution explanations": 89091, "task automated": 93944, "automated explanation": 8697, "generation present": 38326, "evaluate framework": 30187, "given questions": 38941, "evaluation model": 30688, "model framework": 60913, "framework generates": 36147, "generates highquality": 37836, "llama213b gpt4": 54856, "quality explanations": 78267, "datasets findings": 22263, "promising path": 76178, "enhance capabilities": 29141, "dataset report": 22057, "report summarizes": 81995, "dataset consists": 21877, "high degree": 41403, "degree agreement": 22904, "previous models": 74687, "common human": 16146, "problem ai": 74989, "extraction attack": 33281, "attack targeting": 8189, "llms model": 56402, "target llm": 93877, "effectiveness attack": 27495, "exact match": 31066, "match em": 58486, "em f1": 28033, "f1 accuracy": 33414, "accuracy scores": 2359, "api cost": 6268, "cost demonstrate": 19842, "adversarial attack": 3969, "attack transferability": 8191, "extracted model": 33254, "llm resulting": 55245, "11 increase": 190, "attack success": 8182, "compression long": 17361, "models transformed": 64420, "vice versa": 102854, "training increasingly": 98137, "increasingly large": 44892, "selfsupervised language": 86267, "predictive capabilities": 73759, "prediction problem": 73714, "large foundation": 51427, "provides novel": 77688, "insights scaling": 46134, "learning example": 53137, "70b trained": 1224, "trained primarily": 97891, "respectively finally": 83068, "build conditional": 11585, "conditional generative": 17789, "model great": 60965, "great power": 40485, "power comes": 73368, "student instructor": 91253, "instructor perspectives": 46626, "influence llms": 45355, "rise popularity": 84481, "academic circles": 1973, "students exploring": 91307, "llmbased tools": 55363, "students instructors": 91312, "comprehensive user": 17316, "perspectives students": 71974, "addresses gap": 3513, "gap conducting": 36921, "surveys interviews": 93058, "india using": 44972, "survey responses": 93048, "student interviews": 91256, "usage chatgpt": 100426, "offers insights": 67841, "insights current": 46069, "current usage": 20797, "usage patterns": 100451, "threats challenges": 96884, "recommendations enhancing": 80658, "llms students": 56871, "discuss practical": 25681, "analysis ai": 5426, "era utilizing": 29745, "especially largescale": 29895, "process conducted": 75281, "conducted semistructured": 17980, "study identify": 91668, "identify challenges": 42851, "chatgpt qualitative": 14137, "627b tokens": 1140, "tokens extensive": 97197, "analysis designed": 5486, "fundamental characteristics": 36536, "pivotal observations": 72204, "emerged global": 28134, "vs local": 103250, "local single": 57208, "single source": 88395, "performance trained": 71640, "slimpajama dataset": 88643, "using 13b": 101273, "best configuration": 10592, "configuration outperforms": 18030, "13b model": 294, "using number": 101651, "tokens significant": 97229, "13b models": 297, "trained cerebras": 97801, "total 80": 97559, "data diversity": 21163, "7b model": 1294, "large batchsize": 51398, "dataset largescale": 21991, "1000 sentences": 140, "llm shown": 55258, "explore effectiveness": 32672, "learning propose": 53364, "automated evaluation": 8694, "evaluations using": 30889, "chatgpt finally": 13820, "finally compare": 34511, "compare approach": 16447, "methods model": 59732, "models family": 62449, "lms represent": 57166, "fundamental component": 36538, "research methodologies": 82670, "applications development": 6449, "specifically russian": 89874, "lms based": 57100, "based encoder": 9513, "access models": 2075, "models readily": 63979, "pretraining results": 74594, "results evaluating": 83591, "datasets benchmarks": 22154, "benchmarks pretraining": 10395, "enable development": 28543, "data analyses": 20965, "lead incorrect": 52807, "incorrect conclusions": 44729, "correctness aigenerated": 19728, "verification approaches": 102740, "approaches develop": 7126, "interactive data": 47094, "data tables": 21681, "common data": 16137, "data operations": 21455, "qualitative user": 78211, "common behaviors": 16130, "programming analysis": 75876, "analysis tool": 5703, "reflect behaviors": 81002, "highlight opportunities": 41602, "improve future": 43705, "document information": 26209, "localization large": 57215, "llm revolutionized": 55248, "existing tasks": 31833, "extraction core": 33287, "extracting key": 33267, "visually rich": 103153, "rich document": 84416, "target schema": 93886, "main obstacles": 57835, "llms critical": 55700, "lack grounding": 49012, "mechanism ensuring": 58794, "introduce language": 47440, "extraction singular": 33331, "palm 2s": 69542, "learning text": 53449, "icl using": 42766, "challenging limited": 13187, "retrieval model": 83995, "label space": 48898, "recent opensource": 80303, "llms opt": 56471, "performance finegrained": 71220, "finegrained sentiment": 34804, "cases analyze": 12511, "performance number": 71432, "models necessary": 63662, "use larger": 100603, "current input": 20693, "class names": 14699, "new qualitative": 66508, "qualitative approach": 78191, "llm significant": 55259, "performance latest": 71348, "like wizardcoder": 54239, "xu et": 104572, "data engineering": 21185, "including latest": 44401, "engineering instruction": 28983, "closed open": 14988, "parameters present": 70262, "performance assessment": 70998, "outperform gpt35": 68940, "llm personalization": 55197, "short longterm": 87290, "gpt35 exhibited": 39596, "proficiency comprehending": 75781, "comprehending generating": 17141, "result suboptimal": 83410, "based knowledge": 9585, "task enhancing": 94036, "llm remains": 55237, "train llm": 97754, "resource consumption": 82958, "store retrieve": 90738, "retrieve knowledge": 84070, "knowledge enhance": 48541, "retraining new": 83954, "costly study": 19916, "novel computational": 67130, "personalize llms": 71904, "llms extensive": 55944, "approach encourage": 6833, "releasing new": 81424, "opensource medical": 68378, "medical corpus": 58872, "safety evaluation": 85025, "llms presents": 56556, "llms suffer": 56884, "generating harmful": 37917, "applications blackbox": 6416, "blackbox attack": 11129, "attack methods": 8173, "generate unexpected": 37637, "researchers interested": 82869, "attack defense": 8163, "defense llms": 22850, "evaluate abilities": 30129, "attack paper": 8178, "introduce pipeline": 47479, "pipeline construct": 72147, "construct highquality": 18422, "aim induce": 4720, "designed prompt": 23937, "templates widely": 95705, "previous datasets": 74672, "prompts considering": 76672, "especially attacking": 29857, "llms responses": 56719, "popular chinese": 72621, "chinese llms": 14563, "llms dataset": 55715, "dataset results": 22061, "llms 70": 55394, "rate gpt35": 79387, "largescale realworld": 52569, "realworld llm": 79680, "llm conversation": 55022, "people interact": 70735, "interact large": 46979, "containing million": 18537, "content including": 18645, "demonstrate versatility": 23223, "versatility use": 102802, "safety benchmark": 85013, "benchmark training": 10271, "training instructionfollowing": 98151, "challenging benchmark": 13152, "benchmark questions": 10234, "valuable resource": 102170, "advancing llm": 3912, "calculations large": 11744, "models highquality": 62668, "conversational datasets": 19368, "datasets crucial": 22199, "successful development": 92260, "development intelligent": 24659, "systems utilize": 93599, "dialogues generated": 24930, "models common": 62044, "common strategy": 16177, "strategy creating": 90870, "creating datasets": 20218, "pose challenge": 72737, "challenge gpt4": 12879, "gpt4 presents": 40026, "limitation introduce": 54284, "simulated gpt4": 88316, "subsequent response": 92014, "uses python": 101252, "approach notably": 6954, "enhances quality": 29296, "quality synthetic": 78370, "datasets especially": 22236, "especially subjects": 29917, "expert evaluations": 32360, "finetuned llama": 34918, "effectively uses": 27479, "accuracy computational": 2228, "responses code": 83186, "surprising failure": 92990, "reverse direction": 84233, "instance model": 46214, "logical deduction": 57256, "likely occur": 54257, "gpt3 llama1": 39490, "robust model": 84672, "sizes model": 88557, "gpt4 correctly": 39812, "correctly answers": 19717, "questions like": 78886, "79 time": 1273, "approaches generative": 7151, "widespread availability": 103785, "availability generative": 8997, "school students": 85555, "privacy copyright": 74892, "ai social": 4550, "models inherent": 62780, "inherent biases": 45719, "biases potential": 10944, "detecting aigenerated": 24235, "aigenerated writing": 4680, "systems including": 93485, "including large": 44396, "offer promise": 67762, "ai enhance": 4383, "enhance efficiency": 29156, "efficiency addressing": 27666, "addressing issues": 3544, "issues like": 47998, "like long": 54191, "human peer": 42318, "related problems": 81208, "lack transparency": 49065, "attention use": 8382, "social cultural": 88852, "epistemic norms": 29673, "norms define": 66988, "discussion emphasizes": 25720, "critically assess": 20375, "examining influence": 31144, "levels domain": 53695, "llms facilitated": 55963, "sophisticated conversational": 89277, "conversational capabilities": 19362, "responses queries": 83289, "integrating knowledge": 46726, "base kb": 9404, "achieve design": 2509, "access human": 2063, "human domain": 42159, "assessed responses": 7894, "demonstrate lower": 23122, "lower accuracy": 57551, "experts accuracy": 32402, "ability help": 1676, "help students": 41283, "challenges large": 13053, "zero shot": 104707, "shot performance": 87345, "tasks demonstrating": 94520, "demonstrating ability": 23421, "reason apply": 79724, "relevant application": 81446, "application use": 6392, "use creating": 100517, "datasets downstream": 22224, "gpt4 used": 40141, "used augment": 100746, "augment existing": 8513, "automating data": 8910, "annotation processes": 5904, "manually labelling": 58312, "datasets paper": 22361, "replacement human": 81931, "annotators low": 5966, "comprehension tasks": 17186, "analysis llms": 5575, "llms synthetic": 56901, "systems highlighting": 93476, "challenges additionally": 12956, "additionally release": 3345, "create benchmarks": 20145, "experience using": 31942, "hci researchers": 41135, "diverse research": 26091, "specifically examine": 89817, "chatgpt focus": 13830, "future implications": 36729, "implications design": 43372, "raise questions": 79058, "global south": 39018, "perspective work": 71963, "insights dataset": 46072, "dataset automated": 21831, "automated model": 8719, "lms led": 57142, "autonomous ai": 8929, "imperative understanding": 43304, "development cycle": 24626, "detailed information": 24175, "automate model": 8663, "generation introduce": 38216, "introduce dataset": 47417, "models cover": 62132, "crucial aspects": 20474, "aspects model": 7782, "training configurations": 97971, "architecture details": 7342, "training resources": 98264, "resources employ": 83006, "original paper": 68795, "initial experiments": 45771, "experiments chatgpt35": 32125, "llama galactica": 54750, "showcase significant": 87361, "understanding research": 99867, "generating factual": 37904, "textual responses": 96695, "models automate": 61876, "automate generation": 8660, "paper text": 69980, "process complete": 75279, "complete dataset": 16866, "coding assistant": 15691, "generation gpt4": 38186, "examine gpt35": 31111, "check systems": 14476, "arise code": 7477, "code development": 15228, "reliable code": 81517, "code debugging": 15218, "support english": 92805, "approach learning": 6929, "primarily entails": 74782, "answering related": 6151, "related questions": 81213, "results students": 83863, "questions making": 78891, "making challenging": 58086, "comprehension ability": 17149, "models exemplified": 62375, "novel personalized": 67223, "employs methods": 28478, "prediction question": 73716, "generation automatic": 38045, "enhance reading": 29205, "comprehension instruction": 17168, "new algorithm": 66322, "comprehension abilities": 17148, "foundation generating": 35916, "questions appropriate": 78784, "chatgpt prompt": 14116, "prompt patterns": 76394, "proposed address": 77170, "address key": 3442, "generation automated": 38041, "integrating personalized": 46741, "validated experiments": 102109, "formal methods": 35795, "cases present": 12552, "designed automatically": 23881, "constraint solvers": 18387, "logical formulas": 57261, "formulas involving": 35860, "utilizes large": 101990, "creation evaluation": 20239, "interactive human": 47103, "human examination": 42204, "evaluated language": 30344, "chatgpt35 chatgpt4": 14368, "cases addition": 12506, "facilitating easier": 33534, "process extraction": 75319, "subject human": 91941, "efficiency human": 27686, "integration large": 46771, "bringing novel": 11465, "manual inspection": 58272, "demonstrating practical": 23439, "practical value": 73539, "value enhancing": 102188, "implementation paper": 43337, "introduce comprehensive": 47411, "comprehensive approach": 17202, "security reliability": 86032, "software framework": 89019, "development testing": 24721, "firstly employ": 35321, "process helps": 75325, "identify errors": 42865, "harness capabilities": 41067, "models google": 62582, "bard automatically": 9347, "informed decisionmaking": 45692, "implementing learning": 43354, "learning principles": 53345, "study effective": 91589, "based principles": 9667, "spaced repetition": 89472, "implement practical": 43321, "practical constraints": 73507, "students taking": 91340, "questions existing": 78847, "course materials": 20027, "gpt3 ai": 39399, "students individual": 91311, "individual level": 45086, "actively engaged": 2999, "achieved significantly": 2668, "improvement 15": 43871, "strongly correlated": 91108, "demonstrates ability": 23363, "human learning": 42286, "learning processes": 53351, "effectively enhance": 27421, "enhance academic": 29131, "strategies findings": 90814, "findings contribute": 34648, "contribute growing": 19124, "chatgpt modern": 14023, "framework study": 36283, "significantly influenced": 87968, "world leading": 104405, "leading development": 52843, "development ai": 24606, "based deep": 9495, "advancements domain": 3808, "simulate complex": 88303, "chatgpt represent": 14173, "capabilities utilizing": 12115, "utilizing reinforcement": 102042, "rlhf current": 84566, "networks symbolic": 66205, "pitfalls large": 72188, "nlp large": 66739, "emerged important": 28137, "important breakthroughs": 43492, "nlp impressive": 66732, "impressive skills": 43648, "skills language": 88601, "evaluated various": 30369, "tasks english": 94587, "underresourced languages": 99539, "llms benchmark": 55524, "benchmark performance": 10223, "performance bengali": 71017, "gpt35 llama213bchat": 39642, "zeroshot llms": 104819, "par better": 70008, "better current": 10704, "current sota": 20771, "efforts develop": 27901, "develop better": 24437, "resource provides": 82973, "aggregating information": 4255, "multilingual corpora": 64950, "languages language": 51302, "model hope": 60976, "useful resource": 100954, "resource work": 82980, "models defining": 62169, "test study": 95951, "study measure": 91739, "moral reasoning": 64745, "development model": 24679, "uses moral": 101244, "gpt3 exhibit": 39448, "random baseline": 79099, "baseline chatgpt": 9769, "chatgpt llama2chat": 13997, "palm2 gpt4": 69561, "gpt4 significantly": 40086, "score equivalent": 85712, "observe models": 67592, "perform consistently": 70849, "trained solve": 97908, "llms makes": 56374, "order develop": 68694, "holistic understanding": 41923, "understanding systems": 99885, "strategies llms": 90832, "approach leads": 6927, "llm accuracy": 54933, "probability target": 74963, "output probability": 69179, "input predict": 45937, "predictions evaluate": 73738, "tasks robust": 95075, "cases experiments": 12527, "reveal surprising": 84179, "gpt4s accuracy": 40175, "accuracy decoding": 2236, "decoding simple": 22676, "humans instead": 42612, "particular set": 70421, "realworld coding": 79655, "chatgpt offers": 14044, "comprehensive responses": 17294, "confident tone": 18023, "findings recommend": 34726, "language making": 49319, "difficult understand": 25312, "investigate robustness": 47697, "questions particular": 78908, "contexts extracted": 18901, "exhibit average": 31501, "chatgpt better": 13569, "better handling": 10727, "gains achieved": 36858, "best overall": 10620, "overall model": 69303, "chatgpt chainofthought": 13598, "building robust": 11648, "llmpowered conversational": 55382, "voice assistants": 103206, "interaction patterns": 47028, "challenges design": 12993, "design guidelines": 23787, "textbased interactions": 96494, "using chatgptpowered": 101359, "scenarios medical": 85459, "vary tasks": 102640, "tasks showing": 95106, "intent recognition": 46958, "potential harnessing": 73119, "llms resilient": 56714, "bias testing": 10894, "llmbased code": 55344, "generation utilizing": 38503, "llms automatic": 55503, "models play": 63812, "play pivotal": 72347, "llms widespread": 57048, "pressing issue": 74206, "code contain": 15168, "contain social": 18520, "software applications": 88977, "models underexplored": 64447, "framework specifically": 36279, "generated stateoftheart": 37787, "llms findings": 55982, "code functions": 15264, "functions generated": 36522, "bias sensitive": 10886, "sensitive tasks": 86469, "tasks tasks": 95181, "sensitive attributes": 86455, "indicates existing": 45030, "generation posing": 38324, "posing risks": 72795, "risks unintended": 84537, "unintended harmful": 100062, "evaluate bias": 30144, "bias mitigation": 10865, "strategies utilizing": 90856, "testing results": 96024, "prompts evaluation": 76708, "strategies effective": 90802, "mitigating bias": 60295, "bias overall": 10870, "oneshot fewshot": 67945, "learning ai": 53019, "systems deep": 93423, "problems dynamic": 75130, "job scheduling": 48139, "adaptation deep": 3069, "offers benefits": 67823, "understanding decisionmaking": 99709, "rl challenging": 84551, "perform debugging": 70853, "relevant legal": 81466, "service users": 86809, "users build": 101078, "build trust": 11613, "facilitate understanding": 33513, "reported benefits": 81999, "explanations include": 32499, "nontechnical users": 66957, "user acceptance": 100967, "acceptance trust": 2050, "modern ai": 64591, "dedicated prompt": 22728, "compared earlier": 16535, "explanations using": 32521, "using classical": 101361, "eliminates need": 28006, "amounts factual": 5343, "knowledge logical": 48666, "ability manipulate": 1718, "stored knowledge": 90741, "knowledge retrieval": 48749, "chain thoughts": 12809, "dataset controlled": 21882, "inherent weaknesses": 45748, "weaknesses language": 103459, "model efficiently": 60793, "instruct finetuning": 46273, "performance standardized": 71589, "standardized testing": 90223, "proposed strategy": 77258, "test preparation": 95928, "chatgpt academic": 13484, "approach studying": 7041, "performs various": 71827, "question types": 78715, "question prompts": 78696, "prompts impacts": 76743, "accuracy specifically": 2366, "specifically study": 89877, "perform answering": 70818, "100 randomly": 130, "quantitative evaluation": 78406, "chatgpts accuracy": 14422, "accuracy results": 2354, "contextual prompts": 18949, "original questions": 68806, "prompts compared": 76669, "study discusses": 91584, "platform engaging": 72306, "community generative": 16319, "especially generative": 29881, "use help": 100573, "development phases": 24694, "leading inaccurate": 52852, "systems various": 93600, "aim gain": 4714, "generated generative": 37703, "people various": 70747, "cultural backgrounds": 20589, "based context": 9483, "context modeling": 18815, "computing large": 17564, "models tutorial": 64440, "enabled wide": 28571, "wide spectrum": 103695, "contexts make": 18914, "actions accordingly": 2960, "intelligence technologies": 46896, "reasoning recently": 80007, "recently rise": 80553, "llms improved": 56167, "contexts using": 18928, "language perform": 50954, "context reasoning": 18835, "interacting llms": 46991, "autonomous agents": 8928, "enable llms": 28557, "works related": 104383, "computing paradigm": 17570, "users requests": 101173, "given text": 38972, "users request": 101172, "sensor data": 86482, "reasoning llm": 79931, "llm generates": 55101, "action plan": 2946, "planning trip": 72286, "contextaware personalized": 18882, "incorrect text": 44743, "text propose": 96371, "discover strong": 25603, "strong positive": 91061, "llama2 family": 54831, "scales 7b": 85303, "7b 13b": 1277, "13b 70b": 287, "error identification": 29783, "approach findings": 6860, "factuality llms": 33652, "enhance reliability": 29210, "solving nlp": 89242, "problems recent": 75197, "enhancing capabilities": 29310, "nlp despite": 66726, "llms gap": 56028, "gap area": 36912, "present unique": 74078, "benchmarking dataset": 10285, "questions spanning": 78950, "spanning various": 89504, "final exams": 34484, "including multiple": 44426, "answer math": 6028, "advanced prompting": 3734, "strategies like": 90831, "cot treeofthought": 19968, "treeofthought tot": 98828, "effectiveness advanced": 27490, "especially smaller": 29915, "like llama2": 54188, "llama2 13b": 54813, "furthermore manual": 36638, "manual assessment": 58258, "reasoning notably": 79961, "results identifying": 83651, "tool use": 97325, "chatgpt plugins": 14085, "financial losses": 34606, "environment test": 29627, "agents complex": 4174, "increasingly difficult": 44877, "testing lm": 96017, "agents diverse": 4183, "scenarios manual": 85458, "automatic safety": 8822, "safety evaluator": 85026, "risks test": 84536, "benchmark consisting": 10103, "cases provide": 12554, "provide quantitative": 77552, "potentially severe": 73349, "severe outcomes": 87132, "time according": 96927, "need develop": 65930, "agents realworld": 4223, "realworld deployment": 79663, "detection blackbox": 24271, "statements despite": 90290, "detector requires": 24384, "predefined set": 73632, "despite simplicity": 24124, "trained examples": 97826, "factual questions": 33643, "llm architectures": 54968, "reallife scenarios": 79596, "enable generalpurpose": 28549, "advancement large": 3783, "need comprehensive": 65922, "limitations existing": 54319, "settings prompts": 87087, "prompts inadvertently": 76748, "prompts better": 76657, "evaluate 10": 30127, "models 20": 61714, "earlier models": 26963, "gpt4 currently": 39816, "improves gpt4": 44030, "gpt4 including": 39937, "including technical": 44492, "details like": 24197, "like adding": 54049, "data improves": 21314, "reasoning capability": 79812, "aspects llm": 7780, "alignment tax": 5117, "analysis sheds": 5673, "aiming improve": 4767, "enabling natural": 28650, "exclusive humans": 31427, "humans work": 42654, "model series": 61392, "comprehensive language": 17273, "models varying": 64499, "parameter counts": 70098, "base pretrained": 9420, "finetuned human": 34904, "alignment techniques": 5119, "tasks chat": 94429, "particularly trained": 70507, "compared bigger": 16513, "bigger models": 10998, "furthermore developed": 36601, "chatgpt misuse": 14017, "chatgpt help": 13925, "integrity students": 46789, "generating solution": 37974, "help address": 41233, "address new": 3461, "chatgpt terms": 14307, "performance reported": 71536, "manually identify": 58309, "chatgpt student": 14274, "chatgpt survey": 14292, "experiment asked": 31959, "asked complete": 7730, "divided groups": 26171, "group complete": 40607, "complete test": 16878, "shows students": 87622, "times faster": 97071, "chatgpt programming": 14109, "efficient uses": 27835, "uses complex": 101214, "survey results": 93049, "needed validate": 66026, "presented chatgpt": 74090, "provide assistance": 77407, "experimental design": 31993, "experiment design": 31965, "transformers gpt": 98611, "particularly gpt4": 70470, "offers solution": 67862, "analyzed 500": 5789, "articles identified": 7566, "produced accurate": 75670, "root mean": 84845, "materials discovery": 58536, "validation potential": 102126, "ai natural": 4481, "myriad tasks": 65442, "answers look": 6194, "similar ai": 88050, "tools complex": 97377, "test evaluate": 95887, "chatgpt knowledge": 13965, "designed extensible": 23912, "goal facilitate": 39055, "knowledge ai": 48415, "words appear": 103946, "approximately 80": 7274, "tools potential": 97455, "tools large": 97431, "analysis paper": 5597, "assesses potential": 7902, "cases education": 12523, "analysis survey": 5692, "requiring timeconsuming": 82444, "timeconsuming manual": 97052, "manual processing": 58275, "multilabel multiclass": 64930, "analysis performed": 5601, "llm apply": 54965, "realworld dataset": 79660, "dataset 2500": 21806, "science courses": 85574, "zeroshot approach": 104725, "approach requiring": 7009, "requiring examples": 82431, "education settings": 27185, "multiple tasks": 65266, "tasks gpt4": 94683, "gpt4 enabling": 39853, "llms chainofthought": 55568, "reasoning providing": 79996, "practice study": 73554, "study features": 91636, "classification categories": 14729, "uncovering latent": 99429, "expertise large": 32389, "general alignment": 37106, "expert domain": 32356, "domain specialization": 26451, "performance target": 71615, "results existing": 83595, "specialized domain": 89622, "expert domains": 32357, "unlabelled data": 100153, "augmented retrieval": 8584, "reduce hallucination": 80779, "offers effective": 67829, "expert model": 32370, "llm different": 55043, "combined form": 15979, "results biomedical": 83481, "biomedical domain": 11090, "especially considering": 29866, "considering efficiency": 18214, "efficiency terms": 27725, "terms data": 95808, "data parameters": 21471, "assessment methods": 7962, "thoughts prompting": 96864, "language analysis": 49138, "data allowing": 20963, "allowing identify": 5178, "words llms": 103957, "textrelated tasks": 96537, "encounter challenges": 28773, "tasks associated": 94389, "associated reasoning": 8097, "prompting method": 76570, "method proposed": 59394, "proposed means": 77217, "means enhance": 58724, "llms proficiency": 56582, "proficiency complex": 75778, "solving math": 89234, "based logical": 9611, "primary aim": 74795, "aim research": 4734, "medical students": 58919, "students assessment": 91288, "assessment specifically": 7977, "evaluation critical": 30560, "skills using": 88611, "following contributions": 35673, "essays dataset": 29931, "dataset previously": 22034, "use cot": 100515, "approach training": 7063, "models carry": 61965, "particular tasks": 70425, "models llama7b": 62947, "mean squared": 58695, "squared error": 90067, "superior model": 92643, "cohen kappa": 15762, "kappa score": 48243, "important note": 43524, "user privacy": 101022, "representations large": 82103, "leveraging taskspecific": 53905, "remain elusive": 81617, "elusive work": 28029, "investigate llm": 47667, "representational similarity": 82084, "similarity analysis": 88128, "novel methods": 67211, "llama2 70b": 54814, "icl changes": 42756, "behavior icl": 9974, "llm layers": 55148, "framework empowers": 36110, "nuanced understanding": 67319, "understanding latent": 99795, "latent representations": 52638, "research practical": 82715, "heightened concerns": 41222, "concerns potential": 17697, "values evaluating": 102214, "values complex": 102207, "llms requires": 56708, "know know": 48404, "framework quantitatively": 36247, "related human": 81196, "values using": 102225, "value survey": 102198, "evaluation values": 30827, "dataset gpt4": 21962, "value alignment": 102179, "alignment llms": 5091, "llms outputs": 56480, "outputs compared": 69212, "answers llm": 6193, "responses align": 83174, "annotations evaluate": 5930, "evaluate representative": 30276, "representative llms": 82144, "provide strong": 77575, "plausible explanations": 72324, "based provided": 9683, "indicating potential": 45042, "models advent": 61802, "llms paved": 56500, "paved way": 70648, "way complex": 103347, "interactions enabling": 47056, "enabling models": 28649, "closedsource nature": 15014, "llms generalpurpose": 56043, "training limit": 98177, "framework benchmark": 36054, "comprises stages": 17390, "role prompting": 84801, "prompting using": 76635, "speaking style": 89596, "finetuning opensource": 35162, "models role": 64130, "abilities achieving": 1491, "comparable results": 16400, "gpt4 testing": 40127, "testing limits": 96015, "sequence sequence": 86663, "llm pretraining": 55208, "pretraining diverse": 74523, "diverse table": 26112, "table data": 93679, "databases tables": 21778, "web pages": 103492, "semistructured data": 86419, "modeling approach": 61625, "approach large": 6921, "solve diverse": 89174, "table tasks": 93687, "classification problems": 14775, "specialized task": 89641, "unified model": 100032, "significant degradation": 87731, "attempt creating": 8257, "pretraining stage": 74601, "style llms": 91908, "cater diverse": 12638, "t5 data": 93621, "context downstream": 18755, "selfsupervised objectives": 86272, "instruction finetuned": 46324, "public models": 77934, "specialized text": 89643, "qa trained": 78158, "approach table": 7050, "specific pretraining": 89736, "models comparing": 62057, "finetuned variants": 34990, "variants models": 102255, "essential understanding": 29962, "understanding nuances": 99830, "topic limited": 97510, "standardized benchmarks": 90221, "consistent evaluations": 18258, "reasoning benchmark": 79788, "benchmark composed": 10096, "datasets encompassing": 22232, "encompassing various": 28769, "temporal aspects": 95707, "facilitate comprehensive": 33484, "learning scenarios": 53400, "scenarios additionally": 85400, "additionally employ": 3295, "models establish": 62352, "establish baseline": 29965, "indicate models": 45008, "models trail": 64374, "data influence": 21324, "llms diffusion": 55805, "understanding outputs": 99833, "improving transparency": 44165, "transparency ai": 98767, "cost makes": 19866, "makes challenging": 58050, "challenging use": 13255, "setting large": 87001, "models texttoimage": 64362, "approximation method": 7284, "method practical": 59389, "practical largescale": 73518, "models leveraging": 62897, "memory efficiency": 59033, "empirical evaluations": 28320, "magnitude faster": 57804, "faster existing": 33905, "methods applications": 59529, "examples better": 31193, "scores help": 85765, "help identify": 41252, "identify data": 42860, "models temporal": 64344, "reasoning crucial": 79849, "providing nuanced": 77780, "requires multistep": 82403, "reasoning events": 79877, "prediction future": 73693, "notable limitation": 67008, "requires multiple": 82402, "multiple events": 65187, "provide clear": 77419, "clear explanation": 14882, "explanation prediction": 32473, "task offers": 94165, "offers comprehensive": 67825, "complex temporal": 17023, "prediction ability": 73678, "applications support": 6580, "support task": 92835, "task present": 94196, "instructiontuning dataset": 46612, "dataset explainable": 21936, "graph datasets": 40374, "paths using": 70592, "based dataset": 9493, "dataset propose": 22040, "propose opensource": 77085, "llm series": 55253, "based foundation": 9542, "variety llms": 102307, "prediction explanation": 73690, "finetuning recent": 35213, "llms gained": 56021, "attention academia": 8278, "substantial efforts": 92076, "efforts enhance": 27906, "capabilities opensource": 12031, "llms finetuning": 55985, "llms complete": 55652, "tasks generating": 94671, "responses guided": 83234, "token classification": 97125, "limited label": 54436, "generating diverse": 37892, "bert prompting": 10545, "representations llms": 82111, "adaptation llms": 3084, "llms aims": 55463, "finetuned single": 34965, "representations final": 82097, "space compute": 89441, "crossentropy loss": 20410, "loss model": 57468, "minimize loss": 60113, "llms times": 56937, "demonstrates consistent": 23369, "consistent improvements": 18263, "baselines like": 9842, "work shed": 104260, "adapting llms": 3132, "consistency data": 18231, "tests generated": 96044, "llms investigated": 56250, "llms developing": 55795, "experiments gpt35": 32207, "gpt4 examining": 39864, "scenarios learning": 85453, "temperature settings": 95685, "roles prompt": 84820, "provided data": 77610, "distinct roles": 25876, "considered helpful": 18196, "data question": 21532, "use fewshot": 100551, "learning explicit": 53149, "data setting": 21616, "setting better": 86978, "better best": 10696, "value llms": 102193, "llms bring": 55543, "stages data": 90130, "based evaluators": 9518, "evaluators large": 30902, "llmbased evaluators": 55351, "position bias": 72799, "candidate answers": 11799, "content address": 18585, "strategies calibrate": 90796, "lightweight effective": 54037, "single prompt": 88390, "experiments diverse": 32175, "answer pairs": 6035, "pairs results": 69520, "consistency rates": 18243, "rates models": 79417, "models comparison": 62058, "model surpass": 61476, "ability correct": 1620, "bias improve": 10851, "represents valuable": 82185, "valuable step": 102172, "automated evaluations": 8696, "diverse applications": 25982, "tests timeconsuming": 96057, "tools evosuite": 97399, "code generate": 15265, "similar written": 88122, "humans current": 42587, "current models": 20736, "fail consider": 33675, "tests language": 96048, "27 billion": 683, "novel pretraining": 67228, "mapping code": 58343, "code test": 15539, "increase maximum": 44764, "8192 tokens": 1339, "typical code": 99279, "models ensure": 62335, "ensure code": 29443, "available model": 9069, "generating test": 37987, "test code": 95879, "efficiently produce": 27857, "tests achieve": 96033, "achieve coverage": 2507, "ones written": 67940, "outperforms recent": 69109, "importance incorporating": 43460, "complexity inherent": 17041, "training deployment": 98074, "deployment largescale": 23605, "largescale transformerbased": 52579, "theoretical results": 96746, "addresses challenge": 3510, "effectively replace": 27470, "sacrificing model": 84978, "quality develop": 78253, "attention matrices": 8335, "matrices present": 58614, "algorithm apply": 4902, "apply causal": 6653, "techniques provide": 95577, "architecture language": 7351, "handling long": 40950, "utilize synthetic": 101956, "synthetic realworld": 93293, "google cloud": 39137, "lengths 32k": 53616, "style models": 91910, "training compared": 97966, "degradation quality": 22891, "gpt4 replicate": 40052, "research empirical": 82573, "production systems": 75737, "engineering process": 29007, "practitioners researchers": 73578, "impact research": 43254, "research software": 82784, "data poses": 21486, "set challenges": 86849, "data given": 21275, "abilities perform": 1550, "research new": 82682, "study ability": 91469, "plan generate": 72237, "analysis pipelines": 5603, "perform user": 70937, "gpt4 able": 39740, "common knowledge": 16149, "data manual": 21399, "contains small": 18561, "knowledge findings": 48570, "research practitioner": 82719, "software teams": 89039, "driving large": 26858, "multimodal llm": 65079, "modalities pretrained": 60442, "llm improve": 55120, "160k qa": 372, "driving scenarios": 26861, "rl agent": 84546, "pairs generated": 69498, "generated teacher": 37793, "teacher llm": 95340, "gpt35 distinct": 39590, "pretraining strategy": 74604, "align numeric": 5005, "using vector": 101843, "language data": 49178, "data introduce": 21344, "introduce evaluation": 47422, "proficiency interpreting": 75793, "potential llmbased": 73172, "action generation": 2944, "comparison traditional": 16730, "behavioral cloning": 9995, "make benchmark": 57968, "model available": 60582, "science tasks": 85614, "great significance": 40491, "llms transformed": 56964, "intricate nature": 47367, "issues introduce": 47994, "firstever llm": 35316, "framework automatically": 36045, "large volume": 52391, "domain instruction": 26399, "data generates": 21259, "generates instructions": 37837, "based multiagent": 9623, "multiagent collaboration": 64859, "additionally construct": 3286, "level knowledge": 53662, "knowledge expertise": 48558, "tasks gains": 94659, "embodied intelligence": 28109, "intelligence capabilities": 46836, "soon available": 89272, "heavily relies": 41214, "accurately finding": 2452, "humanlike reasoning": 42536, "abilities tasks": 1573, "tasks offers": 94900, "opportunities software": 68509, "introduces evaluates": 47517, "llm enhanced": 55059, "localization approach": 57213, "web applications": 103479, "correctly identified": 19719, "comparing effectiveness": 16674, "effectiveness efficiency": 27512, "baseline algorithm": 9764, "original approach": 68757, "demonstrated improved": 23288, "execution time": 31465, "time additional": 96928, "additional costs": 3233, "costs using": 19939, "llms humanlike": 56149, "positives potentially": 72847, "maintenance costs": 57912, "fully understand": 36472, "practical use": 73537, "answering code": 6084, "widespread concern": 103786, "concern conducted": 17660, "dataset introduced": 21983, "chatgpt compare": 13631, "technical questions": 95413, "questions second": 78946, "terms relevance": 95836, "relevance readability": 81437, "readability informativeness": 79499, "conducted user": 17988, "assess compare": 7836, "10 pairs": 114, "maintenance tasks": 57918, "chatgpt revise": 14188, "code implementation": 15353, "reveals interesting": 84212, "provided better": 77604, "better answers": 10685, "code correctly": 15175, "tasks research": 95058, "capabilities shed": 12074, "adoption chatgpt": 3632, "software industry": 89020, "programaided language": 75856, "problems providing": 75192, "multiple calls": 65148, "written programming": 104522, "utility function": 101892, "solution run": 89115, "set downstream": 86864, "tasks resulting": 95067, "resulting improved": 83430, "generates programs": 37844, "model including": 60996, "gpt4 experiments": 39878, "experiments capable": 32119, "code improve": 15355, "decoderonly language": 22644, "scale poorly": 85287, "contexts propose": 18920, "propose solution": 77121, "based dynamic": 9507, "method models": 59362, "models history": 62669, "experiments language": 32234, "modeling question": 61670, "drastically reducing": 26795, "terms time": 95843, "compression ratio": 17370, "score 98": 85702, "achieving nearly": 2863, "security privacy": 86026, "online resources": 68003, "resources including": 83014, "users understand": 101190, "tools suggest": 97473, "suggest actionable": 92347, "strategies large": 90828, "accuracy correctness": 2233, "called question": 11777, "llms answering": 55475, "questions user": 78968, "provide reliable": 77559, "recent academic": 80166, "academic literature": 1985, "curate dataset": 20621, "llms bard": 55511, "chatgpt develop": 13709, "evaluate responses": 30278, "demonstrate average": 23030, "error rate": 29790, "rate increases": 79390, "revealed llms": 84189, "llms susceptible": 56898, "chatgpt point": 14087, "chatgpt identifying": 13939, "vulnerability patches": 103274, "comprehending code": 17140, "developers apply": 24545, "security researchers": 86033, "approaches employ": 7132, "dl models": 26181, "fixes vulnerability": 35365, "suffer low": 92315, "considering code": 18209, "approach identify": 6887, "identify vulnerability": 42910, "comprehend code": 17125, "balance context": 9303, "costs llm": 19929, "algorithms generate": 4969, "generate comprehensive": 37406, "contexts given": 18905, "size removing": 88523, "expanding context": 31874, "sota approaches": 89303, "auc score": 8470, "score 11": 85693, "11 f1": 188, "provides high": 77672, "security practice": 86025, "identify 20": 42841, "recent code": 80233, "popular opensource": 72664, "capabilities achieved": 11819, "impressive performances": 43638, "depend heavily": 23528, "instructions given": 46508, "typically manually": 99294, "efforts recent": 27917, "work used": 104302, "algorithm automatically": 4903, "given blackbox": 38860, "highly sophisticated": 41713, "instruction performance": 46351, "mainly limited": 57853, "expressive power": 32921, "gaussian process": 37041, "surrogate model": 93009, "repeatedly shown": 81910, "shown neural": 87504, "possess strong": 72860, "algorithm replaces": 4932, "hidden representation": 41348, "learned pretrained": 52990, "chatgpt use": 14327, "methods different": 59600, "induction tasks": 45143, "tasks task": 95179, "task improving": 94095, "zeroshot chainofthought": 104744, "costs large": 19928, "llms exploded": 55933, "exploded popularity": 32558, "new generative": 66415, "capabilities far": 11904, "domains law": 26543, "finance medicine": 34589, "medicine models": 58935, "computational challenges": 17441, "challenges especially": 13005, "costs training": 19938, "llms despite": 55787, "despite large": 24080, "models called": 61954, "chatgpt stateoftheart": 14270, "usage deployment": 100429, "deployment various": 23622, "resource utilization": 82979, "paper experiments": 69704, "conducted study": 17985, "inference llms": 45265, "benchmark conduct": 10102, "preliminary analysis": 73855, "inference performance": 45276, "llama recent": 54792, "recent stateoftheart": 80351, "llm developed": 55038, "developed meta": 24510, "meta ai": 59135, "gpus nvidia": 40274, "datasets alpaca": 22143, "research practice": 82717, "multigpu inference": 64911, "inference using": 45320, "performance perspective": 71469, "assistants answer": 8048, "answer queries": 6040, "queries require": 78508, "require external": 82250, "knowledge ask": 48430, "stock prices": 90725, "require llm": 82267, "llm produce": 55210, "produce code": 75607, "answer users": 6066, "users question": 101167, "llms rarely": 56632, "execution results": 31461, "results addition": 83456, "addition using": 3218, "expensive work": 31931, "contains components": 18550, "components allows": 17083, "allows llm": 5199, "code produce": 15442, "based execution": 9520, "results second": 83832, "second use": 85958, "answer query": 6041, "stronger expensive": 91088, "past successful": 70571, "distinct advantages": 25855, "accuracy surpassing": 2369, "surpassing gpt4": 92962, "gpt4 10": 39738, "points success": 72509, "implicit representations": 43422, "representations knowledge": 82100, "knowledge parameters": 48692, "models contain": 62107, "contain various": 18524, "responsible encoding": 83346, "remove specific": 81864, "adverse effects": 4015, "responsible specific": 83353, "relational knowledge": 81260, "models employ": 62307, "socratic method": 88960, "method experiments": 59299, "experiments code": 32128, "method teaching": 59446, "guide students": 40751, "students solving": 91337, "solution directly": 89085, "cognitively demanding": 15759, "human instruction": 42245, "instruction provide": 46355, "manually created": 58298, "created dataset": 20193, "buggy solutions": 11567, "problems dataset": 75123, "abilities number": 1547, "texttotext transformer": 96651, "zeroshot chain": 104741, "prompting larger": 76563, "gpt4 code": 39797, "confidence scores": 18019, "scores large": 85772, "deployed realworld": 23571, "applications systematic": 6581, "systematic understanding": 93356, "understanding different": 99715, "risks posed": 84530, "paper define": 69663, "risk propose": 84501, "framework novel": 36215, "metrics assessing": 59883, "assessing llms": 7920, "llms risks": 56739, "outofdomain settings": 68891, "calibration method": 11766, "detailed experiments": 24167, "benchmarks baselines": 10312, "chatgpt practical": 14095, "practical utility": 73538, "framework efficacy": 36105, "instance using": 46218, "underlying llm": 99505, "able address": 1825, "new dialogue": 66377, "models asking": 61860, "users intentions": 101123, "recently applied": 80454, "issues applying": 47969, "dialogue tasks": 24913, "tasks dialogue": 94543, "llms update": 56991, "latest knowledge": 52670, "tackle issues": 93729, "questions related": 78931, "related dialogue": 81190, "context potential": 18825, "respectively use": 83094, "knowledge finally": 48569, "knowledge previous": 48711, "generation works": 38510, "questions construct": 78806, "dataset taskoriented": 22099, "outperformed llms": 68982, "llms benchmarking": 55526, "research agents": 82480, "analyzing results": 5820, "build ai": 11579, "agents perform": 4215, "perform longhorizon": 70893, "longhorizon tasks": 57391, "tasks step": 95140, "step building": 90618, "problem machine": 75044, "description dataset": 23678, "tasks benchmarking": 94402, "agents agents": 4164, "perform actions": 70816, "executing code": 31446, "outputs actions": 69206, "run experiments": 84946, "experiments analyze": 32107, "analyze results": 5781, "training processes": 98244, "benchmark automatically": 10080, "automatically perform": 8890, "environment empirically": 29614, "plans actions": 72291, "challenges like": 13059, "finally identify": 34537, "challenges llmbased": 13064, "longterm planning": 57414, "hallucination code": 40826, "adaptation large": 3079, "gpt4 recently": 40043, "general domain": 37118, "domain tasks": 26458, "domains chinese": 26494, "hindering application": 41836, "data encompasses": 21183, "indomain knowledge": 45125, "continue training": 19010, "llms scale": 56746, "effective domain": 27290, "adaptation framework": 3077, "7b llm": 1293, "learning indomain": 53216, "solving task": 89252, "task leverage": 94127, "generate draft": 37437, "answer given": 6010, "task query": 94211, "base finally": 9399, "gpt4 assess": 39767, "answer generate": 6007, "final answer": 34481, "combines advantages": 15988, "efficiency adapting": 27660, "smaller 7b": 88740, "capability gpt4": 12171, "effectively prevents": 27464, "gpt4 generating": 39905, "hallucinatory content": 40885, "content zeroshot": 18710, "chinese legal": 14560, "legal tasks": 53567, "method improves": 59327, "direct generation": 25420, "baselines method": 9843, "procedural text": 75246, "text mining": 96334, "mining large": 60128, "processing particularly": 75556, "particularly development": 70447, "pretrained vast": 74489, "knowledge creating": 48487, "realm knowledge": 79611, "knowledge engineering": 48540, "zeroshot incontext": 104798, "gpt4 generative": 39906, "samples fewshot": 85115, "promise approach": 76114, "deep learningbased": 22781, "learningbased natural": 53489, "defending large": 22845, "models jailbreaking": 62821, "jailbreaking attacks": 48102, "attacks despite": 8209, "despite efforts": 24040, "efforts align": 27893, "align large": 4996, "claude palm": 14856, "targeted llm": 93905, "objectionable content": 67487, "address vulnerability": 3500, "algorithm designed": 4909, "designed mitigate": 23927, "attacks llms": 8222, "based finding": 9533, "multiple copies": 65167, "corresponding predictions": 19801, "adversarial inputs": 3980, "percentage point": 70773, "fewer queries": 34198, "queries existing": 78488, "existing attacks": 31661, "compatible llm": 16746, "llm code": 55006, "direct manipulation": 25425, "interaction large": 47015, "models includes": 62719, "representation generated": 82055, "generated objects": 37745, "compose control": 17101, "manipulation actions": 58222, "shows participants": 87603, "edit text": 27085, "work contributes": 104032, "llms traditional": 56943, "automating human": 8912, "programming feedback": 75899, "leveraging gpt4": 53849, "tutor model": 99137, "individualized feedback": 45103, "role generative": 84777, "programs recent": 75960, "benchmarked stateoftheart": 10279, "generation scenarios": 38408, "ready realworld": 79532, "deployment paper": 23613, "paper seek": 69943, "limits generative": 54499, "novel technique": 67264, "technique leverages": 95452, "leverages gpt4": 53789, "generate hints": 37486, "quality using": 78380, "symbolic information": 93122, "failing test": 33698, "weaker model": 103439, "model student": 61459, "potential utility": 73309, "utility providing": 101900, "covering variety": 20084, "ranging basic": 79235, "tasks especially": 94593, "especially reasoning": 29907, "cornerstone achieving": 19560, "achieving artificial": 2823, "used benchmarks": 100753, "benchmarks fully": 10343, "scenarios address": 85401, "new form": 66406, "form questionanswering": 35781, "task termed": 94264, "introduced study": 47512, "modified version": 64637, "grade school": 40282, "school math": 85552, "gsm8k dataset": 40690, "different attributes": 25006, "traditional qa": 97692, "qa tasks": 78157, "standard qa": 90203, "highlights limitations": 41658, "llms handling": 56120, "suggests future": 92436, "increase performance": 44770, "tasks coding": 94451, "design gpt4": 23786, "driven development": 26841, "chatgpt groundbreaking": 13920, "extensive use": 33139, "approach limitations": 6936, "limitations inherent": 54334, "inherent ambiguity": 45715, "ambiguity natural": 5310, "software designs": 88983, "research offers": 82687, "work emphasizes": 104065, "significant contribution": 87723, "method particularly": 59384, "particularly model": 70486, "model undergoes": 61546, "language present": 50956, "present casestudy": 73944, "multiagent simulation": 64867, "layer approach": 52716, "textual representation": 96693, "using unified": 101833, "minimize model": 60114, "finetune code": 34816, "java code": 48119, "concluding research": 17749, "autogenerated code": 8652, "complexity code": 17033, "code remains": 15473, "ai construction": 4349, "despite rapid": 24104, "industry practices": 45167, "adoption advanced": 3629, "sparked considerable": 89513, "considerable global": 18158, "study investigating": 91715, "challenges implementing": 13038, "genai integration": 37080, "capabilities generate": 11918, "content based": 18594, "learning existing": 53139, "content reflect": 18680, "study delves": 91565, "perception using": 70797, "frequency analysis": 36374, "questions paper": 78907, "implementation framework": 43329, "provides practical": 77692, "practical recommendations": 73527, "foundational literature": 35978, "subsequent research": 92013, "comprehensively understanding": 17332, "improves overall": 44048, "model calibration": 60622, "components results": 17096, "downstream neural": 26706, "task interactive": 94106, "following model": 35689, "model alignment": 60536, "recently development": 80475, "llms advanced": 55453, "advanced rapidly": 3740, "data constraints": 21107, "llms primarily": 56568, "primarily focused": 74784, "following human": 35676, "alignment simple": 5113, "simple model": 88217, "weights pretrained": 103560, "pretrained base": 74231, "model llama2": 61075, "simply adding": 88285, "models weights": 64534, "chat capabilities": 13364, "capabilities new": 12021, "languages need": 51330, "need training": 66003, "multiturn dialogue": 65386, "showcase adaptability": 87352, "approach extend": 6852, "experiments encompass": 32184, "encompass various": 28751, "various languages": 102465, "results underscore": 83898, "effectiveness wide": 27595, "automated program": 8726, "program verification": 75854, "question used": 78717, "verification task": 102754, "abstract reasoning": 1933, "reasoning program": 79990, "verification tools": 102756, "tools propose": 97460, "propose general": 76988, "combine power": 15974, "set synthetic": 86939, "benchmarks large": 10364, "models pass": 63779, "school exams": 85547, "abilities realworld": 1559, "evaluated based": 30318, "based english": 9515, "capabilities english": 11886, "hindered lack": 41832, "understanding benchmark": 99675, "benchmark indonesian": 10194, "questions primary": 78917, "questions focusing": 78856, "local languages": 57199, "evaluations gpt35": 30854, "falcon perform": 33769, "new powerful": 66488, "tool wide": 97333, "applications involving": 6507, "work automatically": 103999, "generate tests": 37621, "use tests": 100707, "tests validate": 96059, "parallel programming": 70084, "including opensource": 44440, "closedsource llms": 15005, "gpt35turbo gpt4turbo": 39705, "finetuned opensource": 34947, "gpt35turbo using": 39713, "explored llms": 32776, "retrievalaugmented generation": 84040, "generation rag": 38377, "oneshot example": 67944, "highlights findings": 41653, "exploring capabilities": 32839, "investigating finetuning": 47765, "prompt methods": 76377, "llms generated": 56055, "generated tests": 37796, "analysis representative": 5639, "representative set": 82155, "tests llm": 96049, "passing tests": 70555, "tests followed": 96043, "introducing ai": 47541, "inevitable question": 45183, "work lacks": 104154, "human authorship": 42101, "framework ai": 36026, "ai given": 4421, "attention research": 8373, "research initial": 82636, "methods having": 59666, "aiming offer": 4770, "regulating ai": 81124, "llms establish": 55876, "facilitating evaluation": 33537, "llms according": 55412, "levels propose": 53700, "thorough examination": 96830, "compared smaller": 16632, "smaller llms": 88761, "holds significant": 41912, "significant value": 87866, "models augmented": 61874, "extraction information": 33302, "methods relied": 59778, "dataset tailored": 22097, "llms employing": 55849, "rules output": 84939, "output formats": 69154, "extensive evaluations": 33033, "evaluations observe": 30872, "t5 flant5": 93630, "generalizing unseen": 37318, "work paves": 104200, "challenges era": 13004, "mark significant": 58380, "generation exhibit": 38151, "propensity generate": 76887, "generate false": 37454, "misleading content": 60188, "content commonly": 18599, "referred hallucinations": 80966, "exploited malicious": 32576, "applications generating": 6490, "scale poses": 85288, "risks explore": 84514, "initiatives needed": 45814, "news organizations": 66637, "broader research": 11520, "research policy": 82711, "stochastic parrots": 90723, "systems recent": 93546, "generic specific": 38755, "specific demographic": 89680, "demographic groups": 23003, "asian person": 7704, "specific personas": 89734, "potential risk": 73248, "biases model": 10938, "interactions users": 47082, "sensitivity dialogue": 86474, "biases biases": 10916, "establish comprehensive": 29969, "additionally propose": 3336, "investigate persona": 47679, "dataset encompassing": 21920, "benchmarking different": 10286, "study uncovers": 91870, "findings underscore": 34766, "ensure safe": 29463, "llmbased data": 55348, "data realm": 21538, "realm natural": 79614, "methods emerged": 59613, "emerged pivotal": 28142, "solutions data": 89134, "data imbalance": 21308, "data level": 21378, "poses unique": 72787, "unique challenges": 100076, "issue study": 47960, "hierarchical structure": 41366, "generation experiments": 38155, "efficacy generated": 27635, "data demonstrating": 21147, "using prompts": 101701, "prompts effectively": 76693, "address aforementioned": 3357, "quality scientific": 78357, "scientific text": 85668, "data help": 21287, "help model": 41268, "development applications": 24608, "meet diverse": 58962, "diverse linguistic": 26044, "gpt3 assess": 39404, "languages focus": 51280, "focus understanding": 35564, "resource availability": 82955, "distinct tasks": 25878, "classification text": 14808, "generation findings": 38165, "languagespecific pretraining": 51378, "data plays": 21476, "role model": 84795, "performance identify": 71293, "important features": 43508, "hope study": 41960, "contributes deeper": 19139, "understanding multilingual": 99818, "models enhance": 62329, "conceptual spaces": 17649, "size quality": 88521, "recent findings": 80259, "llms learn": 56285, "grounded representations": 40579, "potential models": 73201, "experiments llms": 32243, "able match": 1865, "despite orders": 24091, "engineering students": 29022, "chatgpt version": 14347, "feb 2023": 34043, "model solving": 61440, "solving probability": 89243, "engineering exams": 28969, "responses produced": 83280, "criteria used": 20294, "students results": 91333, "chatgpt surpasses": 14291, "spanish english": 89486, "numerical operations": 67407, "solution form": 89094, "overcoming limitations": 69367, "model exhibits": 60835, "exhibits limitations": 31618, "ability deliver": 1623, "highquality explanations": 41759, "performance solving": 71580, "serve learning": 86770, "openended question": 68262, "chinese large": 14555, "abilities natural": 1540, "generation alongside": 38025, "positive impact": 72824, "daily tasks": 20904, "tasks produce": 94970, "produce harmful": 75631, "societal perceptions": 88935, "experiments 13": 32097, "major llms": 57935, "outperform opensourced": 68957, "opensourced ones": 68432, "terms safety": 95839, "safety models": 85046, "demonstrate comparable": 23043, "levels llms": 53697, "like gpt35turbo": 54148, "gpt35turbo smaller": 39710, "aim promote": 4726, "collaborative efforts": 15838, "developing software": 24596, "chatgpt discussion": 13723, "discussion paper": 25723, "paper release": 69933, "does help": 26297, "help programmers": 41273, "statements potentially": 90296, "potentially harmful": 73342, "required develop": 82309, "develop software": 24482, "report experiment": 81970, "ability develop": 1627, "tools results": 97466, "develop kind": 24453, "applications ranging": 6553, "highly dependent": 41694, "domain recent": 26438, "llms pose": 56534, "quality outputs": 78328, "systematic experimental": 93334, "study effects": 91591, "effects different": 27601, "lacking far": 49073, "far paper": 33874, "nature results": 65813, "prompting significantly": 76608, "affect quality": 4056, "metrics dataset": 59901, "understanding various": 99904, "finance tasks": 34590, "human exams": 42205, "llama gpt": 54755, "ensemble refinement": 29425, "refinement techniques": 80989, "techniques combine": 95489, "retrieval generation": 83986, "capabilities prompting": 12056, "strategies improve": 90824, "improve llms": 43729, "performance demonstrate": 71128, "ability achieve": 1584, "earlier generalpurpose": 26959, "88 accuracy": 1383, "performance suggests": 71605, "explore models": 32706, "models capacity": 61962, "capacity address": 12283, "questions generate": 78860, "suggest gpt4": 92368, "contribute meaningfully": 19128, "education assessment": 27131, "task shown": 94240, "shown accurately": 87435, "findings present": 34712, "text human": 96289, "text span": 96427, "performance quickly": 71512, "play role": 72349, "spur future": 90049, "closer human": 15042, "behavior understanding": 9990, "understanding effects": 99725, "effects rlhf": 27622, "used widely": 100935, "sft reward": 87157, "output diversity": 69148, "range realworld": 79199, "scenarios models": 85461, "refers models": 80970, "variety use": 102337, "perform analysis": 70817, "following tasks": 35700, "highly relevant": 41710, "generalises better": 37217, "new inputs": 66428, "compared sft": 16630, "application research": 6384, "needed improve": 66017, "improve tradeoff": 43817, "chatgpt feedback": 13816, "launch november": 52695, "education students": 27186, "help homework": 41249, "homework assignments": 41932, "teaching practices": 95375, "evaluated quality": 30361, "chatgpt regarding": 14162, "written english": 104513, "evaluation used": 30817, "twostep approach": 99193, "based function": 9544, "problem statement": 75087, "evaluated accuracy": 30313, "according types": 2155, "feedback types": 34149, "suggestions improvement": 92427, "improvement accuracy": 43874, "major problems": 57938, "offer effective": 67741, "gender age": 37088, "integrated critical": 46677, "diverse demographics": 26010, "male users": 58152, "female users": 34177, "professional tasks": 75764, "typical application": 99278, "importance providing": 43472, "continual learning": 18990, "ensuring safety": 29487, "learning aspect": 53039, "aligned llms": 5027, "largely overlooked": 52412, "overlooked existing": 69406, "learning benchmarks": 53045, "tuning paper": 99071, "benchmark designed": 10139, "designed evaluate": 23907, "consists distinct": 18329, "distinct datasets": 25862, "datasets spanning": 22419, "including domainspecific": 44332, "standardized unified": 90225, "unified format": 100013, "format allowing": 35817, "allowing effortless": 5172, "effortless automatic": 27885, "experiments training": 32319, "general ability": 37103, "ability instructionfollowing": 1686, "example accuracy": 31153, "llama2chat 13b": 54876, "datasets highlights": 22288, "finding suitable": 34635, "achieving performance": 2871, "performance specific": 71584, "preserving original": 74196, "prowess llms": 77828, "tasks inherently": 94751, "contribute significantly": 19130, "certain capabilities": 12750, "motivated introduce": 64776, "effectively reducing": 27469, "models resolve": 64082, "resolve realworld": 82941, "github issues": 38841, "ability evaluate": 1638, "capabilities consider": 11866, "challenging testbed": 13245, "framework including": 36165, "popular python": 72679, "python repositories": 78111, "resolving issues": 82946, "multiple functions": 65195, "classes files": 14705, "goes far": 39089, "generation evaluations": 38147, "evaluations stateoftheart": 30886, "stateoftheart proprietary": 90458, "respectively provided": 83088, "conceptual framework": 17644, "chatgpt claude": 13620, "greatly increased": 40529, "machines paper": 57783, "cognitive architecture": 15737, "framework presents": 36232, "architectures model": 7398, "latest generative": 52662, "llms multimodal": 56410, "multimodal generative": 65055, "build autonomous": 11580, "framework comprises": 36072, "distinct role": 25875, "setting moral": 87006, "strategic thinking": 90785, "framework incorporates": 36167, "enhancing robustness": 29369, "agents paper": 4214, "framework proposes": 36244, "agents introduce": 4197, "accessible language": 2110, "language coding": 49157, "functional language": 36504, "models master": 63582, "domains unlike": 26603, "corpus instruction": 19635, "text coding": 96129, "coding benchmarks": 15697, "benchmarks opensource": 10390, "superiority existing": 92676, "models proficiency": 63904, "various agent": 102343, "agent tasks": 4148, "tool usage": 97324, "fully partially": 36463, "partially observable": 70354, "observable environments": 67552, "narrow gap": 65511, "models agent": 61808, "agent abilities": 4115, "abilities providing": 1558, "providing key": 77767, "key insights": 48316, "insights developing": 46076, "developing advanced": 24568, "student responses": 91269, "tests require": 96052, "require multiple": 82277, "multiple distinct": 65177, "sets questions": 86969, "used assess": 100744, "assess students": 7877, "time generate": 96968, "highquality parallel": 41781, "propose finetune": 76976, "finetune large": 34828, "llms simulate": 56816, "students responded": 91331, "simulated responses": 88317, "items based": 48037, "responses evaluation": 83207, "generated test": 37794, "test scores": 95936, "acceleration large": 2026, "llms specialized": 56841, "finetuning fail": 35066, "fail recover": 33687, "accuracy especially": 2256, "especially high": 29884, "address perform": 3463, "perform detailed": 70856, "detailed study": 24188, "enables accurate": 28574, "model types": 61544, "sparse llms": 89535, "cpu gpu": 20114, "standard approach": 90156, "reducing memory": 80883, "memory bandwidth": 59012, "results showing": 83846, "accuracy t5": 2370, "speech translation": 89971, "generation time": 38473, "accuracy drops": 2249, "gpu inference": 40260, "compatible quantization": 16747, "approaches models": 7178, "results provided": 83795, "technology various": 95663, "meticulous analysis": 59847, "data requires": 21570, "time especially": 96959, "stage software": 90123, "qualitative evaluation": 78194, "evaluation platforms": 30715, "short terms": 87309, "terms automatic": 95791, "automatic coding": 8765, "transformative era": 98469, "specialized tool": 89644, "tool designed": 97280, "gpt api": 39183, "data comparing": 21087, "manual coding": 58260, "datasets verify": 22463, "ethical reasoning": 30082, "framework incontext": 36166, "llms position": 56535, "capabilities handle": 11933, "policy llm": 72544, "capable making": 12251, "develop framework": 24451, "pertaining different": 71982, "models shows": 64192, "shows gpt4": 87580, "gpt4 nearly": 39985, "moral values": 64747, "learning ask": 53038, "models alpaca": 61829, "series analyses": 86722, "lack highquality": 49015, "available instructiontuning": 9056, "singleturn conversations": 88428, "multiturn ones": 65394, "detailed responses": 24184, "paper address": 69581, "scalable solution": 85245, "solution designed": 89084, "highquality instructiontuning": 41772, "used enhance": 100788, "conversations specifically": 19430, "specifically start": 89876, "designed emulate": 23899, "generating instructions": 37931, "instructions utilize": 46576, "engage multiturn": 28908, "chatgpt diverse": 13726, "data subsequently": 21661, "subsequently employed": 92024, "demonstrate dialogues": 23053, "instructionfollowing datasets": 46450, "datasets critical": 22198, "including topic": 44501, "diversity number": 26151, "number turns": 67396, "human conversation": 42138, "performance 13b": 70952, "13b opensource": 298, "particularly excels": 70462, "multiturn capabilities": 65380, "capabilities make": 12000, "make codes": 57979, "codes datasets": 15630, "based llama213b": 9607, "release llms": 81377, "process research": 75397, "instructiontuning llms": 46620, "llms chinese": 55620, "language early": 49196, "paper makes": 69810, "customizing llms": 20860, "instructions specifically": 46565, "systematically explore": 93370, "impact llm": 43225, "methods instruction": 59688, "data types": 21710, "conduct experiment": 17864, "experiment study": 31980, "impact factors": 43206, "chainofthought data": 12828, "make modest": 58017, "chinese version": 14579, "release powerful": 81389, "democratizing llms": 22998, "costperformance tradeoffs": 19919, "opensource alternatives": 68311, "performance address": 70976, "iterative selfcritique": 48069, "metric performance": 59869, "source models": 89389, "sizes 7b": 88544, "models extremely": 62432, "extremely small": 33401, "small memory": 88703, "memory footprints": 59038, "improvement overall": 43928, "open ended": 68064, "vicuna benchmark": 102859, "prohibitive costs": 76034, "compromising performance": 17410, "reducing costs": 80865, "evidenced case": 31002, "range settings": 79204, "mobile phones": 60422, "diverse inference": 26035, "sizes significant": 88566, "significant training": 87863, "finegrained control": 34788, "accuracy work": 2384, "architecture designed": 7341, "model enables": 60801, "effectiveness different": 27510, "model classes": 60655, "modalities language": 60437, "models spanning": 64231, "validation loss": 102122, "counterparts furthermore": 20006, "observe smaller": 67599, "speculative decoding": 89937, "time series": 97020, "series forecasting": 86735, "gpt3 llama2": 39491, "exceeding performance": 31319, "tasks facilitate": 94627, "facilitate performance": 33503, "series data": 86727, "distributions tokens": 25965, "values argue": 102205, "argue success": 7462, "success llms": 92219, "naturally represent": 65793, "missing data": 60201, "questions help": 78867, "explain predictions": 32434, "size generally": 88471, "generally improves": 37328, "gpt4 perform": 40012, "uncertainty calibration": 99386, "result alignment": 83387, "techniques text": 95601, "features developed": 33993, "streamline process": 90937, "process making": 75356, "collection model": 15901, "learning capability": 53051, "feature allows": 33959, "allows language": 5197, "new skills": 66524, "learn various": 52973, "finetuned gpt35": 34901, "methods requiring": 59786, "task prompting": 94204, "specific text": 89763, "challenging particularly": 13207, "expertise prompt": 32392, "address introduce": 3417, "agent designed": 4125, "complex prompts": 16980, "meet specific": 58967, "specific needs": 89728, "challenge conducted": 12863, "creating prompts": 20231, "tasks half": 94689, "increase similarity": 44775, "gpt llm": 39209, "sources approach": 89403, "used llm": 100842, "propose question": 77098, "dataset novel": 22017, "dataset compiled": 21866, "model returned": 61360, "chat gpt35": 13373, "gpt version": 39246, "gpt4 experiment": 39874, "gpt tends": 39244, "scores compared": 85753, "instruction context": 46307, "context concludes": 18743, "answering task": 6159, "exploring cognitive": 32842, "knowledge structure": 48773, "exhibited exceptional": 31571, "intelligence recent": 46884, "assessing capabilities": 7906, "research overall": 82694, "structure llms": 91143, "paper based": 69622, "method conduct": 59238, "meticulously annotated": 59851, "human test": 42391, "test dataset": 95883, "knowledge structures": 48774, "structures llms": 91196, "llms gain": 56019, "cognitive capabilities": 15742, "capabilities research": 12070, "emphasizes significance": 28297, "investigating llms": 47770, "patterns llms": 70634, "llms shedding": 56766, "researchers advance": 82834, "advance development": 3663, "development utilization": 24730, "llms informed": 56223, "expanding vocabulary": 31878, "construction knowledge": 18469, "structured information": 91162, "relational data": 81256, "data facilitating": 21226, "facilitating question": 33543, "answering information": 6110, "retrieval semantic": 84023, "understanding challenge": 99687, "challenge called": 12860, "called knowledge": 11774, "semantic web": 86362, "constructing knowledge": 18458, "model focus": 60905, "maximum billion": 58647, "sufficient flexibility": 92335, "multitoken prediction": 65375, "prediction address": 73680, "address present": 3464, "semantic embeddings": 86308, "approaches framework": 7148, "achieves f1": 2741, "set data": 86858, "set provided": 86925, "challenge notably": 12911, "adopts lightweight": 3651, "lightweight language": 54040, "prompts directly": 76689, "directly large": 25504, "comparable performances": 16398, "research advances": 82477, "enabling direct": 28628, "multitoken entities": 65374, "data management": 21397, "transformers learn": 98625, "learn incontext": 52948, "little understanding": 54688, "studies try": 91454, "descent gd": 23661, "ask does": 7712, "models highlight": 62663, "weights used": 103570, "llms furthermore": 56015, "furthermore experimental": 36612, "setting conduct": 86980, "inconsistent behavior": 44549, "number demonstrations": 67334, "distribution language": 25942, "circuit analysis": 14636, "analysis common": 5460, "level work": 53684, "findings general": 34669, "study circuit": 91521, "wang et": 103305, "adjust attention": 3585, "boost accuracy": 11267, "task inputs": 94100, "possible explain": 72899, "behavior terms": 9989, "terms relatively": 95835, "large transformers": 52361, "given rise": 38952, "groundbreaking advancements": 40561, "produced impressive": 75678, "human demonstrations": 42150, "demanding extensive": 22971, "strong reliance": 91067, "novel paradigm": 67221, "language space": 51103, "models assess": 61862, "employs key": 28476, "generates novel": 37842, "content following": 18629, "critic evaluates": 20297, "content offering": 18662, "tasks addressing": 94357, "addressing limitations": 3546, "dialogue evaluation": 24862, "benchmark recent": 10238, "learned metrics": 52987, "dialogue data": 24856, "studies predominantly": 91426, "predominantly concentrate": 73779, "metrics languages": 59937, "languages fully": 51281, "multilingual dialogue": 64956, "benchmark address": 10070, "built opensource": 11673, "english dialogue": 29063, "datasets comprising": 22182, "annotated dialogues": 5869, "data extended": 21218, "extended languages": 32954, "baselines terms": 9855, "terms average": 95794, "datasets languages": 22313, "absolute improvements": 1916, "levels respectively": 53702, "applied question": 6628, "score rank": 85735, "set candidate": 86848, "different predictions": 25148, "predictions introduce": 73745, "decoding approach": 22663, "develop computational": 24440, "applied large": 6615, "existing lm": 31751, "benchmarks observe": 10389, "outperforms larger": 69074, "tools addressing": 97352, "fundamental challenges": 36533, "consistency lms": 18241, "fight misinformation": 34449, "todays digital": 97119, "misinformation poses": 60180, "manual verification": 58283, "transformer framework": 98506, "designed automate": 23878, "framework identifies": 36158, "new social": 66525, "generate labeled": 37515, "labeled dataset": 48908, "specialized llms": 89633, "indicate finetuned": 44989, "llms rival": 56740, "performance larger": 71344, "larger pretrained": 52467, "tasks aligning": 94364, "annotations study": 5953, "automated framework": 8699, "framework enhanced": 36121, "complement human": 16852, "including datasets": 44321, "llms comprehend": 55657, "questions persist": 78909, "nature llms": 65809, "knowledge performing": 48699, "exploring llms": 32859, "llms extended": 55943, "sensors actuators": 86485, "chatgpt representative": 14174, "data reasoning": 21540, "new applications": 66326, "traditional textbased": 97710, "enables new": 28607, "ways incorporating": 103416, "incorporating human": 44700, "causes software": 12699, "software failures": 89017, "techniques rely": 95583, "considered promising": 18204, "facing challenges": 33554, "features models": 34016, "models hard": 62647, "llms configuration": 55666, "generation develop": 38116, "generic llmbased": 38751, "engineering fewshot": 28970, "validation results": 102127, "known hallucination": 48847, "systems analysis": 93391, "analysis confirms": 5468, "design space": 23846, "especially terms": 29921, "detecting certain": 24238, "biases popular": 10943, "powerful general": 73436, "capabilities increasingly": 11945, "alignment training": 5121, "ensure generated": 29450, "content aligns": 18590, "content like": 18656, "criminal activities": 20280, "harmful prompts": 41041, "prompts prevent": 76795, "attack instructions": 8167, "instructions multiple": 46538, "elicit harmful": 27985, "content realworld": 18677, "introduce innovative": 47433, "harmful instructions": 41035, "instruction attacks": 46305, "making impossible": 58106, "identify underlying": 42909, "underlying malicious": 99507, "furthermore implement": 36628, "methods known": 59699, "safety assessment": 85011, "datasets harmful": 22285, "harmful prompt": 41040, "prompt datasets": 76270, "achieves attack": 2706, "rate 95": 79370, "chatgpt gpt35turbo": 13889, "approach reveals": 7011, "reveals vulnerability": 84228, "vulnerability llms": 103273, "contributing significantly": 19162, "llm security": 55252, "security development": 86008, "warning paper": 103320, "offensive upsetting": 67731, "agents simulate": 4233, "given powerful": 38929, "powerful ability": 73420, "provide highquality": 77491, "texts ability": 96540, "simulate person": 88307, "form simple": 35785, "simple human": 88205, "emotional states": 28265, "specific person": 89733, "method focuses": 59311, "help build": 41238, "automated software": 8736, "effectiveness stateoftheart": 27579, "prompting engineering": 76523, "prompting incontext": 76548, "learning taskspecific": 53442, "taskspecific prompting": 95300, "code translation": 15551, "analysis prompting": 5619, "strategies suggests": 90850, "outperform finetuning": 68937, "tasks comment": 94452, "gpt4 best": 39786, "outperforms gpt4": 69066, "finetuned baselines": 34867, "different translation": 25236, "graduate students": 40318, "analysis gpt4": 5533, "human provides": 42339, "achieve best": 2482, "add context": 3157, "specific instructions": 89711, "instructions conversational": 46482, "automated prompt": 8730, "human loop": 42297, "human versus": 42415, "speakers use": 89593, "likelihood events": 54247, "actions based": 2961, "assessed human": 7889, "estimate probability": 30009, "investment advice": 47807, "medical advice": 58861, "gpt4 openai": 39990, "openai large": 68166, "tasks human": 94703, "human participant": 42313, "probability estimates": 74958, "good agreement": 39105, "contrast human": 19073, "human gpt4": 42238, "generate accurate": 37368, "experiments represent": 32283, "represent major": 82034, "answering generation": 6105, "generation coherent": 38083, "code llms": 15395, "multistep problems": 65330, "planning crucial": 72258, "experiments evaluation": 32189, "protocols challenging": 77357, "experiments described": 32168, "knowledge evaluate": 48552, "present automatic": 73937, "experimental protocols": 32011, "use llm": 100611, "llm convert": 55023, "highlevel description": 41560, "description list": 23683, "evaluate gpt3": 30193, "gpt4 task": 40120, "task explore": 94054, "explore robustness": 32742, "representations text": 82125, "text generating": 96231, "evaluation improvement": 30636, "model planning": 61250, "areas science": 7451, "remains major": 81678, "growing demand": 40653, "struggle address": 91208, "llms close": 55622, "method uses": 59458, "thought process": 96856, "strategy intention": 90896, "generating response": 37969, "construct dataset": 18417, "annotated experts": 5872, "model critical": 60725, "close gap": 14975, "response quality": 83155, "thought processes": 96857, "enhance capability": 29145, "models excelled": 62371, "remarkable reasoning": 81820, "capabilities advanced": 11823, "techniques fall": 95516, "short tasks": 87302, "require exploration": 82245, "exploration strategic": 32603, "decisionmaking recent": 22605, "propose utilize": 77162, "utilize external": 101931, "search logic": 85878, "tree search": 98821, "challenging reasoning": 13217, "results achieved": 83454, "searches efficient": 85911, "usually require": 101875, "multiple rounds": 65252, "llm api": 54962, "solve single": 89194, "designs natural": 23985, "natural question": 65773, "question arises": 78641, "demonstrate process": 23157, "ability llm": 1702, "trajectories using": 98377, "capable llm": 12248, "allowing perform": 5181, "huge improvements": 42038, "thought approach": 96847, "approach achieving": 6716, "33 compared": 799, "tree thoughts": 98825, "attain comparable": 8244, "ats prompt": 8155, "prompt method": 76376, "llama approach": 54724, "approach yield": 7089, "greater improvement": 40511, "cot data": 19946, "llama27b llama213b": 54867, "respectively large": 83076, "predicting future": 73672, "future learning": 36738, "pose challenges": 72738, "challenges accurately": 12951, "accurately modeling": 2460, "students diverse": 91298, "behaviors large": 10004, "large space": 52346, "space possible": 89459, "approach challenges": 6770, "explore application": 32635, "application large": 6364, "framework combined": 36067, "llms boost": 55540, "boost student": 11282, "modeling capabilities": 61629, "framework evaluate": 36126, "synthesis visual": 93224, "domain experimental": 26375, "results methods": 83724, "better baseline": 10690, "baseline method": 9792, "benchmark furthermore": 10178, "furthermore method": 36639, "method using": 59459, "version gpt35": 102808, "better using": 10811, "code semantic": 15499, "requires highlevel": 82385, "semantic mapping": 86321, "language requirements": 51091, "codes existing": 15632, "generation rely": 38395, "text tokens": 96464, "rich semantic": 84422, "chainofthought approach": 12815, "program execution": 75835, "guiding llm": 40783, "representation code": 82051, "code enhancing": 15241, "enhancing code": 29313, "leveraging semantic": 53902, "dynamic code": 26909, "obtain features": 67648, "features data": 33991, "humaneval humanevalet": 42476, "humanevalet mbpp": 42480, "greatly improving": 40528, "capacity learn": 12300, "learn new": 52954, "new concepts": 66368, "finetuning visual": 35289, "visual models": 103089, "andor finetuning": 5832, "finetuning similar": 35249, "objects work": 67546, "new visual": 66573, "visual concepts": 103053, "feature extractor": 33967, "labels test": 48952, "benchmarks code": 10315, "social dynamics": 88856, "chatgpt covid19": 13667, "role social": 84804, "information dissemination": 45439, "years offering": 104606, "invaluable tools": 47594, "significant events": 87747, "events unfold": 30939, "environment study": 29626, "digital platforms": 25367, "posts news": 72965, "articles related": 7572, "collected multiple": 15881, "including twitter": 44508, "twitter facebook": 99160, "reddit youtube": 80746, "reflect specific": 81010, "various public": 102543, "perceptions regarding": 70802, "regarding topics": 81070, "spread rapidly": 90040, "discussions chatgpt": 25732, "chatgpt despite": 13704, "synthetic qa": 93290, "zeroshot commonsense": 104752, "commonsense questionanswering": 16227, "reason general": 79725, "approaches finetune": 7141, "pairs constructed": 69486, "bases cskbs": 9864, "knowledge qa": 48725, "qa context": 78125, "context current": 18748, "current qa": 20764, "generate ungrammatical": 37638, "false negative": 33810, "refinement approach": 80984, "approach analyzes": 6736, "outperforms baselines": 69017, "baselines using": 9858, "data including": 21319, "including llms": 44411, "chatgpt expert": 13791, "framework significantly": 36268, "checkpoints available": 14492, "open reproducible": 68101, "research rapidly": 82751, "rapidly increasing": 79352, "increasing number": 44843, "number datasets": 67333, "common issue": 16147, "resources data": 83003, "rapidly recently": 79353, "promising capabilities": 76157, "certain data": 12754, "curation tasks": 20646, "llms costeffective": 55692, "gpt35 prompts": 39656, "prompts designed": 76686, "performance automatic": 71002, "based incontext": 9570, "resulting lower": 83435, "lower performance": 57568, "performance categories": 71035, "inference best": 45217, "introducing time": 47552, "time incontext": 96975, "harnesses large": 41079, "automated subject": 8740, "systematic assessment": 93317, "existing questionanswering": 31804, "questionanswering benchmarks": 78732, "knowledge coverage": 48486, "generic domains": 38748, "llms leveraging": 56296, "generates set": 37852, "set questions": 86926, "expected answers": 31891, "experiment shows": 31978, "domains llms": 26548, "performance depends": 71130, "question complexity": 78650, "survey gpt3": 93030, "models obtained": 63693, "data exhibit": 21203, "remarkable performances": 81808, "llms started": 56858, "popularity llms": 72703, "increasing exponentially": 44830, "introduction models": 47560, "gpt4 gpt3": 39913, "concepts like": 17631, "brief overview": 11453, "domains multiple": 26555, "labelling data": 48936, "paper serve": 69947, "serve good": 86764, "updated latest": 100355, "latest research": 52681, "research related": 82759, "powerful opensource": 73461, "document parsing": 26215, "report introduce": 81978, "designed developed": 23891, "developed automatically": 24492, "rich information": 84418, "documents text": 26268, "text tables": 96455, "structured representations": 91182, "capabilities including": 11940, "detection text": 24369, "text recognition": 96387, "structure recognition": 91146, "analysis provided": 5624, "text reading": 96383, "applications related": 6559, "documents realworld": 26262, "chatgpt construct": 13655, "systems accomplish": 93383, "predominant use": 73777, "use english": 100533, "training chatgpt": 97955, "answers relevant": 6217, "abstract values": 1940, "opinions cultural": 68480, "results representative": 83813, "models suffer": 64294, "suffers problem": 92327, "critically examine": 20377, "ethical consideration": 30064, "development deployment": 24630, "straightforward methods": 90771, "diverse data": 26005, "mitigate cultural": 60256, "time introduce": 96978, "used build": 100755, "build foundation": 11589, "details model": 24198, "downstream use": 26755, "llama meta": 54775, "significant information": 87783, "number users": 67398, "level transparency": 53681, "industry standards": 45171, "lms typically": 57179, "twostage training": 99189, "diverse dataset": 26007, "dataset text": 22105, "finetuning alignment": 35010, "direct answer": 25410, "learned large": 52985, "sampling distribution": 85153, "finetuning different": 35048, "tends improve": 95751, "improve factuality": 43702, "helpfulness harmlessness": 41299, "special case": 89601, "improves helpfulness": 44031, "llama2 falcon": 54827, "falcon families": 33767, "model prediction": 61259, "accurately predicting": 2462, "important milestone": 43522, "capabilities artificial": 11840, "intelligence research": 46887, "research ability": 82469, "probabilistic predictions": 74951, "future events": 36724, "openais stateoftheart": 68224, "october 2023": 67719, "diverse topics": 26122, "big tech": 10991, "significantly accurate": 87873, "probability question": 74961, "question explore": 78666, "overall gpt4": 69297, "significantly underperforms": 88035, "predictive tasks": 73769, "answers memorized": 6196, "environment testing": 29628, "going forward": 39092, "character understanding": 13322, "aims learn": 4817, "scenario propose": 85395, "propose multilevel": 77030, "global information": 39013, "finegrained manner": 34798, "manner validate": 58250, "understanding subtasks": 99884, "improves performances": 44056, "analysis effectiveness": 5495, "effectiveness method": 27552, "opensource work": 68414, "tuning using": 99108, "llms instructgpt": 56231, "gpt4 proven": 40035, "behaviors human": 10003, "instructiontuned model": 46606, "model seen": 61383, "potentially better": 73329, "responses paper": 83270, "finetuning instructiontuned": 35101, "instructiontuned llm": 46602, "ranking approaches": 79265, "responses probabilistic": 83279, "lowquality responses": 57595, "model refine": 61326, "using contextual": 101383, "stronger llms": 91091, "furthermore apply": 36578, "test tasks": 95957, "obtain better": 67642, "baselines code": 9823, "teacherstudent framework": 95357, "small mediumsized": 88701, "mediumsized enterprises": 58949, "creating large": 20224, "cost pretraining": 19876, "thirdparty services": 96814, "llms similar": 56811, "instances propose": 46228, "reducing calls": 80861, "calls llms": 11784, "caching previous": 11732, "local model": 57204, "instantiate framework": 46237, "framework llms": 36203, "tasks intent": 94762, "indicate significant": 45019, "clean noisy": 14872, "data transformer": 21708, "noisy input": 66871, "input poses": 45935, "practical implementation": 73515, "implementation generating": 43332, "used benchmark": 100751, "evaluating robustness": 30486, "nmt models": 66845, "models noisy": 63679, "source target": 89392, "target sentences": 93887, "making suitable": 58140, "considering semantic": 18220, "additionally llm": 3322, "sentences preserving": 86563, "semantic integrity": 86317, "original sentences": 68812, "gpt4 evaluations": 39862, "lead consistent": 52798, "llm performs": 55196, "lastly experiments": 52611, "teaching language": 95364, "models selfimprove": 64157, "prompting analyze": 76499, "revise outputs": 84301, "significant recent": 87835, "gap stateoftheart": 36977, "reduce gap": 80775, "training algorithm": 97942, "ability approach": 1594, "performance math": 71394, "contrast prior": 19084, "achieve using": 2605, "using smaller": 101775, "interact llms": 46983, "llms collect": 55641, "collect feedback": 15863, "feedback improvements": 34094, "interactive experience": 47099, "experience learning": 31939, "learning verify": 53470, "gpt4 increasingly": 39938, "increasingly trusted": 44911, "emphasizing role": 28304, "understanding capacities": 99684, "capacities limitations": 12279, "essential ensuring": 29944, "information ecosystem": 45445, "evaluate use": 30297, "queries retrieve": 78510, "contextual data": 18938, "explain reasoning": 32436, "cite relevant": 14648, "retrieved context": 84077, "context results": 18842, "results enhanced": 83584, "llms equipped": 55872, "information gpt4": 45498, "varies based": 102277, "query language": 78531, "llms promise": 56588, "calls research": 11786, "deeper comprehension": 22812, "improving crosslingual": 44108, "abilities multilingual": 1538, "xlmr mt5": 104560, "mt5 shown": 64845, "effective crosslingual": 27279, "limitations present": 54359, "able learn": 1861, "syntactic context": 93168, "small annotated": 88667, "data applied": 20984, "syntactic tree": 93185, "baselines different": 9828, "holds true": 41914, "unlocking secrets": 100203, "public large": 77928, "llms chatgptgpt4": 55619, "tools promoting": 97459, "experience ai": 31933, "multimodal large": 65066, "models mllm": 63625, "empowering llms": 28508, "inputs constructing": 45988, "success achieved": 92183, "achieved llms": 2643, "llms mllms": 56399, "domainspecific applications": 26614, "expertise conducted": 32383, "demonstrate existing": 23078, "existing mllms": 31771, "huge amounts": 42031, "generate informative": 37498, "visionlanguage model": 103022, "dataset million": 22004, "imagetext pairs": 43133, "language alignment": 49137, "pushes boundaries": 78074, "understanding general": 99741, "standard protocol": 90202, "adapting generalpurpose": 3124, "generalpurpose assistant": 37345, "domainspecific experts": 26626, "valuable data": 102148, "research academic": 82470, "examines impact": 31139, "tools specifically": 97470, "seven students": 87124, "support tool": 92836, "chatgpts effectiveness": 14430, "influence learning": 45354, "skill gaps": 88582, "enhancing efficiency": 29325, "soft skills": 88967, "incorporating ai": 44690, "gaps increase": 36992, "stresses need": 90975, "balanced approach": 9311, "technology use": 95662, "application various": 6395, "various development": 102400, "key feature": 48299, "feature large": 33970, "evaluation capability": 30533, "intensive manual": 46950, "evaluation existing": 30589, "llmbased approach": 55336, "human dialogues": 42158, "utterances based": 102055, "gpt4 judge": 39944, "evaluate generated": 30189, "generated dialogues": 37691, "evaluation protocols": 30739, "dialogues human": 24931, "instructionfollowing capability": 46447, "generate lengthy": 37521, "general capability": 37114, "data codes": 21062, "codes provided": 15637, "resource evaluating": 82962, "llms machine": 56368, "51 articles": 1039, "2019 2023": 525, "humancomputer interaction": 42459, "relatively high": 81311, "high effectiveness": 41410, "collaboration large": 15825, "textual analysis": 96655, "influence human": 45349, "approaches automatic": 7108, "gesture generation": 38813, "approaches face": 7138, "designer control": 23965, "application approach": 6337, "specifically used": 89889, "chatgpt suggests": 14287, "suggests novel": 92443, "appropriate gestures": 7239, "gestures present": 38815, "minimal training": 60103, "reduce need": 80793, "adapt different": 3037, "processing transformer": 75589, "models focusing": 62497, "especially regarding": 29909, "demonstrate gpt2": 23091, "higher degree": 41496, "processing compared": 75467, "compared transformer": 16652, "number attention": 67329, "ability process": 1748, "performance detecting": 71133, "models embedded": 62289, "biases cause": 10917, "model especially": 60818, "especially important": 29887, "adoption pretrained": 3646, "pretrained foundational": 74261, "remains poorly": 81690, "learning tl": 53452, "pretrained foundation": 74258, "models encode": 62316, "measuring performance": 58781, "linear probes": 54532, "probes pretrained": 74976, "representations robust": 82121, "overall finetuning": 69293, "model interpretation": 61027, "latest progress": 52680, "extension visual": 32984, "development efficiency": 24635, "data limitations": 21382, "issues existing": 47989, "llm development": 55041, "black boxes": 11122, "errors occur": 29829, "empowers users": 28516, "users customize": 101090, "prompts various": 76847, "various programming": 102531, "languages 50": 51227, "errors llm": 29824, "efficient code": 27745, "demonstrating proficiency": 23440, "smart contract": 88814, "contract language": 19050, "generating instructiontuning": 37932, "data heterogeneous": 21289, "2023 train": 563, "limitation approaches": 54279, "permissive licenses": 71841, "new icl": 66422, "learning easier": 53118, "lm outputs": 57073, "help select": 41280, "select highquality": 86124, "synthetic examples": 93278, "algorithm leverages": 4922, "instructions require": 46559, "method yields": 59466, "higherquality instruction": 41539, "tuning data": 99022, "significant margins": 87794, "lms generate": 57127, "generate useful": 37641, "codebase available": 15575, "understand better": 99596, "communication humans": 16268, "humans unfortunately": 42649, "unfortunately previous": 99987, "videos youtube": 102900, "filtering pipeline": 34476, "verbal visual": 102724, "visual elements": 103059, "videos cover": 102896, "cover wide": 20053, "necessitate multimodal": 65880, "multimodal understanding": 65106, "automatic scores": 8823, "generation dataset": 38107, "tasks security": 95085, "designed detect": 23890, "detect malicious": 24225, "malicious content": 58155, "insufficient training": 46643, "security domain": 86009, "challenging samples": 13223, "class train": 14702, "train effective": 97736, "classifier study": 14825, "application natural": 6375, "data gap": 21250, "tasks variety": 95243, "purpose consider": 78036, "consider particular": 18138, "set evaluation": 86870, "language detection": 49188, "review fraud": 84256, "augmentation strategies": 8551, "using basic": 101310, "basic data": 9876, "usage particular": 100450, "severe limitations": 87131, "using openly": 101667, "study paper": 91763, "ai security": 4543, "physics problems": 72089, "opensource tools": 68411, "randomly drawn": 79123, "performance problems": 71494, "highest difficulty": 41545, "analysis types": 5709, "problems highly": 75150, "exploratory factor": 32620, "factor analysis": 33577, "access large": 2067, "chatgpt advanced": 13503, "method identify": 59323, "identify interpret": 42873, "data application": 20983, "explores utilization": 32830, "chatgpt core": 13664, "analysis medical": 5579, "medical context": 58871, "training purposes": 98252, "assess strengths": 7875, "chatgpt roles": 14194, "roles highlighting": 84817, "intervention remains": 47341, "remains necessary": 81680, "additional insights": 3244, "tuned large": 99001, "despite numerous": 24087, "studies examine": 91384, "examine performance": 31121, "performance instructiontuned": 71320, "remains lack": 81665, "present sparrow": 74060, "multilingual benchmark": 64942, "covering 13": 20070, "primary categories": 74798, "detection emotion": 24293, "datasets encompass": 22231, "12 language": 224, "writing scripts": 104492, "various multilingual": 102492, "llms bloomz": 55539, "finetuning zeroshot": 35294, "learning comprehensive": 53079, "reveals existing": 84209, "opensource instruction": 68341, "tuned llms": 99003, "struggle understand": 91231, "languages performing": 51340, "close random": 14980, "baseline cases": 9767, "benchmark available": 10081, "learning correct": 53090, "noisy labels": 66873, "processing aims": 75452, "entities text": 29553, "poses major": 72776, "distribution deviation": 25937, "noise correction": 66859, "leverages multiple": 53805, "prediction results": 73717, "identify correct": 42855, "specifically integrate": 89837, "model captures": 60636, "maintains robustness": 57910, "results widelyused": 83927, "types training": 99270, "samples including": 85122, "annotated using": 5879, "supervision chatgpt": 92753, "based unsupervised": 9750, "unsupervised text": 100316, "training generative": 98122, "powerful pretrained": 73463, "method unsupervised": 59455, "transfer construct": 98403, "information input": 45513, "sentence respectively": 86517, "richer information": 84429, "information model": 45545, "furthermore adopt": 36574, "provides effective": 77659, "effective way": 27387, "model construct": 60702, "informative prefixes": 45684, "helps improve": 41308, "performance evaluations": 71187, "wellknown datasets": 103595, "stateoftheart baselines": 90314, "subjective evaluations": 91954, "evaluations humans": 30856, "method establishing": 59289, "modeling evaluation": 61637, "llama mistral": 54777, "benchmarks focus": 10341, "tasks domainspecific": 94561, "fundamental linguistic": 36545, "tool assessing": 97266, "evaluate seven": 30286, "learning mechanisms": 53260, "complete picture": 16868, "pretraining complex": 74512, "reasoning physical": 79976, "temporal contexts": 95710, "texts existing": 96562, "piece text": 72104, "temporal dependencies": 95711, "graph structure": 40408, "relations sentences": 81274, "t5 multiple": 93644, "multiple temporal": 65270, "potential gpt": 73111, "bases kbs": 9866, "inevitably incomplete": 45185, "unsupervised knowledge": 100304, "ability scale": 1769, "accuracy remains": 2350, "prior experimental": 74845, "evaluate popular": 30260, "largest public": 52602, "gpt3 enables": 39446, "90 precision": 1402, "llms multiturn": 56417, "arabic paper": 7308, "offers detailed": 67827, "detailed examination": 24166, "open llms": 68084, "llms scenarios": 56748, "employ gpt4": 28398, "queries assess": 78472, "various openended": 102513, "openended tasks": 68268, "finetuned base": 34865, "using multilingual": 101623, "multilingual data": 64953, "data finally": 21232, "perform competitively": 70840, "learning open": 53310, "involves extracting": 47843, "object given": 67474, "techniques offer": 95566, "unique advantages": 100072, "generate tokens": 37627, "present original": 74031, "original sentence": 68811, "generationbased methods": 38513, "data learn": 21375, "learn task": 52968, "task form": 94071, "model convergence": 60714, "penalty paper": 70723, "model reducing": 61325, "data furthermore": 21247, "furthermore introduce": 36631, "innovative concept": 45852, "sequence model": 86658, "impact order": 43243, "reducing training": 80894, "time experimental": 96962, "indicate compared": 44984, "dataset assess": 21829, "comprising 10000": 17394, "10000 questions": 145, "diverse sources": 26108, "standards research": 90232, "articles paper": 7569, "paper outlines": 69819, "automated question": 8733, "ensure quality": 29455, "quality questions": 78341, "using provided": 101706, "provided dataset": 77611, "gpt4 results": 40058, "struggle complex": 91211, "questions exhibit": 78846, "proficiency addressing": 75776, "addressing general": 3541, "enhances performance": 29294, "light need": 54011, "need specialized": 65993, "findings illustrate": 34677, "illustrate llms": 42997, "capacity process": 12308, "amounts information": 5347, "refers task": 80971, "design automated": 23751, "support realworld": 92824, "realworld task": 79707, "discourse structure": 25591, "extensive automatic": 32997, "experiments framework": 32202, "framework outperforms": 36221, "content plan": 18669, "producing coherent": 75705, "final report": 34493, "analysis ta": 5693, "ensure reliable": 29457, "data typically": 21711, "assigned human": 8001, "produce meaningful": 75646, "recently emerging": 80488, "humanlike behavior": 42521, "particular llms": 70414, "opportunity leverage": 68522, "humanllm collaboration": 42549, "collaboration framework": 15822, "gpt35 generate": 39604, "using survey": 101801, "listening experience": 54631, "results case": 83483, "studies proposed": 91431, "yields similar": 104677, "coding quality": 15714, "linguistic capabilities": 54562, "llms studies": 56873, "studies exist": 91386, "remarkable ability": 81731, "capabilities lie": 11973, "heart human": 41203, "language like": 49312, "close gaps": 14976, "conducting rigorous": 18000, "varied languages": 102275, "languages specifically": 51360, "test chatgpt": 95878, "uncontaminated datasets": 99418, "datasets examined": 22242, "systems particularly": 93528, "particularly english": 70459, "results lens": 83707, "chatgpt suggesting": 14286, "claims humanlike": 14676, "humanlike language": 42533, "improves large": 44035, "llms frequently": 56010, "frequently used": 36385, "lack coherence": 48983, "challenging natural": 13198, "tasks consists": 94489, "modules parameterized": 64683, "decomposition task": 22702, "task multiple": 94149, "effectiveness multiple": 27558, "vicuna llama2chat": 102865, "llm enhancing": 55060, "outperform gpt4": 68941, "gpt4 domains": 39844, "story generation": 90754, "improving constraint": 44105, "researchers industry": 82866, "application tasks": 6391, "tasks concerning": 94473, "investigates use": 47759, "approach proposed": 6988, "structure inherent": 91137, "capacities llms": 12280, "effectively improve": 27440, "conducted gpt4": 17967, "gpt4 showed": 40076, "showed promising": 87399, "promising capability": 76158, "learning furthermore": 53171, "quality generative": 78287, "human large": 42280, "performance given": 71263, "demonstrate zeroshot": 23225, "zeroshot capability": 104738, "llms serve": 56761, "lower costs": 57559, "limited work": 54482, "work best": 104002, "objectives propose": 67526, "uncertainty estimate": 99387, "capability empirical": 12157, "effective means": 27324, "work results": 104253, "baseline code": 9770, "make llm": 58008, "llm testing": 55290, "testing plays": 96019, "role ensuring": 84772, "mobile applications": 60419, "growing popularity": 40662, "testing ability": 95992, "humanlike interactions": 42532, "suffer limitations": 92313, "data inspired": 21328, "framework introduced": 36176, "prompting mechanism": 76568, "equips llm": 29701, "llm ability": 54928, "testing knowledge": 96009, "exploration evaluate": 32591, "demonstrate outperforms": 23142, "faster rate": 33911, "factual recall": 33645, "memorized pretraining": 59005, "pretraining new": 74579, "knowledge world": 48815, "measure proportion": 58746, "use counterfactual": 100516, "learned pretraining": 52991, "using counterfactual": 101389, "identify individual": 42871, "method increase": 59334, "rate generating": 79386, "simply scaling": 88299, "body evidence": 11241, "specific components": 89674, "work leveraging": 104165, "fewshot samples": 34307, "prompting work": 76636, "try better": 98974, "understand role": 99648, "surprisingly little": 93002, "translation quality": 98734, "text distribution": 96180, "provides important": 77674, "method named": 59364, "improves zeroshot": 44092, "making competitive": 58089, "excellent generalization": 31348, "contextual learning": 18947, "handle specific": 40934, "direct training": 25435, "data making": 21396, "making better": 58085, "better foundation": 10717, "models adversarial": 61806, "transfer knowledge": 98411, "domain target": 26455, "fail account": 33669, "source data": 89368, "data distribution": 21158, "domains study": 26593, "plms finetuning": 72420, "model feature": 60872, "adversarial loss": 3982, "loss designed": 57460, "correctly identify": 19721, "domaininvariant features": 26482, "extracted features": 33252, "vision downstream": 102966, "critical ability": 20301, "chatgpt enable": 13751, "enable consistent": 28540, "effective dialogue": 27288, "dialogue humans": 24870, "ai previous": 4516, "llms extent": 55952, "models domain": 62257, "domain explored": 26383, "dynamics model": 26951, "understand underlying": 99654, "underlying causes": 99489, "memory access": 59008, "dialogue history": 24869, "overall chatgpt": 69282, "chatgpt currently": 13671, "release codebase": 81360, "model limited": 61071, "human sentence": 42364, "sentence processing": 86514, "model integrating": 61021, "mechanism transformer": 58811, "memory retrieval": 59064, "present work": 74085, "model single": 61409, "single selfattention": 88393, "models single": 64209, "semantic syntactic": 86355, "effects observed": 27617, "observed human": 67614, "capacity handle": 12292, "multiparty conversations": 65126, "conversations mpcs": 19426, "presence multiple": 73923, "intricate information": 47364, "paper delve": 69664, "delve potential": 22952, "potential generative": 73108, "gpt4 context": 39809, "assess zeroshot": 7883, "evaluated mpc": 30351, "exhaustive evaluation": 31495, "evaluation analysis": 30509, "applying generative": 6682, "effective robust": 27364, "work underscores": 104298, "existing instructiontuning": 31726, "instructiontuning datasets": 46614, "datasets suffer": 22427, "majority data": 57947, "specific fields": 89696, "llms create": 55696, "based occupation": 9645, "question ensure": 78663, "comprehensive coverage": 17224, "balanced distribution": 9313, "set covering": 86857, "real estate": 79543, "set containing": 86855, "containing realworld": 18538, "professional questions": 75761, "win rate": 103828, "potential zeroshot": 73325, "task achieved": 93920, "performance remains": 71533, "remains understudied": 81719, "introducing additional": 47540, "zeroshot scenario": 104863, "scenario paper": 85394, "shows unique": 87624, "models write": 64555, "write better": 104455, "stories language": 90746, "models seen": 64153, "seen significant": 86091, "significant growth": 87757, "leading notable": 52871, "notable performance": 67016, "developing models": 24592, "explores impact": 32803, "pretrained scratch": 74446, "finetuning findings": 35069, "ability maintain": 1716, "code work": 15571, "work publicly": 104241, "architecture search": 7370, "explore novel": 32710, "novel use": 67278, "given specific": 38961, "network architecture": 66129, "predict performance": 73655, "task design": 94012, "performance prediction": 71479, "efficiency metrics": 27700, "performance machine": 71384, "mt tasks": 64839, "tasks discover": 94550, "discover gpt4": 25597, "performance architecture": 70994, "mean absolute": 58690, "absolute error": 1911, "rank correlation": 79247, "correlation coefficient": 19769, "distilled small": 25841, "retain performance": 83937, "cases performance": 12549, "search nas": 85882, "improves latency": 44037, "empirical gains": 28331, "novel loss": 67204, "integrates seamlessly": 46703, "test score": 95935, "language diffusion": 49191, "generates faithful": 37832, "faithful text": 33749, "temperature scaling": 95683, "similar quality": 88105, "evaluations enables": 30846, "enables controllable": 28578, "sampling quality": 85165, "left right": 53546, "right prompting": 84436, "entities context": 29537, "use incontext": 100578, "incontext information": 44568, "entities attributes": 29532, "llama families": 54745, "using causal": 101331, "internal activations": 47227, "id vectors": 42778, "vectors corresponding": 102708, "knowledge incontext": 48623, "providing step": 77800, "equipped address": 29695, "culture introduce": 20608, "task involving": 94111, "translation cultural": 98695, "adaptation evaluate": 3075, "translation information": 98705, "retrieval techniques": 84031, "techniques comprehensive": 95491, "analysis includes": 5548, "metrics gpt4": 59923, "exhibits impressive": 31616, "lags human": 49087, "multifaceted nature": 64909, "significantly contribute": 87900, "models practical": 63849, "language serving": 51099, "llm evaluations": 55065, "ai agent": 4291, "basic skills": 9888, "2023 work": 565, "using list": 101569, "text significantly": 96416, "different text": 25228, "text training": 96465, "set paper": 86912, "paper develops": 69678, "gpt4 open": 39989, "70b model": 1222, "version popular": 102812, "ecosystem open": 27072, "capabilities future": 11915, "models scalable": 64137, "judges evaluating": 48186, "benchmarks metrics": 10381, "comprehensively address": 17319, "llms efficiently": 55834, "benchmarks propose": 10399, "propose comprehensive": 76948, "comprehensive largescale": 17274, "13b 33b": 285, "parameters conduct": 70188, "capabilities behaviors": 11846, "analyze key": 5771, "finetuning llm": 35132, "knowledge bias": 48456, "format bias": 35822, "obtains stateoftheart": 67689, "benchmark proposed": 10228, "proposed new": 77242, "exceeding 90": 31318, "answer multimodal": 6029, "harms generative": 41060, "metrics large": 59938, "llms associated": 55495, "llms builds": 55548, "framework run": 36263, "studies investigating": 91407, "harm areas": 41021, "implementing framework": 43353, "aim enable": 4703, "targeted data": 93902, "datasets synthetic": 22430, "suffer lack": 92312, "lack diversity": 48999, "noise paper": 66861, "multistep prompting": 65332, "llm advantage": 54946, "require specific": 82291, "task instances": 94102, "broadening applicability": 11506, "method known": 59343, "dataset creation": 21888, "emulate tasks": 28520, "encoderonly encoderdecoder": 28735, "decoderonly models": 22654, "original training": 68818, "sets evaluation": 86960, "trained datasets": 97811, "original datasets": 68768, "using flant5": 101454, "incorporating instruction": 44703, "performance increases": 71311, "data vs": 21752, "dataset demonstrates": 21900, "similar higher": 88075, "complexity diversity": 17037, "furthermore synthetic": 36665, "aligns closely": 5125, "dataset finally": 21943, "yields impressive": 104666, "points hope": 72503, "reducing human": 80875, "method large": 59344, "reveals llms": 84217, "llms reliability": 56688, "method detect": 59261, "questions llm": 78887, "llm does": 55046, "prone generate": 76861, "results specifically": 83856, "corresponding answers": 19788, "questions model": 78895, "released llms": 81407, "dataset sentiment": 22067, "mixed text": 60329, "text speech": 96432, "speech datasets": 89944, "languages datasets": 51256, "languages bangla": 51236, "bangla english": 9334, "english hindi": 29074, "negotiation strategies": 66097, "dialogue paper": 24883, "dialogue agent": 24844, "possesses capability": 72863, "negotiate price": 66093, "offering flexible": 67788, "creation method": 20244, "method combines": 59231, "agent generate": 4134, "given intent": 38904, "minor errors": 60135, "high data": 41400, "set novel": 86907, "negotiation task": 66098, "various contextual": 102392, "model conduct": 60691, "approach reward": 7012, "agents negotiation": 4213, "inclusion exclusion": 44523, "models grant": 62628, "understanding providing": 99848, "expertise different": 32385, "model refuse": 61328, "model weight": 61583, "organized hackathon": 68748, "hackathon participants": 40795, "malicious prompts": 58158, "llama270b model": 54861, "provided participants": 77631, "needed obtain": 66019, "agents web": 4248, "navigation tasks": 65829, "prompts tasks": 76835, "context representation": 18839, "approach prompt": 6986, "finetuning based": 35020, "opensource llama2": 68355, "significantly influence": 87967, "influence performance": 45357, "realtime environmental": 79625, "environmental feedback": 29631, "llmdriven web": 55366, "web agents": 103476, "society does": 88941, "safeguards place": 84999, "ensure llm": 29453, "highlighting positive": 41635, "trained llms": 97867, "llms leading": 56283, "unique prompts": 100089, "foster development": 35898, "llms fair": 55969, "safe robust": 84991, "robust prompting": 84683, "step development": 90626, "finetuning result": 35227, "model test": 61503, "alignment capabilities": 5058, "models safe": 64132, "attribute control": 8436, "user profile": 101024, "modeling using": 61689, "user embeddings": 100980, "prompts lack": 76761, "lack finegrained": 49008, "approaches struggle": 7208, "complex personalized": 16971, "require generating": 82255, "responses multiple": 83262, "personal attributes": 71878, "conditional variational": 17798, "variational autoencoder": 102260, "ordinary differential": 68731, "differential equations": 25265, "sampling method": 85160, "method offer": 59371, "offer flexible": 67743, "control extensive": 19201, "terms personality": 95830, "quality dataset": 78248, "muslimviolence bias": 65423, "antimuslim bias": 6251, "revealing significant": 84200, "development content": 24625, "llms grade": 56113, "gpt4 reliably": 40050, "reliably evaluate": 81536, "various configurations": 102389, "able evaluate": 1844, "assessments conducted": 7985, "offers opportunity": 67852, "opportunity test": 68524, "predominantly designed": 73780, "american countries": 5325, "gpt4 minimal": 39976, "quadratic weighted": 78177, "weighted kappa": 103535, "substantially outperforming": 92134, "based approaches": 9440, "real student": 79552, "student data": 91246, "data suggests": 21668, "automating grading": 8911, "grading process": 40313, "practice classroom": 73544, "llms generalize": 56038, "use low": 100622, "making feasible": 58099, "language identification": 49269, "works conducted": 104353, "datasets performing": 22366, "languages available": 51235, "data different": 21154, "intelligence software": 46890, "intelligence genai": 46852, "increasingly prevalent": 44900, "prevalent software": 74640, "development offering": 24686, "offering assistance": 67782, "notable examples": 66999, "examples tools": 31293, "tools include": 97422, "copilot amazon": 19513, "amazon codewhisperer": 5302, "recent publications": 80329, "publications explored": 77960, "current development": 20681, "overall picture": 69309, "practical software": 73533, "usage scenarios": 100453, "scenarios conducted": 85410, "results possible": 83771, "possible explore": 72900, "explore adoption": 32631, "automation support": 8923, "support decisionmaking": 92799, "development activities": 24602, "current literature": 20717, "software design": 88982, "design software": 23844, "research attention": 82499, "considerations implementing": 18186, "bringing significant": 11466, "significant changes": 87715, "state research": 90279, "holds significance": 41911, "practitioners current": 73574, "current applications": 20660, "generation numerous": 38304, "numerous applications": 67417, "model aid": 60530, "burden creating": 11688, "aims best": 4784, "research finetuned": 82601, "finetuned pretrained": 34951, "squad question": 90064, "questions addition": 78766, "training transformer": 98334, "engineering applied": 28944, "applied generate": 6612, "questions effectively": 78834, "using llama": 101570, "model generated": 60932, "questions compared": 78799, "questions squad": 78953, "squad dataset": 90063, "prompts demonstrated": 76683, "achieved high": 2630, "high similarity": 41462, "similarity score": 88149, "impressive reasoning": 43641, "reasoning data": 79851, "tasks small": 95120, "surpassing models": 92966, "models 100b": 61703, "100b parameters": 150, "different parameters": 25138, "bloom series": 11221, "multitask setting": 65368, "indicate data": 44986, "significant benefits": 87694, "augmented datasets": 8566, "datasets opensource": 22358, "structure transformer": 91150, "lack explicit": 49007, "selfattention layer": 86198, "syntactic language": 93175, "new tokens": 66559, "instance learning": 46209, "generalization maintaining": 37266, "leading improvements": 52850, "chatgpt advance": 13502, "experience report": 31941, "testing chatgpt": 95999, "wellknown artificial": 103592, "chatbot used": 13425, "used answer": 100741, "discover potential": 25602, "potential advancing": 72989, "examine capability": 31097, "generate candidates": 37387, "properties object": 76905, "intelligence identify": 46858, "terms correctness": 95805, "having said": 41125, "longform responses": 57385, "responses model": 83260, "actual likelihood": 3015, "output correct": 69145, "lms crucial": 57111, "mitigating hallucinations": 60299, "hallucinations lms": 40874, "candidate generations": 11803, "trainingbased methods": 98357, "require finetuning": 82253, "finetuning entire": 35056, "lms large": 57140, "scale present": 85289, "single linear": 88373, "linear layer": 54528, "takes input": 93819, "output logits": 69171, "adding original": 3170, "evaluation construct": 30554, "reducing average": 80858, "evaluation multiple": 30694, "multiple popular": 65239, "following key": 35681, "better calibration": 10697, "tasks short": 95102, "models superior": 64300, "superior calibration": 92633, "compared llama": 16582, "llama2 vicuna": 54854, "vicuna models": 102868, "having fewer": 41119, "importance finetuning": 43456, "calibrating lms": 11760, "meeting summarization": 58970, "summarization systems": 92566, "practical perspective": 73521, "perspective paper": 71958, "effectively build": 27407, "systems realworld": 93545, "llms purpose": 56616, "closedsource opensource": 15015, "generally better": 37323, "smaller opensource": 88781, "13b achieve": 288, "comparable large": 16378, "large closedsource": 51404, "zeroshot scenarios": 104864, "accessible api": 2103, "finetuned versions": 34994, "balancing performance": 9319, "associated costs": 8081, "llama27b model": 54869, "looks promising": 57427, "offers practical": 67855, "practical insights": 73517, "insights using": 46142, "realworld business": 79650, "user needs": 101014, "chatgpt dialogue": 13714, "humanlike capabilities": 42522, "tasks important": 94714, "important application": 43487, "systems respond": 93561, "respond human": 83101, "make recommendations": 58025, "recommendations tailored": 80667, "tailored user": 93791, "capability using": 12214, "high inference": 41418, "inference capability": 45219, "model technical": 61495, "corpus 32": 19594, "model extensively": 60852, "extensively trained": 33152, "training methodology": 98196, "methodology using": 59504, "enhancement training": 29268, "training respectively": 98265, "model excels": 60830, "benchmarks achieves": 10305, "performance chinese": 71054, "leakage detection": 52917, "detection method": 24320, "method demonstrating": 59258, "warranting investigation": 103327, "llm community": 55009, "opensource resource": 68404, "democratize access": 22992, "highquality llms": 41775, "potential recent": 73234, "tasks tackle": 95175, "using diverse": 101419, "range llms": 79170, "settings evaluate": 87051, "models indomain": 62767, "concept bottleneck": 17599, "propose text": 77137, "bottleneck models": 11327, "interpretable text": 47289, "classification framework": 14747, "global local": 39015, "predicting output": 73674, "use linear": 100610, "produce final": 75626, "final prediction": 34491, "automatically discovered": 8857, "need human": 65955, "human curation": 42144, "generation measurement": 38259, "performance established": 71183, "baselines gpt4": 9834, "promising new": 76174, "framework enhances": 36122, "enhances interpretability": 29281, "llms match": 56379, "large llms": 52240, "world tasks": 104416, "summarization content": 92525, "models prevents": 63882, "everyday use": 30963, "cases address": 12508, "model repositories": 61340, "weights quantized": 103564, "different paradigms": 25135, "paradigms model": 70064, "models report": 64063, "trading performance": 97649, "deployment cost": 23596, "models match": 63583, "match exceed": 58487, "exceed performance": 31314, "models intelligent": 62798, "match accuracy": 58485, "cases gpt": 12530, "40 time": 908, "emerging issues": 28223, "relevant studies": 81480, "develop automated": 24435, "automated tools": 8748, "help instructors": 41255, "understand issues": 99619, "conducted controlled": 17947, "characteristics compared": 13328, "similar independent": 88079, "identifier names": 42833, "complex making": 16954, "correctness solutions": 19746, "adaptation language": 3078, "supervision large": 92757, "immense scale": 43173, "annotation costs": 5889, "costs propose": 19934, "costeffective development": 19895, "domainspecific lms": 26639, "lms limited": 57145, "limited annotation": 54392, "domainspecific finetuning": 26627, "focusing identifying": 35627, "maximize model": 58641, "prompt retrieval": 76408, "retrieval selects": 84021, "selects incontext": 86186, "samples improve": 85121, "facilitate knowledge": 33500, "annotation quality": 5905, "quality extensive": 78268, "given limited": 38909, "limited budget": 54400, "outperforms human": 69067, "baselines tasks": 9854, "tasks achieves": 94341, "achieves close": 2723, "close performance": 14978, "annotations tasks": 5957, "cheaper faster": 14466, "gpt4 pass": 40011, "bestperforming gpt4": 10666, "gpt4 prompt": 40030, "chance baseline": 13264, "decisions based": 22611, "linguistic style": 54601, "test participants": 95923, "llms did": 55797, "detection rate": 24346, "test intelligence": 95905, "societal consequences": 88929, "different strategies": 25208, "models reliable": 64050, "factuality evaluation": 33650, "evaluation capabilities": 30532, "llms recent": 56651, "capabilities surpassing": 12093, "particularly intriguing": 70475, "intriguing application": 47377, "texts produced": 96590, "factual consistency": 33624, "consistency summaries": 18248, "summaries generated": 92497, "models initially": 62784, "factuality assessment": 33648, "assessment using": 7980, "llms entails": 55868, "employing singular": 28464, "singular llm": 88433, "examine efficacy": 31106, "efficacy various": 27657, "initial expectations": 45770, "gpt4 palm2": 40007, "observed gpt35": 67611, "fundamental limitation": 36543, "llms capability": 55551, "capability accurately": 12146, "main points": 57836, "points findings": 72501, "enables human": 28591, "conversations online": 19427, "llms novel": 56438, "collective intelligence": 15916, "intelligence study": 46892, "using prototype": 101705, "platform called": 72303, "generated gpt": 37705, "method enabling": 59280, "enabling large": 28641, "intelligence technology": 46897, "provide possible": 77540, "efficient generalizable": 27769, "finegrained semantic": 34803, "entity mentions": 29566, "mentions text": 59103, "text task": 96457, "task poses": 94189, "challenges massive": 13071, "massive number": 58462, "entity types": 29595, "generalization performance": 37275, "inefficient inference": 45177, "inference paper": 45273, "calibrated confidence": 11755, "model takes": 61488, "multiple types": 65279, "scores using": 85786, "stateoftheart terms": 90497, "terms f1": 95816, "calibration error": 11763, "achieving inference": 2862, "demonstrate generalization": 23089, "evaluating zeroshot": 30495, "datasets unseen": 22450, "unseen training": 100284, "chatgpt datasets": 13678, "rapidly expanding": 79347, "users engage": 101100, "study leverage": 91733, "leverage user": 53766, "popular online": 72662, "online sources": 68013, "users using": 101195, "theory approach": 96758, "varied depending": 102273, "depending data": 23543, "provides indepth": 77675, "sources provide": 89422, "recommendations used": 80668, "evolving needs": 31057, "local culture": 57195, "present publicly": 74042, "cultural nuances": 20597, "professionally written": 75767, "addition present": 3203, "used daily": 100769, "poses greater": 72774, "greater challenge": 40504, "existing opensourced": 31788, "best opensource": 10618, "opensource multilingual": 68390, "impressive score": 43647, "shows language": 87591, "aiassisted learning": 4618, "engineering courses": 28955, "learning support": 53433, "responses assessed": 83179, "interactive learning": 47106, "different stakeholders": 25206, "students lecturers": 91317, "way innovative": 103372, "innovative learning": 45857, "furthermore study": 36662, "digital transformation": 25370, "followed finetuning": 35662, "achieved substantial": 2679, "processing realworld": 75560, "essential develop": 29940, "develop strategies": 24484, "finetuning plms": 35186, "labels end": 48941, "plms using": 72440, "using noisy": 101648, "samples provides": 85139, "boosting learning": 11294, "process finetuning": 75320, "plms extensive": 72417, "framework stateoftheart": 36282, "tremendous success": 98841, "methods remains": 59780, "network approaches": 66128, "approaches applied": 7102, "applied construction": 6603, "construction chinese": 18463, "input method": 45921, "short meeting": 87291, "feedback optimize": 34116, "optimize model": 68632, "novel generative": 67174, "paradigm named": 70041, "handle input": 40924, "auxiliary input": 8985, "novel reward": 67242, "training method": 98195, "additional manual": 3247, "manual annotations": 58257, "performance surpasses": 71611, "surpasses gpt4": 92934, "robustness scalability": 84742, "relations large": 81272, "relation inference": 81250, "described text": 23668, "methods limitations": 59713, "limitations limited": 54346, "limited api": 54394, "propose utilizing": 77163, "utilizing large": 102029, "used pretrain": 100875, "context complexity": 18741, "complexity input": 17042, "input texts": 45965, "api knowledge": 6272, "generative capacity": 38609, "achieve average": 2479, "average f1": 9152, "methods average": 59546, "improves inference": 44032, "robustness approach": 84697, "knowledge integration": 48635, "recognition paper": 80612, "information domain": 45443, "queries using": 78517, "various categories": 102377, "categories language": 12611, "integrating various": 46748, "compared performing": 16604, "perform comparison": 70838, "data gpt3": 21280, "model fusion": 60918, "effectively combines": 27412, "combines complementary": 15990, "model gptj": 60964, "6b parameters": 1203, "achieve 30": 2474, "text game": 96219, "science experiments": 85584, "previously published": 74759, "claimed large": 14667, "llms poor": 56531, "previous step": 74713, "llm outperforms": 55181, "reinforcement learningbased": 81166, "learningbased approach": 53483, "14 llms": 307, "llms input": 56227, "prior steps": 74861, "data observe": 21445, "22x improvement": 621, "approach experiments": 6848, "experiments performance": 32259, "2023 demonstrated": 552, "uses small": 101255, "massive llms": 58457, "achieve outstanding": 2556, "outstanding results": 69273, "parameters gptj": 70226, "metrics measuring": 59948, "optimize quantization": 68634, "quantization large": 78441, "effective deployment": 27285, "deployment need": 23612, "need llm": 65971, "compressed llms": 17341, "limitations traditional": 54378, "fail accurately": 33670, "deeper insights": 22814, "model sparsification": 61441, "llama2 model": 54842, "choosing appropriate": 14608, "standard metrics": 90194, "detect given": 24218, "detectors results": 24392, "results especially": 83588, "strategies generative": 90819, "technology powered": 95656, "drawn attention": 26816, "attention potential": 8362, "especially highstakes": 29885, "highstakes applications": 41818, "solutions furthermore": 89140, "data images": 21306, "images research": 43111, "scoping review": 85684, "gaps current": 36989, "research propose": 82733, "research used": 82819, "healthcare applications": 41184, "steering llms": 90591, "llms humanwritten": 56151, "userspecified information": 101207, "methods constrained": 59575, "identifies small": 42838, "model attention": 60576, "like prompting": 54210, "time does": 96950, "changing model": 13305, "instructions integrate": 46522, "inputs leading": 45999, "improvement variety": 43952, "tasks average": 94395, "improvement 22": 43873, "llama7b code": 54893, "multitask finetuning": 65352, "models coding": 62029, "tailored specific": 93786, "finetuning task": 35272, "task requiring": 94226, "requiring extensive": 82432, "resources posing": 83025, "terms deployment": 95809, "deployment maintenance": 23609, "finetuning multiple": 35151, "tasks incorporating": 94743, "incorporating various": 44723, "finetuning single": 35250, "offers efficient": 67831, "resulting significantly": 83443, "traditional finetuning": 97667, "seamlessly integrates": 85847, "achieves impressive": 2750, "pass1 score": 70540, "gpt4 performance": 40013, "performance 67": 70962, "verification large": 102745, "generation debugging": 38109, "debugging repair": 22546, "utilize chatgpt": 101929, "verification paper": 102750, "steps answering": 90676, "question specifically": 78709, "loop invariants": 57432, "generation core": 38101, "core task": 19550, "task software": 94245, "verification generation": 102744, "chatgpt annotate": 13520, "check validity": 14477, "usefulness generated": 100963, "initial insights": 45773, "insights propose": 46127, "propose ways": 77166, "combining chatgpt": 16007, "general software": 37192, "discuss current": 25655, "open issues": 68073, "gpt solve": 39242, "uses language": 101233, "minimal preprocessing": 60101, "results language": 83698, "model successful": 61465, "cases performs": 12550, "cases particularly": 12548, "onetoone correspondence": 67961, "mixed results": 60327, "syntax trees": 93199, "trees extensive": 98831, "allow model": 5163, "tasks successfully": 95154, "reviews datasets": 84293, "datasets experiments": 22254, "task detecting": 94015, "models manually": 63579, "use evaluate": 100537, "assistant using": 8046, "human cost": 42140, "cost particularly": 19874, "intelligent questionanswering": 46924, "innovative solution": 45864, "llms llama2": 56344, "ensure data": 29448, "retrieval augmented": 83963, "augmented generation": 8569, "direct preference": 25426, "preference optimization": 73803, "optimization dpo": 68590, "pairs preference": 69512, "preference data": 73794, "data demonstrate": 21144, "30 improvement": 745, "improvement quality": 43937, "answers rag": 6212, "utilizing human": 102022, "human assessments": 42094, "llmbased metrics": 55355, "educational data": 27198, "processing work": 75595, "lms capable": 57105, "generating freetext": 37911, "175b parameter": 409, "work enable": 104067, "smaller gpt3": 88751, "generate rationales": 37566, "improve downstream": 43690, "performance plausible": 71470, "assessed automatic": 7886, "algorithm optimizes": 4927, "diversity consistency": 26138, "consistency results": 18246, "questionanswering datasets": 78736, "datasets strategyqa": 22425, "improve task": 43812, "axes better": 9227, "qualitative improvements": 78199, "llms metrics": 56394, "single scalar": 88392, "quantify compare": 78390, "capture finegrained": 12354, "benchmark models": 10215, "models yield": 64556, "vast datasets": 102679, "powerful llm": 73454, "novel flexible": 67161, "leveraging insights": 53857, "dialogue task": 24912, "improving current": 44109, "current evaluation": 20684, "metrics method": 59949, "super mario": 92616, "models free": 62511, "free lunch": 36340, "lms acquire": 57098, "models retraining": 64098, "pretrained parameters": 74442, "randomly drops": 79124, "parameters ratio": 70273, "approximate original": 7265, "model parameter": 61208, "encoder decoderbased": 28691, "parameter value": 70135, "typically small": 99304, "multiple taskspecific": 65268, "diverse capabilities": 25992, "llms proposed": 56605, "proposed recent": 77251, "years including": 104597, "opensource ones": 68392, "new records": 66512, "issues high": 47990, "continual pretraining": 18996, "forgetting issues": 35755, "issues addressed": 47967, "llms important": 56161, "enlarging model": 29389, "comprehensively analyzing": 17320, "leveraging data": 53835, "settings work": 87103, "model 13": 60455, "llama2 foundation": 54833, "different stages": 25205, "representative opensource": 82151, "modeling code": 61633, "models codellms": 62024, "challenge previous": 12920, "methods frequently": 59655, "functional similarities": 36507, "resulting suboptimal": 83445, "solution code": 89081, "provides better": 77644, "better ranking": 10778, "benchmark achieve": 10065, "improvement average": 43883, "improvement approx": 43879, "scenarios limited": 85455, "limited test": 54474, "approach demonstrates": 6797, "demonstrates robustness": 23398, "new stateofthearts": 66543, "generation reranking": 38399, "concepts represented": 17637, "representation space": 82075, "space paper": 89458, "closely related": 15031, "answer use": 6065, "model steering": 61452, "inner product": 45837, "language structure": 51114, "sense make": 86439, "representation particular": 82070, "vectors using": 102709, "pairs experiments": 69496, "experiments llama2": 32241, "llama2 demonstrate": 54825, "demonstrate existence": 23077, "linear representations": 54536, "representations concepts": 82093, "automated proof": 8732, "guarantee correctness": 40697, "critical software": 20355, "success code": 92185, "static analysis": 90528, "setting llms": 87005, "impressive logical": 43609, "ability generating": 1667, "analyzing short": 5822, "short code": 87275, "traditional static": 97702, "based observations": 9642, "developed prototype": 24524, "based openais": 9647, "iteratively queries": 48082, "combines output": 15997, "analysis evaluated": 5508, "reduces human": 80834, "models primarily": 63888, "primarily trained": 74792, "documents written": 26274, "designed enhance": 23901, "enhancing language": 29335, "provided instructions": 77619, "finetuned llama7b": 34927, "supported model": 92848, "models tailored": 64330, "settings crucial": 87045, "models noteworthy": 63684, "research exploration": 82589, "language case": 49151, "encourage advancements": 28782, "underrepresented languages": 99536, "engineering using": 29033, "prompts prompting": 76799, "prompting patterns": 76587, "tasks resourceintensive": 95060, "resourceintensive nature": 82993, "thanks ability": 96713, "interpret context": 47269, "problem context": 75003, "engineering critical": 28956, "factor success": 33579, "lack tools": 49062, "tools methods": 97444, "task method": 94140, "tasks related": 95024, "requirements specifically": 82352, "automated using": 8749, "created using": 20207, "selected tasks": 86137, "tasks focusing": 94653, "metrics precision": 59956, "paper evaluates": 69698, "evaluates effectiveness": 30376, "turbo perform": 99119, "prompt pattern": 76393, "use specific": 100692, "framework reference": 36253, "reference researchers": 80939, "patterns different": 70629, "design recommendations": 23836, "genai offers": 37082, "research existing": 82586, "works focused": 104358, "focused conventional": 35576, "work delves": 104043, "genai specifically": 37083, "researchers chatgpt": 82838, "coding efficiency": 15701, "initial data": 45767, "offering granular": 67789, "quantitative insights": 78412, "concerns trustworthiness": 17715, "feedback loops": 34108, "models explosion": 62418, "work language": 104155, "models little": 62943, "new models": 66461, "models major": 63574, "reflect differences": 81004, "differences model": 24982, "revealing shared": 84199, "input perturbations": 45934, "designed target": 23955, "specific linguistic": 89721, "changes models": 13296, "models distillation": 62244, "increase size": 44776, "available commercial": 9021, "models relatively": 64042, "relatively better": 81307, "better understood": 10807, "gpt2 experiments": 39277, "experiments observe": 32256, "observe large": 67588, "models share": 64171, "encoded large": 28679, "models possessing": 63840, "key reason": 48335, "recent successes": 80377, "successes large": 92254, "light types": 54025, "order understand": 68718, "generating sentence": 37972, "analysis tools": 5704, "tools make": 97443, "test hypotheses": 95899, "new analysis": 66323, "causal analysis": 12646, "targeted ablation": 93898, "level model": 53669, "models learned": 62890, "modular structure": 64649, "tracking development": 97625, "methods finally": 59647, "subjectverb agreement": 91969, "rdf knowledge": 79461, "similarity chatgpt": 88130, "places paper": 72221, "chatgpt rdf": 14145, "facts using": 33619, "400 rdf": 910, "rdf kgs": 79460, "embeddings introduce": 28083, "confidence score": 18018, "create evaluation": 20160, "benchmark includes": 10189, "facts events": 33612, "select correct": 86121, "generating good": 37915, "assessment metrics": 7963, "metrics quality": 59961, "comprehension tests": 17187, "tests specifically": 96053, "quality terms": 78372, "distractor options": 25918, "classification ability": 14719, "models interpretation": 62806, "contamination language": 18564, "increasingly trained": 44909, "benchmarks potential": 10392, "finetuning datasets": 35043, "datasets data": 22203, "ngram overlap": 66671, "benchmark data": 10116, "data methods": 21403, "model easily": 60783, "par gpt4": 70012, "benchmarks mmlu": 10382, "urge community": 100403, "community adopt": 16300, "using public": 101709, "community actively": 16298, "nlp researchers": 66768, "astonishing success": 8128, "ngram models": 66670, "problems nlp": 75176, "contributions areas": 19177, "researchers work": 82895, "realistic evaluation": 79565, "reports use": 82018, "observed domains": 67605, "improvement achieved": 43875, "demonstrate power": 23152, "general gpt35": 37129, "evaluating alignment": 30397, "instructions diverse": 46492, "diverse realworld": 26087, "tasks construct": 94490, "task tree": 94278, "covers diverse": 20095, "capabilities question": 12062, "answering reasoning": 6148, "reasoning multiturn": 79953, "dialogue text": 24914, "llms comprehensive": 55658, "detailed evaluation": 24164, "processes facilitate": 75433, "facilitate consistent": 33486, "judgments human": 48193, "spanning different": 89497, "domains work": 26609, "evaluate human": 30200, "evaluation strong": 30794, "framework supports": 36289, "demonstrated effective": 23245, "assessing performance": 7927, "advances development": 3872, "optimal transport": 68575, "emerged popular": 28143, "popular approaches": 72615, "approaches generate": 7150, "tasks handle": 94691, "largescale datasets": 52506, "time machine": 96990, "learning increasingly": 53214, "making imperative": 58105, "address inherent": 3415, "data current": 21135, "create fair": 20162, "representative samples": 82154, "local properties": 57206, "original samples": 68809, "effect downstream": 27240, "approach generates": 6872, "synthetic samples": 93294, "kmeans clustering": 48398, "synthetic real": 93292, "real datasets": 79541, "downstream models": 26700, "existing training": 31841, "data iii": 21302, "iii used": 42982, "predictions large": 73746, "current conversational": 20676, "improvement conversational": 43895, "technical problems": 95411, "approach taken": 7052, "scope retrieval": 85680, "answers generative": 6186, "generative agents": 38527, "ability learn": 1700, "technical social": 95423, "social problems": 88907, "gpt4 finetuning": 39893, "does potential": 26317, "reduce harmful": 80781, "harmful outputs": 41039, "used reinforcement": 100888, "llm vendors": 55315, "gpt4 susceptible": 40117, "susceptible finetuning": 93069, "finetuning attacks": 35017, "attacks work": 8241, "finetuning allows": 35011, "rate training": 79401, "examples automatically": 31189, "weaker models": 103440, "models removing": 64060, "does decrease": 26286, "providing evidence": 77744, "strategy does": 90873, "generate training": 37632, "llms impact": 56158, "satisfaction trust": 85196, "analysis study": 5687, "understand nuances": 99632, "nuances user": 67322, "future design": 36707, "similar technologies": 88117, "structural equation": 91118, "equation modeling": 29687, "understand relationships": 99647, "revealed significant": 84191, "significant negative": 87800, "importance ensuring": 43452, "design functionality": 23782, "aibased applications": 4625, "reduce workload": 80810, "enhance user": 29219, "research explore": 82590, "explore relationship": 32741, "highlights significant": 41670, "important evaluate": 43504, "chatgpt standard": 14269, "standard approaches": 90157, "supervised machine": 92723, "learning classification": 53069, "models alongside": 61828, "traditional supervised": 97703, "dataset tweets": 22112, "news media": 66634, "focusing simple": 35633, "simple binary": 88173, "tasks standard": 95138, "science concepts": 85573, "significant variation": 87867, "supervised classifiers": 92699, "performance baselines": 71011, "focus use": 35566, "use highly": 100574, "paper tested": 69979, "35 finetuned": 825, "given access": 38853, "set 100": 86832, "september 2021": 86634, "commercial platforms": 16093, "set outputs": 86911, "outperforms gpt": 69061, "rag approach": 79034, "approach outperformed": 6963, "models zero": 64558, "scientific discoveries": 85636, "progress human": 75985, "literature data": 54644, "discovery large": 25613, "llms hold": 56140, "interdisciplinary knowledge": 47143, "new wave": 66575, "discovery potential": 25620, "end construct": 28819, "publication date": 77956, "evaluate hypothesis": 30201, "settings including": 87061, "introduce llmbased": 47444, "llmbased multiagent": 55356, "cooperative framework": 19499, "related generating": 81194, "design metrics": 23811, "metrics comprehensive": 59898, "generated hypotheses": 37718, "experiments analyses": 32105, "following findings": 35675, "candidate generation": 11802, "potentially enhancing": 73339, "enhancing zeroshot": 29380, "capabilities findings": 11907, "discoveries guide": 25608, "exploring generative": 32845, "writing students": 104497, "responses physics": 83273, "learning instructors": 53222, "student written": 91275, "responses providing": 83288, "providing personalized": 77784, "substantial time": 92111, "responses conceptual": 83188, "conceptual questions": 17647, "used small": 100896, "gpt responses": 39235, "feedback included": 34095, "gpt generate": 39194, "responses versions": 83328, "students asked": 91287, "human gpt": 42237, "demonstrated feasibility": 23260, "substantially reduce": 92137, "approach detect": 6801, "detect data": 24213, "llms estimate": 55879, "questions devise": 78826, "exact wording": 31073, "instance llm": 46211, "llm tasked": 55285, "intrinsic llms": 47387, "llms tested": 56927, "data internal": 21342, "existing detection": 31699, "bypasses safety": 11716, "safety filters": 85029, "chatgpt rewrite": 14191, "study cybersecurity": 91561, "emergence artificial": 28162, "intelligent chatbot": 46918, "reduced number": 80818, "people work": 70748, "lens understanding": 53625, "broad understanding": 11502, "thought experiment": 96852, "concepts learned": 17630, "tools able": 97350, "query tools": 78546, "example prompt": 31171, "improve human": 43711, "users perspectives": 101156, "developments artificial": 24738, "intelligent agents": 46916, "agents like": 4203, "classroom learning": 14847, "academic tasks": 1998, "user perception": 101017, "perception crucial": 70785, "crucial study": 20537, "related educational": 81192, "educational use": 27224, "called chatgpt": 11772, "using nlp": 101646, "results majority": 83717, "usefulness chatgpt": 100961, "degree alignment": 22905, "specifically compare": 89792, "different traditional": 25232, "ii chatgpt": 42970, "comparable traditional": 16412, "accuracy low": 2309, "frequency words": 36375, "words better": 103949, "text analysis": 96079, "validated diverse": 102108, "applicability large": 6321, "unexplored study": 99969, "study addresses": 91472, "corpora pubmed": 19586, "abstracts using": 1958, "different parameter": 25136, "parameter sizes": 70127, "size grows": 88473, "outputs future": 69223, "graph context": 40365, "resumes job": 83933, "nlp particularly": 66758, "absence comprehensive": 1902, "comprehensive benchmarks": 17214, "benchmarks various": 10428, "aim bridge": 4692, "gap introducing": 36942, "craft benchmark": 20123, "create benchmark": 20144, "benchmark propose": 10227, "llm rely": 55236, "rely curated": 81569, "provide context": 77435, "llms generation": 56061, "generation benchmark": 38050, "smaller student": 88795, "performance teacher": 71623, "benchmark additionally": 10069, "explore utility": 32758, "outofdistribution data": 68878, "release datasets": 81369, "foster research": 35901, "research industry": 82635, "industry applications": 45164, "analytics study": 5740, "processing pipeline": 75558, "enhance various": 29221, "policy makers": 72545, "experts field": 32410, "field data": 34364, "technology providers": 95658, "effective communication": 27273, "work argue": 103994, "input modality": 45923, "natural way": 65785, "text allowing": 96078, "allowing user": 5185, "learn adapt": 52931, "specific data": 89677, "entire database": 29515, "visualize results": 103144, "speech synthesis": 89968, "related data": 81189, "different modalities": 25113, "examine potential": 31122, "analyzing interpreting": 5814, "insights recommendations": 46129, "stakeholders chatgpt": 90144, "world storm": 104415, "chatgpts abilities": 14418, "focusing performance": 35631, "capacity predict": 12304, "predict answers": 73645, "level analysis": 53646, "languages studies": 51363, "languages perform": 51339, "english nlp": 29091, "study far": 91633, "order study": 68716, "study aspects": 91496, "results selected": 83833, "does good": 26294, "lifelong learning": 53988, "resourceconstrained devices": 82982, "approach focuses": 6865, "focuses extracting": 35605, "extracting meaningful": 33269, "unseen data": 100261, "experiments various": 32334, "tasks validate": 95241, "effectiveness including": 27530, "like glue": 54129, "performance accuracy": 70968, "accuracy training": 2377, "ensemble method": 29421, "compared finetuned": 16546, "outperforms naive": 69089, "naive finetuning": 65461, "competitive superior": 16824, "increase accuracy": 44749, "criticized generating": 20383, "like fact": 54118, "investigates key": 47743, "key research": 48337, "verification tasks": 102755, "bestperforming prompt": 10672, "analysis designing": 5487, "tasks benchmark": 94400, "fever dataset": 34185, "boosting large": 11291, "t0 flan": 93606, "instructionfollowing paradigm": 46463, "remarkable generalization": 81775, "abilities unseen": 1574, "sizes ranging": 88565, "ranging billion": 79236, "resources making": 83018, "making training": 58142, "particularly complex": 70440, "hardware requirements": 41011, "requirements finetuning": 82341, "finetuning utilizing": 35286, "approaches prompt": 7187, "tuning additionally": 99015, "potential address": 72982, "introduce pretrained": 47480, "million parameters": 60037, "component llms": 17078, "llms boosting": 55541, "boosting performance": 11297, "11 language": 191, "performance advanced": 70978, "flant5 large": 35395, "margin furthermore": 58363, "additional performance": 3255, "performance enhancement": 71179, "underscores urgent": 99579, "need evaluate": 65942, "evaluate alignment": 30138, "values current": 102209, "current benchmarks": 20667, "short effectively": 87282, "safety vulnerabilities": 85058, "vulnerabilities llms": 103263, "numerous models": 67431, "high scores": 41461, "llms deeper": 55723, "benchmark named": 10217, "manually crafted": 58293, "finegrained annotations": 34783, "framework encompasses": 36116, "principles fairness": 74831, "adversarial prompts": 3994, "incorporate complex": 44663, "scenarios jailbreaking": 85448, "prompts obtain": 76785, "annotated evaluation": 5870, "demonstrate relatively": 23177, "model overall": 61193, "gpt4 scores": 40068, "llms highlighting": 56133, "efficiently evaluate": 27847, "evaluate new": 30237, "achieving accuracy": 2821, "benchmark publicly": 10231, "setting work": 87033, "overcome challenge": 69346, "challenge limited": 12901, "pairs using": 69527, "product experts": 75725, "offline data": 67875, "signals steer": 87646, "flexible efficient": 35430, "challenging dataset": 13163, "gpt3 overall": 39506, "robust maintaining": 84669, "data surpassing": 21671, "baselines various": 9859, "potential rl": 73253, "llms fixing": 55990, "feedback code": 34066, "code editing": 15236, "demonstrated closedsource": 23240, "corrective feedback": 19713, "inputs remains": 46009, "editing models": 27105, "misleading information": 60189, "focus work": 35568, "work leverage": 104164, "leverage opensource": 53750, "helpful feedback": 41292, "feedback correct": 34071, "guidance code": 40716, "dataset specifically": 22086, "framework aims": 36029, "checkpoints publicly": 14496, "causal inference": 12653, "abilities including": 1517, "reasoning unclear": 80075, "capabilities similar": 12077, "human ones": 42309, "ones study": 67937, "previous event": 74676, "text conducted": 96141, "experiment showed": 31977, "humans exhibit": 42594, "explicitly mentioned": 32549, "tested variety": 95987, "models replicate": 64062, "gpt3 vicuna": 39557, "fail predict": 33684, "indicating llms": 45040, "llms difficulties": 55804, "knowledge code": 48471, "models documentlevel": 62255, "aims extract": 4806, "challenge achieving": 12853, "achieving finegrained": 2850, "document representations": 26217, "emergent large": 28202, "chatgpt aim": 13511, "effort unfortunately": 27883, "relation types": 81254, "generations llms": 38518, "llms tackle": 56904, "tackle issue": 93726, "method integrating": 59337, "module generate": 64663, "approach introducing": 6911, "dataset known": 21987, "potential broader": 73044, "broader applications": 11511, "semantic comprehension": 86298, "effect knowledge": 27243, "level large": 53665, "models users": 64470, "users struggle": 101184, "examine users": 31128, "strategies address": 90790, "categories based": 12603, "users frequently": 101113, "accuracy highest": 2280, "users low": 101138, "low knowledge": 57516, "accuracy minimal": 2315, "propose design": 76959, "design implications": 23793, "enhancing usability": 29376, "languages modalities": 51324, "llms resulting": 56721, "resulting significant": 83442, "tasks consequently": 94482, "relatively unexplored": 81337, "introduction new": 47561, "aims expand": 4802, "including new": 44430, "benchmark benchmark": 10083, "languages including": 51289, "datasets additionally": 22134, "additionally include": 3316, "multimodal datasets": 65042, "datasets benchmark": 22152, "outperform llama": 68953, "issues data": 47983, "obtain accurate": 67640, "accurate assessment": 2394, "assessment llm": 7959, "llms known": 56267, "data biases": 21028, "models comprehension": 62068, "example model": 31169, "providing answer": 77734, "particularly evident": 70461, "prevalent use": 74641, "models solely": 64222, "solely focus": 89055, "using autoregressive": 101307, "autoregressive blank": 8950, "blank infilling": 11158, "entire context": 29514, "novel training": 67271, "pretrained causal": 74237, "optimization task": 68620, "task designed": 94013, "attention focused": 8310, "addressing inherent": 3542, "llms order": 56474, "order achieve": 68685, "level intelligence": 53661, "intelligence using": 46904, "explanations improve": 32498, "robustness incontext": 84719, "inference recent": 45289, "demonstrated large": 23289, "excel diverse": 31329, "prompts examples": 76709, "examples existing": 31215, "enhanced performance": 29240, "performance observed": 71437, "robustness llms": 84729, "inference datasets": 45234, "improvement icl": 43916, "icl furthermore": 42758, "selection strategies": 86176, "shown significantly": 87549, "improve icl": 43712, "trained helpful": 97836, "helpful harmless": 41293, "gpt4 agent": 39759, "stock trading": 90726, "agent environment": 4128, "model obtains": 61164, "removing model": 81869, "model access": 60477, "pressure model": 74209, "simple changes": 88175, "changes environment": 13287, "knowledge demonstration": 48499, "demonstrated capabilities": 23231, "code common": 15157, "common programming": 16164, "languages additionally": 51229, "commercial products": 16094, "products chatgpt": 75748, "code interpreters": 15368, "instant feedback": 46235, "approach paper": 6970, "models concept": 62078, "concept prototype": 17607, "generated textual": 37806, "llama2 chatgpt": 54822, "chatgpt particular": 14066, "generate textual": 37625, "providing support": 77804, "source llms": 89387, "cases covering": 12519, "custom data": 20838, "personas interactive": 71930, "quantify differences": 78391, "mixture experts": 60350, "future exploration": 36726, "llms prior": 56572, "knowledge capacity": 48461, "focus knowledge": 35528, "similar contexts": 88061, "reasoning especially": 79873, "ranking abilities": 79262, "specific focus": 89699, "capable ranking": 12262, "universal audio": 100112, "audiolanguage models": 8494, "recently instructionfollowing": 80507, "instructionfollowing audiolanguage": 46442, "models received": 63993, "received broad": 80135, "broad attention": 11486, "interaction humans": 47012, "pretrained audio": 74229, "diverse audio": 25989, "field consequently": 34362, "model address": 60519, "cover 30": 20045, "30 tasks": 752, "speech natural": 89956, "natural sounds": 65782, "sounds music": 89336, "abilities directly": 1502, "datasets lead": 22320, "datasets exhibit": 22244, "exhibit considerable": 31506, "task focus": 94067, "focus language": 35529, "text structure": 96437, "requiring taskspecific": 82443, "surpassing counterparts": 92955, "text inputs": 96307, "inputs enabling": 45990, "led proliferation": 53529, "yield good": 104638, "learning unseen": 53463, "commercial apis": 16071, "analysis popular": 5606, "popular large": 72636, "llama gpt4": 54758, "classification machine": 14760, "belowpar performance": 10058, "gap performance": 36957, "compared highresource": 16564, "gpt4 average": 39779, "performance classification": 71055, "results generative": 83624, "better stateoftheart": 10789, "languages overall": 51335, "corpus general": 19624, "languages represented": 51354, "dataset benchmark": 21839, "scientific information": 85647, "extraction extracting": 33299, "information scientific": 45617, "research scientific": 82768, "release new": 81384, "datasets focus": 22271, "specific parts": 89731, "present text": 74071, "text entities": 96196, "iterative procedure": 48064, "based pipeline": 9653, "pipeline release": 72171, "community including": 16324, "highquality benchmark": 41737, "benchmark largescale": 10205, "largescale corpus": 52502, "annotation pipeline": 5902, "models proposed": 63926, "dataset baseline": 21838, "lastly explore": 52612, "potential capability": 73047, "task new": 94159, "llms temporally": 56923, "llms perceive": 56502, "question directly": 78662, "llms textual": 56934, "temporal model": 95717, "model temporal": 61499, "generally llms": 37331, "limited degree": 54416, "crucially llms": 20551, "gains performance": 36866, "sources llms": 89417, "temporal information": 95714, "information sentence": 45623, "available pretraining": 9079, "public instruction": 77926, "tasks conclude": 94474, "conclude current": 17729, "narratives code": 65502, "level language": 53663, "achieved notable": 2649, "notable success": 67021, "tasks employing": 94580, "performance face": 71205, "face robustness": 33451, "correlations arising": 19781, "data icl": 21298, "research primarily": 82722, "word phrase": 103912, "content input": 18649, "icl test": 42765, "counterfactual data": 19992, "label distribution": 48891, "methods efficacy": 59611, "surpassing traditional": 92976, "validated extensive": 102110, "study scientific": 91826, "financial domains": 34602, "domains large": 26539, "labels address": 48938, "labeling tasks": 48929, "tasks design": 94529, "types factual": 99234, "used prompts": 100882, "prompts zeroshot": 76852, "sentence classification": 86490, "models 70b": 61721, "70b parameters": 1223, "ability work": 1798, "alignment methods": 5095, "finetuning effective": 35052, "models leading": 62884, "leading proprietary": 52879, "proprietary apis": 77293, "explanation code": 32462, "process quality": 75383, "effective code": 27271, "explanation needs": 32471, "require different": 82241, "reviews best": 84289, "study published": 91804, "explanations used": 32519, "review study": 84275, "explanations useful": 32520, "solution proposed": 89110, "solution explanation": 89090, "significant portion": 87816, "distinct categories": 25858, "specifically created": 89798, "explanation specific": 32475, "process generate": 75321, "generate specific": 37600, "llms focused": 55994, "introduce multilingual": 47449, "benchmark linguistic": 10206, "samples covering": 85106, "covering 10": 20069, "learning experiments": 53148, "chatgpt benefits": 13566, "benefits incontext": 10474, "par finetuned": 70009, "languages data": 51255, "documentlevel tasks": 26239, "tasks document": 94557, "research understanding": 82817, "capabilities task": 12095, "humanannotated dataset": 42439, "documents multiple": 26259, "domains varying": 26608, "gpt4 performs": 40016, "humans task": 42643, "code associated": 15129, "interactive narrative": 47109, "playing games": 72368, "require powerful": 82282, "designer game": 23966, "game designers": 36886, "edits original": 27121, "question develop": 78660, "mainly helps": 57852, "helps perform": 41316, "answer multiplechoice": 6030, "questions programming": 78920, "classes higher": 14707, "efficacy generative": 27637, "answers multiplechoice": 6198, "differences capabilities": 24972, "prior release": 74852, "22 time": 608, "studies established": 91382, "formative summative": 35835, "data previous": 21500, "specific input": 89708, "question propose": 78697, "method counterfactual": 59251, "test cat": 95877, "change prediction": 13275, "visual language": 103077, "increased number": 44797, "demonstrate augmenting": 23028, "demonstration data": 23458, "different conclusions": 25023, "data like": 21381, "chatgpts usage": 14454, "students computer": 91292, "research evaluated": 82582, "actual usage": 3016, "approach comprehensively": 6778, "comprehensively understand": 17331, "science students": 85612, "students utilize": 91347, "llm released": 55234, "improvements related": 43995, "related chatgpt": 81185, "suggest majority": 92380, "adopting chatgpt": 3623, "chatgpt aid": 13509, "various challenges": 102378, "investigation chatgpts": 47785, "ability recently": 1760, "chatgpt emerged": 13741, "powerful nlp": 73460, "nlp tool": 66825, "carry tasks": 12445, "tasks range": 95003, "range languages": 79167, "benchmark comprising": 10101, "languages representing": 51355, "highresource lowresource": 41809, "gpt4 ability": 39739, "language names": 50939, "label set": 48896, "set compared": 86851, "potential enhancement": 73084, "diverse communities": 25997, "models minimal": 63617, "usually employ": 101869, "process create": 75285, "create ai": 20143, "independently generate": 44939, "design verification": 23865, "investigated ai": 47718, "autonomously generate": 8944, "verify hypothesis": 102771, "research problem": 82725, "prompted gpt4": 76479, "generate validate": 37643, "detailed guidance": 24170, "remain significant": 81629, "challenges achieving": 12953, "achieving autonomous": 2827, "underscore need": 99545, "continued exploration": 19013, "llms raising": 56627, "issue especially": 47930, "especially critical": 29868, "models certain": 61974, "opensource proprietary": 68398, "gap additionally": 36910, "sets specifically": 86972, "truthfulqa benchmark": 98968, "exhibit notable": 31536, "provided additional": 77603, "mmlu benchmark": 60414, "rate 52": 79368, "57 respectively": 1087, "benchmark test": 10266, "data hope": 21296, "hope results": 41959, "evaluation methodologies": 30666, "llm empirical": 55053, "learning domainspecific": 53116, "demonstrated considerable": 23244, "learning al": 53022, "al proposed": 4878, "expert annotation": 32349, "raising question": 79092, "expert annotations": 32350, "annotations domainspecific": 5929, "work conduct": 104019, "experiment datasets": 31964, "comparing sota": 16697, "sota llms": 89313, "llms small": 56817, "llm predictions": 55206, "models systematic": 64320, "evaluation social": 30786, "systems commonly": 93411, "role llm": 84792, "default prompt": 22831, "interpersonal relationships": 47262, "prompts consistently": 76673, "improves models": 44047, "range questions": 79198, "better performances": 10764, "roles model": 84819, "model performances": 61240, "results help": 83634, "inform design": 45378, "bard microsoft": 9365, "health literacy": 41168, "health outcomes": 41171, "grade level": 40281, "word counts": 103895, "basic prompts": 9885, "llms varying": 57028, "responses ranged": 83294, "cautious approach": 12712, "information llms": 45534, "demonstrate promise": 23159, "verify accuracy": 102767, "llms face": 55958, "sixthgrade reading": 88448, "reading level": 79527, "human creativity": 42142, "gpt4 paper": 40009, "paper considers": 69654, "interactions ai": 47044, "algorithms boost": 4958, "human creative": 42141, "task demonstrates": 94008, "feature generation": 33968, "given concept": 38869, "experiments humans": 32219, "similar benefits": 88053, "ai responses": 4535, "suggest strategies": 92394, "marking significant": 58401, "past decade": 70564, "wave research": 103338, "research innovation": 82637, "innovation ai": 45844, "encompassing tasks": 28768, "music composition": 65411, "production code": 75732, "work built": 104008, "various stateoftheart": 102581, "recent gpt4": 80262, "generative adversarial": 38525, "adversarial networks": 3986, "networks advancement": 66169, "advancement generative": 3780, "exciting opportunities": 31414, "unprecedented challenges": 100225, "paper explored": 69720, "challenges pose": 13095, "political bias": 72563, "sourced internet": 89398, "llms learned": 56286, "types biases": 99223, "biases including": 10927, "models recognize": 64025, "process referred": 75392, "response researchers": 83158, "reduce likelihood": 80788, "text study": 96439, "complementary advantages": 16856, "human readers": 42346, "comprehension chatgpt": 17160, "text processing": 96366, "including reasoning": 44460, "ability text": 1782, "direct comparison": 25417, "chatgpt reasoning": 14151, "related text": 81221, "chinese senior": 14574, "narrative texts": 65498, "texts additionally": 96541, "reasoning performances": 79975, "commonsense inference": 16212, "inference test": 45306, "chatgpt versions": 14348, "excelled chatgpt": 31343, "correct responses": 19683, "chatbots compared": 13437, "positive emotions": 72822, "students showed": 91335, "negative emotions": 66060, "students demonstrated": 91296, "better logical": 10743, "logical analysis": 57250, "good causal": 39112, "reveals human": 84210, "inferences text": 45325, "complementary relationship": 16858, "textbased reasoning": 96496, "code evolution": 15246, "future trends": 36787, "general large": 37153, "llms represented": 56704, "generation software": 38422, "development specialized": 24715, "considerable portion": 18165, "llms derived": 55783, "llms updated": 56992, "performance influenced": 71316, "systematic investigation": 93340, "study conduct": 91540, "types code": 99224, "differences performance": 24986, "llms aim": 55461, "aim address": 4685, "address questions": 3482, "designed software": 23948, "llms proficient": 56583, "different software": 25200, "collect relevant": 15871, "relevant literature": 81467, "opensource communities": 68322, "finally comprehensively": 34512, "mainstream benchmarks": 57860, "engineering task": 29024, "developers code": 24547, "models development": 62217, "insights practitioners": 46124, "practitioners better": 73573, "improvement directions": 43898, "single deep": 88356, "handle multiple": 40930, "training commonly": 97964, "input sequences": 45955, "contexts different": 18898, "examples long": 31250, "length usually": 53613, "input samples": 45948, "samples model": 85132, "computation efficient": 17418, "efficient paper": 27809, "approach tackle": 7051, "pipelineparallel training": 72180, "construction using": 18475, "dynamic programmingbased": 26929, "approach handle": 6878, "enabling highly": 28638, "training extensive": 98110, "chatgpt november": 14038, "2022 brought": 536, "brought considerable": 11530, "public perspective": 77940, "chatgpt challenges": 13599, "challenges various": 13141, "various learning": 102470, "learning assessment": 53040, "assessment formats": 7950, "effectiveness learning": 27545, "particular chatgpt": 70396, "chatgpt applied": 13529, "asked write": 7738, "exploiting chatgpt": 32578, "considerations potential": 18188, "chat histories": 13375, "recommendations students": 80665, "chatgpt suggested": 14285, "writing various": 104506, "learning currently": 53093, "releases chatgpt": 81421, "transfer lowresource": 98426, "languages llms": 51316, "processes llms": 75441, "chatgpt palm": 14059, "train new": 97765, "metrics used": 59975, "aforementioned challenges": 4085, "multilingual instructiontuning": 64966, "languages propose": 51346, "uses translation": 101260, "model performed": 61241, "highresource language": 41802, "lowresource language": 57616, "performance instruction": 71319, "promising method": 76173, "method creating": 59253, "model adapters": 60513, "work multilingual": 104180, "lora adapters": 57441, "task generalization": 94074, "generalization paper": 37274, "introduces method": 47524, "models arbitrary": 61848, "unlike standard": 100187, "routing function": 84894, "increasing compute": 44823, "compute requirements": 17513, "requirements training": 82353, "model mathematical": 61123, "tasks evaluations": 94599, "individual models": 45090, "finetuned tasks": 34982, "inference code": 45222, "code study": 15519, "study available": 91506, "public repository": 77945, "simple powerful": 88226, "representation integrates": 82057, "pretrained word": 74504, "nuanced linguistic": 67317, "drawing recent": 26813, "studies demonstrating": 91377, "construct novel": 18433, "novel word": 67286, "need backpropagation": 65915, "leveraging contextual": 53833, "dimensionality reduction": 25386, "reduction techniques": 80908, "techniques based": 95482, "based unigram": 9748, "strong interpretability": 91038, "algorithm train": 4935, "word vectors": 103933, "critically relies": 20380, "utilizes different": 101980, "contextually rich": 18981, "representations word": 82134, "partofspeech pos": 70523, "assess competitiveness": 7837, "like word2vec": 54240, "explore applicability": 32634, "lm training": 57082, "embeddings experiments": 28078, "t5 opt": 93645, "enhancement transfer": 29269, "research research": 82764, "domains software": 26588, "requires thorough": 82417, "human perspective": 42325, "collection methods": 15900, "participant recruitment": 70357, "vision paper": 103000, "research harnessing": 82616, "synthetic text": 93298, "alternative source": 5275, "discussing llms": 25714, "behaviors research": 10012, "research settings": 82772, "ai automating": 4313, "various methodologies": 102480, "responses surveys": 83316, "development new": 24682, "emulating human": 28525, "observational studies": 67560, "user evaluations": 100984, "simulating human": 88321, "generation providing": 38363, "insights human": 46101, "human attitudes": 42096, "problems research": 75201, "study datasets": 91564, "ones model": 67933, "finetuned samples": 34964, "including popular": 44447, "red team": 80736, "datasets humans": 22291, "systematic framework": 93338, "datasets identifying": 22293, "datasets constructed": 22189, "benchmarks data": 10323, "performance remarkably": 71535, "errors indicating": 29820, "existing realworld": 31806, "datasets provide": 22378, "provide opensource": 77530, "increasing leveraging": 44834, "structured data": 91158, "questions regarding": 78930, "importance various": 43483, "factors model": 33602, "selection process": 86172, "process including": 75333, "data problem": 21506, "vs accuracy": 103243, "assumptions data": 8123, "factors use": 33609, "model implementation": 60985, "implementation identified": 43333, "determine effectiveness": 24407, "committed advancing": 16118, "selection data": 86153, "ai technique": 4574, "research conducted": 82520, "including textdavinci003": 44498, "gpt4 zeroshot": 40159, "classification question": 14777, "arises models": 7483, "compare traditional": 16499, "traditional classification": 97659, "methods specifically": 59807, "based diverse": 9504, "classifying functional": 14844, "functional requirements": 36506, "setting does": 86987, "processes particularly": 75444, "classification chatgpt": 14731, "english evaluation": 29066, "chatgpt named": 14026, "remains seen": 81695, "english news": 29090, "chatgpt assessed": 13541, "assessed using": 7896, "prompt settings": 76416, "settings carefully": 87040, "exhibiting impressive": 31594, "cooperative capabilities": 19498, "level specifically": 53680, "specifically initially": 89836, "propose employ": 76967, "attack strategy": 8181, "strategy llmbased": 90903, "interaction environment": 47004, "introduce evil": 47423, "effective attack": 27265, "attack method": 8172, "generates prompts": 37845, "impact various": 43266, "demonstrate high": 23098, "high success": 41466, "evaluation discussion": 30577, "content llms": 18657, "highlighting significant": 41642, "significant safety": 87851, "safety challenges": 85015, "qa benchmark": 78121, "benchmark present": 10225, "biology physics": 11085, "based baseline": 9449, "accuracy use": 2380, "systems help": 93473, "questions example": 78845, "scalable oversight": 85243, "enable humans": 28550, "humans supervise": 42642, "systems enable": 93437, "truthful information": 98959, "information ai": 45400, "surpass human": 92910, "complex domains": 16929, "science combining": 85567, "approaches artificial": 7104, "work compares": 104016, "compares traditional": 16668, "randomized controlled": 79117, "experiment conducted": 31961, "masters level": 58482, "gpt4 study": 40107, "impact student": 43258, "ai support": 4560, "fostering critical": 35906, "thinking llms": 96806, "leveraging ai": 53820, "tasks advanced": 94358, "llms tailored": 56905, "generalpurpose applications": 37344, "continual training": 18997, "model derived": 60754, "data extensive": 21219, "extensive data": 33010, "ability general": 1649, "ability chinese": 1610, "area including": 7425, "including general": 44351, "abstract generation": 1928, "dialogue chatgpt": 24849, "fundamentally change": 36562, "physics education": 72084, "ai focused": 4401, "assessment ability": 7937, "questions study": 78957, "focus investigating": 35527, "introductory mechanics": 47566, "quality accuracy": 78218, "levels prompt": 53699, "capable completing": 12228, "adopted chatgpt": 3615, "simulated data": 88313, "data difficult": 21155, "data uploaded": 21719, "capable correctly": 12229, "work offers": 104188, "setting highlights": 86997, "curation assessment": 20642, "critical elements": 20324, "model existing": 60836, "systems fail": 93454, "curation pipeline": 20644, "iterative optimization": 48063, "assessment platform": 7969, "onestop data": 67958, "quality improvement": 78292, "userfriendly interactive": 101061, "interactive interfaces": 47105, "classification dataset": 14735, "customized data": 20855, "data assessment": 20993, "including human": 44383, "process use": 75415, "data addition": 20946, "prompting frameworks": 76535, "powerful ai": 73421, "best use": 10656, "data lack": 21359, "recently observed": 80531, "trend utilizing": 98852, "better utilize": 10812, "utilize power": 101952, "rapid evolution": 79319, "related prompting": 81209, "concept prompting": 17606, "prompting framework": 76534, "various generaldomain": 102438, "generaldomain natural": 37209, "specialized expertise": 89625, "expertise required": 32394, "interpret model": 47271, "responses response": 83298, "response challenge": 83122, "novel llamabased": 67199, "generated qa": 37761, "qa questionanswer": 78147, "questionanswer instances": 78723, "domain evaluate": 26374, "managing ai": 58197, "methods tasks": 59817, "experiments opensource": 32258, "extensive results": 33125, "potential bridge": 73043, "bridge performance": 11438, "way llms": 103385, "utilization language": 101910, "computing applications": 17557, "benchmark general": 10181, "general ai": 37104, "represent milestone": 82035, "fundamental abilities": 36528, "reasoning multimodality": 79951, "multimodality handling": 65114, "web browsing": 103482, "conceptually simple": 17657, "challenging advanced": 13147, "ais human": 4848, "performance disparity": 71152, "humans tasks": 42644, "requiring professional": 82442, "current trend": 20796, "advent artificial": 3954, "questions answer": 78777, "leaderboard available": 52832, "efficient updates": 27833, "sparsification quantization": 89553, "possible efficiently": 72898, "efficiently adapt": 27842, "adapt language": 3042, "domains recent": 26578, "recent techniques": 80381, "techniques model": 95561, "model merging": 61126, "despite efficiency": 24039, "size expert": 88467, "networks like": 66198, "multiple experts": 65188, "gpu address": 40252, "issues present": 48009, "task vectors": 94291, "ternary quantization": 95851, "quantization reduce": 78448, "llamabased models": 54900, "achieves compression": 2737, "compression ratios": 17371, "exhibit higher": 31523, "performance example": 71188, "applied llama": 6619, "llama outperforms": 54790, "facilitate efficient": 33490, "efficient communication": 27746, "communication computation": 16260, "exhibit enhanced": 31515, "different method": 25109, "methods test": 59822, "models continually": 62112, "support downstream": 92803, "tasks targeted": 95178, "overcome problem": 69361, "enables finetuned": 28587, "perspectives method": 71971, "form model": 35776, "strong empirical": 91022, "empirical performance": 28338, "domain conduct": 26365, "experiments llama": 32240, "benchmarks including": 10359, "method code": 59229, "code checkpoints": 15147, "icl large": 42759, "llms modern": 56405, "influences performance": 45365, "improve reasoning": 43790, "llms native": 56419, "extensive comprehensive": 33007, "experiments benchmarks": 32117, "performance carefully": 71032, "demonstrations specifically": 23483, "average 32": 9130, "reasoning benchmarks": 79789, "furthermore use": 36667, "factual inconsistency": 33635, "llms widely": 57046, "fields healthcare": 34426, "various languagerelated": 102463, "languagerelated tasks": 51223, "prone generating": 76862, "generating factually": 37905, "hallucinations lead": 40871, "propose multistage": 77033, "supporting references": 92858, "generate answer": 37378, "insights model": 46113, "answer using": 6068, "using rationale": 101721, "effectiveness improving": 27529, "framework improves": 36162, "datasets furthermore": 22274, "furthermore finetuning": 36619, "finetuning samples": 35232, "accuracy smaller": 2363, "commercial models": 16086, "explores ethical": 32802, "education focusing": 27150, "reviewing recent": 84287, "academic articles": 1970, "overview relevant": 69434, "research identifying": 82626, "identified research": 42829, "questions search": 78945, "languages article": 51234, "utilizing ai": 102000, "given rapid": 38942, "rapid deployment": 79309, "deployment generative": 23598, "intelligence gai": 46850, "potential societal": 73265, "societal biases": 88928, "review chatgpt": 84248, "biases trained": 10957, "given increasing": 38898, "education institutions": 27156, "institutions heis": 46268, "examine ethical": 31107, "biases related": 10951, "discussed recent": 25702, "identify type": 42907, "usage higher": 100437, "bias findings": 10841, "awareness potential": 9221, "llms gai": 56018, "bias relatively": 10882, "relatively superficial": 81334, "identify types": 42908, "types bias": 99222, "education researchers": 27182, "entity extraction": 29560, "systems extract": 93451, "extract structured": 33239, "information textual": 45653, "everincreasing volume": 30952, "text produced": 96367, "daily basis": 20900, "effectively extract": 27427, "extract information": 33233, "models leveraged": 62896, "extraction structured": 33332, "question evaluating": 78664, "evaluating capabilities": 30399, "commonly known": 16191, "entities events": 29538, "dataset collection": 21860, "annotation framework": 5897, "includes set": 44257, "set entity": 86867, "attribute values": 8442, "degrees information": 22917, "subsequently use": 92034, "use best": 100482, "templates evaluate": 95698, "indicate gpt": 44995, "baseline systems": 9808, "guide future": 40732, "users past": 101153, "personalized recommendations": 71918, "ranking systems": 79279, "users existing": 101101, "existing biases": 31678, "leading large": 52856, "model chatgpt35": 60645, "political affiliation": 72562, "public figures": 77920, "users tend": 101188, "figures media": 34456, "user demographics": 100977, "projectbased learning": 76054, "students adopting": 91280, "technologies challenge": 95623, "objectives evaluate": 67519, "learning pbl": 53325, "use new": 100637, "employed including": 28429, "setting participants": 87015, "elementary school": 27964, "collection analysis": 15890, "analysis data": 5476, "data gathered": 21251, "meetings interviews": 58972, "microsoft excel": 60000, "excel google": 31331, "results introduction": 83696, "utility chatgpt": 101890, "role facilitating": 84774, "endangered languages": 28848, "targeted language": 93904, "agents master": 4205, "languages provide": 51347, "conversational partner": 19387, "vocabulary grammar": 103197, "learns different": 53497, "different way": 25254, "implementation project": 43339, "critical discussion": 20320, "new tool": 66560, "dialogue present": 24885, "testing reinforcement": 96021, "played crucial": 72356, "role success": 84806, "framework combines": 36068, "preferences feedback": 73818, "exists gap": 31860, "gap commercial": 36914, "instead human": 46248, "statistical method": 90551, "method reinforcement": 59408, "testing proposed": 96020, "inference methods": 45268, "training reward": 98270, "reward network": 84377, "network finetunes": 66140, "model reinforcement": 61329, "framework achieving": 36018, "achieving greater": 2853, "feedback time": 34145, "time points": 97004, "effectiveness algorithm": 27491, "exploiting large": 32579, "use ensuring": 100534, "security robustness": 86038, "robustness critical": 84706, "models heavily": 62655, "crucial thoroughly": 20543, "illegal activities": 42985, "novel study": 67256, "study focusing": 91646, "interactions specifically": 47080, "specifically paper": 89857, "theory investigate": 96764, "models susceptible": 64314, "highlight risks": 41610, "way robust": 103398, "models face": 62434, "social engineering": 88857, "engineering tactics": 29023, "systematic experiments": 93336, "experiments analysis": 32106, "analysis assess": 5439, "critical security": 20353, "security domains": 86010, "engineering attacks": 28949, "provide accurate": 77397, "accurate safe": 2427, "safe responses": 84990, "chatgpt variants": 14343, "unclear study": 99408, "accuracy safety": 2356, "comprehensively assess": 17321, "experiments nlp": 32254, "existing limitations": 31742, "inherent current": 45725, "improving llm": 44136, "enhance safety": 29211, "findings advance": 34638, "adaptability llms": 3061, "eu ai": 30102, "ai act": 4288, "false outputs": 33812, "outputs lack": 69232, "engineering prompts": 29009, "dataset splits": 22089, "greater understanding": 40517, "llms hope": 56143, "generate qa": 37562, "using prefix": 101684, "lora finetuning": 57444, "methods create": 59583, "qa data": 78126, "words given": 103955, "obtain datasets": 67647, "field provide": 34402, "support finetuning": 92808, "llms experimental": 55924, "study significantly": 91848, "llm qa": 55225, "compared lora": 16586, "improves bleu": 44016, "metrics test": 59971, "test compared": 95880, "compared model": 16588, "tasks provides": 94987, "provides new": 77686, "llms enhanced": 55865, "corpus generation": 19627, "generator llm": 38736, "new samples": 66519, "diversity new": 26150, "modelling mlm": 61694, "metric proposed": 59870, "corpus based": 19597, "english chatgpt": 29054, "quality metric": 78318, "demonstrates significantly": 23403, "significantly enhanced": 87916, "resultant model": 83418, "substantial advancement": 92054, "word puzzles": 103922, "educational crosswords": 27197, "offer numerous": 67756, "numerous benefits": 67419, "benefits students": 10489, "students including": 91309, "including increased": 44389, "improved understanding": 43865, "understanding critical": 99704, "creating highquality": 20222, "highquality educational": 41756, "learning possible": 53334, "gpt3davinci gpt3curie": 39727, "gpt3curie gpt3babbage": 39724, "gpt3babbage gpt3ada": 39720, "clueanswer pairs": 15077, "generate original": 37543, "original challenging": 68761, "challenging clues": 13159, "zerofewshot learning": 104714, "techniques used": 95605, "used extract": 100800, "classifier finetuning": 14823, "finetuning existing": 35061, "employed zeroshot": 28437, "check quality": 14474, "approach creating": 6791, "students engaging": 91303, "bug detection": 11554, "identifying resolving": 42933, "programmers unlike": 75872, "certain conditions": 12753, "buggy code": 11563, "exhibit correct": 31508, "automated tests": 8746, "automatically detecting": 8855, "generating explaining": 37902, "closely linked": 15026, "runtime performance": 84963, "explore investigate": 32693, "gpt4 detecting": 39836, "compare llm": 16468, "computing students": 17578, "detection task": 24365, "responses observe": 83266, "llms llm": 56352, "models integrated": 62795, "education tools": 27189, "potential supporting": 73279, "supporting students": 92860, "learning programming": 53354, "challenge using": 12941, "recently improved": 80504, "plms paper": 72429, "suffer performance": 92317, "distribution topics": 25952, "classifier trained": 14826, "corpus large": 19636, "plms bert": 72410, "gpt3 suggest": 39539, "possible remedy": 72916, "synthetic texts": 93300, "replicate experiments": 81946, "models instructionfollowing": 62792, "models demand": 62172, "challenge resolution": 12930, "strategies long": 90833, "source datasets": 89369, "dataset opensource": 22021, "nuanced information": 67316, "pairs containing": 69487, "developed novel": 24516, "instructionfollowing model": 46461, "used public": 100884, "public llms": 77933, "datasets usually": 22457, "llmgenerated content": 55373, "train generation": 97740, "new llm": 66448, "empirically study": 28383, "accurately measure": 2459, "diversity generations": 26147, "real generated": 79544, "chinese conversational": 14540, "models built": 61952, "66b parameters": 1179, "designed generating": 23915, "inherent social": 45743, "social desires": 88855, "emotional needs": 28262, "various ai": 102345, "emotional expressions": 28257, "patterns model": 70635, "outperforms mainstream": 69080, "large langauge": 51453, "langauge models": 49119, "including gpt": 44355, "subset training": 92044, "data facilitate": 21225, "falcon series": 33770, "open language": 68075, "180b parameters": 427, "developed models": 24515, "pretraining inference": 74545, "cost making": 19867, "knowledge best": 48454, "report detailed": 81964, "detailed evaluations": 24165, "deep dive": 22748, "tokens extract": 97198, "models permissive": 63804, "development open": 24688, "open ecosystem": 68063, "ecosystem large": 27068, "models chatgpts": 61994, "answer human": 6016, "following success": 35699, "generally outperform": 37332, "tasks crucial": 94502, "provide exhaustive": 77468, "growing importance": 40656, "researchers educators": 82852, "focuses questions": 35613, "models today": 64367, "context research": 18841, "task adaptation": 93922, "deploying deep": 23578, "methods designed": 59594, "considering diverse": 18213, "deployment scenarios": 23619, "scenarios various": 85493, "various resource": 102556, "numerous new": 67434, "new challenges": 66360, "challenges adapting": 12955, "adapting new": 3134, "huge memory": 42039, "process work": 75418, "bias terms": 10893, "largely reduce": 52413, "downstream visual": 26759, "visual recognition": 103114, "recognition tasks": 80618, "fewer trainable": 34200, "flexibility scalability": 35427, "compositional instructions": 17115, "multiple constraints": 65163, "applications propose": 6549, "format allows": 35821, "tasks enhance": 94588, "tasks utilize": 95239, "instructions results": 46560, "basic tasks": 9889, "tasks rigorous": 95073, "instructions models": 46537, "llms combined": 55642, "lead new": 52811, "new safety": 66518, "safety issues": 85035, "malicious use": 58164, "use recent": 100672, "studies primarily": 91427, "easily detected": 27012, "toxicity classifiers": 97599, "propose reinforcement": 77099, "induce implicit": 45136, "specifically optimize": 89856, "optimize language": 68630, "toxic nontoxic": 97589, "ones experiments": 67928, "classifiers demonstrate": 14831, "demonstrate attack": 23026, "rl finetuning": 84554, "outputs finetuning": 69221, "ability detect": 1625, "detect llmgenerated": 24222, "studies typically": 91455, "typically focus": 99289, "lacking comprehensive": 49071, "benchmark covers": 10110, "covers broad": 20093, "llama2 mistral": 54840, "humans highlighting": 42606, "considerable distance": 18154, "fostering research": 35908, "reasoning llms": 79932, "llms crosslingual": 55701, "llms represent": 56702, "model input": 61011, "input layer": 45913, "language tokens": 51143, "tokens different": 97190, "different writing": 25259, "token represent": 97152, "objectives research": 67527, "opens door": 68294, "reasoning questions": 80001, "rag incorporating": 79040, "incorporating external": 44696, "knowledge parametric": 48693, "parametric memory": 70304, "constrained limited": 18378, "noisy information": 66870, "answer implicit": 6018, "implicit reasoning": 43420, "knowledge retrieved": 48752, "leverage large": 53737, "llms deriving": 55784, "inductive reasoning": 45148, "reasoning patterns": 79971, "knowledge generated": 48580, "answer prediction": 6036, "trained knowledge": 97850, "scores experimental": 85756, "baselines chatgpt": 9822, "place official": 72216, "ai coding": 4336, "capabilities tools": 12104, "chatgpt copilot": 13663, "suggest potential": 92386, "time writing": 97040, "tools built": 97370, "built atop": 11658, "aim mitigate": 4723, "like finetuning": 54121, "prompts contextualized": 76676, "application using": 6393, "despite lacking": 24078, "llmbased applications": 55335, "code generative": 15343, "analysis applications": 5435, "alignment large": 5086, "critical step": 20357, "llms helpful": 56123, "helpful assistants": 41291, "effective evaluation": 27295, "evaluation alignment": 30507, "multidimensional benchmark": 64892, "llms alignment": 55467, "humanintheloop data": 42498, "benchmark employs": 10148, "chainofthought generate": 12831, "dedicated chinese": 22724, "evaluator llm": 30896, "gpt4s evaluation": 40178, "evaluation ability": 30500, "provide public": 77548, "public apis": 77906, "facilitate evaluation": 33491, "evaluation codes": 30545, "data llm": 21384, "exposing limitations": 32895, "model agents": 60527, "agents despite": 4181, "applications involve": 6506, "underexplored work": 99456, "realistic assumptions": 79563, "rate base": 79374, "tasks hand": 94690, "tasks generalization": 94664, "tasks train": 95208, "transferred models": 98450, "emphasize necessity": 28285, "leading ai": 52838, "ai analysis": 4299, "contributions field": 19179, "compare leading": 16466, "ai companies": 4339, "companies research": 16355, "algorithmic innovations": 4944, "role played": 84798, "openai meta": 68170, "lower impact": 57562, "compared counterparts": 16525, "large training": 52352, "data reveals": 21580, "chatgpt midjourney": 14015, "models diffusion": 62233, "models holds": 62674, "potential transforming": 73293, "enhancing human": 29331, "human productivity": 42334, "numerous research": 67440, "technologies learning": 95630, "concise overview": 17723, "overview current": 69429, "data generating": 21260, "needed future": 66016, "data human": 21297, "essential consider": 29938, "pedagogical implications": 70685, "implications broader": 43368, "vector space": 102704, "relationships data": 81282, "multiple attributes": 65141, "topic sentiment": 97517, "sentiment text": 86609, "proposed task": 77259, "information original": 45561, "using modified": 101621, "learned representation": 52993, "effectively erases": 27424, "data representations": 21566, "domains provide": 26574, "analysis properties": 5620, "representations propose": 82118, "space additionally": 89439, "experiments showcase": 32297, "prompt sequence": 76413, "selected vocabulary": 86138, "textual query": 96691, "query key": 78529, "key problem": 48329, "tokens paper": 97217, "paper formulate": 69745, "combinatorial optimization": 15966, "length prompt": 53604, "efficient solution": 27822, "solution paper": 89103, "focus hard": 35522, "hard prompt": 40988, "discrete tokens": 25632, "added text": 3160, "requiring access": 82425, "available blackbox": 9016, "critically important": 20379, "model service": 61394, "manner gpt4": 58239, "tasks discrete": 94551, "research built": 82505, "albeit preliminary": 4886, "obtained using": 67680, "using vanilla": 101835, "vanilla version": 102235, "tasks enable": 94581, "southeast asia": 89432, "despite remarkable": 24113, "achievements large": 2690, "languages address": 51230, "address imbalance": 3412, "series language": 86742, "southeast asian": 89433, "asian sea": 7705, "built llama2": 11669, "model advanced": 60524, "better capture": 10698, "cultural norms": 20596, "large margins": 52248, "test ai": 95865, "games designed": 36897, "designed elicit": 23897, "measures personality": 58769, "personality traits": 71898, "statistically indistinguishable": 90561, "modify behavior": 64640, "behavior based": 9963, "based previous": 9664, "sciences broadly": 85621, "discussion topics": 25729, "power promptbased": 73395, "promptbased techniques": 76471, "questions challenging": 78792, "challenging timeconsuming": 13247, "timeconsuming task": 97057, "generate descriptive": 37423, "questions current": 78816, "experiments promptbased": 32265, "curate new": 20623, "leveraging rich": 53901, "annotate dataset": 5854, "long prompt": 57318, "long textual": 57341, "context short": 18849, "short textual": 87312, "focus context": 35511, "methods finetuning": 59652, "pegasus t5": 70717, "performance generalpurpose": 71254, "gpt35turbo training": 39712, "baseline human": 9782, "case human": 12459, "vs chatgpt": 103246, "support students": 92832, "education recent": 27179, "developments generative": 24742, "automatic software": 8826, "tasks generated": 94670, "accurate code": 2400, "simple problems": 88227, "results contribute": 83524, "aipowered tools": 4838, "tools programming": 97457, "use state": 100693, "addresses main": 3521, "vector embeddings": 102699, "tasks gpt2": 94680, "finetuning required": 35224, "good results": 39124, "results accuracy": 83453, "years single": 104618, "techniques employed": 95506, "google colab": 39138, "accompanying code": 2130, "current policy": 20754, "identify strengths": 42904, "resource allocation": 82954, "supporting effective": 92853, "policy design": 72532, "implementation manually": 43336, "texts openended": 96588, "expertise enhance": 32387, "k12 education": 48237, "mixedmethods approach": 60334, "approach human": 6885, "unsupervised topic": 100317, "guide gpt4": 40736, "human coding": 42125, "nlp methods": 66747, "gpt4 closely": 39796, "closely matched": 15028, "findings quantitative": 34724, "quantitative measures": 78413, "automated analysis": 8670, "offer new": 67752, "enhances efficiency": 29279, "educational policy": 27211, "showcasing effectiveness": 87373, "pretrain prompt": 74225, "prompt predict": 76396, "paradigm utilizing": 70057, "knowledge diverse": 48523, "applications despite": 6447, "lack adequate": 48978, "languages existing": 51270, "bridge gaps": 11430, "gaps introduce": 36993, "benchmark tailored": 10260, "tailored evaluating": 93777, "explore current": 32662, "mainstream languages": 57863, "unique characteristics": 100078, "suite realworld": 92479, "realworld nlp": 79684, "features highquality": 34002, "highquality humanannotated": 41763, "humanannotated datasets": 42440, "datasets instruction": 22303, "cultures idioms": 20610, "parameter scales": 70123, "systematic evaluations": 93332, "evaluations proposed": 30876, "interactive visualization": 47121, "understanding model": 99815, "control generated": 19204, "results tackle": 83887, "approach breaks": 6761, "method llms": 59355, "llms engage": 55861, "diverse faithful": 26023, "assists users": 8073, "actively participate": 3001, "process leading": 75349, "free copy": 36336, "copy paper": 19521, "paper supplemental": 69969, "supplemental materials": 92771, "bad ugly": 9288, "ugly large": 99323, "capabilities contextual": 11869, "contextual awareness": 18933, "robust problemsolving": 84681, "invaluable various": 47595, "customer support": 20846, "gained traction": 36844, "security community": 86004, "securityrelated tasks": 86053, "intersection llms": 47326, "llms security": 56755, "privacy specifically": 74915, "positively impact": 72842, "associated use": 8104, "inherent vulnerabilities": 45746, "comprehensive literature": 17276, "review paper": 84268, "findings example": 34666, "example llms": 31168, "llms proven": 56607, "enhance code": 29148, "code security": 15496, "security code": 86003, "code vulnerability": 15566, "various attacks": 102361, "identified areas": 42822, "research efforts": 82569, "parameter extraction": 70103, "llm parameter": 55188, "tuning recent": 99085, "light llms": 54010, "framework growing": 36152, "simple framework": 88197, "designed train": 23959, "uses examples": 101221, "examples specific": 31286, "queries related": 78507, "related specific": 81218, "subsequently finetune": 92028, "classifier using": 14827, "using customized": 101394, "approach conduct": 6780, "conduct evaluations": 17862, "manually constructed": 58292, "constructed datasets": 18445, "shows competitive": 87569, "baselines use": 9857, "learning gpt3": 53183, "175b instructgpt": 407, "instructgpt 175b": 46284, "parameters demonstrating": 70198, "impact tokenization": 43261, "reason lies": 79729, "tokenization caused": 97165, "representation pretraining": 82072, "limiting potential": 54487, "investigate possibility": 47681, "addressing issue": 3543, "language adaptation": 49127, "adaptation explore": 3076, "results automatic": 83470, "memory consumption": 59026, "additional human": 3242, "models demonstrates": 62193, "demonstrates models": 23385, "answers higher": 6189, "user preference": 101020, "let llms": 53635, "llms talk": 56914, "aim create": 4700, "effectively retrieve": 27471, "work uses": 104303, "despite effectiveness": 24038, "challenges exist": 13009, "issue investigate": 47939, "investigate applicability": 47619, "propose simulation": 77119, "employs zeroshot": 28487, "zeroshot learner": 104805, "framework involves": 36178, "given search": 38954, "llm plays": 55200, "text given": 96285, "given topic": 38977, "student teacher": 91273, "prompting gpt4": 76540, "model assess": 60568, "interactions understand": 47081, "disparities llm": 25761, "various perspectives": 102521, "teachers performance": 95353, "analyzing comparing": 5805, "llm generated": 55100, "extensive analyses": 32992, "examine llm": 31117, "benchmarking stateoftheart": 10302, "comprehension models": 17174, "generates diverse": 37830, "covering aspects": 20073, "augmenting llm": 8600, "llms opened": 56465, "opened new": 68251, "opportunities field": 68494, "field mobile": 34392, "capabilities allow": 11833, "llms practical": 56545, "practical applicability": 73493, "quite limited": 78992, "precise efficient": 73595, "efficient learning": 27790, "breaking smaller": 11388, "adapted various": 3108, "online llms": 67994, "gpt4 evaluate": 39858, "performance dataset": 71122, "dataset 160": 21801, "accuracy able": 2194, "able adapt": 1824, "reducing latency": 80880, "gpt4 powered": 40020, "llms regarding": 56679, "spatial information": 89569, "capabilities demonstrated": 11876, "processing spatial": 75569, "especially domains": 29873, "2d 3d": 723, "route planning": 84882, "remains notably": 81683, "underdeveloped paper": 99435, "models spatial": 64234, "spatial reasoning": 89573, "tasks area": 94379, "visually impaired": 103152, "baseline dataset": 9773, "meticulously crafted": 59853, "structured key": 91165, "key tasks": 48346, "3d environments": 889, "specifically developed": 89808, "developed dataset": 24496, "evaluation reveals": 30759, "reveals key": 84213, "insights models": 46114, "spatial understanding": 89580, "need educators": 65937, "explored analyzed": 32767, "produce multiplechoice": 75647, "specific learning": 89720, "clear language": 14883, "single correct": 88354, "correct choice": 19662, "observed generated": 67610, "training additional": 97940, "llama large": 54765, "llm key": 55140, "texts multiple": 96585, "texts including": 96578, "models 7b": 61723, "limitations incorporating": 54333, "incorporating specialized": 44718, "llms suggesting": 56887, "suggesting areas": 92406, "gpt4 enhanced": 39855, "enhanced multimodal": 29238, "crossmodal attention": 20432, "attention large": 8328, "field autonomous": 34352, "autonomous vehicles": 8939, "vehicles avs": 102713, "visual context": 103055, "encoderdecoder framework": 28720, "visual grounding": 103066, "image context": 43031, "integration enables": 46763, "model adeptly": 60521, "capture contextual": 12349, "emotional features": 28258, "efficiently process": 27856, "visual scenes": 103121, "dataset realworld": 22050, "new standards": 66533, "operational efficiency": 68453, "efficiency notably": 27703, "effectiveness potential": 27562, "challenging scenarios": 13226, "weather conditions": 103471, "urban environments": 100399, "deductive logical": 22736, "use gpt": 100564, "study examined": 91616, "ongoing efforts": 67970, "biomedical knowledge": 11095, "evaluating complex": 30408, "infer different": 45197, "created sets": 20202, "findings showed": 34751, "trained tasks": 97918, "distinct characteristics": 25860, "complex logical": 16952, "nature task": 65816, "context comprehension": 18742, "sequence prediction": 86662, "evaluating mitigating": 30456, "model decisions": 60735, "growing applying": 40641, "motivating need": 64788, "need better": 65916, "evaluating potential": 30478, "lm generate": 57071, "input lm": 45918, "demographic information": 23004, "information prompt": 45579, "claude 20": 14851, "model select": 61385, "highrisk use": 41812, "cases study": 12558, "demonstrate techniques": 23210, "techniques significantly": 95590, "significantly decrease": 87903, "engineering providing": 29011, "deployment use": 23620, "enables developers": 28580, "capabilities applications": 11834, "applications continue": 6435, "continue expand": 19005, "dataset prompts": 22039, "performance comprehensive": 71102, "intelligence chatbots": 46837, "questions standardized": 78956, "used paper": 100866, "study total": 91867, "categories used": 12619, "various skills": 102571, "imagebased questions": 43072, "chatbot results": 13421, "especially complex": 29864, "questions results": 78943, "chatbots test": 13459, "important ensure": 43503, "test administered": 95864, "including higher": 44381, "education context": 27142, "process meet": 75358, "recently openai": 80532, "possibility finetune": 72877, "model natural": 61150, "interface enabling": 47172, "gpts recently": 40242, "recently launched": 80526, "evaluated compared": 30329, "observed following": 67608, "explicitly asked": 32542, "far superior": 33877, "having access": 41116, "generally higher": 37327, "trained prompts": 97894, "generative chatbots": 38613, "business process": 11702, "used business": 100756, "support recent": 92825, "openais generative": 68196, "model googles": 60946, "conversational intelligence": 19372, "meet requirements": 58966, "performance prominent": 71495, "prominent generative": 76091, "gpt palm": 39233, "using conversational": 101386, "support users": 92840, "execute tasks": 31441, "llms especially": 55873, "safety mechanisms": 85045, "mechanisms specialized": 58817, "assistants work": 8062, "making use": 58144, "possible obtain": 72909, "harmful information": 41034, "using adversarial": 101292, "mechanisms set": 58816, "model interpret": 61025, "space exploration": 89444, "data integration": 21337, "spectrum applications": 89922, "rely pretrained": 81585, "pairs recently": 69516, "large languages": 52236, "gpt4 shown": 40078, "shown ability": 87432, "tasks tuning": 95214, "parameters known": 70233, "providing task": 77806, "description set": 23686, "set demonstrations": 86861, "monetary cost": 64704, "demonstration selection": 23464, "selection strategy": 86177, "achieves effective": 2739, "evaluation explore": 30595, "explore design": 32664, "space evaluate": 89443, "proposed strategies": 77257, "strategies extensive": 90812, "plmbased methods": 72403, "methods finetuned": 59651, "llmbased methods": 55354, "methods manually": 59727, "manually designed": 58305, "designed prompting": 23938, "prompting provide": 76597, "prompting comparing": 76512, "comparing large": 16682, "model ai": 60529, "limit effectiveness": 54275, "effectiveness compared": 27502, "offer personalized": 67758, "messages address": 59122, "address repetition": 3485, "abilities llm": 1532, "llm ai": 54955, "using 5point": 101278, "5point likert": 1107, "likert scale": 54266, "scale providing": 85291, "aigenerated messages": 4671, "matched humanwritten": 58503, "regarding helpfulness": 81057, "suggesting ais": 92405, "analysis openended": 5595, "revealed participants": 84190, "personalized suggestions": 71920, "ais like": 4849, "future enhancement": 36722, "refers ability": 80969, "success current": 92186, "statistical regularities": 90556, "enormous computation": 29398, "computation resources": 17427, "including task": 44490, "resource learning": 82970, "visual framework": 103065, "framework understand": 36307, "relation ai": 81232, "based conceptual": 9478, "framework develop": 36094, "web development": 103489, "development study": 24716, "positively affected": 72839, "given potentially": 38928, "different platforms": 25145, "multimodal llms": 65081, "generation multimodal": 38288, "llms empower": 55850, "multimodality understanding": 65117, "understanding capability": 99683, "capability semantic": 12207, "semantic generation": 86312, "generation bring": 38052, "reliance prompt": 81547, "autoregressive generative": 8956, "generative nature": 38675, "improve outputs": 43743, "novel inference": 67183, "inference method": 45267, "method prompt": 59393, "specific prompt": 89738, "focus generation": 35520, "pairs based": 69483, "based highlighted": 9562, "weights leads": 103557, "llms vlms": 57040, "vlms achieving": 103181, "achieving impressive": 2859, "training experiments": 98107, "experiments confirm": 32144, "confirm effectiveness": 18040, "input contexts": 45885, "federated learning": 34053, "framework easy": 36102, "developers need": 24556, "emerging ai": 28214, "fl algorithms": 35373, "algorithms using": 4984, "steps process": 90692, "context social": 18854, "models long": 63550, "nature paper": 65812, "applications generative": 6491, "instructgpt gpt35": 46289, "zeroshot models": 104826, "dataset finetuning": 21947, "finetuning case": 35026, "outperforming prior": 69008, "zeroshot case": 104740, "score lower": 85726, "additionally models": 3327, "reassess performance": 80101, "performance release": 71531, "model serving": 61395, "recently experienced": 80493, "widespread popularity": 103789, "chatgpt existing": 13785, "conversation history": 19325, "processing paper": 75554, "gpu cpu": 40255, "cpu memory": 20116, "memory efficiently": 59035, "multiple input": 65200, "throughput compared": 96904, "reduce latency": 80787, "text similarity": 96417, "large collection": 51406, "collection highquality": 15896, "highquality labeled": 41774, "pairs textual": 69523, "rely unsupervised": 81595, "unsupervised techniques": 100315, "techniques training": 95603, "training signals": 98293, "partially correlated": 70353, "datasets tackle": 22431, "measuring text": 58783, "core idea": 19544, "utilizes llms": 101995, "provide substantial": 77578, "sentence pair": 86510, "yields sota": 104678, "performances widelyused": 71748, "field release": 34406, "assistance large": 8028, "software ecosystem": 88997, "ecosystem paper": 27073, "domainspecific large": 26635, "llms focus": 55993, "development introduce": 24660, "queries model": 78499, "model variant": 61570, "tuned llm": 99002, "llm particularly": 55191, "adept handling": 3565, "handling intricate": 40948, "enabling effective": 28630, "effective handling": 27305, "ner relation": 66116, "extraction link": 33314, "comparison models": 16718, "potential specialized": 73273, "llm domain": 55047, "domain gpt4": 26397, "gpt4 safety": 40065, "case generation": 12458, "chatgpt short": 14212, "paper primary": 69875, "base gpt4": 9401, "distinct experiments": 25865, "experiments designed": 32169, "application domain": 6349, "gpt4 demonstrates": 39829, "exhibits capability": 31599, "closely align": 15020, "align semantic": 5010, "distillation present": 25823, "knowledge general": 48578, "direct application": 25411, "like flant5": 54122, "knowledge enabling": 48534, "performance commonsense": 71072, "open knowledge": 68074, "opensource pretrained": 68396, "enabling arbitrary": 28625, "data serve": 21613, "matches exceeds": 58505, "commonsense generation": 16211, "distinct advantage": 25854, "explicitly modeling": 32551, "injection large": 45826, "common questions": 16165, "responses faced": 83213, "questions requiring": 78940, "requiring domainspecific": 82430, "corpus furthermore": 19623, "furthermore stateoftheart": 36661, "llms opensource": 56468, "llms question": 56618, "extract relevant": 33238, "suitable prompt": 92462, "datasets showcase": 22411, "systems industrial": 93488, "science communication": 85568, "technology engineering": 95649, "security threats": 86043, "achieve efficient": 2514, "widespread application": 103782, "critical tasks": 20361, "failure prediction": 33715, "health monitoring": 41170, "models lfms": 62899, "technology chatgpt": 95646, "stands remarkable": 90239, "potential general": 73104, "regarding application": 81046, "comprehensive examination": 17252, "recent surge": 80379, "llama falcon": 54744, "falcon mistral": 33768, "provides diverse": 77658, "code technical": 15536, "technical reports": 95422, "process present": 75376, "fully opensource": 36461, "intermediate results": 47217, "available community": 9022, "collaborative ai": 15836, "research making": 82666, "parameter llms": 70114, "continually pushing": 18999, "pushing boundaries": 78078, "effort largescale": 27879, "released future": 81400, "language modelslms": 50933, "prevalent practice": 74639, "quantity diversity": 78436, "tasks access": 94337, "generate samples": 37581, "using binary": 101319, "benchmarks using": 10426, "palm2 models": 69563, "data overall": 21460, "reduce dependence": 80773, "data emergence": 21174, "famous examples": 33859, "emergent behavior": 28198, "social systems": 88920, "online social": 68011, "agents using": 4247, "human linguistic": 42291, "prior distribution": 74844, "gated linear": 37022, "linear attention": 54520, "attention transformers": 8381, "training transformers": 98340, "transformers linear": 98628, "allow efficient": 5160, "efficient parallel": 27810, "parallel training": 70087, "complexity linear": 17044, "implementations linear": 43343, "standard attention": 90158, "attention layer": 8331, "layer transformers": 52735, "touvron et": 97575, "al 2023a": 4875, "modeling experiments": 61638, "especially effective": 29875, "training speed": 98305, "addition introduce": 3193, "introduce contrastive": 47414, "forward passes": 35890, "negative examples": 66061, "responses inference": 83242, "token positions": 97145, "users prompt": 101162, "precise control": 73594, "behavior evaluate": 9969, "question datasets": 78658, "datasets openended": 22357, "gain deeper": 36808, "employing various": 28465, "steers model": 90595, "engender trust": 28928, "require model": 82276, "model exhibit": 60831, "exhibit consistency": 31507, "necessary use": 65878, "ai application": 4303, "approach better": 6758, "trusted ai": 98935, "shows consistency": 87573, "neurosymbolic methods": 66315, "focuses large": 35608, "llms garnered": 56029, "garnered substantial": 37017, "substantial attention": 92061, "broad array": 11485, "array natural": 7508, "scenarios example": 85426, "googles medpalm": 39155, "emerged highly": 28135, "highly promising": 41706, "healthrelated queries": 41198, "respectively models": 83081, "remain black": 81611, "generate unsafe": 37640, "unsafe responses": 100254, "safety guardrails": 85033, "approach harnessing": 6880, "graphbased knowledge": 40418, "light challenges": 53996, "associated llms": 8094, "llms safety": 56743, "safety alignment": 85004, "summarization incontext": 92537, "safety large": 85037, "llms raised": 56623, "critical question": 20344, "instance llms": 46212, "weaker safety": 103442, "like summarization": 54230, "potentially compromise": 73332, "translation questionanswering": 98737, "increases risk": 44813, "vulnerabilities various": 103267, "safetyaligned llms": 85060, "gpt4 indicating": 39939, "safety alignments": 85010, "spectrum nlp": 89927, "tasks humans": 94704, "era advanced": 29716, "accuracy human": 2284, "experimental setup": 32078, "chatgpt35 bard": 14367, "statistical model": 90552, "llms consistently": 55670, "forecasting models": 35732, "improving safety": 44154, "harmful outcomes": 41038, "researchers investigated": 82871, "models review": 64111, "outputs models": 69241, "models redteaming": 64026, "ensure safety": 29464, "model intentionally": 61023, "develop evaluate": 24450, "solve sequence": 89193, "using access": 101283, "access powerful": 2080, "gpt4 access": 39741, "solutions containing": 89132, "logical errors": 57257, "protocols test": 77358, "gpt4 write": 40156, "submitted gpt35": 91981, "instance gpt4": 46207, "simple baselines": 88171, "baselines large": 9838, "models power": 63847, "llms respond": 56717, "respond wide": 83107, "application opportunities": 6377, "challenging power": 13208, "models validating": 64489, "performance representative": 71537, "power flow": 73371, "awareness results": 9222, "capabilities foundation": 11911, "boosting efficiency": 11287, "efficiency reliability": 27715, "power applications": 73365, "improving factual": 44118, "false claims": 33807, "editing making": 27100, "provided evidence": 77613, "evidence task": 30995, "task crucial": 93999, "alleviating hallucination": 5144, "hallucination problem": 40848, "paired data": 69478, "methods typically": 59830, "typically adopt": 99283, "claims correct": 14674, "claims referred": 14681, "distantly supervised": 25801, "identify factual": 42867, "propose improve": 76997, "supervised method": 92727, "specifically train": 89884, "lowquality data": 57593, "explicit factual": 32527, "identification experiments": 42810, "aspects firstly": 7772, "previous bestperforming": 74668, "method notable": 59368, "notable margin": 67013, "716 points": 1231, "models emerged": 62292, "cater user": 12641, "gained substantial": 36842, "leveraging extensive": 53841, "proficiency extracting": 75786, "additionally performance": 3331, "performance comparisons": 71095, "conducted chatgpt": 17940, "languages metrics": 51323, "reveals chatgpt": 84204, "model effective": 60787, "answering compared": 6087, "providing context": 77739, "context improves": 18784, "performance prompt": 71496, "lacking explicit": 49072, "answers provided": 6209, "chatgpt excels": 13776, "evaluation highlights": 30632, "hallucinations chatgpt": 40860, "questions available": 78786, "queries directly": 78481, "model different": 60769, "uncertainty answers": 99385, "make hard": 57997, "interpretable structure": 47288, "effectiveness language": 27539, "tokens propose": 97223, "prompts proposed": 76802, "results fewshot": 83607, "setting different": 86984, "datasets addition": 22133, "method different": 59264, "models embedding": 62290, "prompts make": 76777, "make easier": 57990, "embedded large": 28044, "methods effectively": 59608, "malware detection": 58172, "api sequences": 6279, "representations produced": 82115, "concept drift": 17602, "drift phenomenon": 26835, "gpt4 method": 39975, "method gpt4": 59320, "gpt4 employed": 39850, "api api": 6265, "api sequence": 6278, "bert used": 10562, "obtain representation": 67657, "representation text": 82076, "training generation": 98121, "datasets validate": 22459, "performance proposed": 71500, "reveal proposed": 84171, "experiments fewshot": 32196, "achieves excellent": 2740, "recall rate": 80117, "superior generalization": 92640, "tasks capable": 94418, "50 billion": 1011, "llms comparing": 55650, "geodistributed devices": 38780, "llm efficiently": 55050, "multiple research": 65250, "perform inference": 70886, "llama 70b": 54713, "10x faster": 181, "performance simulated": 71569, "spanning continents": 89496, "perform static": 70925, "crucial identifying": 20494, "analysis hampered": 5537, "complexity need": 17048, "tools require": 97463, "limited specific": 54468, "gpt4 llama": 39958, "llama offer": 54784, "capabilities software": 12080, "analysis especially": 5505, "code structures": 15517, "analysis specifically": 5683, "employs llms": 28477, "encoded pseudocode": 28683, "verification process": 102751, "process allows": 75269, "mitigate hallucinations": 60264, "enhance accuracy": 29133, "correctly identifies": 19720, "cases additionally": 12507, "accuracy increasing": 2296, "assessment multimodal": 7966, "multimodal chatgpt": 65036, "chatgpt systematic": 14293, "conventional approaches": 19275, "potentially inaccurate": 73344, "intelligence aibased": 46832, "prior ai": 74839, "ai methodologies": 4462, "challenges ability": 12948, "generalize diverse": 37293, "limited accuracy": 54386, "multimodal foundation": 65049, "models gpt4v": 62625, "latest chatgpt": 52659, "potential wide": 73321, "tasks scene": 95081, "scene understanding": 85501, "understanding image": 99765, "research domains": 82565, "capable processing": 12257, "processing various": 75593, "data modalities": 21412, "application multimodal": 6374, "reveal gpt4v": 84151, "detection challenging": 24273, "accuracy 875": 2190, "finetuning adaptation": 35006, "guiding model": 40785, "model specific": 61443, "recognizing common": 80635, "surrounding objects": 93015, "items enhancing": 48038, "accuracy translating": 2379, "open multilingual": 68088, "llm release": 55233, "develop models": 24463, "tools models": 97447, "yield meaningful": 104642, "sota opensource": 89320, "models llama2": 62946, "leading performance": 52875, "performance major": 71386, "benchmarks leaderboards": 10368, "publicly releasing": 77997, "releasing models": 81423, "approach additional": 6720, "way making": 103386, "models healthrelated": 62654, "integrate large": 46662, "information robust": 45613, "evaluate factual": 30183, "posed questions": 72760, "queries responses": 78509, "accuracy inability": 2290, "false assumptions": 33806, "work calls": 104009, "assessment current": 7944, "highstakes scenarios": 41821, "specific situations": 89753, "personal values": 71888, "values social": 102224, "societal values": 88936, "model accurately": 60481, "subsequently trained": 92033, "based embeddings": 9510, "embeddings pretrained": 28093, "reached high": 79473, "detection f1": 24302, "step study": 90660, "generation current": 38104, "effective generating": 27304, "models hallucinate": 62641, "overcome problems": 69363, "problems provide": 75191, "accurate responses": 2425, "retrieved information": 84085, "model propose": 61293, "approach dynamic": 6820, "retrieved entities": 84081, "model proposed": 61294, "proposed pipeline": 77245, "model collect": 60671, "collect publish": 15869, "projectlevel code": 76065, "dataset use": 22114, "length limitations": 53599, "limitations context": 54310, "alleviating problem": 5145, "entity names": 29568, "interpretable attention": 47285, "behavior approach": 9962, "field aims": 34344, "aims explain": 4803, "terms existing": 95815, "frontier models": 36397, "operations large": 68462, "llms implement": 56159, "different architectures": 25000, "12 billion": 219, "parameters gpt2": 70223, "study behavior": 91508, "data identifying": 21300, "identifying interpretable": 42924, "gpt4 surpassing": 40115, "integrated everyday": 46682, "comprehend interpret": 17132, "based responses": 9701, "findings revealed": 34743, "scores models": 85775, "models exhibited": 62390, "exhibited significant": 31588, "place gpt3": 72215, "best human": 10599, "gpt4 achieving": 39751, "progress development": 75977, "studies consider": 91370, "cognitive aspects": 15738, "research study": 82793, "capabilities openais": 12030, "model tool": 61513, "efficacy diverse": 27632, "context analysis": 18729, "critical data": 20319, "study methods": 91745, "empower educators": 28490, "teaching methodologies": 95372, "pinpoint potential": 72121, "educational outcomes": 27210, "opens avenues": 68293, "ais potential": 4851, "shaping future": 87178, "ultimately fostering": 99343, "binary code": 11053, "models binary": 61937, "code semantics": 15500, "challenging laborintensive": 13183, "nature study": 65815, "llms binary": 55536, "binary functions": 11056, "surpasses traditional": 92948, "evaluation prominent": 30728, "code llama": 15388, "pivotal insights": 72202, "nvidia a100": 67451, "a100 gpu": 1475, "gpu hours": 40259, "field challenges": 34355, "rising popularity": 84487, "chatgpt aipowered": 13512, "led increasing": 53525, "studies highlighting": 91397, "biases studies": 10954, "focus models": 35541, "approach study": 7040, "political biases": 72564, "models posed": 63832, "bilingual models": 11011, "knowledge content": 48483, "problems english": 75134, "gpt significantly": 39241, "critical issues": 20337, "models potentially": 63845, "associated sentiment": 8101, "based training": 9739, "takes time": 93826, "time requires": 97012, "published studies": 78010, "generation work": 38508, "use techniques": 100704, "context includes": 18785, "uses context": 101216, "context search": 18845, "qualitative evaluations": 78196, "represent stateoftheart": 82042, "linguistic models": 54589, "designed equip": 23905, "comprehend natural": 17134, "exceptional capacity": 31371, "capture complex": 12346, "complex contextual": 16920, "contextual relationships": 18951, "model meta": 61127, "advancement field": 3776, "foundational models": 35982, "improve natural": 43740, "models obtain": 63692, "chatgpt advantage": 13504, "code research": 15485, "research commercial": 82515, "possibility language": 72879, "explicitly focusing": 32544, "language coverage": 49175, "approach explore": 6850, "ensure highquality": 29452, "original models": 68792, "datasets aim": 22140, "strong linguistic": 91045, "linguistic properties": 54594, "generalpurpose llms": 37358, "adaptation strategies": 3097, "language introducing": 49297, "introducing novel": 47549, "shot learning": 87344, "models aligning": 61822, "aligning large": 5042, "step effectively": 90628, "pretrained capabilities": 74235, "current instruction": 20694, "expanding dataset": 31875, "ensuring data": 29479, "inadvertently introduce": 44201, "degrade model": 22894, "novel efficient": 67151, "act effective": 2934, "shot examples": 87343, "diverse task": 26115, "scoring based": 85789, "candidate examples": 11801, "examples perplexity": 31265, "testing benchmarks": 95997, "examples substantially": 31288, "outperforms conventional": 69033, "conventional methods": 19283, "dataset findings": 21944, "documentation essential": 26226, "essential software": 29957, "bard llama2": 9364, "parameters like": 70243, "completeness relevance": 16888, "relevance understandability": 81440, "taken different": 93804, "documentation evaluation": 26227, "evaluation employs": 30584, "outperform original": 68958, "file level": 34458, "parameters time": 70293, "evaluating ai": 30396, "testing using": 96029, "survey study": 93052, "focuses assessing": 35599, "importance practical": 43469, "models performances": 63800, "performances benchmark": 71733, "match surpass": 58501, "tasks indicating": 94746, "models scored": 64146, "roles including": 84818, "progress indicates": 75986, "addressing current": 3534, "ai collaboration": 4337, "study identifies": 91667, "key themes": 48351, "evolving nature": 31055, "nature human": 65802, "tasks challenges": 94424, "domain findings": 26387, "chatgpt improves": 13946, "improves efficiency": 44020, "efficiency code": 27671, "generation optimization": 38310, "optimization human": 68594, "remains crucial": 81654, "crucial especially": 20489, "requiring complex": 82428, "security considerations": 86006, "considerations research": 18190, "engineering provides": 29010, "insights effectively": 46082, "need clear": 65919, "human collaboration": 42132, "extraction scientific": 33330, "automatic extraction": 8785, "example facilitate": 31158, "graph construction": 40364, "important type": 43544, "type information": 99210, "covered existing": 20067, "falcon vicuna": 33771, "achieves improvement": 2752, "approach leveraging": 6934, "output structured": 69195, "recognition using": 80620, "performing model": 71782, "model extract": 60854, "various diseases": 102404, "key step": 48341, "various reasons": 102553, "reasons including": 80098, "potential effects": 73079, "task build": 93961, "multilabel classifier": 64929, "media post": 58846, "macrof1 score": 57794, "google gemini": 39139, "research landscape": 82648, "transformative impacts": 98471, "experts moe": 32416, "multimodal learning": 65078, "analysis generative": 5528, "realworld implications": 79674, "like healthcare": 54167, "finance education": 34584, "examining impact": 31143, "peerreview process": 70699, "scholarly communication": 85537, "study highlighted": 91655, "outlined strategy": 68871, "ai navigating": 4485, "enhanced user": 29254, "introduces innovative": 47521, "automate tasks": 8668, "tasks interacting": 94763, "humanlike problemsolving": 42535, "problemsolving approach": 75227, "approach approach": 6743, "approach initially": 6902, "ui screenshots": 99328, "ui elements": 99327, "llm approach": 54966, "surpass existing": 92908, "delivers superior": 22944, "datasets exhibits": 22245, "exhibits remarkable": 31626, "remarkable efficiency": 81769, "process evaluating": 75306, "evaluating enhancing": 30416, "conversational reasoning": 19394, "reasoning knowledge": 79914, "graphs development": 40434, "advancements pretraining": 3854, "techniques models": 95562, "demonstrated robust": 23335, "prompts work": 76850, "llms constrained": 55673, "effective optimization": 27341, "grounded kg": 40573, "reasoning agent": 79778, "textual environment": 96672, "information reasoning": 45585, "gradient reinforcement": 40299, "algorithm model": 4924, "learn rich": 52963, "dataset experimental": 21932, "performance rate": 71516, "indepth look": 44961, "language abilities": 49123, "models comprehensively": 62071, "openai gpt": 68154, "paper indepth": 69755, "indepth exploration": 44956, "reproducible code": 82201, "closer look": 15043, "10 datasets": 103, "datasets testing": 22438, "reasoning answering": 79782, "answering knowledgebased": 6115, "translating languages": 98673, "languages generating": 51284, "code acting": 15118, "pro achieves": 74936, "accuracy close": 2218, "tasks benchmarked": 94401, "content filtering": 18624, "longer complex": 57360, "complex table": 17013, "gpt35 exhibiting": 39597, "exhibiting remarkable": 31595, "qa research": 78151, "general qa": 37185, "based gpt": 9552, "gpt35 address": 39577, "prompt designs": 76279, "enhancing prompt": 29365, "task effectively": 94032, "tables extensive": 93695, "results complex": 83513, "aviation domain": 9195, "datasets leading": 22321, "study presents": 91783, "presents pioneering": 74157, "experiments large": 32236, "delve deeper": 22951, "subsequently engaged": 92025, "engaged chatgpt": 28914, "attributes emotions": 8451, "providing preliminary": 77789, "experiment various": 31983, "various countries": 102393, "conversational generative": 19370, "pitfalls technology": 72192, "study did": 91580, "significantly increased": 87964, "levels study": 53704, "study revealed": 91816, "revealed distinct": 84187, "negative consequences": 66055, "models exploring": 62417, "log probability": 57238, "increase compute": 44757, "inner products": 45838, "layers base": 52742, "base methods": 9415, "attention layers": 8332, "llama7b llama13b": 54894, "overall provide": 69311, "understanding mechanism": 99811, "problemsolving large": 75233, "models integration": 62797, "geotechnical engineering": 38801, "high potential": 41438, "decisionmaking paper": 22599, "diverse group": 26029, "participants including": 70369, "investigate practical": 47690, "uses llms": 101242, "addressing specific": 3555, "llms transform": 56961, "engineering practices": 29005, "highlighting proficiency": 41639, "handling range": 40953, "complex multimodal": 16958, "addresses challenges": 3511, "implementing llms": 43355, "particularly achieving": 70430, "accuracy specialized": 2364, "llms effectiveness": 55831, "study showcases": 91838, "showcases potential": 87369, "engineering domain": 28961, "broader application": 11510, "instructions significant": 46563, "focused developing": 35577, "developing evaluating": 24579, "synthesis tasks": 93218, "tasks include": 94720, "code synthesizing": 15531, "code contrast": 15172, "block code": 11196, "introduce carefully": 47405, "editing tasks": 27109, "tasks use": 95229, "cutting edge": 20866, "edge llms": 27081, "llms evaluation": 55885, "evaluation exposes": 30596, "closed models": 14987, "models example": 62368, "best open": 10617, "open model": 68086, "tasks coupled": 94498, "dataset finetune": 21945, "open code": 68057, "improve code": 43677, "editing capabilities": 27096, "generation leveraging": 38239, "leveraging vast": 53908, "updated knowledge": 100354, "knowledge internet": 48637, "considered important": 18197, "task proposed": 94208, "previous efforts": 74673, "efforts devoted": 27904, "learning studies": 53429, "challenges data": 12985, "scarcity domain": 85376, "related topic": 81222, "provide rich": 77564, "effective training": 27381, "strategy select": 90915, "queries used": 78516, "used construct": 100765, "reinforce algorithm": 81137, "rewards finegrained": 84385, "effectiveness framework": 27520, "lowresource scenarios": 57637, "recently code": 80464, "attention performance": 8360, "performance generally": 71253, "higher risk": 41522, "negatively affecting": 66073, "aim use": 4744, "tools software": 97468, "developers evaluate": 24553, "tool based": 97270, "generation cases": 38066, "chatgpt best": 13568, "tasks chinese": 94434, "crucial large": 20499, "knowledge manually": 48670, "capabilities chinese": 11854, "form commonsense": 35768, "opendomain dialogues": 68236, "dialogues domain": 24929, "diverse commonsense": 25996, "curated dataset": 20630, "domain identification": 26398, "variety existing": 102298, "opensource chinese": 68313, "tasks dataset": 94510, "identification tasks": 42817, "reasoning evaluation": 79876, "study llms": 91736, "advancement natural": 3788, "significantly boosted": 87894, "development transformerbased": 24724, "revolutionized nlp": 84355, "tasks particularly": 94935, "enhanced efficiency": 29232, "advancements challenges": 3805, "challenges balancing": 12971, "generation effective": 38130, "generation execution": 38150, "novel solution": 67252, "multiagent framework": 64864, "framework specialized": 36278, "designer agent": 23964, "focus code": 35508, "generate test": 37619, "cases write": 12565, "robust code": 84645, "techniques various": 95611, "sota baselines": 89305, "trust chatbots": 98928, "information article": 45407, "article presents": 7550, "analysis ability": 5418, "microsoft copilot": 59999, "topics covid19": 97527, "perform high": 70877, "according political": 2152, "conspiracy theory": 18356, "theory using": 96774, "prompts systematically": 76832, "test evaluations": 95888, "political social": 72570, "results high": 83635, "veracity evaluation": 102720, "cases evaluated": 12526, "evaluated correctly": 30331, "languages pretraining": 51342, "67 percent": 1182, "percent accuracy": 70771, "concepts chatgpt": 17619, "chatgpt providing": 14132, "performance chatbots": 71042, "false information": 33809, "online environments": 67985, "pipeline generation": 72159, "models automating": 61881, "detailed investigation": 24178, "generate evaluate": 37442, "evaluate github": 30192, "methodology involves": 59494, "research scrutinizes": 82769, "proficiency gpt": 75789, "workflows assessing": 104319, "prompt elements": 76282, "advancements gpt": 3824, "app built": 6300, "empowering users": 28511, "insights evolving": 46087, "opinions chatgpt": 68479, "gpt35 large": 39636, "llms drawn": 55819, "drawn significant": 26825, "attention release": 8371, "research investigate": 82643, "investigate extent": 47646, "extent gpt35": 33161, "human likeness": 42290, "human comments": 42133, "automatic classification": 8758, "classification human": 14753, "analyze human": 5764, "multiple prompting": 65246, "utilize zeroshot": 101959, "context prompts": 18829, "generated personas": 37750, "gpt35 generated": 39605, "model attacks": 60574, "threat models": 96879, "weights blackbox": 103545, "access limited": 2069, "limited text": 54475, "generation api": 38028, "realworld apis": 79635, "generation apis": 38029, "leading new": 52870, "apis finetuning": 6290, "function calling": 36484, "harmful examples": 41033, "range harmful": 79161, "outputs furthermore": 69222, "new vulnerabilities": 66574, "promptbased generation": 76461, "important task": 43540, "based designed": 9499, "enables easy": 28582, "integration auxiliary": 46756, "auxiliary tasks": 8991, "tasks bolster": 94413, "based approach": 9436, "outofdomain evaluation": 68887, "input perform": 45933, "indomain evaluation": 45123, "largest dataset": 52588, "17 improvement": 394, "improvement additional": 43877, "additional experiments": 3239, "experiments dataset": 32148, "local large": 57200, "generative ais": 38586, "advanced significantly": 3751, "explored potential": 32783, "question extent": 78668, "report writing": 81997, "remains unresolved": 81724, "article examines": 7538, "report evaluate": 81968, "evaluate strengths": 30292, "different parts": 25139, "using case": 101327, "assist practitioners": 8019, "software documentation": 88996, "european unions": 30117, "public authorities": 77910, "partly lack": 70517, "information software": 45629, "platforms provide": 72318, "tackles issue": 93744, "issue ways": 47963, "platforms amazon": 72312, "retrieval technology": 84032, "technology tools": 95661, "help enhance": 41243, "united nations": 100102, "sustainable development": 93080, "method systematically": 59439, "systematically evaluating": 93368, "evaluating correctness": 30411, "correctness robustness": 19745, "robustness instructiontuned": 84722, "set natural": 86902, "code solution": 15512, "llm correct": 55026, "ask llm": 7718, "assess correctness": 7839, "gaps llms": 36994, "correctly solves": 19725, "present experiments": 73981, "openai cohere": 68150, "able reveal": 1882, "highlighting llms": 41632, "systematically identifying": 93372, "data examples": 21201, "incorrect code": 44728, "code results": 15486, "achieved humanlevel": 2634, "potential path": 73216, "english scenarios": 29101, "30 billion": 743, "feedback extensive": 34079, "sized opensource": 88541, "managing health": 58199, "systems emergence": 93434, "llms rich": 56737, "rich knowledge": 84420, "applications end": 6465, "end study": 28840, "real cases": 79538, "accurate relevant": 2421, "provide insightful": 77504, "insightful information": 46050, "llms industrial": 56218, "efficiency quality": 27712, "quality challenges": 78233, "usage models": 100448, "methods chatgpt": 59562, "study students": 91852, "access internet": 2065, "interaction strategies": 47037, "copy paste": 19524, "assessing impact": 7914, "capabilities study": 12092, "efficacy prompting": 27649, "methods enhancing": 59620, "enhancing mathematical": 29349, "llms investigation": 56251, "methods simple": 59802, "problem sets": 75076, "encompassing broad": 28763, "analysis power": 5610, "investigated methods": 47722, "methods consistently": 59574, "causing significant": 12702, "suggest prompting": 92388, "enhance mathematical": 29181, "mathematical performance": 58578, "online communities": 67977, "right answer": 84433, "garnered attention": 37007, "various approaches": 102353, "proposed detect": 77192, "detect duplicate": 24215, "automatically existing": 8862, "semantics posts": 86394, "lack supervision": 49058, "supervision improve": 92756, "hindered dependence": 41831, "based gpt3": 9556, "embeddings obtain": 28088, "latent embedding": 52633, "accurately captures": 2443, "confirms effectiveness": 18049, "methods applied": 59530, "dataset constructed": 21878, "respectively manual": 83080, "approachs potential": 7233, "preliminary empirical": 73858, "extraction aims": 33277, "aims build": 4787, "training humanannotated": 98130, "data challenging": 21043, "limited human": 54430, "challenging worthwhile": 13259, "worthwhile zeroshot": 104451, "reduces time": 80848, "effort data": 27868, "labeling takes": 48926, "takes recent": 93823, "settings inspiring": 87062, "inspiring explore": 46194, "explore promptbased": 32734, "methods paper": 59744, "paper ask": 69615, "ask strong": 7725, "models constructed": 62103, "constructed directly": 18446, "chatgpt experimental": 13788, "existing documentation": 31703, "examples demonstrating": 31201, "usage api": 100425, "demonstrates 70": 23362, "realistic diverse": 79564, "llmpowered programming": 55383, "programming assistants": 75882, "code program": 15444, "setting enhancing": 86988, "code intelligence": 15364, "intelligence tasks": 46894, "chatgpt pretrained": 14103, "various code": 102382, "quality pretraining": 78335, "human reference": 42350, "language natural": 50940, "language significant": 51100, "code software": 15511, "lead suboptimal": 52824, "suboptimal training": 91994, "quality issue": 78302, "raise question": 79057, "existing referencebased": 31807, "introduce auxiliary": 47400, "inconsistency detection": 44546, "detection code": 24276, "code compared": 15159, "human references": 42351, "used dataset": 100772, "experiments involve": 32228, "tasks understanding": 95219, "data outperforms": 21459, "outperforms counterpart": 69034, "evaluators automatic": 30899, "research traditional": 82810, "nlg metrics": 66687, "consequently recent": 18127, "studies suggested": 91452, "suggested various": 92403, "neural metrics": 66242, "notably large": 67036, "particularly instructiontuned": 70473, "evaluation limited": 30652, "metaevaluation datasets": 59149, "effective llms": 27322, "llms end": 55859, "end conduct": 28817, "study application": 91493, "evaluation specifically": 30788, "specifically analyze": 89778, "30 recently": 749, "llms turn": 56973, "using comprehensive": 101371, "additionally probe": 3335, "literature mining": 54651, "era marked": 29743, "keeping pace": 48256, "advances present": 3894, "llm literature": 55161, "model topic": 61514, "similarity evaluation": 88133, "generation translation": 38484, "lexical semantic": 53925, "similarity generated": 88135, "reduce ratio": 80802, "datasets specialized": 22420, "adaptation results": 3094, "better incontext": 10732, "incontext learners": 44572, "challenge improving": 12886, "underexplored previous": 99450, "focused enhancing": 35581, "instructions quality": 46554, "work explored": 104084, "use taskspecific": 100702, "learning inference": 53217, "inference stage": 45298, "establishment simple": 30004, "effective framework": 27302, "enhances reliability": 29297, "reliability llms": 81502, "llms benefit": 55529, "hallucinations generative": 40866, "method enhanced": 59285, "enhanced versions": 29256, "versions llama": 102827, "llama chatgpt": 54732, "regarding generalizability": 81056, "suite resources": 92480, "curated datasets": 20631, "prompts model": 76781, "tasks empirical": 94579, "llms highlights": 56136, "methodology fostering": 59490, "reliable llms": 81523, "evolution large": 31025, "benchmarks evaluating": 10336, "role knowledge": 84784, "essential establishing": 29945, "establishing connections": 30000, "bilingual benchmark": 11005, "fictional characters": 34335, "drawn variety": 26827, "movies tv": 64808, "knowledge multihop": 48678, "maintain high": 57874, "quality check": 78235, "various opensource": 102515, "settings reveal": 87094, "insightful findings": 46049, "knowledge distribution": 48522, "cultural settings": 20601, "systems models": 93513, "models include": 62718, "safe operation": 84985, "processes like": 75440, "skills experts": 88595, "quality safety": 78353, "models efficiency": 62280, "development projects": 24702, "industry academia": 45163, "special focus": 89604, "solid foundation": 89065, "techniques described": 95498, "pro model": 74939, "proposed national": 77241, "bard performed": 9369, "information overall": 45563, "evaluation work": 30830, "paradigm large": 70038, "approach addresses": 6723, "addresses critical": 3512, "shortcomings existing": 87322, "existing math": 31753, "math problemsolving": 58552, "evaluate cognitive": 30157, "capabilities agents": 11827, "shifts focus": 87264, "benchmark gpt4": 10183, "demonstrates performance": 23389, "potential cognitive": 73056, "benchmarks gsm8k": 10347, "lack effective": 49004, "math models": 58550, "opensource closedsource": 68315, "evaluation approaches": 30512, "paper advocates": 69589, "model assistant": 60572, "future dialogue": 36711, "dialogue generating": 24866, "new user": 66569, "input model": 45924, "quality response": 78346, "memory propose": 59059, "mechanism called": 58793, "methods investigate": 59695, "usage memory": 100447, "gpt4 backbone": 39780, "datasets focusing": 22273, "different abilities": 24990, "abilities required": 1564, "models involve": 62816, "massive computational": 58447, "strong model": 91049, "based theoretical": 9737, "models usually": 64481, "usually studied": 101877, "activation function": 2977, "function introduced": 36486, "significantly effective": 87912, "new efficient": 66385, "efficient model": 27802, "efficiency addition": 27661, "developing llm": 24589, "facilitating autonomous": 33529, "extension large": 32981, "proficiency natural": 75796, "efficacy addressing": 27627, "addressing complex": 3531, "remains limited": 81675, "limited growing": 54428, "growing area": 40642, "agents equipped": 4186, "tools capable": 97371, "existing llmbased": 31746, "agents support": 4239, "set tools": 86944, "cover diverse": 20048, "range user": 79223, "queries especially": 78485, "especially involving": 29888, "expertise domains": 32386, "various user": 102623, "tools promising": 97458, "agents autonomously": 4167, "repositories github": 82022, "tool set": 97317, "capable achieving": 12219, "evaluation involving": 30643, "effectiveness achieving": 27487, "average evaluation": 9151, "models annotation": 61834, "open generative": 68067, "reproducibility privacy": 82197, "strategies models": 90836, "need careful": 65917, "privacy reproducibility": 74909, "networks large": 66195, "llms gaining": 56025, "gaining increasing": 36851, "cases language": 12534, "development important": 24655, "llms embedding": 55836, "layers word": 52765, "continuous vector": 19037, "llms words": 57051, "words tokens": 103963, "tokens input": 97207, "text transformed": 96468, "embedding algorithms": 28050, "using medical": 101611, "addition model": 3197, "epoch training": 29677, "associated large": 8088, "significant concern": 87720, "overall research": 69314, "compared accuracy": 16504, "accuracy different": 2240, "different leading": 25094, "support wide": 92845, "chat conversations": 13365, "document reading": 26216, "major llm": 57934, "fairness results": 33741, "accelerators paper": 2032, "fairness based": 33731, "cost function": 19848, "achieve fairness": 2521, "novel scheduling": 67245, "scheduling algorithm": 85510, "contrast baseline": 19066, "methods exhibit": 59629, "exhibit shortcomings": 31550, "models burgeoning": 61953, "intelligence models": 46877, "substantial challenges": 92065, "consumption computational": 18506, "resources especially": 83009, "limited resource": 54459, "survey aims": 93020, "techniques designed": 95500, "resource efficiency": 82961, "focus computational": 35510, "applicability various": 6327, "lifecycle including": 53985, "additionally survey": 3348, "techniques specific": 95594, "metrics datasets": 59902, "fair comparisons": 33727, "comparisons different": 16737, "models techniques": 64343, "offering comprehensive": 67783, "serves foundational": 86795, "efficient llms": 27794, "llms rapidly": 56631, "models arent": 61851, "describes architecture": 23670, "architecture systems": 7374, "conditional random": 17793, "random fields": 79103, "fields model": 34434, "compare approaches": 16448, "approaches novel": 7179, "include task": 44236, "explore variety": 32760, "final layer": 34485, "hyperparameter settings": 42722, "bring large": 11462, "large improvement": 51448, "fast slow": 33899, "remains relatively": 81693, "present unified": 74077, "unified architecture": 100008, "provides realtime": 77697, "data structure": 21654, "lower latency": 57563, "character level": 13319, "combination language": 15953, "studies justify": 91408, "complex search": 17001, "speed accuracy": 89978, "vastly outperforms": 102695, "aspects results": 7788, "results context": 83522, "search novel": 85883, "framework assessing": 36042, "prompt injection": 76343, "injection attacks": 45822, "attacks large": 8216, "attacks exploit": 8210, "exploit vulnerabilities": 32572, "vulnerabilities large": 103258, "generate malicious": 37525, "llm integrated": 55134, "applications gain": 6487, "wider adoption": 103765, "attacks study": 8239, "incorporates innovative": 44680, "innovative techniques": 45868, "process employed": 75300, "carefully chosen": 12407, "llmbased evaluation": 55350, "evaluation produces": 30726, "enhancing interpretability": 29334, "greater impact": 40510, "impact providing": 43252, "providing robust": 77795, "robust measurement": 84670, "applied llms": 6621, "exhibited higher": 31576, "framework aligning": 36031, "possess greater": 72854, "greater resilience": 40515, "requiring minimal": 82438, "emerging attack": 28217, "practical solution": 73534, "overall framework": 69294, "applications potential": 6543, "potential threats": 73287, "chinese benchmark": 14536, "agent evaluation": 4129, "recently advent": 80450, "field bridge": 34353, "benchmark comprehensive": 10097, "dataset comprises": 21869, "carefully constructed": 12408, "evaluation approach": 30511, "metrics dimensions": 59906, "exhibit promising": 31541, "weak language": 103430, "models harnessing": 62649, "pivotal advancing": 72199, "advancing large": 3909, "data propose": 21518, "new finetuning": 66405, "supervised finetuned": 92704, "specifically llm": 89849, "responses obtained": 83267, "data sft": 21619, "theoretically prove": 96752, "function method": 36487, "method achieved": 59185, "llm policy": 55201, "target data": 93858, "method benchmark": 59218, "trained direct": 97814, "gpt4 preference": 40024, "use artificial": 100475, "learning particularly": 53323, "particularly llms": 70483, "open new": 68089, "detailed exploration": 24169, "exploration llms": 32596, "discusses impact": 25707, "cognitive behavioral": 15739, "cultural psychology": 20599, "behavior paper": 9986, "delves capabilities": 22955, "offering innovative": 67792, "llms essential": 55875, "advancing research": 3918, "psychology paper": 77890, "challenges issues": 13051, "like data": 54114, "research need": 82679, "need deeper": 65928, "psychological studies": 77882, "potential consequences": 73060, "sensitive areas": 86454, "overall article": 69277, "article provides": 7554, "state llms": 90276, "llms advantages": 55454, "effectiveness limited": 27548, "specialized areas": 89619, "lack specific": 49051, "fields paper": 34440, "comprising 15": 17397, "development significantly": 24711, "extensive knowledge": 33110, "datasets related": 22388, "improves understanding": 44089, "verifying accuracy": 102778, "effective reliable": 27360, "community resources": 16335, "available download": 9029, "alignment algorithms": 5053, "used tune": 100926, "users preferences": 101160, "underlying mechanisms": 99513, "mechanisms models": 58815, "like jailbreaks": 54176, "jailbreaks work": 48107, "dataset reduce": 22052, "insight demonstrate": 46042, "increase utilization": 44784, "lowcost training": 57542, "inference deployment": 45236, "emerging trend": 28238, "training includes": 98136, "preprocessing training": 73906, "architecture pretraining": 7366, "pretraining tasks": 74609, "tasks parallel": 94932, "training relevant": 98262, "parallel computation": 70073, "explores llms": 32812, "llms utilization": 57012, "various queries": 102545, "ability perceive": 1737, "launch gpt4": 52694, "generated significant": 37781, "research communities": 82516, "focal point": 35499, "point new": 72482, "new artificial": 66333, "intelligence generation": 46856, "generation significant": 38419, "domainspecific analysis": 26613, "attention study": 8378, "comprehensive case": 17217, "study utilizing": 91892, "utilizing gpt4v": 102021, "gpt4v assessing": 40187, "performance gpt4v": 71279, "research setting": 82771, "new standard": 66532, "results gpt4v": 83633, "far away": 33865, "domainspecific requirements": 26647, "effects generative": 27609, "ai computing": 4346, "quality latency": 78306, "tools available": 97364, "interviews n8": 47351, "finally observed": 34547, "better able": 10674, "implications integrating": 43388, "opensource small": 68406, "despite relatively": 24112, "performance series": 71558, "checkpoints code": 14493, "humans generally": 42599, "holds large": 41903, "llms expansion": 55920, "transformer blocks": 98496, "effectively improving": 27444, "knowledge catastrophic": 48463, "corpus code": 19602, "model initialized": 61009, "tasks programming": 94972, "programming mathematics": 75919, "achieve advanced": 2477, "advanced performance": 3731, "benchmarks demonstrating": 10330, "demonstrating superiority": 23454, "reasoning addressing": 79777, "addressing diverse": 3535, "integrating natural": 46739, "laying solid": 52771, "foundation developing": 35912, "effectively various": 27483, "various environments": 102420, "environments training": 29658, "serving foundation": 86821, "demonstrated extraordinary": 23259, "performance key": 71327, "key technological": 48349, "areas natural": 7447, "processing visual": 75594, "major technology": 57943, "human financial": 42234, "serving models": 86825, "posed significant": 72761, "substantial computing": 92072, "computing power": 17572, "employing efficient": 28444, "particularly crucial": 70445, "actively explored": 3000, "developers researchers": 24560, "researchers paper": 82876, "provides detailed": 77656, "additionally paper": 3329, "paper summarizes": 69967, "summarizes challenges": 92587, "systems comprehensive": 93414, "comprehensive discussion": 17229, "hopes provide": 41978, "development foundation": 24646, "systems llm": 93508, "architecture enhancing": 7345, "mirroring human": 60154, "context continuity": 18745, "phase approach": 72011, "enhance agent": 29135, "preliminary evaluations": 73864, "evaluations real": 30880, "applications work": 6597, "robust framework": 84657, "framework developing": 36097, "versatile conversational": 102787, "trained multilingual": 97881, "multilingual datasets": 64955, "llama 2based": 54710, "learning compare": 53078, "compare llms": 16469, "portuguese language": 72728, "llm scaling": 55250, "llms truly": 56972, "previous literature": 74683, "facilitate scaling": 33508, "used opensource": 100864, "advancing opensource": 3915, "dataset currently": 21893, "continuously expanding": 19043, "conduct supervised": 17919, "sft direct": 87149, "llm base": 54979, "models resulting": 64091, "resulting creation": 83426, "surpasses llama2": 92937, "particularly domains": 70451, "code mathematics": 15399, "reasoning furthermore": 79892, "chat exhibits": 13368, "compared gpt35": 16557, "education rapid": 27177, "evolution artificial": 31016, "especially domain": 29872, "domain large": 26411, "avenues application": 9111, "education remains": 27180, "performance seven": 71562, "turbo gpt4": 99116, "gpt4 turbo": 40136, "palm gemini": 69547, "gemini 10": 37057, "models claude": 62004, "shows llms": 87594, "models surpassing": 64308, "surpassing average": 92951, "gpt4 turbos": 40139, "ability explain": 1641, "explain answers": 32429, "answers evaluate": 6179, "responses identify": 83239, "generate alternative": 37375, "latest llm": 52676, "improvements reasoning": 43993, "promise education": 76116, "llms academic": 55408, "technology advances": 95641, "accuracy aigenerated": 2201, "worldwide access": 104433, "access diverse": 2058, "diverse learners": 26043, "educational environment": 27201, "environment ai": 29612, "expertise research": 32395, "enrich educational": 29405, "educational experiences": 27203, "larger number": 52463, "exemplified models": 31480, "performance relative": 71530, "approach termed": 7057, "integrating multiple": 46737, "potentially outperform": 73347, "capabilities larger": 11966, "larger counterparts": 52434, "models moderate": 63637, "substantially larger": 92131, "tested using": 95986, "large user": 52364, "user base": 100969, "causal relationship": 12673, "cause effect": 12687, "increase decrease": 44758, "works ignore": 104360, "reasoning fail": 79883, "existing causal": 31681, "spanning domains": 89500, "pairs accompanied": 69481, "fail reflect": 33688, "embedding association": 28052, "causal relationships": 12674, "improvement existing": 43907, "existing metrics": 31770, "demonstrate large": 23110, "strategic approach": 90780, "addressing math": 3549, "students identify": 91308, "correct mistakes": 19672, "arduous timeconsuming": 7414, "timeconsuming large": 97048, "providing realtime": 77790, "known regarding": 48853, "regarding accuracy": 81044, "investigate capacity": 47625, "reallife tutoring": 79598, "demonstrate proficiency": 23158, "errors models": 29827, "exhibit limitations": 31530, "inferring potential": 45335, "potential errors": 73087, "evaluators did": 30900, "larger dataset": 52435, "dataset dialogues": 21911, "models enhancing": 62334, "resolution task": 82935, "role various": 84809, "ecommerce healthcare": 27050, "healthcare law": 41189, "introduced new": 47506, "task leveraging": 94128, "llms entity": 55870, "computational complexities": 17442, "associated largescale": 8092, "efficient utilization": 27836, "selection optimal": 86168, "receiving responses": 80162, "llms goal": 56069, "demonstrate efficiency": 23071, "methods offering": 59740, "offering promising": 67802, "promising prospects": 76192, "evaluating instruction": 30438, "following ability": 35667, "new metric": 66455, "metric evaluating": 59863, "addressing gap": 3537, "gap current": 36924, "current methodologies": 20728, "comprising 500": 17398, "questions multiple": 78898, "scoring methods": 85794, "methods explore": 59634, "higher reliability": 41521, "evaluation advanced": 30504, "framework reveals": 36261, "reveals strengths": 84226, "improvement particularly": 43930, "contributes novel": 19146, "evaluation evaluating": 30587, "experienced rapid": 31945, "rise ai": 84468, "ai changing": 4325, "applications advanced": 6402, "increasingly integral": 44887, "understanding identifying": 99764, "specific subnetworks": 89754, "crucial aspect": 20473, "approach automated": 6748, "enhance interpretability": 29168, "interpretability neural": 47280, "quality automated": 78227, "time sparsity": 97027, "computational analysis": 17432, "requirements inference": 82344, "transparent ai": 98778, "systems addition": 93385, "development deep": 24628, "requirements design": 82337, "technical debt": 95402, "approaches tools": 7213, "usually depend": 101868, "various sources": 102577, "sources code": 89405, "manually identifying": 58310, "time resources": 97015, "overcome issues": 69353, "seven traditional": 87126, "machine classification": 57685, "best f1score": 10596, "achieved chatgpt": 2617, "model recommend": 61320, "provides researchers": 77700, "classification evaluation": 14743, "detectors identifying": 24388, "identifying aigenerated": 42912, "aigenerated code": 4664, "implications education": 43377, "increasingly concerned": 44871, "aigc detectors": 4656, "detectors academic": 24386, "detection aigc": 24259, "achieved generating": 2626, "response given": 83140, "textual description": 96666, "corresponding humanwritten": 19794, "solution codes": 89083, "code problem": 15441, "detectors perform": 24390, "distinguishing humanwritten": 25906, "humanwritten code": 42665, "models indepth": 62763, "indepth evaluation": 44953, "benchmark artificial": 10076, "attention humanlike": 8319, "humanlike textgeneration": 42543, "textgeneration capabilities": 96522, "despite achievements": 24022, "challenge models": 12907, "reasoning chatgpt": 79825, "unsatisfactory performance": 100256, "leading accurate": 52837, "accurate assessments": 2395, "evaluation analyze": 30510, "benchmark identifying": 10188, "spatial relations": 89576, "reasoning provide": 79994, "benchmark combining": 10094, "qualitative reasoning": 78207, "errors address": 29803, "strategies offering": 90837, "process achieving": 75265, "improvements accuracy": 43957, "contributing advancement": 19157, "experts introduce": 32413, "mixtral 8x7b": 60340, "sparse mixture": 89537, "model mixtral": 61134, "mistral 7b": 60216, "experts token": 32422, "token layer": 97138, "process current": 75288, "experts selected": 32421, "result token": 83413, "trained context": 97807, "32k tokens": 795, "gpt35 evaluated": 39594, "evaluated benchmarks": 30320, "benchmarks particular": 10391, "outperforms llama": 69076, "mathematics code": 58601, "generation multilingual": 38287, "benchmarks provide": 10401, "finetuned follow": 34888, "8x7b instruct": 1398, "instruct surpasses": 46276, "turbo claude21": 99115, "pro llama": 74938, "base instruct": 9402, "instruct models": 46275, "released apache": 81393, "20 license": 492, "knowledge multimodal": 48680, "models mllms": 63626, "mllms shown": 60396, "domainspecific benchmarks": 26615, "benchmarks proposed": 10400, "verify performance": 102773, "performance mllms": 71403, "mllms specific": 60398, "modern society": 64621, "knowledge mllms": 48675, "possess reliably": 72856, "reliably perform": 81539, "tasks address": 94351, "applications realworld": 6554, "understanding applying": 99672, "research accelerating": 82471, "implementation application": 43324, "application mllms": 6373, "previous evaluations": 74675, "evaluations llms": 30864, "significantly limited": 87973, "risk data": 84494, "data leakage": 21374, "scale dataset": 85259, "dataset variety": 22123, "covers major": 20096, "rigorous quality": 84453, "commercial opensource": 16090, "llama fail": 54743, "debugging code": 22544, "models findings": 62472, "adoption deep": 3633, "techniques usually": 95608, "correct predictions": 19678, "predictions generated": 73742, "example knowing": 31163, "able correctly": 1837, "correctly address": 19715, "10 cases": 102, "change required": 13276, "correct wrong": 19690, "wrong predictions": 104533, "importance researching": 43476, "purpose large": 78041, "human reviewer": 42358, "carlo tree": 12432, "provide creative": 77440, "potential create": 73064, "individual preferences": 45093, "finetuned generate": 34894, "fail meet": 33682, "search mcts": 85879, "generation improve": 38202, "generated baseline": 37663, "methods compared": 59569, "model benchmarking": 60601, "enable intelligent": 28551, "support new": 92821, "new operators": 66469, "aims efficiently": 4794, "eliciting perceived": 27996, "preference learning": 73800, "opensourced llms": 68429, "consistently outperformed": 18303, "outperformed counterparts": 68978, "summary work": 92604, "preliminary insights": 73871, "insights design": 46074, "llm tools": 55293, "tools knowledge": 97429, "knowledge management": 48669, "problems complex": 75120, "remains suboptimal": 81702, "guides llms": 40771, "method involves": 59340, "print statements": 74837, "fixing bug": 35367, "making generative": 58100, "intelligence including": 46860, "including chatbots": 44288, "provide stateoftheart": 77574, "impacts generative": 43280, "ai critical": 4357, "existing inequalities": 31724, "directions using": 25478, "pervasive social": 72000, "boost productivity": 11278, "education offers": 27166, "offers personalized": 67853, "access dramatically": 2059, "evaluates existing": 30377, "research identifies": 82625, "critical gaps": 20329, "potential reduce": 73238, "harmful effects": 41032, "effects discuss": 27603, "discuss strengths": 25691, "weaknesses existing": 103457, "policy frameworks": 72535, "union united": 100067, "socioeconomic challenges": 88952, "address complex": 3378, "ai global": 4422, "21st century": 602, "research addresses": 82474, "revolutionised various": 84330, "application capabilities": 6343, "research objective": 82684, "systematically examine": 93369, "framework captures": 36059, "integration generative": 46766, "models verifiable": 64504, "industrial control": 45154, "llms established": 55877, "lack explainability": 49006, "support essential": 92806, "niche programming": 66676, "fail produce": 33685, "valid programs": 102086, "external verification": 33207, "tools including": 97423, "generation enhance": 38138, "generation potential": 38325, "potential llm": 73171, "engineering model": 28995, "correct programs": 19680, "finetuned code": 34875, "code llama34b": 15391, "llama34b model": 54888, "generation success": 38435, "promote open": 76217, "video demonstrations": 102880, "demonstrations different": 23469, "agents data": 4177, "questions derived": 78822, "analysis agents": 5425, "evaluation data": 30563, "hard evaluate": 40978, "automatically evaluated": 8860, "current challenges": 20673, "develop specialized": 24483, "trustworthiness large": 98942, "excellent natural": 31349, "present challenges": 73945, "trustworthiness llms": 98945, "different dimensions": 25048, "established benchmark": 29984, "propose set": 77108, "set principles": 86919, "span different": 89480, "privacy machine": 74904, "machine ethics": 57686, "study evaluating": 91615, "consisting 30": 18317, "llms come": 55644, "note llms": 67050, "benign prompts": 10495, "emphasize importance": 28284, "transparency models": 98772, "analyzing effectiveness": 5808, "increasingly prominent": 44903, "research mainly": 82664, "digital media": 25365, "media realm": 58850, "transfer framework": 98409, "analyzing text": 5823, "text features": 96208, "transfer chinese": 98401, "aiding llms": 4644, "module supports": 64668, "showcasing robust": 87382, "allowing flexible": 5176, "distinct styles": 25877, "paradigm evaluating": 70031, "results affirm": 83460, "research terms": 82802, "transfer accuracy": 98396, "accuracy content": 2232, "types llms": 99249, "risk taxonomy": 84502, "solving diverse": 89224, "tasks safety": 95077, "major obstacle": 57937, "obstacle widespread": 67634, "application studies": 6389, "studies extensively": 91391, "extensively investigated": 33148, "risks llm": 84525, "systems developed": 93428, "meta anthropic": 59136, "llms growing": 56117, "organize existing": 68746, "community paper": 16330, "modules llm": 64676, "llm including": 55121, "prompts language": 76762, "extensive corpora": 33009, "based propose": 9680, "comprehensive taxonomy": 17306, "module llm": 64666, "llm discusses": 55045, "strategies furthermore": 90816, "furthermore review": 36659, "prevalent benchmarks": 74637, "benchmarks aiming": 10309, "aiming facilitate": 4766, "risk assessment": 84490, "hope paper": 41954, "paper help": 69748, "help llm": 41262, "perspective build": 71944, "build responsible": 11609, "qg natural": 78166, "benefits use": 10491, "research assessed": 82497, "applies large": 6648, "generated learning": 37734, "taxonomy automatically": 95315, "use practice": 100653, "metrics indicate": 59935, "promise large": 76124, "demonstrate great": 23096, "llms suffering": 56885, "help llms": 41263, "llms decode": 55720, "theory llm": 96765, "lower probabilities": 57572, "proper nouns": 76889, "original context": 68765, "forcing model": 35728, "tokens generation": 97202, "contrastive decoding": 19098, "requiring additional": 82426, "llms elicit": 55835, "contexts significant": 18924, "llama27b mistral7b": 54868, "webscale corpora": 103509, "diverse downstream": 26014, "tasks increasing": 94744, "increasing concern": 44824, "capabilities arise": 11839, "datasets included": 22298, "phenomenon known": 72026, "lms performance": 57151, "stage pretraining": 90120, "series gpt2": 86737, "evaluation samples": 30764, "prompts asked": 76652, "data investigate": 21345, "insights data": 46071, "effects language": 27613, "capabilities underscore": 12108, "evaluating code": 30405, "projects evaluate": 76068, "evaluate large": 30210, "generation open": 38307, "question benchmarks": 78645, "contexts capabilities": 18894, "unclear paper": 99406, "rigorous pipeline": 84452, "domains compared": 26501, "previous benchmarks": 74665, "abilities code": 1496, "generation instance": 38208, "experiments discuss": 32174, "hope facilitate": 41949, "despite application": 24026, "language promptbased": 51065, "descriptions llms": 23716, "facilitating comprehensive": 33531, "understanding execution": 99731, "tasks limiting": 94832, "gap work": 36986, "potential instruction": 73142, "20 tasks": 498, "data derived": 21148, "analyze effects": 5758, "make dataset": 57987, "chatbots advent": 13429, "domain use": 26468, "acquire ability": 2901, "answer domainspecific": 6000, "domainspecific questions": 26646, "chatbot answers": 13400, "users queries": 101165, "frequently asked": 36381, "asked questions": 7737, "infonce loss": 45375, "model terms": 61502, "terms retrieval": 95838, "retrieval accuracy": 83957, "outofdomain ood": 68889, "detection llm": 24316, "llm optimize": 55179, "tokens using": 97240, "model external": 60853, "policy optimize": 72551, "apibased gpt4": 6286, "using policy": 101679, "multiple training": 65276, "significant cost": 87726, "cost savings": 19881, "improved accuracy": 43830, "approach generic": 6875, "existing rag": 31805, "pipeline chatgpt": 72144, "sign language": 87638, "language experiments": 49208, "directions chatgpt": 25459, "ai existing": 4392, "domains potential": 26570, "retrospective analysis": 84118, "way better": 103344, "accurately translate": 2469, "languages arabic": 51233, "consequently present": 18125, "models health": 62652, "health prediction": 41172, "wearable sensor": 103468, "far perfect": 33875, "health applications": 41156, "data important": 21310, "llms deliver": 55725, "predictions based": 73734, "information user": 45666, "heart rate": 41204, "evaluation stateoftheart": 30790, "diverse prompting": 26072, "health datasets": 41162, "tasks mental": 94859, "exhibits comparable": 31601, "performance 13": 70950, "13 tasks": 263, "studies highlight": 91395, "highlight effectiveness": 41586, "context enhancement": 18759, "enhancement strategies": 29265, "capability finetuned": 12161, "notably observe": 67042, "observe context": 67579, "prompts combining": 76667, "user context": 100974, "enhances overall": 29292, "performance comparing": 71093, "gpt4 opensource": 39993, "misinformation mitigation": 60178, "misinformation detection": 60172, "particular gpt4": 70407, "gpt4 known": 39945, "closed source": 14990, "llms given": 56068, "key limitations": 48319, "limitations commonly": 54308, "approaches like": 7166, "llama2 gpt35": 54834, "shows opensource": 87600, "models gradually": 62627, "gpt35 exhibits": 39598, "performance widely": 71720, "used model": 100853, "misleading results": 60190, "finally validate": 34576, "validate new": 102101, "model commonsense": 60678, "procedural texts": 75247, "reasoning instruction": 79910, "sequential chain": 86703, "series modifications": 86746, "resources model": 83019, "effectively reason": 27465, "understand inputs": 99616, "outputs intermediate": 69230, "aiming address": 4759, "collection process": 15905, "gpt35 work": 39685, "presents challenging": 74117, "generation novel": 38302, "textdavinci003 gpt4": 96519, "approach incorporates": 6899, "traditional singlestage": 97701, "technique enhances": 95448, "contributing improved": 19160, "including english": 44335, "difficulty highlighting": 25326, "highlighting efficacy": 41628, "evidence supporting": 30994, "tasks sequencetosequence": 95096, "sequencetosequence transformer": 86699, "metrics particular": 59953, "crosstask knowledge": 20446, "reusing data": 84130, "way lead": 103382, "optimization strategy": 68619, "yield significant": 104648, "significant general": 87755, "does substantially": 26331, "model synthetic": 61484, "learning capacity": 53057, "capacity bottleneck": 12284, "account model": 2162, "size decreases": 88462, "using larger": 101560, "required fully": 82312, "generating inaccurate": 37929, "inaccurate false": 44188, "prompts induce": 76752, "lms exhibit": 57121, "lms explicitly": 57122, "explicitly prompted": 32553, "models aiming": 61816, "specifically devise": 89809, "model capability": 60630, "finetuning conduct": 35036, "lms parameters": 57149, "reasoning factual": 79882, "demonstrate outputs": 23143, "empowering ability": 28502, "annotation training": 5914, "technique used": 95464, "possible reach": 72913, "samples different": 85109, "incorrectly labeled": 44745, "labeled human": 48911, "strategy test": 90923, "settings using": 87100, "annotations method": 5942, "great potentials": 40484, "llms annotators": 55473, "cost efficiency": 19844, "complete review": 16873, "diagnosis treatment": 24800, "treatment recommendations": 98808, "distribution text": 25951, "expedited progress": 31899, "progress medical": 75994, "human natural": 42305, "expert manual": 32369, "handling largescale": 40949, "largescale diverse": 52511, "analysis scenarios": 5661, "utilizing language": 102027, "models multimodal": 63646, "medical question": 58909, "specific medical": 89724, "answering image": 6109, "crossmodal retrieval": 20436, "advancements medical": 3839, "applications different": 6450, "opportunities future": 68495, "future medical": 36744, "research paving": 82705, "evolving field": 31052, "models parameter": 63767, "peft emerged": 70707, "emerged viable": 28157, "viable solution": 102850, "llms requiring": 56711, "make language": 58004, "models equitable": 62340, "work finetune": 104099, "finetune llama27b": 34833, "tuning datasets": 99025, "determine effect": 24405, "effects downstream": 27605, "ones english": 67927, "finetuning improves": 35090, "performance lowresource": 71382, "degrading performance": 22902, "ensuring correctness": 29478, "aspect software": 7761, "available software": 9088, "process introduce": 75338, "benchmark constructed": 10105, "framework endtoend": 36119, "endtoend evaluation": 28871, "results advanced": 83459, "gpt4 highlight": 39927, "highlight capabilities": 41578, "domain automated": 26356, "proof generation": 76874, "generation additionally": 38013, "additionally proposed": 3338, "research endeavors": 82578, "application llm": 6369, "resume screening": 83931, "encompass range": 28750, "tasks advent": 94359, "llms notably": 56435, "notably enhanced": 67030, "robust generalization": 84658, "agents based": 4168, "practical scenarios": 73529, "novel llmbased": 67202, "llmbased agent": 55331, "efficiency time": 27727, "time management": 96993, "processes framework": 75434, "efficiently summarize": 27862, "agents decisionmaking": 4178, "screening process": 85815, "simulation experiment": 88324, "demonstrate automated": 23029, "llms observed": 56441, "observed significant": 67626, "improvement f1": 43909, "model surpassed": 61477, "model analysis": 60541, "analysis decisionmaking": 5479, "view ai": 102913, "emerged way": 28158, "gap investigating": 36944, "contributes field": 19141, "field hci": 34374, "underlining significance": 99485, "finetuning pipelines": 35185, "llms retrievalaugmented": 56726, "rag augments": 79036, "augments prompt": 8608, "external data": 33179, "additional knowledge": 3245, "pipeline finetuning": 72155, "including llama213b": 44409, "gpt4 pipeline": 40018, "consists multiple": 18340, "multiple stages": 65261, "stages including": 90134, "gpt4 evaluating": 39860, "results propose": 83784, "propose metrics": 77025, "pipeline conduct": 72146, "indepth study": 44963, "study potentially": 91778, "effectiveness dataset": 27508, "finetuning accuracy": 35004, "accuracy increase": 2294, "rag increases": 79041, "increases accuracy": 44803, "demonstrate finetuned": 23082, "model leverages": 61064, "specific questions": 89744, "similarity 47": 88127, "llms adapted": 55440, "abilities powerful": 1552, "powerful data": 73431, "sources domains": 89407, "like hallucinations": 54166, "combining llms": 16017, "experts evaluate": 32407, "safety generated": 85031, "containing 24k": 18531, "producing highly": 75711, "highly fluent": 41698, "fluent humanlike": 35478, "like mental": 54196, "making unsuitable": 58143, "persian english": 71861, "understanding enhance": 99728, "popular prompting": 72676, "methods combination": 59565, "like palm": 54207, "excel processing": 31332, "processing applying": 75457, "choice language": 14585, "furthermore identified": 36626, "identified errors": 42824, "translation tools": 98750, "based various": 9758, "methods designing": 59595, "learning report": 53383, "report aims": 81959, "aims contribute": 4788, "contribute advancement": 19118, "translation llms": 98716, "reliability evaluation": 81495, "despite general": 24052, "consistently benefit": 18285, "better achieve": 10676, "tuning models": 99069, "lms achieve": 57097, "prediction output": 73710, "smaller lm": 88762, "scale pretraining": 85290, "reasoning safety": 80017, "safety benchmarks": 85014, "models actually": 61782, "models possibly": 63842, "models factual": 62440, "demonstrate generality": 23088, "finetuning questionanswering": 35211, "problems work": 75223, "promise using": 76134, "developing critical": 24573, "ai help": 4425, "understanding ai": 99669, "seven questions": 87123, "highlight role": 41612, "scenarios llmbased": 85456, "llm designed": 55036, "designed assist": 23877, "providing insightful": 77763, "opensource algorithm": 68309, "answering users": 6164, "users technical": 101187, "pipeline specifically": 72173, "identifying critical": 42918, "ability incontext": 1681, "potential personalized": 73221, "productivity solutions": 75746, "agents develop": 4182, "develop personalized": 24474, "users needs": 101148, "exploring various": 32877, "survey insights": 93031, "insights developed": 46075, "developed gpt4": 24503, "agent utilizes": 4153, "tailored assistance": 93774, "performance alternative": 70985, "participants findings": 70367, "tools building": 97369, "building insights": 11633, "ultimately leading": 99345, "sheeps clothing": 87239, "november 2023": 67297, "2023 openai": 557, "openai introduced": 68164, "create custom": 20150, "knowledge guide": 48614, "aim raise": 4732, "used maliciously": 100847, "privacy security": 74914, "risks users": 84538, "information era": 45452, "significantly accelerated": 87872, "accelerated advent": 2011, "advent largescale": 3963, "efficient tools": 27827, "summarizing academic": 92589, "employing diverse": 28443, "methodologies address": 59475, "systems paramount": 93527, "models commercial": 62043, "notable challenges": 66996, "texts lack": 96579, "lack diverse": 48998, "diverse user": 26125, "opensource multimodal": 68391, "threestep process": 96898, "incorporating llms": 44711, "alignment module": 5098, "module extract": 64662, "tables figures": 93697, "following introduce": 35680, "introduce hierarchical": 47431, "summarization method": 92545, "method utilizes": 59462, "utilizes extracted": 101982, "text segments": 96408, "designed types": 23961, "multimodal qa": 65098, "scenarios qualitative": 85477, "quantitative evaluations": 78409, "evaluations underscore": 30887, "especially scientific": 29914, "relying solely": 81608, "framework aimed": 36027, "addresses key": 3517, "unique conversational": 100079, "conversational dataset": 19367, "modeling interactions": 61646, "additionally approach": 3275, "character development": 13315, "validated various": 102114, "scenarios framework": 85435, "excels generating": 31359, "dialogues accurately": 24923, "boosting user": 11299, "ai interactions": 4440, "models synthesize": 64317, "300b tokens": 760, "tokens model": 97215, "tokens included": 97206, "domainspecific dataset": 26621, "finetuned highquality": 34903, "reduce number": 80795, "number hallucinations": 67345, "augmentation propose": 8550, "model nonenglish": 61157, "approach perform": 6971, "perform comparably": 70836, "models easier": 62268, "easier scale": 27002, "number languages": 67356, "consider different": 18134, "llms benchmarks": 55527, "results general": 83621, "benchmarks models": 10384, "exploring role": 32866, "final stage": 34499, "likely future": 54253, "semistructured interview": 86420, "current role": 20769, "support individuals": 92812, "address needs": 3460, "needs research": 66042, "needs various": 66044, "communication participants": 16277, "anticipate ai": 6239, "process large": 75344, "extraction empirical": 33295, "use structured": 100695, "structured semantic": 91183, "content representation": 18683, "like wikipedia": 54238, "product descriptions": 75723, "users concise": 101083, "novel automated": 67114, "automated approach": 8671, "produce structured": 75658, "offering practical": 67799, "focus improving": 35524, "intelligence conversational": 46840, "applied effectively": 6607, "like science": 54219, "replaces traditional": 81935, "results finetuned": 83611, "open large": 68078, "coherent relevant": 15784, "text structured": 96438, "data avoid": 21018, "novel structured": 67255, "data records": 21548, "referencefree evaluation": 80951, "mistral zephyr": 60223, "fluent coherent": 35473, "text standard": 96435, "standard data": 90162, "data formats": 21245, "llms contain": 55676, "contain semantic": 18518, "gpt4 level": 39957, "level conversational": 53651, "twostage instruction": 99182, "tuning method": 99066, "llms handle": 56119, "generation conversational": 38100, "rewriting model": 84394, "limitations paper": 54355, "application designing": 6345, "iterations code": 48051, "generation generated": 38176, "number errors": 67337, "code number": 15422, "number trials": 67395, "required achieve": 82304, "failure generate": 33711, "llm programming": 55214, "code significant": 15503, "fix bugs": 35348, "code design": 15225, "design knowledge": 23798, "significant costs": 87727, "merge existing": 59109, "existing pretrained": 31792, "varying architectures": 102642, "introduce notion": 47464, "combining capabilities": 16005, "capabilities existing": 11893, "llm leveraging": 55153, "findings confirm": 34647, "capabilities reasoning": 12064, "enables efficient": 28584, "mobile devices": 60420, "incoherent text": 44532, "text requires": 96396, "requires heavy": 82383, "spoken text": 90021, "way interactive": 103376, "study 12": 91467, "12 participants": 226, "outperformed baseline": 68975, "control content": 19197, "content supporting": 18696, "user strategies": 101045, "performance enhanced": 71178, "mathematical calculation": 58570, "lower level": 57565, "work human": 104122, "serves role": 86800, "role expert": 84773, "deep machine": 22786, "tools human": 97419, "ability human": 1677, "experts achieve": 32403, "achieve exceed": 2516, "particular domain": 70401, "burst scene": 11698, "augmentation using": 8557, "chatgpt presenting": 14100, "augmentation does": 8531, "human judgement": 42260, "result misleading": 83397, "users resulting": 101176, "relation annotations": 81233, "interface api": 47170, "entity relations": 29588, "advanced search": 3748, "streamlining complex": 90942, "complex information": 16944, "using series": 101759, "greater number": 40512, "dramatically improves": 26787, "features tools": 34034, "generation generation": 38179, "advance artificial": 3659, "ai emergence": 4379, "dynamic network": 26927, "network conditions": 66134, "article explore": 7539, "ai introduce": 4441, "implicit explicit": 43416, "improve user": 43824, "efficient network": 27805, "network management": 66151, "subsequently propose": 92032, "optimization framework": 68592, "environment perception": 29625, "units design": 100107, "llm module": 55172, "module retrieval": 64667, "build knowledge": 11594, "contextual memory": 18948, "memory decisionmaking": 59030, "framework case": 36060, "retrieved contexts": 84078, "auxiliary information": 8984, "key enhancing": 48294, "llms relatively": 56684, "relatively little": 81316, "contexts generated": 18904, "llms retrieved": 56727, "framework identify": 36159, "identify llms": 42878, "trace origin": 97614, "construct datasets": 18418, "answer experiments": 6003, "significant bias": 87695, "bias llms": 10862, "contexts provide": 18921, "factors contributing": 33589, "greater similarity": 40516, "similarity questions": 88147, "process used": 75416, "llms analysis": 55469, "current augmentation": 20663, "llms universal": 56987, "basic question": 9886, "learn underlying": 52970, "individual neurons": 45092, "compute pairwise": 17511, "million tokens": 60041, "neurons consistently": 66310, "consistently activate": 18284, "generally known": 37329, "reduces training": 80854, "training memory": 98193, "updating small": 100367, "lm parameters": 57074, "does improve": 26300, "improve inference": 43713, "efficiency structured": 27722, "structured pruning": 91177, "memory time": 59068, "time improve": 96974, "efficiency introduce": 27690, "parameters lms": 70249, "early stage": 26984, "tuning parameters": 99074, "fast accurate": 33889, "efficiency compared": 27674, "performance pruning": 71508, "70 parameters": 1212, "parameters utilize": 70300, "scheduling approach": 85511, "approach train": 7062, "tokens sourced": 97233, "texts english": 96559, "specific use": 89770, "performance broad": 71028, "spectrum tasks": 89930, "tasks make": 94849, "aiming inspire": 4768, "applications field": 6479, "field evaluation": 34369, "code maintainability": 15397, "availability opensource": 9004, "software repositories": 89029, "advances code": 3868, "llms triggered": 56971, "automate software": 8666, "investigate recent": 47696, "comparing probability": 16693, "llms probability": 56574, "quality problems": 78336, "gpt2 llama2": 39307, "quality aspects": 78223, "readability understandability": 79501, "available benchmark": 9014, "plays significant": 72389, "role predicting": 84799, "aspects study": 7791, "different pretrained": 25150, "shown potential": 87511, "potential usefulness": 73300, "short sequences": 87299, "ai poised": 4509, "way individuals": 103371, "human decisions": 42149, "respond use": 83105, "results largescale": 83704, "cooperation coordination": 19492, "human players": 42327, "twoplayer games": 99173, "contrary observe": 19060, "effects individuals": 27612, "human generative": 42236, "ai transparency": 4604, "mitigate negative": 60273, "ai society": 4551, "detrimental effect": 24426, "chatgpt particularly": 14067, "discern ai": 25555, "generated token": 37807, "time llm": 96987, "response tokens": 83167, "refer llm": 80925, "measurement study": 58759, "claude bard": 14853, "problem llm": 75042, "generated tokens": 37808, "caused missing": 12695, "various network": 102503, "wait time": 103291, "method commonly": 59233, "chatbot applications": 13401, "generation llm": 38244, "respond like": 83103, "users better": 101077, "ai xai": 4615, "explainable artificial": 32448, "intelligence xai": 46907, "approach make": 6940, "accessible wider": 2118, "goal design": 39051, "design model": 23812, "generate clear": 37390, "concise summaries": 17724, "tailored different": 93776, "approach offers": 6958, "insights facilitating": 46088, "decisionmaking process": 22601, "process end": 75301, "studies model": 91419, "explanations regardless": 32515, "indicate promising": 45016, "ai concepts": 4347, "range users": 79224, "span corruption": 89479, "replaced token": 81928, "training text": 98324, "text sequences": 96413, "sequences paper": 86685, "new training": 66563, "procedure consisting": 75250, "twostage curriculum": 99177, "empirically effectiveness": 28375, "twostage pretraining": 99186, "provide extensive": 77473, "analysis case": 5447, "case experiments": 12457, "architectures t5": 7403, "pretraining enabling": 74528, "40 reduction": 907, "reduction total": 80909, "computing budget": 17560, "advanced state": 3752, "art natural": 7525, "languages bridge": 51240, "novel large": 67193, "extensive range": 33123, "languages train": 51366, "vocabulary extension": 103196, "pretraining llama": 74568, "results release": 83809, "efficient knowledge": 27780, "questionanswering framework": 78739, "updating knowledge": 100361, "llms explored": 55938, "approaches treat": 7216, "llms primary": 56571, "high demands": 41407, "capabilities particularly": 12037, "relatively poorer": 81322, "merges knowledge": 59112, "requirements models": 82348, "inspired method": 46176, "use manually": 100623, "employs information": 28475, "information question": 45584, "required knowledge": 82315, "datasets reveal": 22406, "methods highly": 59669, "highly applicable": 41681, "llms fewer": 55975, "reduced computational": 80814, "facing constraints": 33555, "significant practical": 87823, "experiment llama": 31970, "llama llama": 54769, "datasets performance": 22365, "data small": 21633, "small values": 88738, "triplet extraction": 98897, "task information": 94098, "extract entities": 33228, "collecting annotating": 15884, "data newly": 21442, "newly emerging": 66597, "recent advanced": 80170, "longtext generation": 57418, "alternative approach": 5260, "propose zeroshot": 77168, "generates labeled": 37838, "data retrieval": 21578, "data step": 21652, "step improve": 90646, "propose denoising": 76958, "based consistency": 9482, "relation triplets": 81253, "good chatgpt": 39113, "explainability large": 32438, "shown astonishing": 87441, "allows interact": 5195, "llms experience": 55923, "tasks trained": 95209, "learning present": 53339, "based recent": 9693, "gpt4 multimodal": 39982, "llm task": 55284, "analyze ability": 5742, "estimation explainability": 30023, "explainability transparency": 32443, "order evaluate": 68697, "benchmarks comparing": 10319, "results stateoftheart": 83857, "enhance explainability": 29159, "emotion detection": 28250, "dialogue modeling": 24879, "tod systems": 97115, "user emotion": 100981, "training contrast": 97974, "contrast work": 19092, "endtoend tod": 28887, "belief state": 10028, "relying single": 81607, "results findings": 83610, "user emotions": 100982, "useful contextual": 100943, "llms mainly": 56371, "guide model": 40745, "accomplishing task": 2138, "popular ones": 72661, "studied tasks": 91358, "code comment": 15155, "generation test": 38465, "classification using": 14811, "applicability llms": 6325, "building monolingual": 11638, "chatgpt detect": 13705, "conducted analysis": 17935, "analysis understand": 5712, "understand strengths": 99650, "surpasses baselines": 92926, "performance fully": 71232, "fully finetuned": 36451, "blackbox testing": 11153, "intelligence applications": 46834, "particularly blackbox": 70434, "created human": 20197, "participants study": 70376, "specifications written": 89901, "realworld applicability": 79636, "potential shortcomings": 73260, "enhance human": 29165, "strategies chatgpt": 90797, "additionally experiments": 3302, "experiments demonstrated": 32166, "collaboration humans": 15824, "issues require": 48018, "building trust": 11653, "design deployment": 23769, "people world": 70749, "interaction hci": 47009, "experience ux": 31943, "human factors": 42217, "share knowledge": 87184, "knowledge identify": 48619, "model integration": 61022, "integration paper": 46779, "propose architecture": 76936, "core framework": 19542, "optimal task": 68572, "evaluation focused": 30604, "employing models": 28459, "13b 34b": 286, "mixtral model": 60342, "integrating gpt4": 46722, "potential architecture": 73015, "architecture creating": 7338, "extreme compression": 33378, "llama advancing": 54721, "immense size": 43174, "huge training": 42051, "substantial energy": 92077, "lowrank approximation": 57606, "focus reducing": 35550, "network quantization": 66158, "focuses reducing": 35614, "individual weights": 45100, "keeping number": 48255, "compelling reason": 16755, "innovative llm": 45858, "llm compression": 55015, "compression approach": 17352, "space instead": 89445, "allowing controlled": 5170, "compression method": 17362, "llama2 7b": 54816, "original size": 68813, "challenge extending": 12876, "extending large": 32965, "llms nonenglish": 56433, "interface llms": 47176, "shared tokens": 87199, "tokens english": 97194, "alignment approach": 5055, "script languages": 85822, "text reduces": 96388, "various nlu": 102509, "text exhibit": 96200, "english translations": 29111, "approach presents": 6980, "english llms": 29084, "model enhanced": 60807, "enhanced understanding": 29253, "languages work": 51376, "architecture based": 7331, "based unified": 9747, "corpus specifically": 19653, "specifically curated": 89799, "purpose evaluated": 78037, "outperforms multilingual": 69087, "compress large": 17336, "rows columns": 84898, "cornerstone natural": 19561, "processing use": 75592, "comes substantial": 16044, "costs terms": 19937, "terms compute": 95802, "provides solution": 77704, "works shown": 104386, "techniques face": 95514, "reducing embedding": 80867, "parameters including": 70231, "performance dense": 71129, "fewer gpus": 34192, "code optimization": 15429, "40gb a100": 925, "hope inspire": 41953, "future avenues": 36702, "reduce memory": 80790, "memory computation": 59020, "gpt4 gemini": 39896, "generating reasonable": 37966, "wide gap": 103652, "broad public": 11493, "gpt4 googles": 39910, "recent proprietary": 80328, "proprietary opensource": 77318, "opensource mllms": 68379, "modalities text": 60443, "image video": 43069, "gemini opensource": 37062, "mllms overall": 60393, "downstream multimodal": 26701, "multimodal applications": 65031, "tasks science": 95083, "science study": 85613, "overcome cognitive": 69349, "problems compared": 75119, "science assessments": 85565, "students cognitive": 91291, "experts using": 32423, "cognitive load": 15746, "task cognitive": 93973, "gpt4 responses": 40056, "using scoring": 101749, "individual items": 45084, "items results": 48040, "outperformed students": 68986, "respectively chatgpt": 83058, "students problemsolving": 91327, "foster critical": 35895, "novel contexts": 67134, "suggest need": 92383, "need innovative": 65964, "matches human": 58507, "meaning text": 58705, "corpus texts": 19654, "coding process": 15711, "category labels": 12633, "human researchers": 42355, "concentrate creative": 17592, "gpt35 compared": 39586, "standard gpt4": 90177, "gpt4 delivers": 39820, "cohens kappa": 15764, "contrast gpt35": 19072, "coding decisions": 15700, "reasoning present": 79981, "findings set": 34747, "practices adapting": 73559, "llms adept": 55449, "furthermore suggest": 36664, "learning understanding": 53461, "establish connections": 29970, "accurately respond": 2468, "respond complex": 83100, "responses include": 83241, "certain groups": 12761, "groups people": 40626, "llms questionanswering": 56619, "utilized answer": 101962, "questions ensure": 78839, "dataset llm": 21996, "llm uses": 55307, "prevent harmful": 74646, "harmful offensive": 41037, "obtaining information": 67683, "future works": 36801, "chinese paper": 14570, "demonstrate limitations": 23117, "systems propose": 93538, "better analyze": 10684, "different systems": 25216, "word overlap": 103911, "dataset proposed": 22041, "llms robust": 56741, "large room": 52334, "progressive learning": 76023, "tasks lag": 94794, "lag human": 49081, "human capacity": 42117, "learn basic": 52932, "handle complex": 40918, "continuous feedback": 19025, "inspired paper": 46178, "novel teacherstudent": 67263, "framework emulates": 36111, "education process": 27173, "process improve": 75331, "improve efficacy": 43695, "framework operates": 36219, "agent provides": 4145, "students answers": 91286, "feedback forms": 34083, "forms robust": 35855, "robust comprehensive": 84646, "reasoning testbed": 80069, "training llama2": 98179, "llama2 data": 54824, "training curriculum": 97986, "learning robustness": 53396, "recommendation automatic": 80644, "retrievalbased learningbased": 84062, "learningbased approaches": 53484, "approaches approaches": 7103, "notable limitations": 67010, "approaches require": 7198, "mitigate limitations": 60271, "recommendation approach": 80643, "approach enhanced": 6837, "enhanced incontext": 29233, "involves main": 47850, "informative examples": 45681, "examples icl": 31227, "enables large": 28593, "reasoning generating": 79894, "api recommendations": 6277, "approaches publicly": 7193, "available benchmarks": 9015, "perform basic": 70823, "basic programming": 9883, "challenges dealing": 12988, "dealing complex": 22513, "problems notably": 75177, "performance deteriorates": 71134, "novel problems": 67229, "consequently enhancing": 18120, "problemsolving process": 75237, "mirrors human": 60156, "planning code": 72257, "previously acquired": 74745, "knowledge algorithms": 48416, "structures despite": 91192, "learned knowledge": 52983, "effectively apply": 27404, "new problems": 66496, "problems address": 75109, "constructed novel": 18450, "chatgpt previously": 14105, "previously encountered": 74750, "bolsters models": 11252, "process especially": 75304, "pass1 metrics": 70539, "demonstrated outstanding": 23295, "performance handling": 71285, "problems previously": 75187, "llms contrast": 55683, "contrast code": 19068, "directly generated": 25499, "pass1 metric": 70538, "compared methods": 16587, "problems llms": 75166, "experts large": 32414, "large visionlanguage": 52375, "models lvlms": 63562, "effectively improves": 27443, "task performances": 94185, "scaling methods": 85343, "costs work": 19940, "learning consequently": 53083, "model outrageous": 61192, "parameters constant": 70190, "constant computational": 18359, "furthermore present": 36646, "topk experts": 97537, "experiments significant": 32300, "object hallucination": 67476, "activated parameters": 2972, "various visual": 102629, "research developing": 82546, "effective multimodal": 27335, "multilingual parallel": 64994, "benchmark languages": 10199, "strong multilingual": 91052, "multilingual machine": 64979, "original english": 68771, "annotations target": 5956, "language languages": 49302, "provide human": 77493, "human translations": 42400, "dev test": 24430, "claim verification": 14665, "step automated": 90615, "evidence work": 30997, "potential fewshot": 73091, "available supervision": 9092, "supervision propose": 92760, "leverages unlabelled": 53815, "improvements sota": 43998, "methods neural": 59738, "explore challenges": 32653, "computational storage": 17486, "method applied": 59205, "model featuring": 60874, "comparative evaluations": 16431, "llms epitomized": 55871, "models starcoder": 64253, "data inherent": 21326, "design models": 23813, "like code": 54109, "multiple programming": 65243, "smaller domainspecific": 88746, "meticulously designed": 59856, "harness inherent": 41069, "strengths language": 90954, "generation furthermore": 38172, "techniques nlp": 95565, "innovative strategy": 45867, "effectiveness extensive": 27516, "tasks maintains": 94848, "hardware constraints": 40999, "lays solid": 52784, "potential applicability": 73001, "knowledge augmented": 48433, "simulator generate": 88337, "knowledge rapidly": 48728, "text available": 96095, "making inefficient": 58107, "incorporate external": 44666, "knowledge benefit": 48452, "benefit downstream": 10446, "reward preference": 84378, "incorporating knowledge": 44705, "assistants diverse": 8050, "misinformation disinformation": 60174, "play key": 72345, "key role": 48339, "range factors": 79158, "specific groups": 89703, "impacts wide": 43288, "various groups": 102444, "questions extent": 78851, "extent prompts": 33171, "explicit gender": 32528, "viewpoints topics": 102920, "findings illuminate": 34676, "algorithm designers": 4910, "memory paper": 59055, "security posture": 86024, "significance llms": 87655, "boundaries enabling": 11335, "parsing errors": 70336, "errors utilizing": 29846, "environments ides": 29645, "seamlessly integrate": 85845, "development workflows": 24734, "capabilities evaluation": 11890, "applications existing": 6471, "benchmarks predominantly": 10393, "capabilities multiturn": 12012, "interactions address": 47042, "multiturn conversational": 65383, "multiturn queries": 65396, "augmenting existing": 8594, "datasets creating": 22197, "avoid data": 9197, "factors impacting": 33594, "evaluation 11": 30497, "llms shows": 56796, "tasks observe": 94897, "settings compared": 87042, "settings models": 87076, "correlated models": 19760, "distance relevant": 25797, "error propagation": 29789, "factors influencing": 33600, "multiturn performance": 65395, "encourage future": 28788, "research robust": 82767, "robust conversational": 84647, "tokens following": 97199, "trained significantly": 97904, "compared reference": 16626, "reference models": 80938, "exhibits highly": 31615, "trained supervised": 97914, "finetuning followed": 35073, "available apache": 9009, "generation compelling": 38087, "input words": 45971, "major computational": 57929, "generation unlike": 38490, "process input": 75336, "tokens parallel": 97218, "parallel generation": 70080, "model little": 61073, "generation severely": 38417, "bandwidth bottleneck": 9330, "architecture named": 7359, "architecture utilizes": 7382, "optimized data": 68640, "data mapping": 21400, "complex nonlinear": 16966, "nonlinear functions": 66921, "accelerates endtoend": 2013, "endtoend inference": 28875, "furthermore validate": 36669, "input size": 45957, "achieves maximum": 2755, "times speedup": 97085, "agentbased modeling": 4155, "novices experts": 67305, "chat large": 13380, "modeling abm": 61623, "support learning": 92814, "use need": 100636, "30 participants": 746, "perceptions behaviors": 70799, "possible reason": 72914, "interfaces support": 47190, "linear model": 54530, "specific problem": 89737, "conversation user": 19340, "information required": 45592, "approach generation": 6874, "generation sample": 38406, "used develop": 100776, "agent using": 4152, "engineering develop": 28960, "agents talk": 4243, "user agent": 100968, "conversation agent": 19315, "original problem": 68800, "extrinsic evaluation": 33405, "dialogues assessing": 24924, "match original": 58492, "descriptions conduct": 23700, "including evaluation": 44338, "metrics evaluation": 59914, "dialogues research": 24940, "quality gpt4": 78288, "metrics resulting": 59963, "annotations subset": 5955, "used baseline": 100750, "transformers long": 98629, "landscape natural": 49112, "introduces pioneering": 47536, "approach address": 6721, "concerns associated": 17677, "associated llm": 8093, "transfer leveraging": 98424, "insights efficient": 46084, "heads transformer": 41149, "long contextual": 57306, "information inherent": 45512, "methods technique": 59819, "pretraining terms": 74611, "llms work": 57052, "ai solutions": 4553, "striking balance": 90988, "winograd schema": 103841, "schema challenge": 85514, "challenge wsc": 12945, "prominent benchmark": 76089, "evaluating machine": 30453, "questions ability": 78762, "method enhances": 59286, "wsc instances": 104539, "valid cases": 102083, "vs 10": 103240, "approach introduce": 6909, "framework incorporating": 36168, "deeper insight": 22813, "insight model": 46045, "bias analysis": 10828, "evaluating generated": 30425, "llm achieves": 54938, "highlights critical": 41650, "rampant spread": 79096, "nuanced evaluation": 67315, "gpt4 version": 40149, "demonstrates higher": 23379, "furthermore concerning": 36587, "bias observed": 10869, "global north": 39017, "model updates": 61551, "insights impact": 46102, "various llm": 102476, "binary decision": 11055, "models factuality": 62441, "factuality models": 33655, "models constrained": 62101, "binary truefalse": 11060, "exhibit reduced": 31542, "single inference": 88365, "majority voting": 57957, "insights gained": 46094, "key achieving": 48267, "arguments support": 7474, "initial evaluation": 45769, "better adapt": 10677, "longtail knowledge": 57405, "methods retrieve": 59789, "retrieval corpus": 83976, "document context": 26205, "context introduce": 18790, "approach recursively": 6999, "model retrieves": 61359, "lengthy documents": 53621, "documents different": 26246, "levels abstraction": 53686, "retrievalaugmented lms": 84056, "lms tasks": 57176, "tasks questionanswering": 94999, "involve complex": 47823, "complex multistep": 16959, "reasoning stateoftheart": 80030, "results example": 83593, "gpt4 improve": 39935, "quality benchmark": 78230, "benchmark 20": 10064, "chatgpt informed": 13956, "prone human": 76865, "human error": 42165, "based openai": 9646, "automatic feedback": 8787, "log files": 57237, "tool llm": 97300, "llms streamline": 56864, "disease progression": 25738, "data driven": 21167, "approaches able": 7098, "able classify": 1831, "later stages": 52648, "use single": 100689, "single modality": 88377, "propose multimodal": 77031, "multimodal framework": 65052, "ad patients": 3026, "prompts use": 76843, "explicitly learn": 32547, "crossmodal feature": 20433, "models provides": 63936, "provides insight": 77678, "long story": 57333, "story short": 90757, "conversation modeling": 19329, "conversation systems": 19338, "diverse users": 26126, "users unique": 101191, "work studies": 104281, "subsequent responses": 92015, "gpt3 base": 39410, "multiple dialogue": 65173, "thorough exploration": 96832, "models analysis": 61831, "light complex": 53998, "systems empirical": 93435, "noticeable difference": 67062, "tokens language": 97209, "critical technology": 20362, "models developed": 62214, "information pretraining": 45575, "seldom discussed": 86117, "information data": 45430, "datasets trained": 22444, "result challenging": 83392, "modeling research": 61676, "english corpus": 29058, "corpus built": 19599, "built diverse": 11661, "report analyses": 81960, "analyses experimental": 5396, "models great": 62631, "including programming": 44451, "generating erroneous": 37897, "erroneous code": 29762, "automatically verified": 8906, "contemporary models": 18580, "palm2 generate": 69558, "types prompts": 99257, "method test": 59449, "gpt4 better": 39787, "task direct": 94025, "direct prompt": 25429, "prompt prompt": 76401, "58 cases": 1097, "performance 10": 70949, "demonstrate benefits": 23032, "data architectures": 20991, "given importance": 38897, "including biases": 44283, "open lms": 68085, "framework build": 36056, "code release": 15469, "code hope": 15348, "inspire new": 46163, "robustness data": 84707, "data compression": 21092, "compression existing": 17354, "benchmark creation": 10111, "compression based": 17353, "models predictive": 63856, "predictive abilities": 73756, "abilities generalize": 1511, "training cutoff": 97988, "specifically collect": 89791, "data spanning": 21644, "data cutoff": 21137, "compression performance": 17366, "performance testing": 71628, "gap training": 36984, "measure robustness": 58749, "robustness experiments": 84714, "wikipedia news": 103815, "cutoff date": 20864, "models mistral": 63619, "mistral llama2": 60220, "demonstrate good": 23090, "good balance": 39111, "balance performance": 9307, "struggle generalize": 91216, "papers context": 69997, "impact overall": 43245, "gpt35 code": 39585, "experiments focusing": 32201, "approaches leveraging": 7164, "study different": 91581, "leveraging gpt35": 53848, "improved code": 43834, "submitted code": 91980, "code little": 15386, "known gpt35": 48845, "pattern model": 70617, "finetuning gpt35": 35082, "task experimental": 94050, "datasets fewshot": 22260, "learning performed": 53328, "performed finetuned": 71759, "performed zeroshot": 71772, "constructing prompts": 18461, "prompts gpt35": 76731, "gpt35 finetuned": 39602, "elicit better": 27983, "invoking tools": 47821, "potential tackling": 73282, "agents typically": 4245, "actions generating": 2963, "format usually": 35829, "action space": 2952, "tools work": 97482, "agents actions": 4163, "python interpreter": 78102, "execute code": 31435, "newly curated": 66593, "curated benchmark": 20627, "benchmark shows": 10249, "used alternatives": 100734, "20 higher": 489, "encouraging performance": 28806, "agent interacts": 4137, "language end": 49203, "end collect": 28816, "interactions using": 47083, "data improve": 21311, "tasks compromising": 94470, "compromising general": 17409, "finetuned llama2": 34923, "tasks high": 94697, "difficult deploy": 25288, "gpt4 smaller": 40089, "near 100": 65838, "100 success": 133, "reflections generated": 81018, "gpt4 finetune": 39891, "finetune different": 34818, "sizes gpt2": 88553, "holdout test": 41895, "set gpt2": 86881, "gpt2 xl": 39369, "achieves 90": 2702, "90 success": 1403, "success gpt4": 92203, "laborintensive task": 48968, "evaluating quality": 30481, "zeroshot classifier": 104750, "classifier achieves": 14820, "improving aigenerated": 44097, "llm instruction": 55131, "success raised": 92231, "concerns misuse": 17690, "text responses": 96399, "questions created": 78814, "sentences sentences": 86569, "detect text": 24227, "results previous": 83777, "sentencelevel documentlevel": 86534, "documentlevel text": 26240, "trained based": 97799, "chatgpt enhanced": 13758, "understanding social": 99877, "spurred increasing": 90057, "face primary": 33449, "primary challenges": 74802, "challenges researchers": 13120, "researchers typically": 82891, "rely crowdsourcing": 81568, "semantic meanings": 86326, "communication barrier": 16255, "various annotation": 102347, "chatgpt demonstrating": 13701, "effectiveness handling": 27528, "tasks objective": 94896, "serve viable": 86783, "alternative human": 5266, "scenarios demonstrates": 85416, "potential replace": 73239, "social data": 88853, "highlighted potential": 41621, "chatgpt performing": 14075, "social computing": 88850, "known performance": 48851, "flurry research": 35490, "research prompt": 82731, "quality prompts": 78337, "knowledge dataset": 48496, "dataset annotated": 21825, "enhance chatgpts": 29147, "given dataset": 38875, "distinct text": 25879, "prompts tuned": 76842, "framework showing": 36267, "extended support": 32956, "support additional": 92787, "additional tuning": 3267, "nlu applications": 66833, "forms foundation": 35849, "systems context": 93416, "context conversational": 18747, "work directly": 104054, "data users": 21732, "ondevice deployment": 67915, "high memory": 41429, "memory footprint": 59036, "novel lightweight": 67197, "lightweight framework": 54039, "mechanism predict": 58807, "outofvocabulary oov": 68910, "performance analyses": 70986, "dataset related": 22053, "effectiveness leveraging": 27546, "new sota": 66529, "24 improvement": 634, "improvement bleu": 43890, "respectively llms": 83079, "absent training": 1906, "ai advanced": 4290, "strategies enhancing": 90807, "enhancing security": 29370, "processing artificial": 75460, "gpt35 llama2": 39641, "despite widespread": 24143, "phishing attacks": 72042, "privacy violations": 74916, "multipronged approach": 65310, "vocabulary user": 103201, "unethical responses": 99954, "restrict generation": 83370, "prohibited content": 76029, "attack prompts": 8180, "core functionalities": 19543, "users control": 101085, "balancing efficiency": 9318, "standards ensuring": 90231, "trust ai": 98927, "educational measurement": 27209, "theory data": 96759, "generating data": 37885, "language focusing": 49225, "study compares": 91531, "generated researchers": 37770, "compliance simulation": 17061, "values results": 102223, "chatgpt algorithms": 13514, "highlights chatgpts": 41649, "number people": 67368, "understand concepts": 99601, "need tools": 66001, "existing conversational": 31688, "unfortunately chatgpt": 99984, "chatgpt largelanguage": 13980, "produce inaccurate": 75640, "inaccurate results": 44191, "quantum programs": 78460, "uses pretrained": 101249, "generates accurate": 37825, "accurate answer": 2391, "mixtureofexperts language": 60362, "train release": 97767, "series fully": 86736, "moe llms": 64689, "potential effectiveness": 73078, "contribution study": 19171, "analysis routing": 5659, "routing decisions": 84893, "models predominantly": 63857, "based token": 9738, "token ids": 97135, "design based": 23754, "observations analysis": 67562, "mitigating issues": 60302, "vs bard": 103245, "using textual": 101814, "queries second": 78511, "second query": 85950, "evaluated prediction": 30358, "sensitivity specificity": 86478, "specificity precision": 89904, "precision f1": 73608, "score llm": 85724, "bard produced": 9370, "highest f1": 41546, "high confidence": 41393, "resulted highest": 83421, "rates overall": 79418, "clinical application": 14907, "faster lighter": 33908, "survey current": 93025, "way forward": 103358, "advancements model": 3841, "methods aim": 59522, "aim enhance": 4704, "overview methods": 69432, "unified setting": 100038, "effectiveness methods": 27555, "directions improve": 25469, "reproduce results": 82190, "guardrails large": 40706, "integrated daily": 46678, "crucial identify": 20493, "identify mitigate": 42884, "profound impacts": 75820, "paper takes": 69977, "current opensource": 20750, "opensource solutions": 68408, "llama guard": 54760, "discusses challenges": 25705, "systematic approach": 93316, "approach construct": 6788, "based comprehensive": 9475, "llms applications": 55482, "propose employing": 76968, "largelanguage model": 52398, "integrated external": 46684, "tools apis": 97355, "plugins extend": 72456, "inference systems": 45302, "llms treat": 56970, "new requests": 66513, "total model": 97561, "inference framework": 45246, "gpu resource": 40268, "model social": 61435, "scientific tasks": 85666, "tasks emotion": 94577, "humor detection": 42682, "improve capabilities": 43670, "reasoning reading": 80002, "effectiveness instruction": 27534, "instructiontuned llama": 46598, "stateoftheart multitask": 90416, "multitask finetuned": 65351, "model majority": 61118, "social understanding": 88921, "including code": 44302, "moral judgment": 64744, "judgment reasoning": 48191, "llms change": 55572, "change language": 13271, "language study": 51115, "exhibited large": 31579, "extend work": 32948, "languages chinese": 51246, "chinese hindi": 14551, "hindi russian": 41845, "probe llms": 74971, "abilities study": 1572, "score substantially": 85739, "language user": 51193, "processing diverse": 75476, "face challenge": 33432, "specific user": 89772, "user intents": 101000, "based finegrained": 9539, "intent taxonomy": 46959, "analyze quality": 5780, "outperformed gpt35": 68979, "intents user": 46970, "models original": 63732, "ones finally": 67930, "finally study": 34568, "quickly learn": 78987, "shown possible": 87510, "jailbreaking attack": 48101, "attack multimodal": 8174, "attacks multimodal": 8225, "mllms generate": 60386, "generate objectionable": 37541, "algorithm proposed": 4931, "prompts images": 76742, "approach exhibits": 6847, "llava instructblip": 54909, "instructblip mplugowl2": 46279, "blackbox manner": 11142, "reveal connection": 84140, "dialogue study": 24900, "explores application": 32796, "crucial research": 20522, "research task": 82799, "qualitative methods": 78201, "educational research": 27216, "middle school": 60004, "dialogues time": 24941, "time efficiency": 96952, "evaluated results": 30362, "time savings": 97019, "gpt4 high": 39926, "degree consistency": 22906, "coding model": 15705, "strong potential": 91062, "lottery tickets": 57493, "lottery ticket": 57491, "ticket hypothesis": 96911, "hypothesis posits": 42737, "winning tickets": 103839, "randomly initialized": 79126, "llm parameters": 55189, "effective multilingual": 27334, "analyze distribution": 5755, "parameters finetuning": 70215, "finetuning parameters": 35171, "perform finetuning": 70876, "finetuning comparing": 35033, "performance finetuning": 71224, "embedding llama": 28056, "finetuning translation": 35284, "graphenhanced large": 40421, "plan reasoning": 72242, "reasoning reasoning": 80005, "sequential parallel": 86708, "llms succeed": 56880, "graphs natural": 40444, "boost model": 11273, "complexity increases": 17040, "digital devices": 25358, "exciting step": 31419, "semantic representations": 86341, "comprehensive exploration": 17263, "exploration finetuning": 32595, "malaysian language": 58149, "specifically llama2": 89848, "pairs release": 69518, "600 million": 1117, "outperforms openai": 69091, "rag models": 79046, "approach proves": 6989, "competitive openai": 16809, "context notably": 18819, "underscore effectiveness": 99541, "rag tasks": 79050, "user query": 101030, "query logs": 78538, "post hoc": 72932, "article based": 7533, "based reference": 9694, "recommended items": 80670, "users particularly": 101152, "biomedical papers": 11103, "papers published": 70002, "published year": 78012, "researchers clinicians": 82840, "majority current": 57946, "hoc approach": 41876, "recommendations identifying": 80662, "million pairs": 60034, "designed select": 23945, "performance empirical": 71172, "study indicate": 91677, "models autonomous": 61882, "palm gpt4": 69551, "remarkable advances": 81740, "processing demonstrating": 75474, "demonstrating humanlike": 23430, "language fluency": 49223, "reasoning capacities": 79818, "introduces concept": 47515, "application framework": 6354, "capabilities create": 11872, "continuously developed": 19040, "aims spur": 4828, "increasing sophistication": 44860, "llms popular": 56533, "regarding training": 81071, "data repeatedly": 21564, "concerns data": 17681, "attempts address": 8267, "trial error": 98862, "models iteratively": 62820, "improved using": 43866, "data coming": 21081, "analysis work": 5722, "work using": 104304, "data usage": 21720, "benchmarks time": 10424, "time document": 96949, "baseline comparisons": 9772, "researchers contribute": 82845, "text citations": 96108, "prone hallucination": 76863, "hallucination responses": 40853, "responses lack": 83247, "intuitive solution": 47585, "external documents": 33182, "performances far": 71737, "far satisfactory": 33876, "especially comes": 29860, "propose effective": 76965, "highly supportive": 41718, "correctness responses": 19744, "demonstrating advantage": 23422, "conventional practices": 19292, "models generalizability": 62536, "surpassing gpt35turbo": 92961, "potential improving": 73134, "efficiency reducing": 27714, "quadratic complexity": 78173, "exciting promise": 31417, "promise training": 76133, "underperform standard": 99528, "gap prior": 36964, "surprisingly simple": 93006, "attention propose": 8366, "produce attention": 75604, "standard transformer": 90213, "glue score": 39031, "score points": 85732, "variant achieves": 102250, "7b achieves": 1285, "attention model": 8342, "model prior": 61276, "gpt4 particularly": 40010, "parameters enhance": 70207, "text quality": 96376, "limit llms": 54276, "generalize domains": 37294, "editing strategies": 27108, "textgeneration tasks": 96523, "approach preserves": 6981, "domain generalization": 26394, "generation extensive": 38161, "performance logical": 71379, "translation surpassing": 98743, "sota llm": 89312, "settings prompting": 87086, "various reasoning": 102551, "task implicit": 94093, "improve chatgpts": 43673, "task involves": 94110, "smaller subtasks": 88796, "results inference": 83691, "inference accuracy": 45209, "sophisticated prompt": 89292, "chatbots provide": 13455, "support human": 92810, "assistants respond": 8058, "respond specific": 83104, "degrees freedom": 22916, "especially knowledgeintensive": 29889, "accuracy crucial": 2234, "llms contexts": 55678, "llmbased ca": 55340, "llmbased cas": 55341, "present future": 73989, "indepth comprehensive": 44948, "systems relying": 93554, "powered artificial": 73405, "chatbots eliza": 13441, "sophisticated capabilities": 89276, "developmental trajectory": 24736, "future potential": 36750, "potential various": 73316, "application potential": 6378, "task artificial": 93939, "intelligence complex": 46839, "complex nature": 16964, "research significantly": 82783, "improved task": 43861, "limitations including": 54332, "inability capture": 44179, "context introduction": 18791, "ai directly": 4371, "directly applying": 25485, "proposes methodology": 77273, "outofdomain scenario": 68890, "handle long": 40926, "enhance reasoning": 29207, "rag architecture": 79035, "architecture outperforms": 7361, "learning mistakes": 53267, "standard method": 90191, "approaches learn": 7161, "inputoutput pairs": 45980, "pairs paper": 69511, "learning given": 53179, "make mistakes": 58011, "help solve": 41281, "finally prompt": 34557, "using original": 101671, "range benchmarks": 79140, "textual qa": 96689, "reasoning math": 79936, "problems gsm8k": 75148, "gsm8k math": 40691, "math benchmarks": 58544, "standard fewshot": 90173, "prompting settings": 76607, "ai gaining": 4409, "gaining momentum": 36853, "performances multiple": 71741, "domains particularly": 26568, "potential perform": 73219, "human software": 42368, "investigation capability": 47784, "llm techniques": 55287, "tasks controlled": 94494, "chatgpt helpful": 13926, "problems performance": 75182, "provides firsthand": 77667, "tasks realworld": 95009, "realworld developers": 79664, "motivates need": 64786, "need novel": 65977, "effectively work": 27484, "work large": 104157, "potential adverse": 72991, "effects resulting": 27621, "novel direction": 67146, "llms social": 56824, "input query": 45942, "query enabling": 78524, "enabling llm": 28646, "related query": 81211, "finetune llm": 34836, "ensuring adherence": 29474, "constitutional ai": 18371, "mild assumptions": 60011, "experiments validate": 32331, "validate method": 102099, "exceeds gpt4": 31326, "page available": 69460, "communication large": 16269, "cloudbased large": 15066, "vital tools": 103170, "transmission storage": 98763, "user data": 100976, "substantial risks": 92107, "risks data": 84512, "access sensitive": 2084, "proposes simple": 77281, "effective mechanism": 27325, "protect user": 77337, "retaining original": 83941, "tasks personalized": 94943, "personalized recommendation": 71917, "analysis tabular": 5694, "analysis experiment": 5513, "tuning achieving": 99013, "better task": 10793, "accuracy directly": 2241, "llm prompt": 55215, "models sparked": 64232, "pretraining methods": 74573, "methods recent": 59773, "course training": 20030, "inability evaluate": 44180, "degradation model": 22888, "quality smaller": 78362, "propose alternative": 76930, "alternative framework": 5265, "model step": 61453, "better pretraining": 10767, "ul2 language": 99336, "competitive better": 16793, "better efficient": 10707, "better downstream": 10705, "increasing complexity": 44822, "loss stage": 57476, "residual connections": 82919, "layer norm": 52723, "structured sparsity": 91184, "sparsity large": 89559, "inference overheads": 45272, "emergence activation": 28160, "activation sparsity": 2984, "sparsity llms": 89564, "furthermore unlike": 36666, "methods mainly": 59721, "mainly focus": 57849, "activation functions": 2978, "methods task": 59816, "tool online": 97303, "approach integrates": 6907, "interactions prompt": 47076, "including perception": 44444, "research enhances": 82580, "systems llms": 93509, "llms offers": 56445, "insights evaluating": 46086, "users large": 101131, "drawn lot": 26824, "training billions": 97953, "area llms": 7426, "ways paper": 103420, "llama palm": 54791, "techniques developed": 95501, "augment llms": 8518, "finetuning evaluation": 35059, "metrics compare": 59896, "representative benchmarks": 82138, "job applicants": 48136, "human errors": 42166, "quality edited": 78258, "demo paper": 22985, "tool enables": 97284, "obtain personalized": 67656, "pipeline leverages": 72165, "llm completely": 55013, "manner requiring": 58246, "effectiveness tool": 27584, "novel taskspecific": 67262, "tool available": 97269, "recent achievements": 80168, "nlp attributed": 66710, "respond instructions": 83102, "finetuning ift": 35087, "annotated datasets": 5868, "datasets existing": 22246, "datasets english": 22234, "goal bridge": 39045, "language gap": 49232, "speakers languages": 89592, "create extensive": 20161, "date comprising": 22475, "million instances": 60033, "resources develop": 83004, "develop opensource": 24472, "framework future": 36144, "unified large": 100029, "model agent": 60526, "emerging building": 28218, "urban data": 100398, "data diverse": 21160, "scenarios despite": 85418, "hindering potential": 41838, "advancement paper": 3792, "specifically construct": 89796, "instruction set": 46356, "extraction knowledge": 33305, "graph completion": 40363, "propose toolaugmented": 77141, "refinement module": 80986, "hybrid instruction": 42704, "finetuning augmented": 35018, "tasks surpass": 95167, "approximately 20": 7269, "20 times": 500, "online services": 68009, "code opensource": 15427, "vs aigenerated": 103244, "risks society": 84534, "aim shed": 4735, "study perceived": 91766, "news social": 66641, "gpt4 vs": 40154, "factors explain": 33592, "news large": 66631, "algorithm generate": 4915, "frequent occurrence": 36377, "attacks defense": 8208, "network security": 66160, "lack publicly": 49038, "manually defined": 58303, "generation strategies": 38429, "algorithms address": 4955, "datasets complex": 22181, "propose hybrid": 76994, "generation help": 38192, "incorporates various": 44687, "fewshot example": 34233, "llm learning": 55151, "learning reasoning": 53373, "strategies experimental": 90809, "work multiple": 104181, "llms excellent": 55897, "code reasoning": 15464, "task previous": 94198, "effectively efficiently": 27417, "review suggests": 84276, "models assessed": 61863, "using results": 101740, "results neural": 83743, "employed stateoftheart": 28435, "combination results": 15957, "results illustrative": 83653, "dataset approximately": 21828, "chatgpt family": 13813, "forecasting tasks": 35733, "evaluated impact": 30343, "used advanced": 100730, "advanced model": 3720, "reveal llm": 84158, "compared control": 16521, "occurs despite": 67715, "accuracy predictions": 2333, "showed pronounced": 87401, "increased accuracy": 44789, "accuracy 43": 2177, "question difficulty": 78661, "difficulty findings": 25325, "decision aid": 22577, "demanding tasks": 22973, "models rlhf": 64124, "llm behaviors": 54985, "controllable inference": 19237, "multiple contexts": 65164, "instructing llm": 46302, "certain entity": 12758, "novel simplification": 67251, "critiques revisions": 20389, "finetuning synthetic": 35269, "performs gpt4": 71813, "problem llms": 75043, "landscape social": 49116, "promising opportunities": 76175, "developed llms": 24508, "experimental framework": 32003, "human detection": 42153, "users experiment": 101103, "time despite": 96947, "impact human": 43211, "taskspecific generative": 95287, "llms received": 56650, "received lot": 80147, "generating human": 37922, "model shows": 61401, "different nlp": 25127, "creation pipeline": 20247, "studies models": 91420, "models llmbased": 62964, "llmbased assistants": 55338, "emerged potential": 28144, "helping users": 41302, "users navigate": 101146, "featurerich software": 33982, "use vast": 100722, "mimic humanlike": 60052, "work investigated": 104152, "baseline llm": 9789, "constructing appropriate": 18456, "accuracy relevance": 2348, "usage user": 100454, "integration domain": 46762, "understand prompts": 99645, "prompts text": 76839, "text related": 96389, "software tasks": 89038, "tasks leading": 94808, "leading low": 52867, "inaccuracies llms": 44184, "software expertise": 89016, "identify biases": 42848, "utility llm": 101896, "researchers shown": 82886, "blocks code": 11203, "code simple": 15507, "shown using": 87558, "enhance programming": 29202, "students make": 91319, "make fewer": 57993, "work implementing": 104125, "assessment tool": 7979, "ai automated": 4312, "feedback gpt4": 34089, "gpt4 provided": 40037, "single image": 88364, "model mllm": 61135, "tools use": 97477, "redteaming efforts": 80754, "revealed adversarial": 84185, "severe safety": 87133, "multiagent environments": 64863, "exhibit harmful": 31521, "agents employ": 4184, "adversarial image": 3979, "randomly chosen": 79122, "sufficient achieve": 92332, "derive simple": 23649, "jailbreak design": 48094, "design practical": 23825, "practical defense": 73508, "viability large": 102842, "digital health": 25361, "rulebased machine": 84928, "lack personalization": 49036, "data sparsity": 21645, "implementation llms": 43334, "generated total": 37811, "iterations gpt4": 48052, "gpt4 baseline": 39785, "healthcare professionals": 41192, "indicates llms": 45033, "personalization based": 71901, "vs llama": 103249, "evolving role": 31058, "age generative": 4105, "meta released": 59139, "answer large": 6023, "llm called": 54991, "overflow using": 69383, "answers potential": 6204, "long term": 57337, "challenge human": 12882, "observed furthermore": 67609, "furthermore discuss": 36603, "discuss impact": 25662, "findings regarding": 34729, "optimized training": 68645, "gpt4 revolutionized": 40061, "traditional tasks": 97706, "strategy harnesses": 90889, "capabilities enhance": 11887, "llmannotated data": 55325, "data analyzing": 20972, "second phase": 85944, "comparative experiments": 16432, "different training": 25233, "mix training": 60322, "distilled data": 25837, "data followed": 21242, "optimize training": 68636, "process results": 75398, "presents scalable": 74166, "costs increases": 19927, "mix strategy": 60321, "results understanding": 83903, "understanding underlying": 99897, "selection processes": 86173, "improving radiology": 44150, "radiology report": 79027, "similar chatgpt": 88058, "radiology reports": 79029, "patient data": 70603, "method contrastive": 59247, "secure efficient": 85989, "efficient ai": 27738, "tools healthcare": 97416, "minimal supervision": 60102, "modeling large": 61648, "models exploration": 62412, "rapid progression": 79333, "intelligence facilitated": 46847, "offering potential": 67797, "modeling paper": 61665, "software focusing": 89018, "fusion chatgpt": 36678, "incorporating large": 44707, "models engineering": 62327, "albeit limited": 4885, "models addressing": 61793, "modeling challenges": 61631, "outline potential": 68869, "analysis visualization": 5719, "extraction training": 33338, "training simulation": 98296, "studies reveal": 91439, "reveal transformative": 84180, "automating optimizing": 8913, "efficiency case": 27670, "selecting right": 86147, "model techniques": 61498, "performance reduce": 71527, "direct use": 25437, "techniques utilized": 95609, "future artificial": 36698, "massive multilingual": 58458, "dataset api": 21826, "dataset featuring": 21941, "pairs aimed": 69482, "aimed advancing": 4748, "overall proficiency": 69310, "proficiency general": 75787, "general coding": 37115, "yields 10": 104659, "gpt4 respectively": 40055, "improves generalization": 44029, "generalization new": 37272, "generation achieved": 38009, "data language": 21360, "base publicly": 9421, "learning limited": 53253, "suitable prompts": 92463, "prompts effective": 76692, "evaluating responses": 30484, "constraint prompt": 18385, "novel connection": 67133, "based connection": 9481, "characteristics prompt": 13337, "solely textual": 89059, "train multimodal": 97762, "fuse textual": 36673, "textual inputs": 96679, "document layout": 26211, "required present": 82318, "generalization llms": 37265, "question type": 78714, "purely textbased": 78030, "rulebased methods": 84930, "layout information": 52775, "information experiments": 45459, "commercial chatgpt": 16073, "model opensource": 61170, "various standard": 102580, "addition study": 3211, "impact noisy": 43240, "compared just": 16578, "just using": 48225, "model choice": 60653, "choice textbased": 14597, "llm multimodal": 55173, "models 128k": 61704, "128k context": 249, "pretraining recipe": 74591, "focus data": 35514, "modeling particular": 61666, "ability utilize": 1795, "utilize information": 101939, "acquired largescale": 2916, "readily extended": 79515, "extended contexts": 32953, "substantially longer": 92132, "longer seen": 57368, "4k 128k": 1000, "lightweight continual": 54035, "appropriate data": 7238, "data mixture": 21410, "data continual": 21120, "500 million": 1026, "million billion": 60028, "tokens enable": 97191, "longer data": 57364, "practice existing": 73547, "suboptimal performance": 91990, "tokens data": 97189, "strategy scaling": 90914, "length language": 53593, "recipe outperforms": 80577, "strong opensource": 91053, "longcontext models": 57356, "typically trained": 99306, "given higher": 38894, "higher computational": 41492, "computational demand": 17454, "adds new": 3562, "components additional": 17082, "performance interesting": 71321, "interesting finding": 47151, "information added": 45394, "finetuning significant": 35247, "dramatically reduces": 26788, "settings validate": 87101, "families models": 33838, "showcasing minimal": 87379, "settings promptbased": 87085, "bias calibration": 10830, "method calibrate": 59224, "lms different": 57117, "excessive computational": 31395, "specifically leverage": 89844, "inputs generated": 45995, "prompt pretrained": 76397, "bias parameters": 10871, "distribution experimental": 25938, "promotes equitable": 76221, "including sentiment": 44474, "analysis topic": 5705, "performance lms": 71378, "western languages": 103620, "german french": 38807, "persona assigned": 71872, "assigned chatgpt": 8000, "negative responses": 66067, "political domain": 72566, "findings providing": 34723, "bias prompt": 10877, "robustness checks": 84699, "popular language": 72634, "language multilingual": 50935, "pivot language": 72197, "importance understanding": 43481, "models function": 62518, "family transformer": 33857, "nonenglish prompts": 66895, "layer layer": 52720, "input embedding": 45890, "output embedding": 69149, "nexttoken probabilities": 66662, "probabilities computed": 74955, "intermediate embeddings": 47208, "highdimensional space": 41480, "space reveals": 89466, "reveals distinct": 84208, "distinct phases": 25874, "correct token": 19688, "language finally": 49220, "input space": 45959, "languages important": 51288, "biases human": 10926, "evaluations results": 30882, "possess considerable": 72852, "weakness conduct": 103452, "conduct attacks": 17825, "attacks llm": 8221, "systems exploring": 93450, "recall assess": 80107, "framework large": 36186, "allows nuanced": 5204, "significant insights": 87784, "insights performance": 46118, "performance openended": 71445, "benchmarks findings": 10340, "feedback work": 34158, "work extends": 104091, "nlp evaluation": 66729, "insights practical": 46123, "capabilities challenges": 11851, "challenges faced": 13014, "faced current": 33459, "recurrent memory": 80722, "capabilities extracting": 11899, "extensive texts": 33136, "texts evaluation": 96561, "evaluation includes": 30637, "common methods": 16152, "handle tasks": 40937, "demonstrating significant": 23444, "verbal feedback": 102723, "contexts large": 18909, "llms deployed": 55780, "model adjustments": 60523, "use emojis": 100532, "annotations reinforcement": 5948, "simply prompting": 88297, "model feedback": 60875, "contexts relevant": 18922, "problem incorporating": 75026, "generate small": 37596, "synthetic preference": 93287, "preference dataset": 73795, "model prompts": 61291, "does apply": 26280, "relevant scenarios": 81476, "crisis management": 20284, "advanced llm": 3712, "llm platforms": 55199, "effective response": 27362, "research introduce": 82639, "source large": 89383, "power natural": 73386, "public safety": 77947, "focuses developing": 35601, "analyze content": 5748, "information necessary": 45553, "benefit language": 10453, "ability assist": 1597, "assist people": 8018, "networks despite": 66180, "despite performance": 24094, "improvement achieving": 43876, "low arithmetic": 57500, "arithmetic intensity": 7489, "greatly reduces": 40532, "especially dealing": 29869, "longer context": 57361, "softmax alternative": 88970, "stateoftheart softmax": 90475, "dataset measuring": 22000, "implicit assumption": 43412, "use prompts": 100664, "continue generate": 19007, "propose quantitative": 77097, "personalized chatbots": 71907, "propose lightweight": 77014, "compares favorably": 16666, "predominantly focused": 73783, "focused questions": 35591, "work studied": 104280, "temporal context": 95709, "present time": 74074, "outdated knowledge": 68858, "reasoning required": 80011, "gold answers": 39094, "single multihop": 88380, "sparql queries": 89523, "available evaluate": 9031, "llms sota": 56835, "prompting retrievalaugmented": 76602, "motivate need": 64771, "need new": 65976, "complex relationships": 16996, "narrative understanding": 65499, "fail represent": 33689, "complexity uncertainty": 17057, "experiments advanced": 32101, "llama2 reveal": 54848, "reveal limitations": 84157, "longer narratives": 57367, "dataset pipeline": 22030, "nlp recently": 66766, "exciting progress": 31416, "scientific documents": 85638, "questionanswering benchmark": 78731, "consisting questions": 18324, "helps measure": 41313, "freeform generation": 36346, "knowledge finetuning": 48571, "datasets leads": 22322, "leads poor": 52902, "synthetic dialogues": 93276, "textbooks use": 96506, "parameters lm": 70248, "math datasets": 58548, "data evaluations": 21199, "graph paper": 40401, "aim improve": 4719, "methods design": 59593, "strategy llms": 90904, "autonomous llmbased": 8936, "integrate llm": 46666, "memory reasoning": 59060, "process kg": 75342, "finetune base": 34814, "llm extensive": 55074, "10k samples": 174, "tuning llama7b": 99062, "indomain outdomain": 45126, "reasoning multihop": 79946, "involves stepbystep": 47853, "inadequate answering": 44196, "reasoning chain": 79820, "extracted evidence": 33251, "retrieval qa": 84009, "enabling efficient": 28631, "pivotal challenge": 72200, "contrast conventional": 19069, "approaches use": 7218, "practical effective": 73511, "data settings": 21617, "settings introduce": 87066, "learning llm": 53254, "models greater": 62633, "better knowledge": 10738, "outcome supervision": 68841, "approach developed": 6805, "specific reward": 89747, "structure generation": 91133, "types evaluate": 99232, "gpt4 supervised": 40113, "approaches improving": 7152, "performance identifying": 71294, "particularly handling": 70471, "emphasizes critical": 28289, "function selection": 36491, "demonstrates benefits": 23366, "benefits incorporating": 10475, "incorporating code": 44692, "leads higher": 52896, "prompted follow": 76476, "follow single": 35654, "single instruction": 88367, "inference work": 45322, "analyze llms": 5773, "capability handle": 12172, "purpose introduce": 78038, "25 tasks": 651, "demonstrate multitask": 23138, "inference reduces": 45292, "reduces total": 80853, "times average": 97067, "critical analysis": 20302, "detection work": 24379, "flant5 models": 35399, "news headlines": 66628, "methods key": 59697, "prompting enhancing": 76525, "reliability models": 81503, "bias gpt4": 10845, "scenarios presented": 85472, "indomain examples": 45124, "additional taskspecific": 3261, "emotional language": 28261, "emotional expression": 28256, "presence absence": 73918, "results suggesting": 83880, "models useful": 64468, "potential annotation": 73000, "existing new": 31780, "datasets finally": 22261, "realworld conditions": 79657, "created generative": 20195, "discussion highlights": 25722, "challenges early": 12999, "factual inconsistencies": 33634, "ability furthermore": 1648, "answering queries": 6142, "finally summarize": 34571, "directions open": 25475, "defending language": 22843, "prompt attacks": 76236, "applications growing": 6493, "growing reliance": 40665, "vulnerable attacks": 103280, "applications financial": 6482, "impact llmbased": 43226, "methods contain": 59578, "remain unexplored": 81636, "unexplored paper": 99966, "presents prompt": 74163, "prompts ensuring": 76704, "execution llm": 31457, "language design": 49186, "design challenges": 23758, "groundbreaking benchmark": 40564, "evaluation experiments": 30593, "prompts surpassing": 76830, "gpt35 llama": 39640, "codes publicly": 15638, "ability remains": 1764, "data potentially": 21488, "introduce llm": 47443, "benchmark based": 10082, "knowledge editing": 48527, "dataset annotate": 21824, "evaluate reasoning": 30273, "answers corresponding": 6176, "observation llms": 67556, "believe new": 10037, "development trustworthy": 24725, "current evaluations": 20687, "task known": 94113, "change detection": 13270, "comparison work": 16732, "models approaches": 61846, "equal conditions": 29681, "wordincontext wic": 103938, "tasks compare": 94459, "performed different": 71756, "contextualized models": 18964, "comparable gpt4": 16374, "clear need": 14886, "reveal highly": 84152, "capable llms": 12249, "gpt4 effective": 39845, "individual responses": 45095, "reliability responses": 81506, "responses query": 83291, "pair reference": 69472, "responses reasoning": 83295, "outperform strong": 68970, "token consumption": 97127, "instructiontuned llama7b": 46601, "phi2 27b": 72034, "potential proposed": 73231, "100 languages": 125, "models experimental": 62401, "tasks outperform": 94912, "outperform large": 68945, "pretrained multilingual": 74427, "languages compared": 51250, "approach mitigate": 6945, "solely relying": 89057, "relying translation": 81609, "original capabilities": 68760, "limit performance": 54277, "crosslingual knowledge": 20421, "improve multilingual": 43739, "multilingual performance": 64995, "source languages": 89382, "languages various": 51374, "enhance multilingual": 29186, "minimizing impact": 60120, "impact original": 43244, "original performance": 68797, "performance resourcerich": 71538, "introduce inferencetime": 47432, "manipulation framework": 58223, "harmful language": 41036, "model additional": 60516, "llama1 llama2": 54808, "baselines achieving": 9816, "achieving highest": 2857, "crucially findings": 20550, "models safety": 64133, "data approach": 20987, "approach domain": 6816, "remains important": 81663, "task llms": 94132, "nli datasets": 66694, "learning semantic": 53406, "tasks nli": 94888, "tools identifying": 97420, "scale nli": 85284, "datasets today": 22441, "models improved": 62714, "problem domain": 75016, "nli data": 66693, "creative ways": 20259, "tokens labels": 97208, "completely new": 16886, "new downstream": 66384, "downstream test": 26752, "average compared": 9144, "compared training": 16651, "training best": 97950, "t5 xxl": 93656, "fine grained": 34777, "entity type": 29594, "potential gpt4": 73112, "gpt4 advanced": 39758, "iteration gpt4": 48044, "broad classification": 11488, "including objects": 44434, "subjects similar": 91967, "iterative prompting": 48067, "leveraging gpt4s": 53850, "remarkable quality": 81819, "strategy enabling": 90879, "detailed taxonomy": 24189, "taxonomy diverse": 95323, "diverse significant": 26105, "facilitates creation": 33522, "enhances information": 29280, "tasks relation": 95025, "event argument": 30915, "argument extraction": 7466, "various computational": 102387, "benchmarking causal": 10283, "model interpretability": 61026, "help bring": 41237, "strands research": 90777, "ability interpretability": 1690, "model behaviour": 60599, "pythia models": 78092, "causal efficacy": 12650, "outperforms methods": 69081, "study learning": 91731, "generation domain": 38126, "engineering healthcare": 28976, "current works": 20801, "works controllable": 104354, "generation explore": 38159, "learningbased framework": 53485, "guide large": 40739, "models align": 61819, "language standards": 51112, "common european": 16138, "european framework": 30108, "reference languages": 80933, "languages cefr": 51243, "common core": 16135, "accuracy llama2": 2305, "llama2 gpt4": 54836, "respectively demonstrating": 83064, "process effectively": 75298, "semeval2024 task": 86405, "translation paper": 98729, "african asian": 4096, "build model": 11599, "sentences target": 86570, "participated subtasks": 70384, "training leveraging": 98175, "models extensively": 62427, "similarity using": 88154, "embedding llms": 28057, "t5 family": 93627, "par baseline": 70007, "languages model": 51325, "2nd place": 729, "3rd place": 899, "prompt efficiency": 76281, "strategies different": 90801, "levels complexity": 53690, "results additionally": 83457, "confirmation step": 18044, "increase success": 44777, "increase code": 44754, "generation efficiency": 38132, "efficiency traditional": 27728, "effectiveness accessibility": 27486, "prompting methodology": 76573, "developed study": 24533, "study observe": 91756, "systems introduction": 93490, "raised privacy": 79068, "utilizing text": 102048, "access text": 2088, "reconstruct original": 80683, "models influence": 62778, "noise addition": 66855, "retrieval effectiveness": 83983, "systems additionally": 93386, "ranking effectiveness": 79269, "mitigating risk": 60305, "extend application": 32927, "task corpus": 93997, "corpus poisoning": 19646, "dense retrievers": 23511, "parameters efficiently": 70203, "efficiently generate": 27851, "potential threat": 73286, "existing dense": 31697, "importance prompt": 43470, "engineering technology": 29031, "quality model": 78321, "novel attack": 67113, "attack llms": 8171, "llms named": 56418, "attacks proposed": 8234, "attack aims": 8159, "welldesigned prompts": 103583, "prompts based": 76656, "based generated": 9546, "answers prompt": 6207, "primary modules": 74808, "fall categories": 33777, "prompt incontext": 76342, "contexts used": 18927, "based types": 9746, "prompts following": 76722, "used reconstruct": 100887, "features final": 34000, "results remarkable": 83811, "proposed attacks": 77185, "attacks add": 8202, "fixing security": 35369, "program repair": 75840, "field attracted": 34350, "efforts creating": 27899, "works complex": 104352, "proven difficult": 77379, "task difficult": 94022, "learn longrange": 52952, "clean dataset": 14871, "program bugs": 75831, "bugs corresponding": 11570, "corresponding fixes": 19793, "propose technique": 77134, "technique address": 95431, "llms attention": 55496, "required training": 82326, "data concretely": 21099, "necessary context": 65869, "reduction approach": 80898, "available models": 9070, "comprehensive code": 17220, "patterns including": 70631, "matching human": 58518, "10 50": 96, "50 cases": 1013, "baselines based": 9820, "information essential": 45454, "opportunity revolutionize": 68523, "annotation existing": 5895, "focuses specific": 35617, "furthermore paper": 36643, "paper includes": 69754, "employing llms": 28457, "limitations associated": 54300, "advancements critical": 3807, "domain provide": 26434, "models activation": 61780, "relu activation": 81564, "efforts explored": 27908, "obtain high": 67651, "high sparsity": 41464, "llms higher": 56129, "higher activation": 41486, "performance specifically": 71586, "adopts progressive": 3653, "activation distribution": 2976, "respectively achieving": 83053, "demonstrate practical": 23153, "demand multilingual": 22969, "multilingual instructions": 64965, "extensive study": 33130, "models parallel": 63766, "llm instructiontuning": 55133, "following capabilities": 35671, "superficial alignment": 92621, "alignment hypothesis": 5080, "does hold": 26299, "annotation study": 5908, "evaluation multilingual": 30692, "labeled task": 48913, "data highresource": 21293, "utilization propose": 101924, "method generates": 59315, "scale specifically": 85294, "data competitive": 21088, "data yields": 21763, "existing lexiconbased": 31741, "translation methods": 98719, "llms cost": 55691, "dataset given": 21960, "real interactions": 79546, "interactions recent": 47078, "generation offensive": 38306, "offensive content": 67723, "content existing": 18620, "methods address": 59519, "address ethical": 3393, "humans create": 42585, "including ethical": 44337, "ethical problems": 30081, "problems data": 75122, "data does": 21164, "does reflect": 26319, "safe llms": 84984, "chatgpt users": 14333, "problems experiments": 75139, "proposed evaluation": 77200, "challenges code": 12976, "detection dataset": 24286, "dialogues large": 24934, "automatic manual": 8797, "provide simple": 77570, "task trained": 94269, "trained dataset": 97810, "like large": 54180, "linguistic comparison": 54565, "bard large": 9360, "tend exhibit": 95732, "exhibit distinctive": 31513, "akin human": 4857, "bard diverse": 9355, "diverse inputs": 26038, "inputs results": 46010, "simple offtheshelf": 88221, "theoretical practical": 96744, "practices using": 73569, "using retrievalaugmented": 101742, "method enhancing": 59287, "learning efficacy": 53122, "accurately efficiently": 2447, "tutors ability": 99144, "reports financial": 82010, "current study": 20791, "thought prompt": 96859, "prompt results": 76407, "rag prompt": 79048, "accurate performance": 2418, "level hallucination": 53659, "strategies evaluated": 90808, "inform development": 45380, "development personalized": 24693, "enhance educational": 29154, "gap information": 36936, "data vital": 21750, "current datasets": 20678, "comprehensive bilingual": 17215, "results llama": 83711, "llama baichuan": 54726, "especially zeroshot": 29927, "hoping provide": 41980, "language modeldriven": 49576, "rapid popularity": 79331, "capabilities given": 11925, "given widespread": 38984, "tools deployed": 97384, "setting specifically": 87024, "query response": 78542, "response capabilities": 83121, "providing correct": 77740, "questions design": 78823, "future users": 36788, "study vulnerability": 91895, "chatbot answer": 13399, "answer text": 6064, "provided tools": 77633, "paper try": 69981, "question chatgpt": 78647, "questions test": 78964, "medmcqa dataset": 58953, "basic natural": 9881, "sample exam": 85087, "efficient large": 27785, "llms mobile": 56400, "latency concerns": 52621, "underscores significance": 99577, "groupedquery attention": 40614, "attains remarkable": 8250, "accuracy boost": 2214, "increase model": 44765, "chat benchmarks": 13363, "benchmarks demonstrates": 10329, "tasks highlighting": 94699, "capability small": 12208, "predict specific": 73658, "gpt4 explain": 39879, "analysis identifies": 5542, "focus specifically": 35556, "similar prompts": 88104, "activation patterns": 2982, "distinct linguistic": 25870, "combines neural": 15996, "processing llms": 75499, "reliability large": 81499, "evidence evaluating": 30973, "evaluating answers": 30398, "responses fully": 83218, "fully supported": 36469, "evaluation underscores": 30815, "need automatic": 65913, "methods bridge": 59556, "methods present": 59754, "various existing": 102425, "datasets extensive": 22256, "challenges automatic": 12970, "findings finetuned": 34668, "error cases": 29772, "understanding people": 99836, "personas large": 71931, "significant strides": 87857, "topics existing": 97529, "existing llmdriven": 31747, "individual user": 45098, "creating personalized": 20230, "knowledge people": 48696, "interface supporting": 47178, "personas llms": 71934, "dynamic dialogues": 26912, "interactions findings": 47059, "systems conversational": 93417, "vulnerabilities safety": 103266, "harmful queries": 41042, "study tackle": 91861, "concern safety": 17665, "safety ethical": 85024, "producing harmful": 75710, "harmful unethical": 41046, "sophisticated methods": 89287, "jailbreaking techniques": 48105, "techniques targeted": 95598, "specific issue": 89712, "led astray": 53517, "queries answered": 78470, "aimed identifying": 4752, "series llms": 86743, "llms llama213b": 56349, "llama213b llama27b": 54858, "ask generate": 7715, "judgements gpt4": 48184, "overall observe": 69305, "objective investigate": 67502, "model editing": 60785, "editing using": 27111, "undesirable content": 99937, "content particular": 18668, "learning development": 53110, "steps model": 90689, "llms bridge": 55542, "nonexpert individuals": 66902, "interface specifically": 47177, "optimizer called": 68648, "optimal hyperparameters": 68562, "classification detection": 14739, "detection segmentation": 24354, "promptbased model": 76469, "pipeline code": 72145, "model embeddings": 60795, "improving extraction": 44117, "largely focused": 52407, "data backbone": 21019, "backbone pretrained": 9252, "models token": 64369, "contain information": 18514, "information tokens": 45655, "tokens appear": 97178, "appear later": 6305, "input address": 45875, "extract embeddings": 33227, "tokens encode": 97192, "encode information": 28674, "tokens allowing": 97177, "leverage highquality": 53731, "embeddings improve": 28082, "mistral7b model": 60228, "models leverage": 62895, "words evaluating": 103952, "llms general": 56034, "currently evaluated": 20809, "reasoning maths": 79938, "features texts": 34032, "llms poised": 56530, "features text": 34030, "llms depends": 55778, "depends model": 23551, "presented used": 74104, "used conduct": 100763, "dataset tools": 22106, "analysis released": 5638, "released open": 81409, "study advent": 91474, "growing exploring": 40654, "potential medical": 73190, "medical applications": 58863, "goal identify": 39057, "identify extract": 42866, "extract adverse": 33221, "adverse events": 4016, "events textual": 30938, "experiments assess": 32111, "performance appropriate": 70993, "compared fully": 16548, "investigation reveals": 47797, "reveals inclusion": 84211, "synthesized data": 93235, "performance possibly": 71475, "performance achieved": 70969, "improvement remains": 43939, "remains elusive": 81655, "linguistic intelligence": 54585, "nlp demonstrating": 66725, "analytical reasoning": 5733, "domains comprehensive": 26502, "needed study": 66022, "seeks evaluate": 86074, "achieve conduct": 2503, "conduct exhaustive": 17863, "zephyr models": 104693, "require fewer": 82252, "stateoftheart finetuned": 90341, "evaluate compare": 30158, "levels comparable": 53689, "models indicates": 62765, "indicates pretraining": 45036, "pretraining extensive": 74530, "llms degree": 55724, "llm consistently": 55018, "llms valuable": 57016, "large annotated": 51388, "comprehension llms": 17172, "studies provide": 91432, "provide formal": 77479, "answer relevant": 6052, "vicuna mistral": 102866, "llms indicate": 56217, "indicate knowledge": 45000, "increase number": 44768, "generalization memorization": 37267, "explicitly implicitly": 32545, "include test": 44237, "data leading": 21372, "mitigating data": 60297, "faces significant": 33468, "distribution llms": 25943, "distribution mitigate": 25944, "mitigate impact": 60265, "evaluation present": 30721, "introduce benchmarks": 47404, "tasks extensive": 94621, "relative improvements": 81298, "approaches terms": 7212, "significantly mitigates": 87976, "suffer data": 92304, "llms retrieving": 56728, "research exists": 82587, "llms encode": 55857, "challenges understanding": 13137, "understanding internal": 99778, "attempt investigate": 8259, "investigate layerwise": 47666, "llms probing": 56575, "tasks leverage": 94813, "probing datasets": 74979, "datasets providing": 22380, "corresponding various": 19807, "different layers": 25093, "layers experiments": 52746, "newly acquired": 66586, "llms prefer": 56551, "lower layers": 57564, "evidence code": 30970, "approach incurs": 6901, "lead potential": 52814, "alternative strategy": 5276, "expensive pretraining": 31921, "llms target": 56915, "scalability flexibility": 85231, "chat llms": 13382, "comprises main": 17386, "main stages": 57839, "llms derive": 55782, "finetuning target": 35271, "parameter space": 70128, "space propose": 89461, "weights based": 103544, "parameter matrices": 70115, "matrices finetuning": 58613, "using prominent": 101694, "prominent chat": 76090, "architectures scales": 7402, "benefits drawbacks": 10468, "terminological resources": 95784, "excels providing": 31360, "challenges accuracy": 12950, "approach blending": 6759, "ai efficiency": 4377, "recent capabilities": 80229, "goal propose": 39067, "llms optimization": 56472, "problem subsequently": 75089, "major research": 57939, "enabling widespread": 28666, "classification retrieval": 14787, "better leverage": 10741, "leverage world": 53768, "dialogues dataset": 24928, "investigate use": 47708, "use personalized": 100649, "focusing social": 35634, "exploration application": 32586, "memory integration": 59044, "generation consisting": 38094, "llms chatglm3": 55574, "importance effective": 43451, "effective memory": 27326, "intellectual property": 46793, "perform specific": 70924, "property ip": 76912, "benchmark experimental": 10166, "noticeable margin": 67063, "lower scores": 57574, "improvement powerful": 43933, "passing level": 70552, "palm generate": 69548, "description input": 23681, "courses work": 20038, "contributes better": 19136, "university level": 100129, "capabilities following": 11910, "instructions recent": 46555, "studies raised": 91434, "combining textual": 16026, "textual adversarial": 96654, "samples paper": 85136, "works llms": 104367, "llms sensitive": 56759, "code style": 15520, "llms precise": 56548, "precise instructions": 73596, "llms fewshot": 55977, "scenarios propose": 85475, "context method": 18813, "method boost": 59220, "boost robustness": 11279, "outperforms prompting": 69107, "instructions example": 46496, "accuracy reduction": 2347, "rate asr": 79373, "specially curated": 89651, "parallel corpora": 70076, "corpora remains": 19587, "llms process": 56577, "specially propose": 89654, "experiments representative": 32284, "proficiency processing": 75799, "subset neurons": 92041, "furthermore showcase": 36660, "language llms": 49315, "important evidence": 43505, "understanding exploration": 99734, "source projects": 89390, "exploit models": 32569, "documented literature": 26233, "manually analyze": 58287, "true positive": 98914, "45 tasks": 960, "tasks developers": 94542, "chatgpt taxonomy": 14300, "representative examples": 82139, "examples provides": 31277, "exploit llms": 32567, "generalist models": 37224, "models structured": 64266, "despite demonstrated": 24036, "llms plain": 56523, "limited investigation": 54434, "reveals notable": 84220, "lags stateoftheart": 49089, "average 35": 9131, "grounding skg": 40593, "developed comprehensive": 24495, "comprehensive instruction": 17271, "comprising 11": 17396, "11 million": 193, "utilizing dataset": 102008, "train series": 97771, "based codellama": 9471, "skg tasks": 88580, "demonstrates exceptional": 23373, "generalization novel": 37273, "new level": 66446, "gpt4 recent": 40042, "indicated gpt4": 45025, "labels used": 48955, "used infer": 100826, "gpt4 achieved": 39745, "achieved higher": 2631, "analysis suggested": 5690, "alignment pretrained": 5105, "text originating": 96345, "points time": 72512, "investigates temporal": 47758, "methods align": 59523, "alignment automatically": 5057, "containing 20k": 18530, "2023 based": 550, "llama2 despite": 54826, "earlier knowledge": 26961, "lms use": 57181, "knowledge answering": 48424, "alignment experiments": 5069, "year 2022": 104583, "performance 62": 70961, "mentioning time": 59100, "information explicitly": 45461, "aligning models": 5051, "sense time": 86443, "time pretraining": 97005, "attention mask": 8334, "economical approach": 27060, "training transformerbased": 98337, "taskspecific soft": 95303, "soft prefixes": 88964, "inputs experiments": 45992, "symbol tuning": 93118, "serve better": 86758, "prefix tuning": 73843, "easy implement": 27034, "culturally relevant": 20605, "relevant commonsense": 81448, "data case": 21038, "dataset incorporates": 21976, "incorporates knowledge": 44684, "create datasets": 20154, "involving llms": 47869, "experiments current": 32147, "current bestperforming": 20669, "bestperforming llm": 10667, "adequate knowledge": 3570, "performance discrepancy": 71149, "lowerresource languages": 57581, "languages benchmark": 51239, "compared created": 16526, "created humans": 20198, "support study": 92833, "methods interviews": 59692, "support services": 92829, "analysis applied": 5436, "extract insights": 33234, "chatbot literature": 13412, "consider potential": 18139, "cases target": 12561, "target groups": 93871, "safety privacy": 85048, "privacy issues": 74903, "value conveying": 102183, "emotional support": 28266, "benchmarking gpt4": 10290, "evaluation prompting": 30731, "ability reuse": 1767, "massive text": 58470, "outside training": 69267, "distribution work": 25955, "offer systematic": 67772, "algorithmic tasks": 4949, "parameters compare": 70184, "architecture recently": 7369, "tasks neural": 94887, "neural data": 66223, "data router": 21583, "deployment advanced": 23592, "techniques allows": 95476, "superior accuracy": 92632, "accuracy tasks": 2372, "demonstrating stateoftheart": 23448, "llms constitute": 55672, "baseline challenging": 9768, "require systematic": 82295, "nlp lack": 66737, "research llm": 82659, "stages llm": 90135, "capabilities remain": 12066, "industrial academic": 45150, "solution problem": 89108, "dataset design": 21903, "baselines additionally": 9818, "experiments specifically": 32303, "used traditional": 100919, "rouge bleu": 84858, "final result": 34495, "evaluation gpt35": 30625, "models main": 63570, "performance end": 71176, "model base": 60587, "model build": 60619, "effectively assist": 27405, "business models": 11701, "empowering large": 28505, "agents automate": 4165, "automate data": 8658, "tasks goal": 94679, "widespread success": 103794, "success existing": 92192, "novel automatic": 67115, "automatic framework": 8788, "framework harnesses": 36155, "direct code": 25415, "generation significantly": 38420, "reducing demand": 80866, "foundational capabilities": 35971, "average pass": 9169, "llms deployment": 55781, "code opensourced": 15428, "predict word": 73663, "exhibit uncertainty": 31562, "statistical models": 90553, "text reasonable": 96384, "humans form": 42597, "evaluation robust": 30762, "word level": 103907, "exact matching": 31071, "lms ability": 57095, "ability reproduce": 1765, "task seen": 94235, "context text": 18861, "gpt2 bloom": 39262, "bloom chatgpt": 11213, "expected calibration": 31892, "models static": 64255, "represents paradigm": 82177, "field paper": 34400, "role current": 84766, "type inference": 99209, "programs using": 75962, "series opensource": 86748, "llama study": 54798, "better suit": 10791, "provide foundation": 77482, "model representations": 61341, "disentangle roles": 25742, "tightly controlled": 96922, "quantitative comparisons": 78405, "define new": 22865, "multiple causal": 65150, "demonstrating importance": 23431, "analyses identify": 5398, "release benchmark": 81346, "report contains": 81962, "benchmarks mt": 10385, "benchmark focusing": 10172, "2b parameters": 717, "parameters significant": 70284, "model follow": 60906, "scalable data": 85236, "adaptation study": 3098, "extract text": 33242, "data verbatim": 21747, "rag systems": 79049, "range modern": 79177, "size scales": 88525, "rate 25": 79367, "gpt3 llama": 39489, "llama display": 54739, "display remarkable": 25769, "perform multilingual": 70895, "tasks raising": 95002, "texttotext prompt": 96647, "generates token": 37855, "token input": 97136, "prompt asks": 76234, "englishcentric multilingual": 29121, "prompting baseline": 76504, "influence evaluation": 45348, "use instructions": 100582, "investigation shows": 47798, "englishcentric language": 29118, "englishcentric llms": 29119, "llms contributing": 55686, "contributing understanding": 19164, "literature reviews": 54660, "presents formidable": 74138, "research developments": 82551, "addressing study": 3556, "aibased tool": 4633, "robust capabilities": 84643, "academic disciplines": 1977, "approach consisting": 6786, "tool significantly": 97318, "tool highly": 97295, "highly beneficial": 41682, "involves substantial": 47855, "reduce potential": 80800, "stride forward": 90980, "pioneering benchmark": 72129, "despite llms": 24083, "benchmarks fail": 10337, "fail assess": 33672, "opensource llama": 68354, "gemini llms": 37061, "quality llms": 78311, "insights suggest": 46140, "patterns design": 70628, "ontology development": 68026, "human automated": 42102, "largescale deployment": 52509, "time large": 96981, "models quickly": 63953, "knowledge cases": 48462, "present collection": 73947, "knowledge available": 48434, "llms organized": 56475, "ready use": 79533, "fully open": 36460, "decoder model": 22634, "model sets": 61397, "point improvement": 72481, "language resources": 51092, "include new": 44231, "including research": 44463, "commercial usage": 16098, "teaching large": 95366, "unseen language": 100269, "lowresource ones": 57634, "effective parameter": 27343, "parameter updating": 70134, "prompting study": 76622, "framework adapting": 36020, "llms unseen": 56990, "unseen languages": 100270, "languages incontext": 51290, "translation furthermore": 98704, "llm ensemble": 55061, "rival human": 84542, "llms suggests": 56888, "frontier llms": 36396, "underperform compared": 99527, "ensemble approach": 29418, "shows llm": 87593, "study test": 91864, "test llm": 95912, "predictions gpt4": 73743, "drawing human": 26808, "information improving": 45508, "leads accurate": 52888, "accurate predictions": 2419, "effect llms": 27246, "use variety": 100719, "variety applications": 102287, "improve student": 43809, "remains complex": 81650, "invalid outputs": 47588, "problem provide": 75065, "ai feedback": 4397, "feedback rlaif": 34134, "method enrich": 59288, "dpo experiments": 26766, "student code": 91245, "7b llama": 1291, "effectively avoid": 27406, "classical chinese": 14714, "texts various": 96612, "techniques extract": 95513, "methods developed": 59599, "present pipeline": 74036, "pipeline called": 72143, "text representations": 96394, "models measure": 63595, "chinese corpora": 14541, "chinese historical": 14552, "evaluate pipeline": 30259, "approaches tasks": 7211, "verify validity": 102776, "retrieval survey": 84028, "survey applications": 93022, "applications resources": 6564, "challenges recent": 13114, "years witnessed": 104621, "witnessed substantial": 103871, "substantial increase": 92092, "learning solve": 53419, "problems early": 75131, "early deep": 26971, "leads robust": 52904, "tasks inspired": 94754, "problems information": 75155, "prevalent approaches": 74636, "apply pretrained": 6669, "encoders like": 28740, "documents ii": 26250, "ii integrating": 42976, "integrating semantic": 46746, "balancing effectiveness": 9316, "terms query": 95834, "ir systems": 47892, "systems key": 93493, "chatgpt rely": 14168, "bert encoders": 10510, "cost finally": 19845, "suggest directions": 92359, "texts similar": 96598, "counterparts work": 20012, "detection editing": 24291, "texts benchmark": 96544, "judged humans": 48180, "data highly": 21292, "highly rated": 41707, "provides challenging": 77645, "algorithms large": 4974, "models investigation": 62815, "seek examine": 86064, "abilities selected": 1567, "evaluated popular": 30357, "algorithms findings": 4968, "encourage investigation": 28791, "information flow": 45485, "topdown manner": 97497, "single forward": 88358, "applicability method": 6326, "specific types": 89769, "finally model": 34544, "proxy metrics": 77838, "desirable large": 23991, "capture multiple": 12361, "documentgrounded response": 26235, "generation example": 38149, "grounded given": 40570, "given document": 38880, "document paper": 26214, "llm refine": 55229, "refine initial": 80975, "overall better": 69281, "improves response": 44073, "quality finetuning": 78273, "improvements zeroshot": 44008, "human annotated": 42079, "deep generative": 22750, "generative techniques": 38721, "insights generative": 46096, "applications deep": 6443, "models aka": 61817, "distribution data": 25935, "dataset critical": 21889, "question raised": 78698, "reviewing existing": 84286, "endtoend view": 28891, "potential directions": 73071, "llms writing": 57056, "writing proficiency": 104485, "benchmark framework": 10174, "developed evaluate": 24498, "associated ai": 8076, "including safety": 44467, "based automatic": 9446, "validated human": 102112, "10 llms": 111, "llms highlighted": 56132, "creative writing": 20261, "need enhanced": 65940, "ethical guidance": 30070, "aligning ai": 5037, "safety considerations": 85020, "annotations highquality": 5937, "challenging automate": 13151, "topic annotations": 97499, "headers using": 41141, "llms chatgpt35": 55618, "ability classify": 1611, "based domainspecific": 9506, "consistency llms": 18240, "additionally investigate": 3320, "information dataset": 45431, "outcomes results": 68852, "llms performances": 56515, "code systematically": 15532, "systematically evaluated": 93367, "including gemini": 44350, "gemini ultra": 37069, "varies considerably": 102278, "evaluated study": 30364, "gpt4 employing": 39851, "employing optimal": 28462, "optimal prompt": 68568, "85 percent": 1366, "code different": 15230, "learning past": 53324, "gpt4 comparable": 39801, "quickly build": 78983, "build systems": 11611, "testing deployment": 96003, "deployment process": 23615, "process propose": 75379, "features wide": 34040, "selection model": 86167, "training algorithms": 97943, "methods deployment": 59592, "reach similar": 79469, "compared using": 16657, "llms constructing": 55675, "information mitigate": 45544, "issue develop": 47928, "annotation workload": 5920, "build better": 11582, "multiple task": 65265, "robust understanding": 84691, "fewshot llms": 34274, "largescale alignment": 52485, "chatbots work": 13463, "methodology designed": 59488, "designed overcome": 23933, "instructiontuning phase": 46622, "reduces reliance": 80844, "annotations proprietary": 5946, "trained traditional": 97922, "generated synthetic": 37791, "data offering": 21449, "offering scalable": 67808, "costeffective solution": 19896, "enhancing llm": 29342, "capabilities instructionfollowing": 11950, "sensing data": 86452, "data traditional": 21697, "timeseries data": 97089, "video audio": 102878, "necessary information": 65871, "human annotator": 42090, "overall cost": 69285, "additional modalities": 3248, "amounts publicly": 5354, "data allows": 20964, "potential avenue": 73033, "raw sensor": 79453, "instead relying": 46257, "mitigate problems": 60279, "motivated observation": 64778, "assess stateoftheart": 7874, "principled manner": 74826, "investigate challenges": 47627, "gpt4 faces": 39884, "data considering": 21104, "approaches utilizing": 7224, "har datasets": 40969, "datasets shows": 22414, "llm make": 55165, "make reasonable": 58024, "accurate annotations": 2390, "fields ai": 34418, "ai engineering": 4382, "llms massive": 56378, "responses biases": 83184, "evaluates llm": 30380, "structured queries": 91178, "biases addressed": 10911, "approach integrating": 6908, "opening pathways": 68280, "pathways future": 70595, "studies practical": 91425, "education public": 27175, "policy regulation": 72553, "feedback reinforcement": 34130, "systems online": 93520, "solution students": 89120, "rubric evaluating": 84918, "effectively use": 27476, "humanwritten llmgenerated": 42669, "llmgenerated feedback": 55375, "feedback second": 34139, "augmented dataset": 8565, "alignment generated": 5072, "studies outline": 91422, "compact llms": 16347, "sizes large": 88555, "abstractive text": 1951, "text paraphrasing": 96351, "improving existing": 44116, "providing efficient": 77743, "efficient models": 27803, "multilingual tokenizers": 65016, "chinchilla scaling": 14534, "sequencetosequence masked": 86693, "linguistic descriptions": 54572, "mathematical formulation": 58575, "understanding processing": 99846, "gpt4 llama27b": 39962, "settings task": 87096, "gpt4s superior": 40181, "performance particularly": 71464, "central research": 12735, "noisy embeddings": 66869, "datasets research": 22398, "notable gap": 67004, "capabilities smaller": 12078, "llama27b compared": 54866, "compared larger": 16580, "especially processing": 29905, "lengthy complex": 53620, "investigation utilizing": 47800, "research achieving": 82472, "achieving f1score": 2849, "solely based": 89054, "based problem": 9670, "finetuned llama27b": 34925, "benchmark current": 10113, "application area": 6338, "llms reflect": 56677, "semantics large": 86386, "success general": 92200, "prediction semantic": 73718, "models fully": 62517, "llm llama2": 55163, "layer using": 52736, "using contextualized": 101384, "models discriminative": 62239, "conclusion supported": 17759, "preliminary exploration": 73869, "student perceptions": 91264, "chatgpt capability": 13585, "capability completing": 12152, "study aim": 91478, "deepen understanding": 22807, "study help": 91654, "analyzed performance": 5793, "working research": 104333, "performance typical": 71649, "student set": 91270, "surveys conducted": 93057, "followup survey": 35711, "analyzed data": 5791, "bring attention": 11459, "work reports": 104249, "world work": 104423, "transparency work": 98776, "data develop": 21152, "develop validate": 24489, "design project": 23831, "decision context": 22580, "design decision": 23767, "promoting transparency": 76226, "adoption software": 3648, "like time": 54235, "help bridge": 41236, "generation effectiveness": 38131, "effectiveness llm": 27549, "generation understanding": 38488, "end work": 28846, "perform exploratory": 70868, "investigate feasibility": 47647, "llm generation": 55103, "study utilize": 91888, "0shot setting": 93, "short humanlevel": 87288, "gpt35 achieve": 39573, "models flant5": 62491, "yield comparable": 104631, "research required": 82763, "adoption ai": 3630, "tasks drafting": 94563, "developing countries": 24572, "capacity constraints": 12287, "risks particularly": 84529, "particularly concerning": 70442, "potentials limitations": 73359, "study ai": 91477, "answers key": 6192, "potential bias": 73041, "biases arising": 10913, "processes research": 75447, "implications work": 43409, "develop technical": 24486, "chatgpt gemini": 13846, "literature documented": 54647, "performance areas": 70995, "capabilities enhanced": 11888, "tasks nonenglish": 94890, "nonenglish language": 66892, "specifically thai": 89883, "average participants": 9168, "tasks detailed": 94538, "examination reveals": 31089, "improve math": 43731, "educational systems": 27219, "limitations technology": 54376, "proficient understanding": 75809, "abilities solving": 1571, "methods limited": 59714, "task coverage": 93998, "lack standardization": 49052, "using category": 101330, "category theory": 12635, "theory framework": 96762, "framework evaluation": 36128, "represent code": 82029, "unique model": 100086, "design superior": 23851, "performance based": 71006, "pretraining instruction": 74546, "finetuning experimental": 35062, "successfully improve": 92280, "discuss key": 25667, "key questions": 48334, "model foundation": 60911, "model vs": 61580, "instruction model": 46347, "tasks resources": 95061, "resources publicly": 83028, "annotation error": 5892, "human label": 42268, "label variation": 48900, "variation human": 102258, "labels item": 48945, "annotation errors": 5893, "labels assigned": 48939, "research studied": 82791, "nli task": 66698, "task english": 94035, "annotation scheme": 5907, "effectiveness various": 27591, "automatic error": 8772, "significantly underperform": 88033, "yield better": 104630, "building models": 11637, "models planning": 63811, "planning reasoning": 72276, "sentence context": 86495, "play crucial": 72335, "indispensable tools": 45066, "data structured": 21655, "answer different": 5997, "types user": 99274, "context framework": 18776, "textual reasoning": 96692, "construct instruction": 18423, "finetuning llama27b": 35130, "generalizes diverse": 37311, "diverse tabular": 26114, "tabular tasks": 93708, "accurate faithful": 2410, "faithful explanations": 33747, "questions work": 78974, "abilities model": 1536, "generalizability interpretability": 37231, "layers llms": 52752, "llms necessary": 56424, "inference phase": 45277, "llms expensive": 55922, "llms utilize": 57013, "capabilities generalization": 11917, "generalization incontext": 37261, "try answer": 98972, "question llm": 78685, "shallow layers": 87169, "deep layers": 22754, "layers tasks": 52760, "simple algorithm": 88166, "experiments wellknown": 32342, "tasks maintaining": 94845, "maintaining comparable": 57881, "additionally method": 3324, "model acceleration": 60476, "boosting inference": 11288, "phases prefill": 72020, "prompt produce": 76399, "gpu compute": 40254, "prompt contrast": 76267, "low compute": 57507, "compute utilization": 17517, "overall throughput": 69333, "prefill decode": 73839, "improve throughput": 43815, "large batch": 51396, "desired latency": 24004, "single a100": 88346, "work addresses": 103975, "error handling": 29782, "fully capture": 36444, "smart speakers": 88817, "detailed error": 24162, "text improving": 96299, "llms contextual": 55679, "contextual capabilities": 18935, "generative software": 38716, "based architectures": 9442, "bert transformer": 10561, "applications software": 6575, "representation contextual": 82052, "capabilities enabling": 11885, "enabling leverage": 28645, "make effective": 57991, "tools generative": 97412, "demonstrated excellent": 23248, "review generative": 84258, "based software": 9719, "llms involved": 56252, "gaps existing": 36990, "review aims": 84242, "following zeroshot": 35705, "approaches zeroshot": 7227, "datasets annotated": 22145, "short expectations": 87283, "better follow": 10715, "learn follow": 52942, "focus annotating": 35501, "highquality examples": 41758, "generated diverse": 37694, "dataset conduct": 21873, "extraction performance": 33324, "performance hand": 71284, "surpasses sota": 92942, "gpt35 open": 39648, "bard claude": 9351, "claude llama": 14855, "floatingpoint operations": 35446, "natural solution": 65781, "solution reduce": 89112, "semantic similarities": 86350, "similar queries": 88106, "leverages federated": 53785, "learning fl": 53163, "collaboratively train": 15850, "similarity model": 88144, "violating privacy": 102929, "using fl": 101453, "latency costs": 52623, "enhances model": 29287, "performance resulting": 71542, "20 increase": 490, "storage requirement": 90734, "based mistral7b": 9619, "designed address": 23871, "need improved": 65958, "capabilities traditional": 12105, "provides overview": 77690, "additional pretraining": 3256, "exhibits good": 31612, "evaluating optimizing": 30469, "requires expensive": 82376, "build computational": 11583, "learning use": 53464, "instructional materials": 46424, "difficult model": 25301, "learning dynamics": 53117, "experts assess": 32404, "assess impact": 7855, "various instructions": 102453, "instructions learning": 46532, "gpt35 evaluate": 39593, "different student": 25211, "potential lms": 73187, "content building": 18596, "building insight": 11632, "optimization approach": 68587, "using judgments": 101528, "judgments lm": 48196, "discussing potential": 25715, "instructional design": 46423, "design zeroshot": 23866, "event causality": 30917, "causality identification": 12681, "heterogeneous graph": 41334, "languages leaving": 51308, "propose heterogeneous": 76991, "interaction model": 47023, "improve crosslingual": 43683, "causal knowledge": 12655, "learning module": 53290, "module align": 64658, "causal representations": 12675, "languages extensive": 51275, "multilingual scenarios": 65004, "respectively notably": 83082, "scenario zeroshot": 85397, "zeroshot framework": 104785, "gpt35 fewshot": 39599, "face recognition": 33450, "examine capabilities": 31095, "answering direct": 6095, "direct prompts": 25431, "facial images": 33479, "considerable accuracy": 18149, "accuracy additionally": 2199, "additionally experimental": 3300, "reasonable accuracy": 79735, "light promising": 54016, "promising potentials": 76190, "risk management": 84500, "enabled gpt4": 28568, "realtime flood": 79627, "role enabling": 84770, "complex numerical": 16967, "models optimizing": 63726, "requires complex": 82366, "powered gpt4": 73409, "facilitate effective": 33489, "requirement specialized": 82331, "specialized knowledge": 89629, "knowledge new": 48686, "gpt4s advanced": 40176, "capabilities provide": 12059, "alerts respond": 4892, "vulnerability data": 103269, "data effectively": 21170, "advice assess": 4027, "prototype using": 77362, "main categories": 57814, "understanding context": 99700, "research marks": 82668, "accessible userfriendly": 2115, "critical social": 20354, "environmental issues": 29633, "learn code": 52934, "energy consumption": 28897, "large artificial": 51390, "address environmental": 3392, "impact software": 43257, "efficiency gains": 27685, "coding practices": 15709, "produced generative": 75675, "models github": 62575, "models response": 64087, "problem statements": 75088, "statements findings": 90291, "light current": 53999, "current capacity": 20672, "models contribute": 62118, "genetic programming": 38763, "trees using": 98832, "models genetic": 62573, "generate explainable": 37447, "leveraging explainable": 53839, "improve interpretability": 43718, "combine stateoftheart": 15975, "chatbot provide": 13419, "provide intuitive": 77513, "data reduction": 21549, "studies study": 91450, "address important": 3413, "important considerations": 43499, "hallucinatory outputs": 40886, "ai findings": 4400, "llm text": 55291, "semantic structure": 86354, "models humanlike": 62686, "humanlike understanding": 42546, "understanding semantics": 99874, "applications document": 6456, "fundamental operation": 36547, "operation program": 68450, "annotations automatically": 5922, "automatically follow": 8867, "formal problem": 35797, "problem definition": 75009, "synthetic benchmark": 93249, "suite benchmark": 92469, "exploration applications": 32587, "davinci002 davinci003": 22487, "davinci003 gpt35turbo": 22491, "gpt4 designed": 39833, "designed experiments": 23910, "assess success": 7878, "success producing": 92230, "findings based": 34642, "emotional cues": 28255, "examined llms": 31134, "consistently generate": 18290, "models refuse": 64033, "intended purposes": 46935, "technologies particularly": 95632, "spread disinformation": 90035, "content benchmarking": 18595, "problem large": 75033, "effective various": 27386, "ambiguous contexts": 5314, "hallucination paper": 40845, "method evaluating": 59295, "llm hallucination": 55115, "qa based": 78120, "problem mwp": 75052, "questions categories": 78791, "developed evaluation": 24500, "mathematical expression": 58573, "results extensive": 83603, "claude demonstrate": 14854, "learning reinforcement": 53380, "avoid hallucination": 9203, "rapidly developing": 79343, "creation instruction": 20241, "models involves": 62817, "issue particularly": 47949, "particularly pronounced": 70494, "english resources": 29098, "selfinstruct method": 86242, "data construct": 21108, "construct evaluation": 18419, "benchmark containing": 10106, "80 questions": 1318, "gpt4 selfinstruct": 40069, "selfinstruct data": 86241, "significantly outperformed": 87983, "gpt35 davinci003": 39587, "evaluation exhibits": 30588, "human preference": 42328, "benchmark released": 10240, "intended use": 46936, "use just": 100587, "standard benchmark": 90159, "models respond": 64085, "prompted language": 76480, "answering accuracy": 6075, "long tail": 57336, "identifying possible": 42929, "warrant investigation": 103324, "semantic concepts": 86300, "space large": 89449, "bias gradient": 10846, "simple structure": 88239, "additionally confirm": 3285, "confirm predictions": 18042, "using llama2": 101571, "simplified model": 88275, "enumerative program": 29609, "llms beginning": 55518, "logical specifications": 57274, "carefully crafting": 12411, "algorithm integrates": 4921, "calls llm": 11783, "provide llm": 77515, "llm provide": 55223, "loop evaluate": 57431, "evaluate techniques": 30296, "techniques benchmarks": 95483, "outperformed stateoftheart": 68985, "integrating llm": 46731, "assistants github": 8051, "tasks performed": 94941, "code authored": 15130, "tools enable": 97394, "academic dishonesty": 1978, "research explores": 82592, "humanauthored code": 42445, "difficulty programming": 25330, "performed slightly": 71767, "problems study": 75207, "distinguishing gpt4": 25904, "code humanauthored": 15349, "efficiency deployment": 27678, "models hampered": 62643, "size computational": 88456, "environments addressing": 29641, "challenge recent": 12925, "advancements seen": 3857, "exhibit performance": 31538, "comparable larger": 16379, "compact powerful": 16351, "conducts comprehensive": 18004, "intrinsic understanding": 47389, "problemsolving scenarios": 75238, "using ehr": 101425, "ehr data": 27929, "morbidity mortality": 64751, "studies attempted": 91363, "attempted various": 8263, "models diagnosis": 62218, "study collected": 91525, "electronic health": 27957, "health records": 41175, "records ehrs": 80699, "incorporating multimodal": 44712, "data clinical": 21050, "results prediction": 83774, "combined text": 15985, "text embedding": 96185, "multihead attention": 64914, "layer learn": 52721, "utilizing deep": 102009, "network dnn": 66137, "attention fusion": 8311, "achieve accuracy": 2476, "roc curve": 84750, "inference language": 45253, "chatgpt begun": 13564, "access user": 2091, "computing platforms": 17571, "privacy risks": 74911, "mitigate security": 60283, "number case": 67332, "study attacks": 91501, "privacy safety": 74913, "issues exist": 47988, "systems performance": 93530, "improve security": 43803, "truth measure": 98953, "systems study": 93579, "chatgpt4 showed": 14385, "al 2024": 4877, "change based": 13268, "approach measure": 6944, "graph domain": 40376, "humans loop": 42621, "domain finetune": 26390, "users llms": 101137, "llms obtain": 56442, "obtain significant": 67661, "decoderonly pretrained": 22655, "task remains": 94221, "topdown bottomup": 97496, "corpus demonstrate": 19612, "similar performances": 88101, "challenging previous": 13210, "chatbased language": 13393, "models solution": 64223, "employed improve": 28428, "limited samples": 54462, "samples furthermore": 85117, "generation constraints": 38095, "constraints address": 18391, "input experimental": 45895, "llms demonstrating": 55777, "simply mimicking": 88295, "patterns offer": 70638, "mechanisms underlying": 58819, "chatgpt predict": 14096, "ambiguous sentences": 5317, "information participants": 45568, "sentences second": 86568, "second sentence": 85952, "chatgpts ratings": 14446, "chatgpts assessments": 14423, "discuss broader": 25652, "llms development": 55796, "psychological theories": 77884, "gaining deeper": 36849, "achieved unprecedented": 2684, "unprecedented performance": 100227, "evaluation remains": 30747, "remains critical": 81653, "issue existing": 47931, "existing hallucination": 31720, "utilizing existing": 102012, "relational databases": 81257, "constructing benchmarks": 18457, "accurate knowledge": 2415, "functional dependencies": 36503, "dependencies propose": 23535, "model key": 61038, "database schema": 21772, "foreign key": 35738, "used debug": 100774, "supports continuous": 92868, "evaluation multimodal": 30693, "multimodal questions": 65099, "techniques experiments": 95511, "llm benchmark": 54986, "extensive comparison": 33005, "better llms": 10742, "gpt4 handle": 39923, "variety question": 102326, "better benchmarks": 10695, "available https": 9047, "inference generation": 45247, "performance owing": 71456, "usually used": 101879, "used network": 100861, "llms optimized": 56473, "level playing": 53675, "playing field": 72367, "llms ensuring": 55867, "processed llm": 75424, "indian languages": 44974, "patterns involving": 70632, "token count": 97128, "choosing best": 14609, "llm original": 55180, "student work": 91274, "evaluations conducted": 30840, "authored humans": 8621, "produced ai": 75671, "performance marginally": 71390, "solely human": 89056, "software tools": 89042, "rate precision": 79394, "content considered": 18602, "considered upper": 18206, "upper limit": 100379, "llm vs": 55318, "examples present": 31269, "solving typical": 89256, "types learning": 99246, "presenting examples": 74108, "students based": 91289, "linebyline explanations": 54545, "examples typically": 31296, "typically used": 99308, "assess feasibility": 7849, "active example": 2990, "exploration systems": 32604, "systems achieve": 93384, "goal compare": 39047, "humanrobot interactions": 42565, "planning robotics": 72278, "robotics applications": 84632, "acceptable actions": 2041, "preferences values": 73832, "humanrobot interaction": 42564, "scenarios evaluation": 85425, "studies comparing": 91368, "gpt4 strongly": 40104, "strongly outperforms": 91113, "strong correlations": 91021, "fail capture": 33673, "inference highly": 45248, "queries present": 78504, "accelerating llm": 2020, "inference including": 45249, "keyvalue kv": 48363, "kv cache": 48882, "inference engine": 45239, "endtoend latency": 28876, "datasets best": 22156, "sql queries": 90061, "detection response": 24352, "using transformers": 101828, "managing complex": 58198, "efficient dialogue": 27750, "dialogue management": 24876, "model identifies": 60980, "based importance": 9569, "framework conversational": 36082, "language modelllm": 49601, "computational capabilities": 17439, "using fine": 101446, "strategic prompting": 90783, "reducing computational": 80862, "computational time": 17489, "coherent results": 15786, "fewshot crosslingual": 34223, "models lowresource": 63558, "learning user": 53466, "task completed": 93980, "examples task": 31291, "learning effectively": 53120, "trained predominantly": 97889, "predominantly english": 73781, "limitations languages": 54340, "settings unclear": 87098, "prompting evaluate": 76527, "adapt llama": 3045, "parameter opensource": 70120, "opensource plm": 68395, "methods fewshot": 59646, "namedentity recognition": 65486, "compute cost": 17503, "lead best": 52792, "optimal choice": 68560, "adapting plms": 3136, "best average": 10589, "statistical significance": 90557, "despite considerable": 24033, "considerable advancements": 18150, "hindered scarcity": 41834, "aims bridge": 4785, "llms covering": 55694, "languages containing": 51251, "instructionresponse pairs": 46469, "quality quantity": 78340, "manually verified": 58314, "data synthetic": 21677, "data build": 21034, "opensource pipeline": 68393, "mixtral models": 60343, "additionally address": 3272, "toxic prompts": 97592, "prompts multiple": 76783, "multiple scenarios": 65255, "scenarios generate": 85437, "datasets tools": 22442, "artifacts created": 7585, "work released": 104247, "highquality entity": 41757, "demands significant": 22981, "significant effort": 87743, "demonstrated advanced": 23230, "possibility leveraging": 72880, "deployment low": 23607, "selects set": 86189, "llms verification": 57030, "results response": 83816, "applications especially": 6468, "individuals small": 45115, "companies need": 16354, "financial investment": 34604, "image worth": 43070, "like llava15": 54189, "visual tokens": 103130, "popular lvlms": 72650, "data handling": 21285, "plugandplay method": 72447, "method designed": 59260, "designed optimize": 23932, "optimize computational": 68628, "efficiency learning": 27697, "sacrificing performance": 84979, "range image": 79163, "video understanding": 102889, "tasks computational": 94471, "performance tradeoff": 71636, "highly customizable": 41693, "7bparameter model": 1310, "model maintaining": 61117, "maintaining superior": 57904, "performance believe": 71012, "embeddings knowledge": 28084, "repositories paper": 82023, "link knowledge": 54613, "logical rules": 57273, "general method": 37162, "adapting existing": 3123, "evaluate benchmark": 30143, "learn patterns": 52957, "kg completion": 48373, "evaluation machine": 30661, "validation data": 102120, "improve sample": 43799, "gpt4 exploring": 39880, "student interactions": 91255, "effectively harness": 27436, "harness potential": 41070, "contexts crucial": 18897, "analyze impact": 5766, "suitability different": 92453, "different educational": 25056, "educational purposes": 27214, "step exploring": 90640, "exploring applicability": 32833, "environment using": 29629, "using statistical": 101792, "content scale": 18687, "approach estimating": 6843, "produced large": 75680, "examine realworld": 31124, "corpus level": 19640, "approach case": 6769, "iclr 2024": 42771, "neurips 2023": 66297, "lower confidence": 57557, "likely respond": 54261, "practices future": 73563, "rely heavily": 81576, "documents making": 26257, "process leveraging": 75351, "cuttingedge ai": 20868, "robust large": 84665, "data remarkable": 21563, "remarkable accuracy": 81732, "automate information": 8662, "document types": 26223, "comprehension despite": 17164, "llms encounter": 55858, "major hurdle": 57931, "assessment paper": 7967, "paper revisits": 69942, "allows straightforward": 5209, "generation openended": 38308, "scenarios response": 85482, "gpt4 serving": 40072, "mirror realworld": 60152, "authentic user": 8614, "analyze characteristics": 5745, "compare prior": 16489, "like alpacaeval": 54051, "investigate automatic": 47622, "highlight critical": 41583, "processing interpreting": 75493, "suggest promising": 92387, "task datasets": 94003, "datasets indicating": 22302, "indicating significant": 45044, "family lightweight": 33851, "stateofthe art": 90300, "gemma models": 37077, "performance academic": 70967, "sizes models": 88558, "parameters provide": 70269, "development believe": 24616, "critical improving": 20331, "making highly": 58103, "rlaif training": 84563, "ratio model": 79430, "responses making": 83258, "additionally employs": 3296, "rate responses": 79399, "responses compared": 83187, "effectively addressing": 27397, "quality evaluating": 78263, "11 languages": 192, "large curated": 51414, "role training": 84807, "share training": 87187, "recent lms": 80293, "given quality": 38936, "paper compare": 69633, "relevant large": 81465, "european languages": 30112, "perform intrinsic": 70887, "performing human": 71779, "quality samples": 78356, "different corpora": 25031, "practical impact": 73514, "differences training": 24987, "training specific": 98304, "training lms": 98183, "rlhf framework": 84567, "paradigm work": 70058, "llms following": 56004, "following instruction": 35678, "training use": 98344, "generation highquality": 38195, "reliance external": 81544, "models paving": 63781, "way single": 103401, "rlhf stages": 84576, "key advantages": 48268, "llms crafting": 55695, "instructions compared": 46478, "model privacy": 61278, "privacy protection": 74908, "bugs large": 11573, "code empirical": 15238, "languages based": 51237, "code llmgenerated": 15394, "thoroughly examined": 96840, "community given": 16320, "critical understand": 20369, "codegen pangucoder": 15601, "wrong input": 104531, "validated using": 102113, "online survey": 68014, "llm practitioners": 55204, "participants generally": 70368, "findings develop": 34659, "develop effective": 24445, "evaluating text": 30491, "standard evaluation": 90171, "metrics established": 59908, "issue proposing": 47957, "quality style": 78366, "transfer llms": 98425, "scalable manner": 85241, "manner addition": 58229, "addition conventional": 3178, "novel aspect": 67112, "metrics account": 59874, "samples experiments": 85112, "benchmark higher": 10185, "sentiment strength": 86608, "llms arabic": 55488, "swift progress": 93096, "widespread acceptance": 103776, "systems highlight": 93475, "linguistic complexity": 54566, "arabic ai": 7301, "focus large": 35530, "performance safety": 71550, "comprehensive trustworthiness": 17312, "trustworthiness evaluation": 98940, "accurately assessing": 2441, "assessing improving": 7915, "safety llms": 85042, "truthfulness ethics": 98963, "set llms": 86895, "trustworthiness gpt4": 98941, "achieve score": 2575, "easily available": 27011, "resources english": 83008, "english remains": 29097, "languages lack": 51301, "domain work": 26470, "7billionparameter large": 1307, "languages indonesia": 51291, "family llms": 33853, "performance languagespecific": 71337, "advancing language": 3908, "wellresourced languages": 103606, "educational disparities": 27199, "offering direct": 67785, "translations english": 98757, "needs diverse": 66034, "communities like": 16294, "poses challenge": 72764, "students struggle": 91338, "familiar ones": 33828, "aid understanding": 4641, "extent large": 33165, "provide access": 77396, "tasked generate": 94310, "chatgpt optionally": 14052, "chatgpt transformed": 14317, "field quantum": 34404, "chatgpt quantum": 14139, "core components": 19540, "access proprietary": 2081, "api queries": 6276, "gpt35turbo findings": 39700, "softmax bottleneck": 88971, "model image": 60982, "image model": 43054, "llms hidden": 56126, "llm given": 55106, "given single": 38958, "lastly discuss": 52608, "llm providers": 55224, "memory compression": 59019, "inference transformers": 45318, "generation remains": 38396, "scales linearly": 85311, "length batch": 53585, "propose dynamic": 76964, "compression inference": 17355, "importantly model": 43552, "compression rates": 17369, "retrofit pretrained": 84115, "transformers achieving": 98599, "throughput increase": 96906, "autoregressive inference": 8958, "h100 gpu": 40790, "extra parameters": 33217, "preserves original": 74188, "compression outperforming": 17364, "attention gqa": 8315, "memory budget": 59015, "cautionary tale": 12709, "medical misinformation": 58905, "era artificial": 29720, "specifically chatgpt4": 89788, "genomic analysis": 38768, "rigorous methodology": 84451, "case reports": 12467, "setting stage": 87025, "chatgpt4 large": 14381, "interaction dynamics": 47003, "mimic realworld": 60053, "realworld complexities": 79656, "ai generate": 4413, "medicine study": 58937, "emphasizing necessity": 28301, "critical evaluation": 20326, "age ai": 4102, "report explore": 81975, "integrates llms": 46701, "enabling researchers": 28656, "leverage power": 53752, "bridge llms": 11437, "researchers easily": 82851, "highquality uptodate": 41798, "propose agent": 76928, "researchers quickly": 82884, "work potential": 104205, "llms marked": 56376, "realm artificial": 79605, "expertise various": 32396, "human translators": 42401, "quality translated": 78378, "translated content": 98668, "llms translating": 56969, "translation particularly": 98730, "particularly languages": 70476, "languages previously": 51344, "unexplored research": 99968, "present pioneering": 74035, "distinct llms": 25871, "llms unified": 56986, "framework framework": 36142, "understanding translation": 99896, "translation code": 98693, "smart contracts": 88815, "language limited": 49313, "coding expertise": 15703, "evidence experiments": 30974, "substantially enhances": 92120, "highlights efficacy": 41652, "mitigation strategy": 60314, "framework human": 36157, "errors large": 29821, "domains suggesting": 26594, "suggesting significant": 92417, "susceptible errors": 93068, "incomplete information": 44538, "information poses": 45572, "crucial legal": 20503, "legal compliance": 53554, "enable users": 28564, "understanding factors": 99735, "aiming leverage": 4769, "leverage llm": 53745, "detection users": 24375, "users approach": 101074, "optimize use": 68637, "prevent potential": 74649, "potential downstream": 73074, "responses research": 83297, "technological advancement": 95616, "llms minimizing": 56395, "particularly areas": 70433, "precision paramount": 73614, "paramount paper": 70307, "literature research": 54658, "advice help": 4028, "responses ai": 83173, "including openai": 44437, "openai microsoft": 68171, "proves challenging": 77391, "grammatically correct": 40348, "sentences paper": 86561, "paper overcome": 69820, "llm translate": 55300, "providing llm": 77771, "model target": 61490, "target models": 93881, "methods able": 59508, "able accurately": 1821, "assistants responses": 8059, "openais chatgpt4": 68193, "harmlessness alignment": 41053, "alignment problem": 5106, "problem multimodal": 75048, "language modelsmllms": 50934, "representative mllms": 82148, "image input": 43049, "inspired propose": 46181, "novel jailbreak": 67190, "jailbreak method": 48095, "named hades": 65484, "malicious intent": 58156, "images experimental": 43090, "average attack": 9138, "pro vision": 74942, "portuguese large": 72729, "portuguese texts": 72733, "evaluated diverse": 30336, "exams including": 31305, "certification exams": 12788, "law medicine": 52704, "medicine results": 58936, "model far": 60870, "matches surpasses": 58512, "exams outperforms": 31310, "exams notably": 31309, "impact models": 43234, "cheaper gpt4": 14467, "gpt4 finally": 39887, "math coding": 58547, "abilities need": 1545, "need improvement": 65959, "scenarios large": 85449, "classification given": 14750, "given models": 38915, "llms assess": 55491, "generated autonomous": 37661, "testing techniques": 96027, "hypothesis conducted": 42733, "evaluation assess": 30515, "important step": 43539, "llmbased autonomous": 55339, "realistic scenarios": 79568, "scenario dataset": 85388, "minor changes": 60134, "dataset evaluated": 21927, "achieved highest": 2633, "llama achieved": 54719, "achieved good": 2627, "human trust": 42402, "people increasingly": 70734, "increasingly rely": 44906, "rely online": 81583, "using search": 101750, "engines like": 29044, "like google": 54131, "llm powered": 55203, "online health": 67987, "agents remain": 4226, "remain unclear": 81632, "address conducted": 3383, "conducted mixedmethods": 17972, "interactions different": 47054, "results search": 83831, "search agents": 85851, "significant correlation": 87725, "trust healthrelated": 98930, "information trust": 45660, "tasks did": 94544, "using traditional": 101818, "agents highlight": 4191, "stepping stones": 90673, "generation abstract": 38005, "abstract level": 1929, "challenges making": 13069, "surge research": 92896, "models beat": 61908, "blackbox whitebox": 11155, "codellama model": 15609, "score chatgpt": 85709, "study developers": 91577, "github pull": 38843, "issues chatgpt": 47977, "development practices": 24699, "practices providing": 73567, "including coding": 44305, "coding testing": 15720, "testing debugging": 96002, "chatgpt assistant": 13546, "understanding rationale": 99853, "identifying locations": 42926, "developers seek": 24561, "chatgpt assistance": 13545, "frequently encountered": 36383, "issue resolution": 47959, "various roles": 102558, "tasks iterative": 94781, "prompt refinement": 76405, "developers leverage": 24555, "chatgpt facilitate": 13805, "issues code": 47978, "chatgpt collaborative": 13629, "scientific software": 85663, "software understanding": 89043, "challenges diverse": 12998, "extensive code": 33003, "length target": 53611, "computing architectures": 17558, "specifically large": 89840, "complex scientific": 16999, "designed enable": 23900, "conversational manner": 19383, "userfriendly interface": 101062, "analysis automatic": 5441, "queries domainspecific": 78482, "entire code": 29513, "equipped handle": 29697, "query extensive": 78526, "locally deployed": 57224, "llms rapid": 56630, "augmented finetuning": 8568, "significant memory": 87795, "memory constraints": 59025, "prompt sequences": 76414, "multiple gpus": 65196, "efficient parameter": 27811, "context addressing": 18727, "finetuning llama2": 35128, "resource management": 82972, "systems limited": 93507, "limited gpu": 54427, "gpu resources": 40269, "resources experiments": 83011, "runtime compared": 84960, "vram gpu": 103238, "tertiary education": 95856, "particularly generative": 70466, "meet evolving": 58963, "skills based": 88590, "based blooms": 9455, "like cybersecurity": 54113, "align closely": 4990, "proposed set": 77254, "fostering collaboration": 35905, "word orders": 103910, "comparing models": 16685, "proposed including": 77212, "semantics models": 86389, "order paper": 68710, "semantics embedded": 86382, "probing classifiers": 74978, "tool applications": 97265, "increases computational": 44804, "propose directly": 76961, "efficient simultaneous": 27820, "finetuning incurring": 35096, "minimal additional": 60079, "using separate": 101757, "methods available": 59545, "task address": 93927, "introduce zeroshot": 47499, "model extracting": 60855, "achieved promising": 2651, "potential pathways": 73217, "highquality outputs": 41780, "capabilities present": 12045, "biased content": 10902, "issues current": 47982, "current alignment": 20658, "perception models": 70791, "safety training": 85057, "training address": 97941, "twostage approach": 99176, "specific guidelines": 89705, "various inputs": 102452, "llms response": 56718, "generation ensure": 38139, "generated process": 37756, "second stage": 85953, "incorporates safety": 44686, "safety expertise": 85027, "notably finetuned": 67031, "gpt4 evaluator": 39863, "evaluating content": 30410, "including generative": 44352, "measuring quantifying": 58782, "challenge proposed": 12924, "expert based": 32353, "obtain final": 67649, "score results": 85737, "flan models": 35385, "instructionbased prompting": 46430, "effective tool": 27379, "demonstrating llms": 23435, "copyright protection": 19528, "texttoimage diffusion": 96621, "models copyright": 62126, "protection methods": 77342, "especially use": 29924, "model texttoimage": 61509, "generated stable": 37785, "chatgpt diffusion": 13717, "generate dataset": 37422, "opensourced facilitate": 68421, "dataset llms": 21997, "deal various": 22511, "solving puzzles": 89248, "challenge modern": 12908, "task far": 94058, "korean current": 48868, "benchmarks focusing": 10342, "study extends": 91631, "sophisticated llms": 89285, "specifically context": 89797, "employ distinct": 28394, "distinct evaluation": 25864, "evaluation setups": 30776, "evaluation openended": 30699, "predefined options": 73631, "gpt4 excels": 39866, "performance chainofthought": 71037, "inference considering": 45229, "considering growing": 18215, "produce language": 75645, "findings emphasize": 34662, "advancing llms": 3914, "models facto": 62439, "llm lacks": 55142, "accurate wellformatted": 2436, "responses supervised": 83313, "prompts target": 76833, "data tends": 21688, "ai perspective": 4506, "perspective llm": 71957, "curate training": 20624, "finetuning algorithm": 35008, "confidence estimates": 18012, "techniques clear": 95487, "dataset trained": 22108, "trained model": 97875, "assume access": 8117, "stronger llm": 91089, "capabilities llm": 11983, "llm experiments": 55070, "diverse sectors": 26097, "concerns notably": 17694, "cloud high": 15059, "performance computing": 71104, "guide autoregressive": 40727, "process enhancing": 75302, "efficiency proposed": 27710, "demand highquality": 22966, "outcomes employing": 68847, "realworld evaluations": 79669, "llama2 llm": 54839, "step aligning": 90611, "potential mitigating": 73198, "expanding domain": 31876, "domain generative": 26396, "distillation efficient": 25812, "taskagnostic prompt": 94303, "language existing": 49207, "information entropy": 45450, "obtained causal": 67667, "challenge information": 12888, "capture essential": 12353, "essential information": 29948, "objective address": 67489, "llm compress": 55014, "extractive text": 33354, "compressed prompt": 17344, "use transformer": 100715, "leads lower": 52899, "explicitly learning": 32548, "outofdomain datasets": 68886, "longbench zeroscrolls": 57348, "demonstrates robust": 23397, "ability different": 1629, "existing prompt": 31797, "methods accelerating": 59509, "generating automatic": 37868, "feedback user": 34154, "crucial design": 20482, "feedback specifically": 34140, "applying gpt4": 6686, "design set": 23840, "feedback useful": 34153, "errors improving": 29819, "text considering": 96143, "dialogue session": 24893, "collect reallife": 15870, "utilizing knowledge": 102026, "majority vote": 57956, "utilize gpt4": 101936, "calibration current": 11762, "develop series": 24479, "text classifiers": 96126, "classifiers using": 14837, "dataset detailed": 21907, "costefficient method": 19902, "method developing": 59263, "news consumption": 66615, "platforms using": 72320, "threats democracy": 96885, "ecologically valid": 27045, "rely largescale": 81581, "effects gender": 27608, "randomly assigned": 79121, "female male": 34176, "news content": 66616, "followed news": 35664, "content control": 18605, "control results": 19224, "results small": 83852, "implications social": 43402, "media news": 58840, "requires nontrivial": 82405, "users flexibly": 101112, "100 llms": 126, "need coding": 65920, "web ui": 103499, "modeling text": 61686, "agent based": 4117, "main objective": 57832, "study improve": 91671, "creating specialized": 20233, "proposing new": 77286, "able analyze": 1826, "patients problems": 70611, "relative accuracy": 81289, "political spectrum": 72571, "instructionfinetuned large": 46435, "shows considerable": 87572, "capable reasoning": 12263, "reasoning context": 79841, "assist research": 8022, "research political": 82712, "boosted performance": 11285, "tasks deployment": 94524, "highperformance llms": 41730, "llms incurs": 56213, "use stateoftheart": 100694, "ai service": 4545, "multiple versions": 65282, "versions llms": 102828, "llm tasks": 55286, "cost introduce": 19857, "novel llm": 67201, "llm framework": 55093, "tasks ensuring": 94590, "users specify": 101183, "outputs llm": 69237, "accuracy level": 2302, "optimizes tradeoff": 68655, "reduces inference": 80835, "models smart": 64219, "comparison gpt4": 16712, "chatgpt alternative": 13516, "array applications": 7506, "research contributions": 82529, "spanning diverse": 89499, "contributions encompass": 19178, "datasets benchmarking": 22153, "benchmarking efficiency": 10287, "efficiency improvements": 27687, "improvements recent": 43994, "dynamic synergy": 26936, "field llm": 34386, "new heights": 66418, "notable milestone": 67014, "llms begun": 55519, "begun reshape": 9951, "revolutionary shift": 84323, "shift way": 87259, "algorithms given": 4970, "evolution survey": 31035, "recent strides": 80353, "prevailing methodologies": 74626, "existing challenges": 31682, "chatgpt clinical": 13623, "intends provide": 46939, "specific guidance": 89704, "programming background": 75883, "chatgpt extract": 13799, "progress notes": 76001, "potentially assist": 73327, "assist diagnosing": 8014, "diagnosing complex": 24791, "custom gpts": 20839, "student support": 91272, "preparation chatgpt": 73890, "use essential": 100536, "pitfalls like": 72191, "like hallucination": 54165, "learning resources": 53389, "carefully selected": 12423, "key takeaways": 48344, "researchers harness": 82862, "power chatgpt": 73366, "chatgpt effectively": 13738, "application gpt": 6357, "intelligence natural": 46878, "enables automatic": 28575, "generation growing": 38187, "applying gpt": 6683, "activities provide": 3005, "misuse models": 60244, "review assessment": 84246, "science software": 85610, "focused evaluating": 35582, "practices assessing": 73560, "counterspeech generation": 20014, "llms emergence": 55843, "emergence numerous": 28179, "numerous large": 67428, "generation key": 38219, "key task": 48345, "develop generative": 24452, "explores intrinsic": 32808, "intrinsic properties": 47388, "properties large": 76900, "llms gpt2": 56080, "gpt2 dialogpt": 39269, "chatgpt flant5": 13829, "performance respect": 71539, "sizes small": 88567, "small medium": 88699, "medium large": 58946, "propose different": 76960, "strategies generating": 90818, "strategies performance": 90839, "shows improvement": 87590, "toxicity increase": 97601, "gpt2 flant5": 39281, "quality high": 78289, "generating counter": 37884, "counter speech": 19985, "speech models": 89953, "models metrics": 63614, "speech generation": 89947, "categories paper": 12614, "prevalent various": 74642, "llms align": 55464, "subjective nature": 91956, "data utilizing": 21741, "major risk": 57940, "risk categories": 84492, "malicious uses": 58167, "content findings": 18627, "consider information": 18135, "hazards harmful": 41131, "specially developed": 89653, "significant vulnerability": 87869, "llms jailbreaking": 56255, "scenarios highlighting": 85439, "highlighting critical": 41626, "security concern": 86005, "concern llm": 17662, "safety measures": 85043, "boosting llms": 11296, "novel iterative": 67189, "reach satisfactory": 79468, "levels performance": 53698, "lowdata regime": 57544, "augmentation strategy": 8552, "strategy uses": 90927, "uses teacher": 101258, "llm enhance": 55058, "small seed": 88726, "augmenting additional": 8591, "used finetuning": 100805, "initial seed": 45784, "extracts data": 33360, "incorrect data": 44730, "dataset focus": 21948, "examples llm": 31247, "llm solutions": 55267, "achieve improvements": 2541, "dataset 326": 21808, "regular finetuning": 81108, "regime using": 81085, "using llama27b": 101573, "model construction": 60705, "construction japanese": 18468, "financial benchmark": 34594, "domain study": 26454, "study constructed": 91548, "constructed benchmark": 18442, "biomedical informatics": 11094, "year 2023": 104584, "biomedical text": 11106, "biomedical image": 11093, "image understanding": 43068, "chatgpt witnessed": 14357, "popularity capability": 72695, "improved reasoning": 43857, "llms reason": 56642, "traditional neural": 97688, "paradigm achieve": 70019, "configuration target": 18031, "model determine": 60762, "reasoning logical": 79933, "negation disjunction": 66050, "event reasoning": 30926, "neurosymbolic reasoning": 66316, "highest level": 41548, "ai work": 4612, "systems reaching": 93544, "cause llms": 12688, "deploy llms": 23559, "llms agents": 55457, "agents simple": 4232, "interaction history": 47010, "entirely incontext": 29526, "experiment gpt35": 31968, "llama2 using": 54852, "using variety": 101838, "variety prompt": 102323, "models robustly": 64128, "gpt4 chainofthought": 39791, "did result": 24954, "result robust": 83405, "including chainofthought": 44287, "complex settings": 17003, "dataset curation": 21892, "education community": 27136, "problems particular": 75180, "paper written": 69992, "communication software": 16283, "annotation tool": 5912, "abstract meaning": 1930, "machine assistance": 57682, "tool enhance": 97285, "process empirical": 75299, "recognition models": 80604, "nlp practitioners": 66762, "llm create": 55027, "create structured": 20176, "structured datasets": 91160, "knowledge time": 48782, "knowledge gpt4": 48588, "created datasets": 20194, "datasets named": 22345, "verified factual": 102760, "data resulting": 21576, "domainspecific bert": 26616, "distillation process": 25824, "process gpt4": 75324, "bert gpt4": 10530, "model suitable": 61468, "markov chains": 58406, "generate word": 37646, "word sequences": 103929, "based probabilities": 9669, "given initial": 38899, "time low": 96989, "dynamic programming": 26928, "policy iteration": 72542, "case use": 12504, "experimentation methods": 32090, "methods capable": 59558, "generating highly": 37920, "methods apply": 59531, "hidden markov": 41346, "markov models": 58409, "decoding used": 22681, "used extensively": 100799, "media focused": 58836, "solving advanced": 89214, "advanced mathematical": 3719, "mathematical problems": 58582, "reaching expert": 79481, "medical examinations": 58888, "human life": 42289, "examine risks": 31126, "risks opportunities": 84528, "llm landscape": 55143, "frameworks guidelines": 36327, "intervention challenging": 47338, "performance japanese": 71325, "plays central": 72374, "billions data": 11035, "fed llms": 34048, "llms misuse": 56397, "work suggest": 104286, "documents enabling": 26247, "enabling llms": 28647, "created tested": 20205, "accuracy specific": 2365, "specific case": 89668, "sentences identify": 86557, "training documents": 98078, "continuing pretraining": 19022, "process specifically": 75403, "critical assessing": 20308, "lack consensus": 48990, "llms prompting": 56597, "process achieved": 75264, "tools facilitate": 97403, "challenge present": 12919, "llms annotate": 55472, "large unlabeled": 52362, "approach slightly": 7028, "offering greater": 67790, "like software": 54225, "software library": 89021, "truthfulness chatgpt": 98962, "study library": 91734, "detect incorrect": 24221, "step mitigating": 90650, "mitigating impact": 60301, "detection llms": 24317, "important issue": 43515, "settings llm": 87073, "interesting observation": 47155, "normal text": 66971, "propose perform": 77087, "scheme evaluated": 85526, "news summarization": 66646, "used translation": 100925, "features used": 34036, "case results": 12468, "low overhead": 57521, "detection effectiveness": 24292, "providing flexibility": 77750, "framework paper": 36227, "small input": 88682, "search optimization": 85885, "balance exploration": 9305, "exploration exploitation": 32594, "engineering framework": 28973, "furthermore designed": 36599, "numerical experiments": 67405, "experiments comprehensively": 32133, "comprehensively investigate": 17329, "popular stateoftheart": 72686, "algorithms end": 4966, "community llm": 16327, "employed chatgpt": 28422, "issues regarding": 48016, "costeffective approach": 19894, "investigation effectiveness": 47787, "effectiveness applying": 27492, "applying chatgpt": 6678, "teaching using": 95377, "especially emergence": 29876, "prospects application": 77332, "education llms": 27163, "knowledge answer": 48422, "questions consider": 78804, "consider context": 18132, "context providing": 18833, "topic research": 97515, "students participants": 91322, "participants randomly": 70372, "chatgpt control": 13658, "image processing": 43056, "research findings": 82599, "students engaged": 91302, "exhibited lower": 31581, "performance transfer": 71644, "revealed students": 84193, "students knowledge": 91314, "knowledge application": 48425, "based research": 9699, "chatgpt fully": 13832, "chatgpt traditional": 14315, "provide students": 77577, "enhancing quality": 29366, "quality teaching": 78371, "gpt4 contributions": 39810, "physics coding": 72080, "coding assignments": 15689, "assignments using": 8007, "python language": 78104, "student submissions": 91271, "submissions different": 91974, "closely approaches": 15024, "university students": 100132, "similar large": 88080, "queries significantly": 78514, "vast information": 102681, "information resources": 45594, "information access": 45389, "planning ability": 72251, "extends scope": 32977, "scope llm": 85678, "routine task": 84887, "encompasses comprehensive": 28755, "simulation study": 88331, "evaluations develop": 30845, "llms enhancing": 55866, "collaboration gpt4": 15823, "humans using": 42651, "questions probing": 78918, "details gpt4": 24196, "performs slightly": 71823, "given high": 38891, "level human": 53660, "test understanding": 95959, "gpt4 sparked": 40095, "advancements opensource": 3850, "initially trained": 45803, "trained 4k": 97793, "tokens pretraining": 97220, "finetuning stages": 35261, "online reinforcement": 68001, "preferences reward": 73830, "reward hacking": 84368, "training stages": 98307, "sizes provide": 88564, "community insights": 16325, "models evolution": 62363, "explanation quality": 32474, "lives need": 54698, "reasoning ai": 79779, "need finegrained": 65949, "multiple scales": 65254, "datasets collect": 22171, "scores text": 85785, "quality measurement": 78315, "measurement conduct": 58757, "dynamic prompting": 26931, "prompting providing": 76598, "prompt improve": 76340, "improve alignment": 43666, "alignment research": 5110, "advances understanding": 3900, "assess text": 7879, "quality different": 78255, "different configurations": 25024, "recognition work": 80621, "examples class": 31196, "modular neurosymbolic": 64648, "neurosymbolic method": 66314, "models linguistic": 62940, "rules rules": 84940, "discourse using": 25593, "identify eliminate": 42864, "false negatives": 33811, "global context": 39009, "conll2003 dataset": 18088, "ner methods": 66112, "achieves 75": 2697, "applications prior": 6545, "outperform conventional": 68928, "exponential growth": 32885, "models billions": 61935, "t5 existing": 93626, "model employing": 60800, "lora technique": 57450, "models size": 64210, "performance sentence": 71556, "particularly noteworthy": 70487, "similarity english": 88132, "parameter increase": 70108, "domains transformative": 26602, "synthetic content": 93250, "legal disputes": 53555, "legal analysis": 53551, "analysis demonstrated": 5483, "gpt2 stable": 39352, "opportunity enhance": 68521, "datadriven approach": 21784, "utilizing capabilities": 102001, "dataset potential": 22031, "works facilitate": 104356, "software evolution": 89015, "complex challenge": 16915, "maintenance existing": 57913, "promise code": 76115, "llms fail": 55968, "leverages collaboration": 53783, "agents planning": 4219, "unlock potential": 100198, "experiments employ": 32181, "gpt4 claude2": 39794, "application gpt4": 6359, "based llm": 9608, "llm method": 55167, "method analyze": 59203, "analyze factors": 5762, "settings remains": 87091, "investigating chatgpt": 47762, "conversations different": 19414, "settings analyzing": 87038, "humanai conversations": 42431, "humans engage": 42593, "interacting chatgpt": 46989, "dynamics natural": 26952, "improving effectiveness": 44114, "text adventure": 96074, "methods assessing": 59538, "stemming lack": 90607, "game design": 36884, "enhancing blackbox": 29309, "domainspecific models": 26641, "versatile capable": 102786, "capable addressing": 12220, "issue previous": 47952, "approaches conduct": 7118, "conduct continuous": 17851, "pretraining domainspecific": 74526, "data employ": 21176, "lm small": 57080, "small lm": 88697, "general llm": 37157, "contributes robust": 19151, "knowledge instruction": 48633, "data joint": 21348, "optimization general": 68593, "conducted public": 17977, "medical benchmarks": 58865, "costefficient solution": 19903, "llm prone": 55221, "paradigm introduced": 70037, "contain highest": 18513, "type knowledge": 99211, "inference llm": 45264, "llm activations": 54942, "chosen subset": 14613, "nonlinear probing": 66922, "including truthfulqa": 44506, "metric improvement": 59864, "kullbackleibler divergence": 48877, "divergence longform": 25971, "content contains": 18604, "set comprising": 86852, "topics propose": 97532, "propose llm": 77015, "fact using": 33561, "results furthermore": 83618, "facts response": 33616, "demonstrate llm": 23118, "agents achieve": 4161, "random subset": 79112, "76 time": 1256, "gemini gpt": 37058, "gpt claude": 39187, "generally achieve": 37320, "experimental code": 31989, "conversational response": 19395, "response retrieval": 83159, "retrieval using": 84036, "prominent area": 76088, "conversational context": 19365, "approaches model": 7177, "query use": 78547, "methods leverage": 59711, "need generating": 65954, "appropriate response": 7248, "implement evaluate": 43317, "proposed models": 77240, "utilizing various": 102050, "llama2 chat": 54821, "reveal effectiveness": 84145, "evaluation recent": 30744, "models reveals": 64110, "especially openended": 29902, "challenge addressing": 12854, "explored possibility": 32780, "llms evaluators": 55887, "evaluators using": 30908, "significant uncertainty": 87864, "instability address": 46199, "emulates human": 28523, "methods integrating": 59690, "multiple agents": 65134, "evaluate openended": 30240, "text framework": 96216, "cot strategies": 19964, "enhancing depth": 29320, "depth breadth": 23633, "evaluation process": 30725, "including error": 44336, "error localization": 29784, "scoring experimental": 85790, "results framework": 83617, "methods achieves": 59512, "framework addressing": 36024, "text furthermore": 96218, "furthermore framework": 36620, "industrial scenarios": 45156, "gemini underscores": 37070, "computational environmental": 17457, "llm checkpoints": 55005, "training trajectories": 98332, "various experiments": 102426, "exhibits capacity": 31600, "obtaining substantial": 67684, "academic reading": 1993, "paper argues": 69614, "learning exploratory": 53150, "comprehend complex": 17127, "qualitative interviews": 78200, "initial findings": 45772, "potential overreliance": 73215, "overreliance ethical": 69416, "guide development": 40731, "broader impacts": 11517, "maximize benefits": 58640, "benefits ai": 10466, "key mechanisms": 48320, "mechanisms employed": 58813, "prompt like": 76368, "like capital": 54059, "required answer": 82306, "mlp layer": 60402, "additionally observed": 3328, "recall performance": 80114, "using neural language": 101635, "neural language models": 66230, "language models human": 49965, "language models nlms": 50604, "sequence generation tasks": 86649, "specific topic work": 89765, "generate large number": 37520, "training data generated": 98015, "neural machine translation": 66236, "using pretrained language": 101686, "pretrained language models": 74294, "language models lms": 50521, "models lms various": 63546, "lms various natural": 57184, "various natural language": 102496, "natural language processing": 65632, "language processing tasks": 51046, "tasks work introduce": 95263, "machine translation nmt": 57753, "language models large": 50025, "models large language": 62853, "large language models": 51551, "language models range": 50710, "gpt2 language model": 39300, "commonsense knowledge graphs": 16219, "gpt2 based models": 39259, "largescale pretrained language": 52557, "language models gpt": 49933, "et al 2017": 30041, "range end tasks": 79156, "models achieved stateoftheart": 61771, "achieved stateoftheart results": 2676, "data tasks require": 21685, "tasks require complex": 95044, "et al 2018": 30042, "model improve performance": 60988, "performance complex problems": 71098, "et al 2016": 30040, "task model trained": 94146, "model trained scratch": 61524, "setting new stateoftheart": 87012, "tiny fraction parameters": 97096, "conduct thorough analysis": 17928, "language models recently": 50735, "models recently large": 64021, "recently large language": 80514, "language models gpt2": 49934, "models gpt2 shown": 62592, "downstream nlp tasks": 26708, "nlp tasks text": 66815, "tasks text classification": 95194, "text classification sentiment": 96120, "classification sentiment analysis": 14794, "analysis question answering": 5630, "using large language": 101541, "large language model": 51456, "language model perform": 49505, "natural language models": 65623, "language models machine": 50553, "models machine learning": 63567, "machine learning tasks": 57728, "models similar size": 64204, "generative pretrained language": 38683, "pretrained language model": 74282, "language model gpt2": 49414, "machine reading comprehension": 57735, "generative language models": 38627, "language models conversational": 49755, "language models paper": 50629, "models paper presents": 63759, "paper presents empirical": 69858, "presents empirical study": 74134, "language models plms": 50649, "maximum likelihood estimation": 58651, "taskoriented dialogue systems": 94320, "models using data": 64472, "texttotext transfer transformer": 96649, "transfer transformer t5": 98439, "achieves best results": 2716, "fewer parameters compared": 34197, "language understanding models": 51173, "natural language evaluation": 65573, "fundamental aspect human": 36530, "human language understanding": 42278, "language understanding ability": 51153, "improvements nlp tasks": 43983, "generative language model": 38626, "built using gpt2": 11681, "provide thorough analysis": 77586, "sentence completion task": 86492, "scaling model sizes": 85347, "transformer based models": 98493, "language model based": 49343, "outofdomain test sets": 68894, "hope work serves": 41973, "baseline future research": 9777, "common sense world": 16173, "sense world knowledge": 86446, "models lms bert": 63523, "lms bert gpt2": 57103, "variety language understanding": 102303, "language understanding tasks": 51188, "tasks recent work": 95016, "recent work focused": 80400, "knowledge external resources": 48566, "lead catastrophic forgetting": 52796, "models substantially outperform": 64289, "automatic text summarization": 8836, "covid19 open research": 20104, "open research dataset": 68104, "machine learning approaches": 57693, "recent advances pretrained": 80211, "pretrained nlp models": 74439, "nlp models bert": 66751, "bert openai gpt2": 10541, "evaluate results using": 30281, "results using rouge": 83907, "information retrieval systems": 45609, "systems paper presents": 93525, "paper presents fewshot": 69860, "data using large": 21736, "zeroshot learning setting": 104815, "generation using pretrained": 38500, "models large scale": 62868, "language models proven": 50699, "natural language tasks": 65740, "supervised unsupervised approaches": 92747, "improves downstream task": 44018, "downstream task performance": 26713, "used data augmentation": 100771, "language model pretraining": 49517, "knowledge pretrained language": 48705, "downstream tasks like": 26736, "tasks like zeroshot": 94829, "neural code completion": 66221, "code completion code": 15162, "language models trained": 50871, "models trained public": 64403, "vulnerable poisoning attacks": 103286, "based data augmentation": 9492, "language modeling tasks": 49596, "neural network language": 66254, "network language models": 66145, "language models lm": 50520, "using neural text": 101638, "neural text generation": 66290, "text generation based": 96238, "text corpus finetune": 96153, "propose new method": 77049, "new method called": 66453, "methods significantly improve": 59801, "deep learning models": 22771, "fields natural language": 34436, "language processing nlp": 50998, "processing nlp information": 75523, "nlp information retrieval": 66735, "information retrieval ir": 45603, "learning models like": 53281, "recurrent neural networks": 80727, "neural networks rnns": 66275, "long shortterm memory": 57331, "bidirectional encoder representations": 10972, "encoder representations transformers": 28706, "representations transformers bert": 82129, "deep neural network": 22793, "small models large": 88707, "recently published work": 80541, "work deep learning": 104040, "transfer learning models": 98421, "short answer grading": 87272, "answer grading asag": 6014, "models elmo bert": 62288, "bert gpt gpt2": 10519, "models previous works": 63886, "models black box": 61941, "model training data": 61529, "measuring massive multitask": 58776, "massive multitask language": 58460, "multitask language understanding": 65357, "models possess extensive": 63838, "extensive world knowledge": 33141, "largest gpt3 model": 52592, "20 percentage points": 495, "need substantial improvements": 65997, "domain transfer learning": 26465, "selection pretrained language": 86171, "language model paper": 49502, "achieved excellent performance": 2621, "help improve performance": 41254, "best model achieves": 10611, "current limitations language": 20715, "limitations language models": 54339, "language models need": 50599, "tradeoff language models": 97639, "language models including": 49977, "masked language models": 58433, "openended text generation": 68270, "scaling model size": 85346, "model size efficiently": 61414, "entire training dataset": 29524, "labeled training data": 48917, "data data augmentation": 21139, "present systematic study": 74068, "data augmentation techniques": 21010, "models lms demonstrated": 63525, "lms demonstrated impressive": 57116, "demonstrated impressive abilities": 23269, "impressive abilities generating": 43573, "knowledge paper propose": 48691, "paper propose method": 69887, "set linguistic features": 86893, "information retrieval recommend": 45606, "neural network model": 66256, "paper propose novel": 69893, "propose novel approach": 77059, "proposed approach significantly": 77179, "approach significantly improves": 7021, "significantly improves quality": 87956, "despite recent progress": 24110, "existing datasets introduce": 31694, "compared existing datasets": 16541, "generation models based": 38277, "models based gpt2": 61899, "based gpt2 model": 9555, "gpt2 model able": 39311, "model able generate": 60475, "growth social media": 40682, "african american vernacular": 4094, "american vernacular english": 5328, "gpt2 generated text": 39284, "conduct human evaluation": 17891, "text generated gpt2": 96223, "text classification model": 96116, "language model gpt": 49412, "times fewer parameters": 97073, "generation challenging task": 38071, "potential impact social": 73127, "existing language models": 31734, "language models excel": 49843, "propose novel model": 77074, "based generative pretrained": 9548, "automatic human evaluations": 8793, "evaluations model outperforms": 30867, "model outperforms existing": 61182, "outperforms existing methods": 69047, "existing methods generating": 31761, "making language generation": 58112, "multiple choice question": 65154, "generate semantically correct": 37591, "multiple choice questions": 65157, "generation active research": 38012, "active research topic": 2995, "language model generate": 49402, "language model answer": 49331, "use model filter": 100628, "achieves stateoftheart performance": 2799, "question answering ability": 78573, "lead better performance": 52794, "human evaluation study": 42192, "text simplification ts": 96422, "medical domain introduce": 58881, "pretrained neural language": 74436, "achieve better results": 2487, "contextualized word representations": 18969, "contextualized language models": 18963, "language models bert": 49671, "models bert gpt2": 61920, "produce high quality": 75635, "models bert t5": 61924, "conduct extensive empirical": 17878, "extensive empirical study": 33023, "biases models exhibit": 10940, "neural ranking models": 66284, "base language model": 9406, "present novel approach": 74021, "recent pretrained models": 80310, "pretrained models text": 74421, "language model evaluate": 49387, "zeroshot domain adaptation": 104763, "lowresource machine translation": 57628, "machine translation models": 57750, "code data available": 15182, "despite encouraging results": 24045, "paper presents novel": 69865, "presents novel approach": 74150, "proposed approach outperforms": 77178, "outperforms competitive baselines": 69032, "preserving semantic information": 74199, "chinese pretrained language": 14572, "language model pretrained": 49514, "model pretrained language": 61268, "various downstream nlp": 102416, "nlp tasks recently": 66812, "175 billion parameters": 402, "fewshot zeroshot learning": 34326, "chinese nlp tasks": 14569, "parameters publicly available": 70271, "generative pretraining largescale": 38709, "extensive experiments demonstrate": 33055, "achieves strong performance": 2803, "strong performance nlp": 91055, "performance nlp tasks": 71428, "artificial neural networks": 7680, "natural language generation": 65582, "language model just": 49438, "application programming interfaces": 6381, "programming interfaces apis": 75903, "pretrained models new": 74417, "stateoftheart approaches demonstrate": 90308, "openais gpt2 model": 68201, "gpt2 model successfully": 39316, "existing work does": 31849, "powerful language models": 73444, "language models able": 49609, "compared existing baselines": 16539, "limited labeled data": 54438, "propose adversarial training": 76927, "generative pretraining gpt2": 38708, "set unlabeled data": 86948, "model outperforms stateoftheart": 61188, "outperforms stateoftheart techniques": 69123, "stateoftheart techniques terms": 90496, "techniques terms accuracy": 95600, "model generate synthetic": 60931, "labeled data training": 48907, "making pretrained language": 58131, "language models better": 49678, "better fewshot learners": 10713, "fewshot learners recent": 34252, "brown et al": 11538, "et al 2020": 30046, "al 2020 achieves": 4869, "remarkable fewshot performance": 81773, "smaller language models": 88755, "language models finetuning": 49886, "finetuning language models": 35106, "language models small": 50813, "models small number": 64216, "present systematic evaluation": 74067, "performance range nlp": 71514, "range nlp tasks": 79188, "nlp tasks including": 66787, "tasks including classification": 94723, "low resource setting": 57535, "human evaluation shows": 42189, "evaluation shows model": 30784, "recent work demonstrated": 80396, "largescale language models": 52531, "training largescale language": 98172, "performance downstream evaluations": 71161, "make publicly available": 58023, "publicly available code": 77969, "training nlp models": 98219, "present indepth analysis": 73995, "indepth analysis impact": 44944, "neural language model": 66227, "vision supporting writers": 103006, "supporting writers ai": 92865, "models googles bert": 62585, "successful natural language": 92264, "pretrained models used": 74422, "quadratic time space": 78176, "respect sequence length": 83043, "time space complexity": 97026, "performance model tuning": 71406, "work propose use": 104227, "machine learning service": 57724, "build machine learning": 11598, "machine learning models": 57708, "experiments publicly available": 32276, "understanding capabilities limitations": 99681, "impact large language": 43220, "humancentered artificial intelligence": 42455, "open research questions": 68107, "language model time": 49559, "including computer science": 44309, "capabilities limitations large": 11978, "limitations large language": 54342, "widespread use large": 103803, "use large language": 100595, "language models provide": 50701, "communication efficient largescale": 16263, "training large models": 98167, "large models like": 52260, "models like bert": 62902, "like bert gpt3": 54055, "communication major bottleneck": 16273, "major bottleneck especially": 57922, "bottleneck especially commodity": 11323, "especially commodity systems": 29862, "reduce training time": 80809, "optimizers like sgd": 68652, "provide theoretical analysis": 77584, "approach using gpt3": 7080, "generate natural language": 37533, "recent progress natural": 80321, "progress natural language": 75997, "gpt3 language model": 39483, "paper explore possibility": 69715, "lack training data": 49064, "address problem propose": 3473, "problem propose novel": 75062, "generating new text": 37943, "benchmarks weakly supervised": 10430, "weakly supervised training": 103448, "supervised training paradigm": 92745, "establishing new stateoftheart": 30002, "programming large language": 75917, "language models fewshot": 49877, "large generative language": 51439, "language models supervised": 50844, "language models work": 50923, "natural language prompts": 65715, "improving fewshot performance": 44122, "performance language models": 71334, "language models gpt3": 49936, "tasks provided natural": 94985, "provided natural language": 77628, "natural language prompt": 65712, "training examples order": 98104, "bias language models": 10856, "language models predicting": 50669, "diverse set tasks": 26102, "domains natural language": 26557, "target domain available": 93864, "t5 language model": 93636, "language model given": 49409, "outperforms strong baselines": 69127, "transformerbased language models": 98560, "like bert gpt": 54053, "leverage attention mechanism": 53711, "propose novel effective": 77065, "knowledge graph embeddings": 48593, "model significantly outperforms": 61405, "domainspecific tasks like": 26650, "framework allows users": 36035, "applications natural language": 6530, "natural language specifications": 65732, "source code generation": 89352, "generate source code": 37599, "transforming natural language": 98647, "natural language instructions": 65608, "large pretrained language": 52307, "extensive human evaluation": 33103, "language models shown": 50794, "models shown promising": 64187, "shown promising results": 87526, "radford et al": 79016, "et al 2019": 30043, "perform multiple choice": 70897, "et al 2021": 30048, "gpt2 gpt3 models": 39292, "fluent natural language": 35482, "language model achieve": 49322, "achieve good performance": 2526, "second main contribution": 85941, "challenging data split": 13162, "chinese language models": 14554, "new paradigm natural": 66475, "paradigm natural language": 70043, "hundreds billions parameters": 42686, "billions parameters gpt3": 11037, "gpt3 demonstrated strong": 39439, "natural language understanding": 65745, "language understanding generation": 51162, "incontext learning work": 44655, "learning work present": 53476, "largescale autoregressive language": 52491, "autoregressive language models": 8964, "pipeline model parallelism": 72168, "wide range domains": 103662, "various scenarios including": 102561, "including text summarization": 44497, "summarization question answering": 92556, "performances broad range": 71735, "nlp tasks experimental": 66783, "tasks experimental results": 94608, "experimental results demonstrate": 32024, "results demonstrate superior": 83566, "performing various tasks": 71793, "fewshot zeroshot settings": 34327, "transformer language models": 98520, "modern language models": 64599, "language models driven": 49802, "tasks general language": 94662, "general language understanding": 37149, "language understanding performance": 51182, "human performance results": 42323, "based language models": 9592, "language models exploit": 49857, "language models like": 50041, "models like gpt3": 62919, "like gpt3 bert": 54139, "language models identify": 49966, "play central role": 72331, "central role human": 12737, "commonsense reasoning ability": 16231, "paper analyze capabilities": 69610, "commonly used datasets": 16200, "offtheshelf language models": 67888, "word embedding models": 103898, "embedding models results": 28065, "language models capture": 49695, "grounded text generation": 40581, "recent advances largescale": 80206, "quality text generated": 78374, "given prompt generation": 38934, "retriever language model": 84096, "finetuning pretrained language": 35190, "achieve new stateoftheart": 2549, "using transfer learning": 101825, "deep learning techniques": 22778, "models deep learning": 62168, "number training data": 67392, "training data work": 98063, "generative pretrained transformer": 38689, "pretrained transformer gpt2": 74471, "transformer gpt2 model": 98514, "gpt2 model pretrained": 39315, "wide range models": 103670, "given recent success": 38946, "recent success pretrained": 80374, "success pretrained language": 92228, "language models test": 50860, "improving language model": 44129, "language model performance": 49506, "data adopt curriculum": 20952, "adopt curriculum learning": 3607, "finetune language models": 34827, "language models synthetic": 50849, "models synthetic data": 64319, "model finetuned following": 60889, "content social media": 18690, "social media work": 88900, "based bert architecture": 9451, "approach based pretrained": 6753, "based pretrained language": 9659, "automatic evaluation results": 8781, "massive pretrained language": 58465, "models lms t5": 63543, "remains largely underexplored": 81669, "largely underexplored paper": 52418, "underexplored paper present": 99448, "paper present study": 69842, "present study investigate": 74063, "introducing new task": 47548, "empirical results demonstrate": 28342, "best performing models": 10626, "furthermore analysis reveals": 36576, "analysis reveals models": 5655, "dataset publicly available": 22047, "based question answering": 9689, "question answering using": 78635, "using blooms taxonomy": 101322, "current pretrained language": 20760, "language models experiments": 49854, "model answer questions": 60544, "autoregressive decoding process": 8954, "optimization techniques include": 68622, "models t5 gpt2": 64327, "source code available": 89345, "number natural language": 67364, "plans natural language": 72297, "natural language descriptions": 65569, "particularly gpt3 able": 70469, "current state art": 20774, "adapting language models": 3127, "datasets language models": 22312, "language models generate": 49908, "generate harmful biased": 37472, "exhibit undesirable behavior": 31564, "metrics human evaluations": 59930, "performs significantly better": 71820, "increases model size": 44810, "language model behavior": 49347, "language models recent": 50725, "models recent years": 64015, "size pretrained language": 88515, "training models scratch": 98205, "number taskspecific parameters": 67382, "limited computational resources": 54408, "downstream tasks experimental": 26724, "tens billions parameters": 95754, "source code model": 89353, "widely used software": 103747, "used software developers": 100899, "code completion models": 15163, "models best model": 61927, "top1 top5 accuracy": 97491, "gpt3 autoregressive language": 39406, "autoregressive language model": 8960, "gpt3s fewshot learning": 39734, "fewshot learning capabilities": 34256, "improve performance gpt3": 43749, "language models produce": 50685, "poses new challenge": 72778, "propose new framework": 77045, "new framework called": 66409, "parameter count training": 70096, "count training data": 19983, "human authored text": 42099, "ai language models": 4445, "web data generate": 103488, "language model gpt3": 49417, "library information science": 53955, "spanish language models": 89489, "models pretrained using": 63880, "extractive question answering": 33350, "question answering dataset": 78585, "models outperform existing": 63736, "language models reasoning": 50724, "models pretrained language": 63868, "language modeling objective": 49589, "struggle tasks require": 91229, "tasks require reasoning": 95049, "require reasoning work": 82286, "reasoning work propose": 80087, "different reasoning skills": 25177, "reading comprehension datasets": 79522, "pretrained encoderdecoder model": 74254, "based large language": 9594, "language model t5": 49554, "deep learning recommendation": 22774, "gpt3 switch transformer": 39541, "learning recommendation models": 53379, "training inference times": 98144, "results paper present": 83756, "reduction memory usage": 80902, "models accuracy using": 61748, "question answering finetuned": 78594, "finetuned language models": 34911, "language models use": 50895, "training examples available": 98101, "performance zeroshot setting": 71727, "overall results suggest": 69319, "language models good": 49930, "small training set": 88735, "gpt models recent": 39228, "models recent works": 64014, "batch size learning": 9897, "size learning rate": 88487, "leads better training": 52891, "leading poor generalization": 52877, "conduct indepth analysis": 17895, "strong correlation training": 91020, "long sequence lengths": 57324, "larger batch size": 52431, "evaluation results method": 30757, "number training tokens": 67394, "foundation models ai": 35934, "undergoing paradigm shift": 99461, "adaptable wide range": 3064, "wide range downstream": 103663, "range downstream tasks": 79153, "models foundation models": 62506, "model architectures training": 60565, "foundation models based": 35937, "standard deep learning": 90168, "deep learning transfer": 22779, "learning transfer learning": 53460, "foundation models currently": 35939, "finetunes pretrained language": 35000, "able improve performance": 1858, "improve performance pretrained": 43759, "performance pretrained language": 71484, "previous research shows": 74696, "tasks conduct extensive": 94479, "conduct extensive experiments": 17881, "impact different factors": 43201, "data annotation timeconsuming": 20981, "fewshot learning tasks": 34271, "tasks paper explore": 94925, "model achieve performance": 60483, "nlu nlg tasks": 66840, "furthermore propose novel": 36649, "propose novel framework": 77068, "leads better performance": 52890, "computational language models": 17463, "language models language": 50020, "models language models": 62846, "contemporary language models": 18574, "generative pretrained transformers": 38703, "incontext learning ability": 44575, "models lms trained": 63544, "zeroshot fewshot learning": 104774, "performances various downstream": 71746, "various downstream tasks": 102418, "transformerbased pretrained language": 98590, "conventional nlp tasks": 19291, "tasks struggle tasks": 95144, "models large pretrained": 62865, "language models textual": 50866, "code trained models": 15546, "trained models available": 97880, "texttosql translation tasks": 96637, "finetuned t5 models": 34979, "prediction language models": 73697, "language models performance": 50644, "selfsupervised training objective": 86278, "models avoid generating": 61891, "model best model": 60607, "nlp tasks performance": 66806, "performance improves model": 71305, "improves model size": 44046, "using training objectives": 101823, "presents comprehensive study": 74125, "model size model": 61421, "facilitate future research": 33495, "fewshot text classification": 34322, "models shown promise": 64185, "language models used": 50896, "language model produce": 49518, "different language models": 25087, "contextualizing language models": 18972, "bert gpt2 t5": 10524, "training corpora language": 97977, "corpora language models": 19581, "language models ptlms": 50705, "shown great success": 87468, "propose new task": 77054, "language models derive": 49775, "machine translation systems": 57758, "language models method": 50572, "method consists steps": 59245, "translation ability large": 98682, "single language model": 88370, "attracted lot attention": 8421, "attention natural language": 8347, "processing nlp domain": 75519, "performance downstream tasks": 71162, "large number parameters": 52287, "despite superior performance": 24132, "superior performance gpt": 92655, "especially fewshot zeroshot": 29878, "finetuned downstream tasks": 34884, "downstream tasks using": 26749, "language understanding evaluation": 51160, "evaluation benchmark tasks": 30528, "decoderbased language models": 22638, "language models pretrained": 50672, "wide range natural": 103671, "range natural language": 79179, "processing nlp tasks": 75541, "attracted increasing attention": 8419, "attention nlp community": 8353, "nlp community existing": 66718, "existing works focus": 31853, "knowledge distillation techniques": 48517, "achieve better performance": 2486, "better performance finetuned": 10761, "recently emerged effective": 80479, "emerged effective method": 28130, "adapting pretrained language": 3138, "understanding generation tasks": 99757, "generation tasks paper": 38455, "tasks paper investigate": 94927, "natural language utterances": 65765, "conduct ablation studies": 17821, "different model scales": 25117, "like gpt3 t5": 54143, "gpt3 t5 research": 39543, "new model architectures": 66460, "substantial engineering efforts": 92079, "comparatively little work": 16445, "substantially improve generalization": 92124, "generalization language models": 37264, "language models computational": 49737, "particularly large gains": 70478, "training data tasks": 98057, "ai foundation models": 4403, "paradigm shift ai": 70054, "models bert gpt3": 61921, "computer vision models": 17542, "despite potential benefits": 24097, "training data quality": 98046, "artificially generated texts": 7686, "tasks sentiment analysis": 95092, "sentiment analysis product": 86592, "fake news detection": 33760, "news detection using": 66622, "data finetuned gpt2": 21237, "gpt2 models results": 39321, "significantly improve performance": 87942, "starting point finetuning": 90260, "models deployed resourceconstrained": 62197, "proposed framework dubbed": 77205, "parameter efficient finetuning": 70101, "approach extensive experiments": 6855, "backbones bert roberta": 9255, "bert roberta gpt2": 10551, "roberta gpt2 dozens": 84601, "gpt2 dozens datasets": 39272, "achieving comparable performance": 2838, "language model finetuning": 49400, "modern natural language": 64612, "significant advancements field": 87670, "respect input length": 83041, "context paper propose": 18823, "fraction computational cost": 36000, "approach using gpt2": 7079, "proposed model achieves": 77239, "slight performance degradation": 88633, "text generation using": 96278, "current language models": 20703, "models generate highquality": 62549, "generate highquality text": 37485, "models lstm transformer": 63561, "data augmentation natural": 21005, "augmentation natural language": 8549, "data augmentation da": 20997, "neural network models": 66257, "results significant performance": 83849, "results indicate need": 83683, "word sense disambiguation": 103925, "recent years research": 80437, "research natural language": 82676, "processing nlp witnessed": 75552, "contextualized word embeddings": 18967, "word embeddings cwes": 103900, "paper presents comparative": 69851, "presents comparative study": 74121, "widely adopted transformer": 103713, "simple effective approach": 88179, "experimental results proposed": 32058, "results proposed techniques": 83790, "results current stateoftheart": 83527, "training neural network": 98214, "neural networks generalize": 66269, "reduce computational cost": 80766, "challenges existing methods": 13011, "existing methods struggle": 31767, "language models meet": 50568, "program synthesis large": 75848, "models gpt3 codex": 62599, "language model capable": 49358, "model capable generating": 60632, "capable generating code": 12238, "generating code natural": 37874, "code natural language": 15417, "language models potential": 50663, "ai pair programmer": 4492, "language models understand": 50892, "augment large language": 8517, "understand syntax semantics": 99652, "suggests large language": 92439, "language models program": 50687, "using pretrained t5": 101690, "code data publicly": 15198, "data publicly available": 21528, "data augmentation logical": 21000, "generating textual descriptions": 37990, "require costly human": 82237, "based text description": 9734, "learning approach jointly": 53032, "demonstrate approach effectively": 23018, "monolingual language models": 64714, "building block nlp": 11624, "training models requires": 98204, "models trained english": 64385, "problem introduce novel": 75029, "introduce novel method": 47473, "novel method called": 67206, "static word embeddings": 90537, "roberta gpt2 models": 84603, "outperforms models comparable": 69084, "models comparable size": 62051, "training large language": 98162, "language models new": 50602, "models new languages": 63672, "make code models": 57974, "code models publicly": 15413, "models publicly available": 63944, "scaling language models": 85332, "language models mixtureofexperts": 50577, "language models data": 49762, "significant progress natural": 87826, "achieve strong results": 2595, "strong results incontext": 91069, "results incontext learning": 83667, "incontext learning tasks": 44649, "tasks training large": 95211, "computing resources paper": 17575, "resources paper propose": 83024, "family language models": 33846, "language model uses": 49566, "sparsely activated mixtureofexperts": 89549, "used train gpt3": 100922, "zeroshot oneshot performance": 104834, "nlp tasks fewshot": 66786, "models trained code": 64379, "code large language": 15375, "language models perform": 50642, "little training data": 54686, "natural language used": 65762, "models pretrained code": 63866, "like openai codex": 54201, "semantic parsing tasks": 86330, "tasks map natural": 94852, "map natural language": 58337, "natural language code": 65558, "language code models": 49156, "directly meaning representations": 25508, "adaptation pretrained language": 3092, "language models remarkable": 50748, "remarkable success large": 81824, "success large language": 92210, "models trained massive": 64399, "adaptation diverse domains": 3071, "using computationally efficient": 101375, "method based observation": 59217, "frozen pretrained language": 36409, "model approach enables": 60557, "human feedback make": 42227, "train evaluate models": 97739, "best model obtained": 10612, "reward model trained": 84372, "multilingual language models": 64969, "language models largescale": 50033, "largescale generative language": 52518, "languages training data": 51368, "multilingual generative language": 64961, "zeroshot learning capabilities": 104808, "capabilities wide range": 12137, "wide range tasks": 103691, "new state art": 66535, "absolute accuracy improvement": 1909, "natural language inference": 65599, "strong fewshot learning": 91024, "fewshot learning performance": 34265, "finally evaluate models": 34526, "hate speech detection": 41109, "language models methods": 50573, "methods analysis insights": 59527, "transformerbased language model": 98559, "performance wide range": 71710, "billion parameter model": 11023, "achieving stateoftheart performance": 2885, "application language models": 6363, "language models ai": 49636, "inference apis paper": 45212, "generation recent years": 38390, "seq2seq language model": 86638, "language model bart": 49342, "language models artificial": 49653, "artificial intelligence ai": 7595, "intelligence ai technologies": 46826, "implications large language": 43390, "directions future research": 25467, "language models specialized": 50821, "external knowledge sources": 33195, "lead significant improvements": 52822, "promising approach improving": 76149, "approach improving model": 6895, "knowledge sources information": 48765, "approach enables model": 6832, "model generate responses": 60930, "learning pretrained language": 53341, "language models increasing": 49985, "models increasing scale": 62751, "generalpurpose pretrained language": 37363, "different downstream tasks": 25055, "downstream tasks paper": 26740, "plms prompt learning": 72432, "achieves significant improvement": 2783, "finally conduct indepth": 34515, "prompts code available": 76665, "receiving increasing attention": 80161, "pruning toxicity bias": 77860, "knowledge distillation pruning": 48515, "megatronturing nlg 530b": 58979, "pretrained generalpurpose language": 74264, "generalpurpose language models": 37349, "language models achieve": 49616, "models achieve stateoftheart": 61760, "zeroshot fewshot finetuning": 104771, "transformer based language": 98491, "based language model": 9591, "billion parameters paper": 11026, "zero fewshot learning": 104698, "establishes new stateoftheart": 29996, "new stateoftheart results": 66541, "believe contributions help": 10035, "language models natural": 50596, "models natural language": 63656, "reinforcement learning finetuning": 81149, "finetuning reinforcement learning": 35217, "reinforcement learning rl": 81161, "consistent performance gains": 18270, "performance gains terms": 71240, "performance variety tasks": 71674, "gpt2 language models": 39302, "models hope work": 62678, "learning natural language": 53298, "binary classification tasks": 11052, "promptbased learning large": 76464, "learning large language": 53238, "language models demonstrate": 49767, "larger models compared": 52457, "gpt3 brown et": 39418, "t0 sanh et": 93609, "sanh et al": 85180, "model models trained": 61139, "detection automatically generated": 24267, "automatic text generation": 8834, "language models achieved": 49618, "indistinguishable written humans": 45072, "text generation various": 96279, "address problems propose": 3477, "generated gpt2 model": 37707, "metrics bleu rouge": 59891, "better benchmark evaluate": 10694, "generated text using": 37802, "large transformer language": 52354, "advent advanced language": 3952, "advanced language models": 3703, "language models openais": 50616, "new possibilities addressing": 66486, "output large language": 69166, "method able produce": 59183, "evaluating natural language": 30465, "language processing models": 50995, "training testing data": 98323, "machine learning ml": 57704, "learning ml model": 53269, "analysis neural networks": 5589, "tasks prior work": 94967, "prior work primarily": 74869, "computer vision cv": 17541, "large pretrained transformers": 52326, "data model size": 21422, "nlp models including": 66752, "models including gpt2": 62727, "including gpt2 bert": 44357, "language model scaling": 49536, "language models enabled": 49823, "solving natural language": 89241, "tasks using zeroshot": 95236, "using zeroshot fewshot": 101858, "largely unexplored introduce": 52423, "language model specifically": 49548, "french language models": 36369, "furthermore provide indepth": 36653, "playing central role": 72364, "time effort required": 96957, "models automatically generate": 61880, "gpt3 model generate": 39498, "results highlight potential": 83643, "potential large language": 73154, "higher training throughput": 41530, "compared stateoftheart baseline": 16640, "large generative models": 51442, "rapid development models": 79317, "regulate ai systems": 81121, "generative models natural": 38666, "conducted experiments gpt3": 17960, "language models open": 50615, "failures large language": 33720, "human cognitive biases": 42129, "biases large language": 10934, "produce working code": 75668, "problems using code": 75213, "machine learning systems": 57726, "language models building": 49687, "capable language models": 12246, "past years despite": 70575, "high computational cost": 41388, "paper proposes effective": 69905, "unlike existing methods": 100170, "classification tasks method": 14806, "experiments t5 bert": 32312, "code demo available": 15220, "achieve superior performances": 2603, "language understanding benchmarks": 51155, "model sizes training": 61433, "training language models": 98159, "language models follow": 49893, "models follow instructions": 62499, "instructions human feedback": 46513, "making language models": 58113, "example large language": 31165, "aligning language models": 5041, "finetune gpt3 using": 34823, "using supervised learning": 101800, "model outputs use": 61191, "using reinforcement learning": 101733, "reinforcement learning human": 81152, "learning human feedback": 53189, "gpt3 despite having": 39442, "large neural networks": 52284, "recent work shown": 80407, "work shown large": 104271, "shown large language": 87495, "language models surprisingly": 50846, "prompting large language": 76556, "language models providing": 50704, "providing natural language": 77775, "performance large language": 71339, "language models zeroshot": 50927, "zeroshot setting recent": 104868, "recent work aimed": 80395, "models work introduce": 64547, "instructions large language": 46526, "430 percentage points": 946, "percentage points classification": 70775, "language generation nlg": 49253, "gpt2 generated texts": 39285, "data source code": 21638, "language models demonstrated": 49769, "models demonstrated impressive": 62186, "demonstrated impressive ability": 23271, "impressive ability generate": 43576, "ability generate code": 1658, "models perform poorly": 63793, "competitive programming problems": 16819, "complex natural language": 16963, "address gap introduce": 3398, "alphacode code generation": 5245, "dataset training evaluation": 22111, "knowledge work focus": 48812, "neural network based": 66250, "factual knowledge graph": 33641, "graph convolutional neural": 40368, "convolutional neural network": 19472, "textual information news": 96677, "task considering various": 93991, "matches outperforms stateoftheart": 58510, "accuracy code data": 2220, "completion language models": 16898, "models lms recently": 63537, "lms recently shown": 57164, "zhou et al": 104894, "chen et al": 14512, "standard language model": 90187, "language model outperforms": 49498, "model outperforms gpt2": 61184, "gpt2 radford et": 39339, "al 2019 gpt3": 4865, "2019 gpt3 brown": 527, "model code models": 60664, "language models deep": 49766, "deep learning dl": 22764, "individuals alzheimers disease": 45110, "alzheimers disease ad": 5292, "ability generalize small": 1654, "publicly available research": 77990, "model parameters directly": 61212, "propose novel method": 77072, "data widely used": 21756, "generalization natural language": 37270, "processing nlp algorithms": 75512, "remains significant challenge": 81697, "significant challenge paper": 87708, "paper addresses issue": 69586, "tasks sentiment classification": 95094, "classification natural language": 14766, "language models positional": 50660, "models lms gpt3": 63528, "explicit positional encoding": 32536, "different datasets model": 25040, "experiments reveal models": 32293, "various factors including": 102430, "language models scale": 50782, "training data evaluation": 98006, "used train models": 100923, "models hundreds billions": 62689, "open source available": 68110, "training large neural": 98168, "address issues propose": 3441, "new ways train": 66578, "shown achieve remarkable": 87437, "achieve remarkable performance": 2567, "remarkable performance variety": 81795, "performance variety natural": 71670, "variety natural language": 102310, "language tasks using": 51132, "tasks using fewshot": 95233, "using fewshot learning": 101443, "transformer language model": 98519, "pathways language model": 70597, "language model palm": 49501, "suite multistep reasoning": 92476, "multistep reasoning tasks": 65341, "average human performance": 9159, "strong capabilities multilingual": 91014, "tasks source code": 95128, "additionally provide comprehensive": 3341, "provide comprehensive analysis": 77426, "related large language": 81203, "language models discuss": 49794, "models lms shown": 63540, "knowledge pretraining corpora": 48709, "generation nlg tasks": 38301, "alleviates exposure bias": 5141, "transformerbased natural language": 98585, "loss function training": 57463, "vision transformer models": 103012, "attentionbased language models": 8392, "models bert roberta": 61922, "bert roberta gpt3": 10554, "domain natural language": 26420, "language models applied": 49649, "leveraging pretrained language": 53890, "text recent advances": 96386, "recent advances natural": 80208, "advances natural language": 3888, "language representation models": 51089, "models opening new": 63713, "models address problem": 61792, "pretrained transformer model": 74478, "model incontext learning": 60998, "deep learning based": 22762, "text generation paper": 96259, "generation paper introduces": 38314, "prior studies work": 74863, "design simple effective": 23843, "learning promising results": 53356, "results benchmark datasets": 83477, "limited training data": 54477, "social media provide": 88895, "generative model gpt2": 38652, "language model introduce": 49435, "20 billion parameter": 485, "language model trained": 49561, "best knowledge largest": 10603, "model publicly available": 61303, "training evaluation code": 98098, "code model weights": 15404, "recent studies report": 80365, "nlp tasks zero": 66820, "tasks zero fewshot": 95270, "fewshot learning paradigms": 34264, "models paper introduces": 63756, "models 13 billion": 61707, "billion 13 billion": 11015, "13 billion parameters": 258, "colossal clean crawled": 15936, "clean crawled corpus": 14870, "sparse attention mechanism": 89527, "models performance par": 63798, "low resource languages": 57532, "multilingual tasks including": 65013, "diverse nlp tasks": 26062, "despite order magnitude": 24089, "order magnitude smaller": 68708, "requires significant human": 82408, "significant human effort": 87760, "paper propose conversational": 69880, "automated natural language": 8721, "language generation metrics": 49246, "capable providing accurate": 12261, "bert language models": 10532, "social media platforms": 88892, "language models present": 50670, "using masked language": 101607, "masked language modelling": 58431, "generative transformer model": 38724, "largescale language model": 52529, "language model recent": 49527, "analysis incontext learning": 5551, "incontext learning occurs": 44630, "incontext learning performance": 44634, "corpus incontext learning": 19634, "incontext learning incontext": 44611, "learning incontext learning": 53213, "learning performance downstream": 53327, "incontext fewshot learning": 44567, "performance training language": 71643, "models perform tasks": 63794, "natural language feedback": 65579, "finetune language model": 34826, "evaluate language models": 30209, "language models accurately": 49615, "finding large language": 34628, "models 175b parameters": 61712, "175b parameters using": 411, "contrastive learning promptbased": 19106, "using natural language": 101629, "masked language modeling": 58429, "language modeling mlm": 49588, "experimental results method": 32052, "processing nlp systems": 75539, "machine translation mt": 57751, "macro f1 score": 57791, "classification task using": 14800, "human evaluation results": 42187, "results model trained": 83731, "similar model trained": 88087, "incontext learning fewshot": 44595, "fewshot incontext learning": 34243, "incontext learning icl": 44603, "training examples input": 98103, "substantial computational memory": 92069, "parameterefficient finetuning peft": 70144, "small set parameters": 88728, "enable model perform": 28559, "perform new task": 70904, "way introduce new": 103378, "parameters propose simple": 70268, "language models llms": 50070, "prompt engineering paper": 76308, "stateoftheart generative models": 90348, "model introduce new": 61030, "introduce new benchmark": 47453, "diverse tasks datasets": 26118, "translation summarization question": 98741, "model better results": 60609, "examples natural language": 31258, "natural language task": 65738, "language task descriptions": 51125, "descriptions large language": 23713, "models able perform": 61741, "able perform task": 1872, "known incontext learning": 48850, "incontext learning language": 44619, "learning language models": 53235, "language models explicitly": 49856, "natural language instruction": 65607, "novel evaluation metric": 67157, "evaluation metric based": 30672, "gpt3 model reaches": 39499, "surprising result suggests": 92994, "learning rl frequently": 53395, "finetuning large language": 35109, "captures human preferences": 12376, "treating language model": 98802, "kullbackleibler kl divergence": 48880, "set nlp tasks": 86906, "propose novel algorithm": 77057, "data augmentation approach": 20995, "benchmark datasets various": 10133, "models bart t5": 61895, "bart t5 gpt3": 9390, "achieved stateoftheart performance": 2673, "stateoftheart performance natural": 90436, "performance natural language": 71419, "possible significantly improve": 72920, "improve model performance": 43734, "approach provides viable": 6994, "lms code data": 57109, "generate synthetic data": 37610, "tasks question answering": 94995, "synthetic training data": 93302, "perform extensive experiments": 70872, "extensive experiments multiple": 33078, "classification datasets demonstrate": 14737, "demonstrate substantial improvements": 23199, "substantial improvements performance": 92091, "performance zeroshot settings": 71728, "require highlevel reasoning": 82258, "field natural language": 34394, "lowresource nlp tasks": 57630, "issue propose knowledge": 47954, "data augmentation model": 21004, "unified texttotext format": 100042, "training objectives different": 98223, "best knowledge attempt": 10601, "training data augmentation": 97991, "extensive experiments synthetic": 33087, "models bert albert": 61918, "evaluating language models": 30441, "finetuned language model": 34910, "various language models": 102459, "language models different": 49787, "models different data": 62225, "evaluation language models": 30645, "language models using": 50898, "using promptbased learning": 101699, "benchmark language models": 10198, "models including gpt3": 62728, "achieve similar performance": 2584, "new learning paradigm": 66445, "model pretraining finetuning": 61273, "finetuning downstream tasks": 35051, "variety nlp tasks": 102316, "achieve superior performance": 2602, "college entrance examination": 15924, "prompt generation large": 76330, "generation large language": 38227, "language models code": 49718, "models llms code": 63044, "work propose framework": 104218, "blackbox access llm": 11127, "achieve significant performance": 2577, "significant performance gains": 87811, "release code data": 81353, "code data trained": 15203, "challenging task demands": 13233, "language model generation": 49408, "language models task": 50856, "results reveal current": 83821, "language models struggle": 50833, "recent large language": 80278, "language model using": 49567, "modelbased reinforcement learning": 61611, "results enrich understanding": 83586, "enrich understanding current": 29409, "current large language": 20706, "pave way future": 70646, "way future investigations": 103361, "inspired recent advances": 46183, "method outperforms previous": 59380, "data large margin": 21367, "achieving f1 score": 2848, "clinical use cases": 14942, "representation linguistic phenomena": 82063, "neural network using": 66260, "pretrained transformerbased language": 74481, "language models widely": 50920, "models widely used": 64541, "widely used natural": 103742, "used natural language": 100859, "language understanding nlu": 51177, "understanding nlu natural": 99826, "nlu natural language": 66836, "used downstream applications": 100783, "task recent years": 94216, "learning models used": 53285, "machine learning algorithms": 57690, "different context lengths": 25027, "model achieves best": 60496, "question answering qa": 78619, "strong baseline models": 91006, "experimental results gpt3": 32043, "avenue future research": 9109, "language representation model": 51088, "incorporating prior knowledge": 44716, "models proven effective": 63931, "synthesis large language": 93212, "language models codex": 49724, "codex large language": 15671, "language model llm": 49448, "previous state art": 74706, "models generate code": 62545, "models like codex": 62916, "novel evaluation framework": 67156, "advanced code generation": 3685, "code generation techniques": 15338, "general language modeling": 37146, "language modeling ability": 49578, "closedbook question answering": 14993, "question answering datasets": 78586, "tasks summarization machine": 95159, "summarization machine translation": 92544, "machine translation thoroughly": 57763, "powered large language": 73412, "study shed light": 91834, "causal language models": 12660, "language models general": 49906, "recent work demonstrates": 80399, "debiasing large language": 22538, "language models address": 49627, "artificial intelligence large": 7647, "intelligence large language": 46866, "models openais codex": 63708, "solve variety problems": 89201, "problems expressed natural": 75141, "expressed natural language": 32910, "applying large language": 6688, "generation language models": 38224, "personally identifiable information": 71926, "identifiable information pii": 42807, "language models require": 50754, "text generated language": 96224, "generated language models": 37726, "existing prompting techniques": 31799, "paper propose simple": 69898, "harness power large": 41073, "power large language": 73374, "models using large": 64475, "language models simulate": 50810, "introduce new type": 47463, "given language model": 38907, "garden path sentences": 37003, "present language models": 74005, "models including chatgpt": 62723, "including chatgpt gpt4": 44295, "using language models": 101537, "language models knowledge": 50011, "models knowledge base": 62831, "knowledge base construction": 48436, "models lms proven": 63536, "various downstream applications": 102415, "translation question answering": 98736, "question answering text": 78632, "tools artificial intelligence": 97358, "artificial intelligence vast": 7671, "gpt3 large language": 39485, "large neural language": 52279, "train large language": 97749, "leveraging machine learning": 53878, "machine learning techniques": 57729, "advances large language": 3880, "proposed framework using": 77207, "finetuning large models": 35114, "large models nlp": 52265, "models nlp tasks": 63677, "benefit using large": 10459, "llms 100 billion": 55389, "100 billion parameters": 124, "pretrained models scale": 74419, "efficient finetuning methods": 27766, "finetuning methods large": 35141, "methods large language": 59704, "language models know": 50010, "child development particularly": 14521, "language model significantly": 49543, "generation using gpt3": 38496, "based model pretrained": 9621, "natural programming languages": 65772, "programming languages codex": 75910, "outperforms existing techniques": 69053, "different programming languages": 25159, "offensive toxic responses": 67730, "models trained large": 64397, "finetuning gpt2 generate": 35080, "extensive experimental evaluation": 33039, "experimental evaluation demonstrates": 31996, "highlights need research": 41661, "work pave way": 104199, "lamda large language": 49096, "language models substantially": 50838, "prohibitively expensive motivating": 76039, "performance gains strong": 71239, "translation natural language": 98726, "understanding nlu tasks": 99829, "improve performance downstream": 43747, "release models code": 81381, "language model instruction": 49434, "data intent classification": 21340, "sequencetosequence seq2seq model": 86697, "outperforms strong baseline": 69126, "significant improvements baseline": 87775, "transformers shown remarkable": 98635, "shown remarkable success": 87543, "natural language summary": 65737, "extensive experiments using": 33091, "experiments using popular": 32329, "score bleu score": 85707, "metrics measure performance": 59947, "performance various tasks": 71699, "learning language model": 53234, "transformer models generative": 98532, "models generative pretrained": 62568, "pretrained transformer gpt": 74466, "achieved remarkable performance": 2657, "performance text generation": 71630, "generation natural language": 38292, "significantly degrades generation": 87909, "generation paper present": 38315, "xilinx alveo u280": 104555, "high bandwidth memory": 41380, "bandwidth memory hbm": 9332, "largelanguage models like": 52400, "present case study": 73942, "quantitative qualitative analyses": 78418, "models llms training": 63485, "models llms demonstrated": 63062, "llms demonstrated remarkable": 55753, "knowledge learned llms": 48657, "outperform larger models": 68951, "llms demonstrated impressive": 55740, "demonstrated impressive capabilities": 23274, "impressive capabilities generating": 43581, "social biases study": 88846, "moral foundations theory": 64743, "models generate text": 62556, "longshort term memory": 57400, "term memory lstm": 95777, "models llms gpt3": 63197, "modern nlp systems": 64616, "larger language models": 52443, "llms significantly outperform": 56809, "use deep learning": 100523, "produce humanlike texts": 75638, "parameters large language": 70238, "language models improving": 49975, "discuss implications findings": 25664, "diversity equity inclusion": 26144, "compare results obtained": 16494, "bidirectional language models": 10976, "models fewshot learners": 62461, "models gpt3 brown": 62594, "unidirectional language models": 100004, "prompting technique enables": 76629, "machine translation task": 57759, "task case study": 93964, "demonstrate fewshot zeroshot": 23081, "xglm lin et": 104551, "lin et al": 54510, "effective question answering": 27356, "question answering summarization": 78628, "model weights publicly": 61590, "weights publicly accessible": 103563, "learning models gpt3": 53277, "success wide range": 92252, "wide range problems": 103678, "remains underexplored paper": 81713, "language models symbolic": 50848, "language model lm": 49479, "prompt codex solve": 76250, "achieves stateoftheart results": 2801, "training code available": 97961, "recent success large": 80371, "language models text": 50863, "models text generation": 64357, "threat academic integrity": 96876, "results suggest large": 83874, "model gpt3 achieves": 60956, "models llms shown": 63420, "shown exceptional performance": 87455, "exceptional performance variety": 31378, "llms indepth analysis": 56215, "autonomous web navigation": 8942, "previous work developed": 74730, "understanding llms pretrained": 99805, "natural language corpora": 65563, "compared models trained": 16594, "compared previous best": 16609, "best supervised model": 10652, "generation prompting large": 38354, "language models case": 49696, "models case study": 61967, "propose novel application": 77058, "prompting pretrained language": 76590, "design effective prompts": 23774, "achieve humanlevel performance": 2535, "task finetuning pretrained": 94066, "finetuning pretrained transformers": 35200, "strong language models": 91041, "time memory complexity": 96995, "outperforms prior methods": 69104, "generation pretrained language": 38328, "datasets different scenarios": 22220, "data experimental results": 21212, "dataset zeroshot setting": 22127, "machine learning shifting": 57725, "models paper introduce": 63755, "paper introduce general": 69762, "different application domains": 24996, "language model demonstrate": 49372, "methods language models": 59702, "models code fewshot": 62015, "structured commonsense reasoning": 91156, "commonsense reasoning given": 16237, "given natural language": 38917, "natural language input": 65605, "employ large language": 28402, "commonsense reasoning tasks": 16241, "reasoning tasks code": 80045, "tasks code generation": 94445, "code generation tasks": 15337, "generation tasks pretrained": 38457, "pretrained lms code": 74377, "reasoning tasks natural": 80060, "tasks natural language": 94881, "approach code generation": 6774, "gpt3 fewshot setting": 39458, "aligned human values": 5020, "nlp classification tasks": 66715, "detection toxicity detection": 24373, "human values human": 42411, "knowledge largescale language": 48653, "promptbased fewshot learning": 76459, "including fewshot learning": 44345, "existing text augmentation": 31837, "text augmentation methods": 96091, "reliable large language": 81521, "models llms impressive": 63230, "llms impressive abilities": 56163, "simple effective prompts": 88186, "uses natural language": 101246, "factual knowledge reasoning": 33642, "datasets evaluation scripts": 22241, "systematic empirical study": 93325, "use llms like": 100619, "llms like gpt3": 56318, "openais language model": 68217, "model gpt3 test": 60957, "evaluation large language": 30647, "data generation process": 21270, "publicly available pretrained": 77989, "achieves highest accuracy": 2748, "questions large language": 78881, "capabilities natural language": 12015, "reasoning capabilities llms": 79806, "implicit commonsense knowledge": 43415, "room future improvements": 84829, "leveraging large language": 53862, "language models multiple": 50593, "models multiple choice": 63649, "choice question answering": 14589, "question answering large": 78605, "answering large language": 6118, "models llms like": 63271, "like gpt3 achieved": 54138, "achieved impressive results": 2638, "question answering mcqa": 78613, "answering mcqa tasks": 6128, "zero fewshot settings": 104703, "state art sota": 90274, "reduces computational costs": 80828, "multiple choice symbol": 65158, "choice symbol binding": 14594, "symbol binding mcsb": 93117, "language models llm": 50056, "revolutionized natural language": 84349, "language processing recent": 51041, "zeroshot fewshot capabilities": 104768, "tasks work propose": 95266, "work propose simple": 104226, "significantly boosts performance": 87897, "token prediction task": 97147, "quality learned representations": 78308, "downstream language understanding": 26697, "causal language model": 12657, "language models promising": 50689, "recently attracted attention": 80457, "programming language programming": 75908, "parameters language models": 70236, "language models conduct": 49740, "models conduct study": 62086, "improve performance language": 43751, "recent advances generative": 80200, "advances generative models": 3876, "machine learning researchers": 57723, "prompt engineering solving": 76314, "problems using natural": 75217, "artificial intelligence model": 7653, "automatically generating source": 8881, "generating source code": 37976, "source code natural": 89355, "natural language problem": 65629, "language problem descriptions": 50960, "visual studio code": 103125, "raising concerns impact": 79089, "introductory programming courses": 47570, "natural language interactions": 65612, "questions evaluating performance": 78844, "publicly available dataset": 77973, "semiparametric language models": 86417, "number model parameters": 67361, "multiple natural language": 65228, "paper develop novel": 69677, "semiparametric language model": 86416, "language model architecture": 49336, "texttotext language model": 96642, "different types knowledge": 25241, "output natural language": 69174, "superior zeroshot performance": 92673, "zeroshot performance unseen": 104842, "performance unseen tasks": 71652, "outperforms large language": 69072, "smaller model scale": 88766, "model scale compared": 61373, "models diverse range": 62251, "diverse range tasks": 26084, "baseline language model": 9784, "language model use": 49564, "stateoftheart models including": 90404, "table question answering": 93682, "early results using": 26983, "questions natural language": 78902, "significantly improves accuracy": 87950, "previous work focuses": 74732, "work focuses simple": 104105, "work provides evidence": 104233, "large ml models": 52252, "models complex tasks": 62065, "parameter language model": 70111, "training ml models": 98201, "significant computational resources": 87719, "carbon footprint ml": 12387, "future research directions": 36764, "generated large language": 37728, "llms capable generating": 55554, "models openai codex": 63703, "using llms integrating": 101586, "discuss future directions": 25660, "explanations generated llms": 32495, "propose novel learning": 77069, "helps language models": 41311, "models better understand": 61931, "using language model": 101536, "absolute f1 points": 1913, "annotated human annotators": 5874, "synthetic data generation": 93264, "data generation method": 21265, "generation method based": 38263, "finetune t5 models": 34860, "language models replace": 50749, "improve large language": 43724, "language models propose": 50695, "generated using openai": 37820, "using openai codex": 101660, "reduce human effort": 80783, "openaccess multilingual language": 68138, "multilingual language model": 64968, "language model large": 49439, "model large language": 61046, "shown able perform": 87434, "perform new tasks": 70905, "demonstrations natural language": 23479, "led widespread adoption": 53539, "language model designed": 49374, "achieves competitive performance": 2735, "competitive performance wide": 16814, "performance wide variety": 71718, "multitask prompted finetuning": 65366, "efficient generative inference": 27771, "inference transformer models": 45317, "large transformerbased models": 52360, "use cases models": 100495, "model flops utilization": 60903, "flops utilization mfu": 35453, "language models controllable": 49753, "models llms led": 63268, "breakthroughs natural language": 11408, "understanding generation abilities": 99748, "model predictions grounded": 61261, "increasing model size": 44841, "humans language models": 42615, "language models affected": 49634, "gpt2 gptneo gptj": 39295, "models llms chatgpt": 63009, "llms chatgpt gpt4": 55597, "chatgpt gpt4 demonstrated": 13896, "designed advance study": 23873, "finetuning incontext learning": 35095, "incontext learning settings": 44645, "evaluation results reveal": 30758, "reveal substantial room": 84177, "substantial room improvement": 92109, "perform common tasks": 70835, "models llms generate": 63184, "compare performance different": 16480, "performance different llms": 71145, "different llms including": 25103, "llms including palm": 56191, "endtoend task completion": 28885, "task completion rate": 93982, "common failure modes": 16143, "existing models task": 31775, "models shown great": 64179, "shown great performance": 87464, "great performance tasks": 40476, "shown improve performance": 87487, "improve performance various": 43768, "performance various nlp": 71692, "various nlp tasks": 102506, "nlp tasks just": 66795, "tasks incontext learning": 94741, "techniques language models": 95543, "language models transformerbased": 50884, "models transformerbased large": 64425, "transformerbased large language": 98565, "models llms provide": 63370, "language model production": 49519, "pretrained large language": 74359, "model llm based": 61082, "llm based transformer": 54982, "processing nlp community": 75515, "language inference large": 49276, "language models powerful": 50665, "model answers yes": 60546, "models using pretrained": 64479, "pretrained natural language": 74433, "language inference nli": 49277, "predictions experiments demonstrate": 73740, "existing methods require": 31765, "methods require large": 59783, "underlying language model": 99498, "available training data": 9096, "previous supervised stateoftheart": 74721, "previous research explored": 74692, "natural language prompting": 65714, "landscape large language": 49109, "llms like gpt": 56316, "like gpt bert": 54133, "neural code generation": 66222, "code generation model": 15313, "pretrained code generation": 74243, "code generation models": 15314, "code generation generate": 15300, "generate executable code": 37446, "substantial performance improvement": 92101, "thoroughly investigated paper": 96845, "study demonstrate potential": 91567, "specifically propose novel": 89865, "novel approach named": 67103, "code generation task": 15336, "results highlight importance": 83641, "arabic english texts": 7303, "binary multilabel classification": 11059, "knowledge large language": 48647, "models llms trained": 63482, "achieve impressive performance": 2537, "impressive performance diverse": 43616, "requiring world knowledge": 82447, "acquire generalized knowledge": 2906, "language models particular": 50639, "active vs passive": 2997, "results important aspects": 83658, "processing long documents": 75501, "different natural language": 25125, "language modeling task": 49595, "knowledge generative language": 48584, "play important role": 72343, "secure multiparty computation": 85991, "reasoning language models": 79922, "downstream tasks remains": 26744, "language models predict": 50668, "popular pretrained language": 72672, "language models models": 50588, "deep learning model": 22770, "advances deep learning": 3871, "use training data": 100714, "training data especially": 98004, "makes better use": 58049, "efficiency improves model": 27689, "better model quality": 10749, "multilingual large language": 64971, "dataset used train": 22118, "wide range research": 103684, "distributed training paper": 25929, "share lessons learned": 87186, "training large deep": 98161, "deep neural networks": 22796, "quality computation cost": 78239, "language models vision": 50910, "base large models": 9410, "sparse models trained": 89541, "models trained scratch": 64406, "language models chatgpt": 49703, "text generation task": 96271, "text generation tools": 96275, "generation tools like": 38477, "like gpt3 chatgpt": 54140, "ai potential revolutionize": 4512, "drug discovery process": 26876, "highlights potential ai": 41665, "ability chatgpt chatbot": 1607, "chatgpt chatbot based": 13606, "language model assist": 49338, "text generated ai": 96221, "opendomain question answering": 68244, "models recent large": 64001, "like gpt3 demonstrated": 54141, "methods fall short": 59644, "harnessing potential llms": 41094, "learning experimental results": 53147, "results method significantly": 83723, "significantly surpasses previous": 88029, "previous stateoftheart zeroshot": 74712, "achieves comparable performance": 2727, "models training data": 64413, "training data code": 97995, "data code available": 21054, "targeted syntactic evaluation": 93908, "language models training": 50878, "raises important question": 79081, "changes model performance": 13295, "incontext learning abilities": 44574, "scale language models": 85273, "models shown perform": 64184, "wide variety tasks": 103707, "incontext learning paradigm": 44633, "paper investigate hypothesis": 69786, "ability large language": 1695, "language model incontext": 49428, "billion parameter language": 11020, "number incontext examples": 67348, "overall study provides": 69327, "study provides insights": 91800, "indicate large language": 45002, "incontext learning opens": 44631, "language models effectively": 49808, "perform incontext learning": 70884, "capabilities pretrained language": 12047, "models orders magnitude": 63729, "orders magnitude larger": 68724, "achieve competitive level": 2496, "models commonsense knowledge": 62047, "symbolic knowledge distillation": 93124, "knowledge distillation west": 48519, "distillation west et": 25831, "west et al": 103618, "empirical results suggest": 28347, "study leads new": 91730, "tuning language models": 99054, "instruction tuning enables": 46379, "approaches rely vast": 7196, "rely vast amounts": 81598, "human supervision form": 42382, "various benchmarks results": 102373, "results demonstrate potential": 83558, "language models realworld": 50722, "environments existing work": 29644, "knowledge base question": 48439, "base question answering": 9424, "question answering kbqa": 78601, "standard kbqa datasets": 90185, "humanlanguage model interaction": 42509, "writing assistance code": 104467, "develop new framework": 24469, "experimental results support": 32070, "gpt35 language models": 39635, "language models similarly": 50808, "benchmark dataset consisting": 10119, "stateoftheart pretrained language": 90453, "models lms like": 63531, "lms like gpt3": 57144, "compared previous text": 16614, "text style transfer": 96441, "requires deep understanding": 82372, "evaluation code generation": 30544, "models code generation": 62016, "models achieved impressive": 61768, "achieved impressive performance": 2636, "deployed reallife applications": 23570, "robustness code generation": 84701, "code generation paper": 15319, "generation paper propose": 38318, "benchmark code generation": 10093, "function variable names": 36495, "semantic meaning original": 86324, "data annotation process": 20979, "data used train": 21729, "train machine learning": 97758, "language model developed": 49377, "model developed openai": 60765, "impressive zero fewshot": 43653, "zero fewshot performance": 104699, "wide range nlp": 103675, "nlp tasks paper": 66804, "paper evaluate performance": 69696, "evaluate performance gpt3": 30247, "analysis aim provide": 5430, "aim provide insight": 4728, "provide insight potential": 77503, "interactions large language": 47065, "language model human": 49425, "model human evaluation": 60979, "results shed light": 83837, "data model code": 21418, "work introduce novel": 104138, "introduce novel task": 47474, "existing models including": 31774, "models including gpt35": 62731, "zeroshot dense retrieval": 104761, "instructionfollowing language model": 46454, "significantly outperforms stateoftheart": 88005, "qa fact verification": 78132, "models llms surprisingly": 63470, "generating natural language": 37941, "natural language reasoning": 65723, "multistep question answering": 65334, "external knowledge source": 33194, "code data prompts": 15195, "data prompts available": 21516, "nlp machine learning": 66746, "using human automatic": 101511, "automatic metrics human": 8807, "metrics human evaluation": 59929, "language generation pretrained": 49259, "language models successful": 50840, "constrained text generation": 18381, "results compared previous": 83510, "language models input": 49995, "shown highly effective": 87471, "transformer models bert": 98530, "behavior answering questions": 9961, "transformer models achieve": 98529, "models achieve high": 61757, "achieve high performance": 2528, "question answering tasks": 78631, "significant margin 50": 87792, "fail respond adequately": 33691, "answer openended questions": 6033, "results indicate current": 83673, "work shown finetuning": 104267, "shown finetuning large": 87461, "finetuning large pretrained": 35115, "language models collection": 49727, "models collection tasks": 62033, "collection tasks described": 15909, "tasks described instructions": 94528, "generalization unseen tasks": 37287, "language models parameters": 50637, "et al 2022": 30049, "language models study": 50835, "human language processing": 42277, "retrieval language models": 83991, "language models knowledgeintensive": 50016, "retrievalaugmented incontext learning": 84045, "frozen language models": 36402, "fully realize potential": 36466, "natural language texts": 65744, "despite significant investment": 24122, "state art ai": 90265, "openais textdavinci003 model": 68226, "optimization prompt engineering": 68615, "performance best prompt": 71021, "results strongly suggest": 83862, "future large language": 36736, "language models detecting": 49784, "address limitations propose": 3455, "gpt family models": 39193, "applications like chatgpt": 6520, "like chatgpt offer": 54088, "research introduces novel": 82642, "tsar2022 shared task": 98982, "previous stateoftheart models": 74709, "different prompt templates": 25164, "achieve stateoftheart results": 2592, "implications future work": 43384, "future work code": 36792, "code experiments available": 15254, "multiplechoice questions based": 65291, "suggest large language": 92375, "models potential transform": 63844, "augmented large language": 8579, "language models computationally": 49738, "existing large language": 31736, "language model weights": 49572, "large generative ai": 51437, "generative ai models": 38555, "generative models chatgpt": 38656, "chatgpt stable diffusion": 14266, "code like codex": 15382, "applications use large": 6589, "data social media": 21636, "using openais gpt3": 101663, "openais gpt3 generate": 68203, "gain valuable insights": 36818, "submissions shared task": 91976, "language model fewshot": 49396, "utilized language models": 101973, "language model machine": 49481, "model machine translation": 61116, "machine translation case": 57742, "translation case study": 98691, "case study research": 12494, "shown excellent performance": 87453, "demonstration example selection": 23460, "chatgpt human experts": 13935, "attention academic industrial": 8281, "academic industrial communities": 1980, "fluent comprehensive answers": 35476, "impacts large language": 43282, "llms like chatgpt": 56298, "fake news plagiarism": 33762, "comparison responses human": 16724, "human experts chatgpt": 42214, "financial medical legal": 34609, "dataset human chatgpt": 21966, "human chatgpt comparison": 42120, "chatgpt comparison corpus": 13635, "comparison corpus hc3": 16706, "comprehensive human evaluations": 17269, "text generated chatgpt": 96222, "generated chatgpt humans": 37672, "factors influence effectiveness": 33598, "inference large language": 45256, "samples large language": 85127, "models llms computationally": 63047, "prompting simple effective": 76610, "simple effective prompting": 88185, "token time costs": 97158, "incontext learning setting": 44644, "comparable performance stateoftheart": 16396, "llms gpt35 gpt4": 56091, "finetuning pretrained model": 35198, "pretrained model finetuning": 74393, "recent works proposed": 80416, "proposed different methods": 77194, "methods solve problem": 59805, "work paper propose": 104196, "datasets experiment results": 22249, "experiment results proposed": 31975, "systems existing approaches": 93446, "propose novel task": 77077, "pretrained language generation": 74280, "language generation models": 49248, "pairwise human judgments": 69534, "using human annotations": 101510, "significantly correlated human": 87902, "prediction large language": 73699, "language models future": 49900, "model llm generate": 61092, "effective strategy improve": 27372, "use llms gpt35": 100618, "additional computational cost": 3230, "social media discourse": 88884, "advancements natural language": 3846, "social media data": 88882, "pioneering approach designed": 72128, "social media text": 88897, "text use case": 96472, "qualitative quantitative analysis": 78204, "models contributions include": 62120, "novel data collection": 67140, "language model chatgpt": 49361, "understanding effectiveness large": 99722, "effectiveness large language": 27542, "performance various natural": 71688, "nlp tasks question": 66810, "summarization large language": 92539, "models llms used": 63500, "language understanding capabilities": 51156, "task paper explore": 94176, "datasets used training": 22454, "instructgpt large language": 46292, "future language models": 36734, "software engineering tasks": 89009, "knowledge problemsolving skills": 48716, "crucial making informed": 20507, "making informed decisions": 58109, "chatgpt github copilot": 13872, "code solutions generated": 15514, "practical applications large": 73498, "applications large language": 6510, "models llms significantly": 63448, "language model empirical": 49383, "fewshot language models": 34249, "demonstrated superior performance": 23350, "superior performance generating": 92654, "downstream tasks despite": 26719, "susceptible adversarial attacks": 93067, "adversarial training approach": 4004, "models realworld scenarios": 63986, "substantial computational resources": 92071, "expensive human annotation": 31912, "data paper presents": 21466, "study adversarial robustness": 91476, "adversarial robustness large": 3998, "language model code": 49362, "model code codex": 60660, "demonstrate stateoftheart sota": 23194, "address challenge propose": 3365, "amounts labeled data": 5352, "skill large language": 88584, "1000 times smaller": 142, "exploratory data analysis": 32619, "explore language models": 32696, "language models employed": 49822, "specific language model": 89718, "publicly available data": 77971, "language models diverse": 49795, "performing models achieved": 71784, "models achieved accuracy": 61765, "philosophy cognitive science": 72039, "stateoftheart large language": 90363, "language models unlock": 50894, "models unlock new": 64459, "tasks paper presents": 94929, "paper presents study": 69871, "study chatgpt used": 91519, "chatgpt used generate": 14329, "results chatgpt generate": 83493, "chatgpt generate coherent": 13853, "great potential tool": 40482, "overall study highlights": 69326, "study highlights potential": 91663, "potential using large": 73305, "address challenge introduce": 3362, "data selection language": 21607, "selection language models": 86162, "data existing methods": 21207, "existing methods use": 31769, "data selection methods": 21610, "systematic review literature": 93349, "answer research questions": 6054, "takes long time": 93822, "recent advances transformerbased": 80212, "shown great potential": 87466, "generate answers based": 37380, "paper investigate effectiveness": 69782, "extensive experiments standard": 33085, "chatgpt capable generating": 13587, "overall study demonstrates": 69325, "study demonstrates potential": 91571, "follow complex instructions": 35643, "generative artificial intelligence": 38592, "intelligence ai enabled": 46804, "large pretrained models": 52321, "paper proposes novel": 69914, "generative pretrained models": 38687, "gpt3 experimental results": 39451, "text generation tasks": 96272, "datasets demonstrate approach": 22207, "make code publicly": 57977, "code publicly available": 15459, "rise artificial intelligence": 84470, "intelligence ai technology": 46827, "topic growing concern": 97509, "study aims explore": 91485, "ai chatbots chatgpt": 4331, "chatgpt great potential": 13918, "superior performance compared": 92647, "models llms codex": 63045, "hold great promise": 41884, "great promise enhancing": 40488, "promise enhancing programming": 76119, "enhancing programming education": 29364, "education automatically generating": 27133, "using llms generate": 101584, "llms generate feedback": 56053, "natural language explanation": 65575, "research question study": 82747, "perform extensive evaluation": 70871, "extensive evaluation using": 33031, "using realworld datasets": 101727, "written natural language": 104519, "natural language nl": 65625, "language models empirical": 49819, "models empirical study": 62305, "pretraining language models": 74553, "models plms shown": 63824, "plms shown promising": 72434, "memory computational cost": 59022, "instruction tuning incontext": 46389, "tuning incontext learning": 99049, "experimental results diverse": 32040, "achieve higher performance": 2531, "challenges natural language": 13076, "transformer architectures like": 98486, "architectures like bert": 7397, "question answering knowledge": 78602, "knowledge graphs kgs": 48603, "users natural language": 101145, "natural language interfaces": 65614, "translating natural language": 98675, "natural language question": 65721, "paper present comprehensive": 69828, "present comprehensive study": 73962, "conduct thorough evaluation": 17929, "based findings propose": 9537, "language processing task": 51045, "scale large language": 85275, "llms demonstrated ability": 55734, "nlp tasks zeroshot": 66821, "chatgpt drawn great": 13730, "drawn great deal": 26822, "great deal attention": 40470, "generate highquality responses": 37483, "highquality responses human": 41787, "learning ability chatgpt": 53009, "ability chatgpt evaluating": 1608, "representative task categories": 82157, "task categories extensive": 93966, "categories extensive empirical": 12608, "extensive empirical studies": 33021, "empirical studies demonstrate": 28352, "studies demonstrate effectiveness": 91373, "provide indepth analysis": 77498, "qualitative case studies": 78193, "empirical evaluation different": 28318, "study suggest future": 91856, "suggest future directions": 92363, "study aims understand": 91489, "language model utilized": 49568, "unlike existing deep": 100169, "translation translating natural": 98752, "emerging research field": 28232, "gained attention recent": 36821, "attention recent years": 8369, "paper provides contributions": 69923, "provides contributions research": 77654, "minimal human intervention": 60092, "times larger prior": 97078, "evaluate performance chatgpt": 30244, "performance chatgpt task": 71051, "discuss potential using": 25680, "potential using data": 73304, "offer unique opportunities": 67774, "state art large": 90266, "ai paper discusses": 4494, "fusion large language": 36681, "language processing remains": 51042, "automatic speech recognition": 8828, "speech recognition asr": 89963, "average relative wer": 9175, "stateoftheart language models": 90358, "open source benchmark": 68111, "including domain adaptation": 44331, "structured knowledge grounding": 91169, "teaching assistant ta": 95362, "chat generative pretrained": 13370, "pretrained transformer chatgpt": 74464, "wellknown natural language": 103598, "nlp tasks existing": 66782, "sentiment analysis emotion": 86582, "zeroshot fewshot evaluation": 104770, "qualitative analysis revealed": 78188, "blackbox language models": 11134, "models finetuning language": 62483, "finetuning language model": 35105, "language model new": 49493, "model paper propose": 61203, "blackbox large language": 11136, "models llms new": 63316, "retrievalaugmented language model": 84047, "output language model": 69164, "language model retrieval": 49534, "target domain data": 93865, "different domains demonstrate": 25051, "finetuning training data": 35281, "study generative ai": 91651, "ai models chatgpt": 4467, "intelligence ai models": 46812, "ai models openais": 4475, "models openais chatgpt": 63706, "early stages development": 26987, "generative ai specifically": 38569, "explore chatgpts ability": 32656, "highlight benefits limitations": 41577, "use generative ai": 100561, "guiding large language": 40781, "models llms specific": 63456, "guide llms generating": 40744, "llms generating desired": 56059, "supervised finetuning using": 92716, "using labeled data": 101532, "data reinforcement learning": 21552, "dialogue response generation": 24890, "reasoning tasks experiments": 80048, "tasks experiments demonstrate": 94612, "experiments demonstrate framework": 32157, "consistently improves llms": 18296, "performance supervised tasks": 71609, "notably using just": 67047, "dialogues multiwoz dataset": 24937, "chatgpts performance impressive": 14441, "deep learning learn": 22767, "models plms t5": 63827, "analysis shedding light": 5672, "larger model sizes": 52453, "model sizes data": 61427, "paper conduct thorough": 69647, "results chatgpt shows": 83495, "foundation models chatgpt": 35938, "possible research directions": 72918, "success natural language": 92222, "using neural networks": 101637, "language model gpt35": 49419, "neural networks trained": 66277, "opens new avenues": 68296, "new avenues research": 66341, "language models widespread": 50921, "widespread adoption large": 103779, "adoption large language": 3641, "models chatgpt bard": 61983, "offer promising solution": 67767, "finetuned downstream task": 34883, "task best knowledge": 93956, "generative large language": 38634, "models llms introduce": 63256, "improving large language": 44133, "language models external": 49868, "feedback large language": 34099, "llms chatgpt able": 55576, "chatgpt able generate": 13478, "able generate humanlike": 1853, "generate humanlike fluent": 37489, "humanlike fluent responses": 42531, "external knowledge paper": 33193, "grounded external knowledge": 40569, "make source code": 58029, "source code models": 89354, "task specified user": 94252, "search engine used": 85866, "engine used retrieve": 28935, "mathematical word problems": 58596, "word problems mwp": 103920, "commercially available large": 16104, "available large language": 9061, "math word problems": 58563, "word problems mwps": 103921, "baseline machine learning": 9791, "support research area": 92827, "various domains including": 102408, "domains including healthcare": 26530, "despite promising results": 24103, "privacy ethical concerns": 74896, "highlight important limitations": 41592, "important limitations current": 43518, "size large language": 88480, "language models continue": 49751, "reduce computational overhead": 80768, "computer vision tasks": 17548, "modern deep learning": 64595, "language generation paper": 49257, "receptance weighted key": 80568, "weighted key value": 103537, "key value rwkv": 48355, "parameters best knowledge": 70181, "comprehension natural language": 17178, "foundation language models": 35919, "language models introduce": 50001, "language models ranging": 50711, "models ranging 7b": 63962, "train stateoftheart models": 97781, "stateoftheart models using": 90409, "using publicly available": 101711, "publicly available datasets": 77974, "outperforms gpt3 175b": 69064, "release models research": 81382, "models research community": 64078, "importantly method does": 43551, "method does require": 59269, "does require access": 26322, "token probability distribution": 97150, "various llms including": 102478, "llms including gpt3": 56176, "largest language model": 52595, "language model explicitly": 49392, "available hugging face": 9050, "trained large language": 97858, "language models help": 49961, "intelligent decision support": 46922, "based natural language": 9629, "preliminary results indicate": 73875, "results indicate chatgpt": 83670, "demonstrated impressive performance": 23281, "impressive performance various": 43627, "understanding reasoning capabilities": 99856, "study perform comprehensive": 91768, "popular natural language": 72658, "tasks findings indicate": 94638, "findings indicate gpt35": 34687, "finetuned models tasks": 34945, "sentiment analysis tasks": 86597, "limitations guiding future": 54329, "guiding future research": 40777, "prediction paper describes": 73712, "paper describes submission": 69673, "transfer learning approach": 98414, "using small set": 101774, "pretrained models lack": 74410, "learning synthetic data": 53436, "text generation systems": 96270, "intelligence ai tools": 46829, "generate realistic images": 37569, "adoption generative ai": 3637, "generative ai tools": 38577, "data text images": 21692, "ai tools trained": 4601, "data data generated": 21140, "quality generated images": 78280, "data used training": 21730, "interaction generative ai": 47008, "language models plm": 50648, "tasks despite success": 94537, "hallmarks human intelligence": 40810, "plms gpt2 t5": 72423, "finally suggest research": 34570, "prompts large language": 76765, "language models examine": 49840, "text corpora used": 96150, "language model does": 49379, "biases training data": 10959, "training data finetuning": 98012, "extraction event extraction": 33298, "fundamental task natural": 36555, "task natural language": 94153, "text challenging task": 96104, "challenging task lack": 13234, "emergence large language": 28169, "llms chatgpt provides": 55607, "chatgpt provides opportunity": 14131, "language tasks simple": 51131, "chatgpt demonstrated impressive": 13689, "demonstrated impressive results": 23286, "machine translation text": 57761, "translation text summarization": 98748, "complex tasks like": 17019, "conducted series experiments": 17984, "aigenerated content given": 4667, "systems like chatgpt": 93506, "responsible use technology": 83356, "generation prior work": 38332, "prior work proposed": 74870, "work makes contributions": 104175, "large openscience openaccess": 52298, "openscience openaccess multilingual": 68306, "chatgpt shown strong": 14230, "language generation tasks": 49264, "paper examine chatgpt": 69701, "examine chatgpt used": 31101, "text classification specifically": 96122, "language model finetuned": 49399, "model finetuned datasets": 60886, "performance drops significantly": 71167, "current limitations chatgpt": 20713, "aigenerated content aigc": 4666, "chatgpt generative ai": 13864, "generative ai gai": 38543, "artificial intelligence generated": 7638, "intelligence generated content": 46854, "generated content aigc": 37682, "language ai models": 49136, "content faster pace": 18623, "recent years largescale": 80432, "models increasingly important": 62756, "provides comprehensive review": 77651, "models text image": 64358, "future challenges aigc": 36705, "advanced large language": 3707, "models like chatgpt": 62906, "like chatgpt gained": 54075, "chatgpt gained considerable": 13838, "gained considerable attention": 36824, "social media platform": 88891, "tasks like writing": 94828, "conversational language models": 19376, "language models prompt": 50690, "models prompt engineering": 63913, "data extraction based": 21223, "set engineered prompts": 86866, "high quality data": 41443, "conversational llms like": 19382, "demonstrate exceptional performance": 23076, "likely powerful tools": 54260, "critical cooling rates": 20316, "cooling rates metallic": 19487, "rates metallic glasses": 79416, "language models led": 50039, "use human feedback": 100576, "proposed approach uses": 77180, "train reward model": 97769, "reward model used": 84374, "gptj 6b model": 40219, "humans ai systems": 42572, "ai systems chatgpt": 4564, "chatgpt gained huge": 13839, "gained huge popularity": 36827, "assist replace humans": 8021, "language understanding reasoning": 51183, "understanding reasoning ability": 99855, "fall short generating": 33785, "work propose new": 104221, "model works phases": 61598, "works phases phase": 104374, "results demonstrate effectiveness": 83542, "demonstrate effectiveness proposed": 23063, "effectiveness proposed framework": 27572, "study prompt engineering": 91790, "classification case study": 14728, "case study investigates": 12484, "study investigates task": 91714, "support vector machines": 92843, "vector machines svms": 102701, "stateoftheart deep learning": 90333, "deep learning methods": 22769, "compare large language": 16464, "prompt engineering technique": 76316, "designing prompts guide": 23980, "prompts guide llms": 76737, "models textdavinci003 gpt35turbo": 64361, "conduct detailed analysis": 17853, "prompt engineering models": 76307, "outperforms models achieving": 69083, "models performance exploring": 63796, "capable performing various": 12254, "various tasks including": 102598, "generation code completion": 38078, "human preferences explore": 42333, "explore chatgpts potential": 32658, "conducted assess ability": 17937, "covering wide range": 20087, "range use cases": 79222, "responses generated models": 83227, "interface using natural": 47181, "word problem dataset": 103915, "compare performance chatgpt": 16479, "performance chatgpt large": 71046, "chatgpt large language": 13974, "machine learning applications": 57691, "conversational agents understand": 19353, "knowledge representation reasoning": 48742, "reasoning natural language": 79955, "language processing large": 50988, "processing large language": 75496, "models llms rely": 63394, "semantic meaning sentence": 86325, "answer set programming": 6060, "set programming asp": 86922, "user natural language": 101012, "study large language": 91723, "code summarization code": 15526, "summarization code generation": 92524, "generalize new domains": 37300, "new domains experiments": 66383, "achieve strong performance": 2594, "domains code generation": 26498, "generation model adapted": 38270, "undergraduate computer science": 99471, "challenging tasks like": 13242, "language models investigate": 50002, "models llms generative": 63188, "llms generative pretrained": 56065, "pretrained transformers gpts": 74486, "llms using new": 57009, "gpt35 series models": 39664, "gpt series models": 39239, "attention exceptional natural": 8304, "exceptional natural language": 31373, "language processing capabilities": 50972, "series models finetuned": 86745, "limited attention given": 54396, "conduct comprehensive analysis": 17839, "gpt3 series models": 39528, "performance robustness different": 71548, "task zeroshot fewshot": 94295, "zeroshot fewshot scenarios": 104780, "scenarios extensive experiments": 85432, "enhances models ability": 29290, "models ability generate": 61730, "ability generate humanlike": 1660, "generate humanlike responses": 37491, "ability solve tasks": 1773, "language models pretraining": 50679, "pretraining finetuning paradigm": 74535, "downstream task language": 26712, "task language models": 94118, "models pretrained large": 63872, "data natural language": 21434, "generation text summarization": 38469, "model dataset size": 60732, "improve performance llms": 43756, "prohibitive computational costs": 76033, "significant loss accuracy": 87790, "accuracy downstream tasks": 2246, "multiple downstream tasks": 65183, "complexity dataset size": 17035, "presents promising direction": 74161, "reinforcement learning large": 81157, "models llms increasingly": 63242, "llms increasingly used": 56211, "agents remains challenging": 4228, "traditional reinforcement learning": 97697, "learning methods require": 53266, "model finetuning propose": 60901, "obtains significant improvements": 67688, "humaneval coding benchmark": 42473, "surpassing previous stateoftheart": 92970, "reasoning large language": 79924, "models llms emerging": 63117, "evaluation gpt4s performance": 30628, "high level accuracy": 41423, "significant potential revolutionize": 87821, "potential revolutionize field": 73245, "gap human machine": 36933, "language models simple": 50809, "language models aibased": 49638, "public github repositories": 77922, "recent research focused": 80338, "neural network training": 66259, "dynamic sparse training": 26935, "yields significant improvements": 104673, "knowledge work demonstrate": 48811, "recent language model": 80275, "language model gpt4": 49420, "including text images": 44496, "finally discuss challenges": 34521, "chatgpt publicly available": 14135, "chatgpt performed better": 14074, "augmenting large language": 8598, "conversational large language": 19378, "models llms open": 63326, "generate dialogue responses": 37429, "encoder decoder models": 28690, "improvement rouge scores": 43943, "better previous stateoftheart": 10770, "assess chatgpts ability": 7834, "results showed responses": 83845, "evaluation generative ai": 30620, "ai generative ai": 4420, "models shown impressive": 64182, "shown impressive performance": 87479, "impressive performance natural": 43621, "processing tasks language": 75580, "tasks language understanding": 94799, "reasoning language generation": 79921, "typologically diverse languages": 99314, "compare performance generative": 16482, "llms including chatgpt": 56171, "chatgpt gpt4 state": 13914, "gpt4 state art": 40100, "generative models perform": 38668, "models perform compared": 63787, "analysis performance models": 5600, "challenges improving performance": 13040, "llms lowresource languages": 56367, "sparks artificial general": 89521, "artificial general intelligence": 7590, "experiments gpt4 artificial": 32210, "gpt4 artificial intelligence": 39764, "refining large language": 80996, "models llms exhibit": 63136, "llms exhibit remarkable": 55904, "exhibit remarkable capabilities": 31544, "remarkable capabilities variety": 81752, "capabilities variety domains": 12117, "variety domains tasks": 102292, "domains tasks challenging": 26596, "tasks challenging understanding": 94426, "challenging understanding learning": 13253, "understanding learning cognition": 99798, "general intelligence agi": 37135, "evaluation chatgpt chatgpt": 30538, "chatgpt chatgpt large": 13610, "demonstrated remarkable performance": 23321, "numerous natural language": 67433, "evaluating chatgpts performance": 30404, "diverse problem domains": 26071, "human feedback rlhf": 42228, "garnered significant attention": 37013, "attention computational linguistics": 8297, "computational linguistics community": 17466, "conduct preliminary evaluation": 17905, "preliminary evaluation chatgpt": 73861, "evaluate performance various": 30257, "various aspects including": 102360, "minor performance differences": 60137, "chatgpt faces challenges": 13804, "fewshot prompting large": 34293, "surprising ability perform": 92988, "ability perform incontext": 1739, "incontext learning models": 44626, "numerous downstream tasks": 67423, "prior research shown": 74856, "shown incontext learning": 87489, "incontext learning paper": 44632, "paper revisit problem": 69941, "based observation propose": 9640, "observation propose novel": 67558, "search strategy based": 85898, "downstream tasks results": 26746, "results indicate method": 83680, "models incontext learning": 62741, "usage large language": 100443, "language models fake": 49873, "text generated large": 96226, "false positive rate": 33814, "aigenerated text detection": 4676, "language model api": 49332, "models code data": 62013, "recent advances artificial": 80195, "advances artificial intelligence": 3864, "findings important implications": 34681, "programming tasks researchers": 75936, "available general public": 9040, "processing nlp research": 75538, "recent proliferation large": 80325, "proliferation large language": 76078, "data paper explore": 21464, "paper explore prompting": 69718, "publicly available multilingual": 77987, "exhibit wide range": 31568, "wide range proficiency": 103679, "using llms context": 101580, "processing nlp increasingly": 75522, "artificial intelligence tool": 7665, "integrating generative ai": 46721, "github copilot chatgpt": 38839, "language models gpt4": 49945, "models gpt4 chatgpt": 62613, "concerns academic integrity": 17673, "underexplored paper conduct": 99445, "paper conduct comprehensive": 69641, "different detection methods": 25047, "performance individual datasets": 71315, "help large language": 41259, "language models right": 50772, "future research area": 36757, "model behavior scale": 60597, "predictions training data": 73752, "training data despite": 98001, "existing approaches data": 31655, "datasets work introduce": 22466, "visionlanguage models clip": 103025, "programming languages generate": 75911, "led widespread use": 53540, "users paper introduce": 101151, "digital content production": 25357, "furthermore propose semantic": 36650, "scaling large language": 85336, "realworld use cases": 79713, "chatgpt recently attracted": 14155, "significantly enhances models": 87921, "enhances models performance": 29291, "amounts instruction data": 5349, "data model performance": 21419, "use cases paper": 100496, "language models based": 49669, "instruction tuning different": 46378, "instruction data evaluation": 46310, "data evaluation dataset": 21198, "evaluation dataset consisting": 30565, "tasks openended generation": 94905, "openended generation tasks": 68257, "potential future research": 73099, "highquality training data": 41797, "data large language": 21364, "models llms downstream": 63107, "available public use": 9084, "performance unsupervised models": 71654, "demonstrate chatgpt outperforms": 23040, "text classification large": 96112, "classification large language": 14756, "language models assist": 49654, "analysis large language": 5569, "llms gpt3 demonstrated": 56084, "applied variety tasks": 6636, "paper explores potential": 69728, "explores potential integrating": 32816, "potential integrating llms": 73145, "open ais chatgpt": 68043, "results suggest llms": 83875, "modern machine learning": 64609, "attention computation fundamental": 8293, "computation fundamental task": 17420, "fundamental task training": 36557, "task training large": 94271, "language models transformer": 50882, "language models standard": 50828, "problem convex problem": 75005, "approximate newton method": 7264, "formally problem given": 35814, "recent advancements llms": 80188, "llms gpt3 shown": 56088, "tasks including semantic": 94735, "finetuned publicly available": 34955, "available code github": 9020, "code programming languages": 15447, "information target task": 45648, "using zero fewshot": 101854, "fewshot learning methods": 34262, "ones ground truth": 67932, "tools like chatgpt": 97435, "chatbot powered large": 13417, "models llms gpt35": 63202, "engineering hope work": 28979, "hope work help": 41966, "foundation models like": 35952, "incontext learning code": 44586, "learning code generation": 53073, "code generation abilities": 15275, "common sense knowledge": 16170, "leverage foundation models": 53727, "foundation models propose": 35962, "unlike previous work": 100179, "existing foundation models": 31717, "paper present vision": 69845, "models llms gpt4": 63206, "understanding language models": 99789, "use realworld scenarios": 100670, "use knowledge graph": 100589, "knowledge graph kg": 48598, "enhance model performance": 29183, "process natural language": 75365, "code generation training": 15340, "potential pretrained large": 73225, "models llms use": 63499, "use natural language": 100635, "training time instead": 98327, "program synthesis task": 75851, "improving llms performance": 44138, "performance code generation": 71062, "evaluating gpt35 gpt4": 30432, "gpt35 gpt4 models": 39616, "brazilian university admission": 11372, "university admission exams": 100126, "present study aims": 74062, "aims explore capabilities": 4805, "capabilities language models": 11957, "exame nacional ensino": 31082, "nacional ensino medio": 65456, "ensino medio enem": 29435, "adopted brazilian universities": 3614, "responses generated gpt35": 83225, "generated gpt35 gpt4": 37710, "chainofthought cot prompts": 12822, "bestperforming model gpt4": 10670, "code data used": 15204, "data used experiments": 21723, "used experiments available": 100796, "experiments available httpsgithubcompiresramongpt4enem": 32113, "singular value decomposition": 88435, "critical thinking skills": 20365, "documents large language": 26252, "models llms leveraged": 63270, "conversational agent chatgpt": 19345, "paper explore ability": 69707, "named entity recognition": 65470, "recent release chatgpt": 80332, "release chatgpt garnered": 81348, "exceptional ability generate": 31364, "using different prompts": 101413, "study provides valuable": 91802, "provides valuable insights": 77722, "language models solve": 50817, "presented natural language": 74097, "natural language commands": 65559, "previous approaches problem": 74662, "require large amounts": 82266, "tasks work pretrained": 95265, "guided natural language": 40759, "natural language using": 65764, "using simple prompting": 101764, "simple prompting scheme": 88230, "approach significantly outperforms": 7024, "significantly outperforms existing": 87995, "automating computer tasks": 8909, "surpasses supervised learning": 92947, "supervised learning sl": 92721, "enhancing llms reasoning": 29346, "llms reasoning abilities": 56644, "language reasoning tasks": 51084, "chain thought cot": 12803, "thought cot prompting": 96850, "humans large language": 42617, "supervised training data": 92744, "training reinforcement learning": 98261, "diverse tasks ranging": 26120, "dialog response generation": 24832, "generation mathematical reasoning": 38258, "mathematical reasoning using": 58591, "gpt35 chatgpt gpt4": 39583, "stateoftheart llms like": 90384, "llms like gpt4": 56323, "language models sampling": 50780, "writing single line": 104495, "single line code": 88372, "monte carlo simulation": 64727, "using stateoftheart large": 101788, "model llm finetuned": 61088, "chatgpt natural language": 14031, "intelligence ai particularly": 46817, "careful prompt engineering": 12404, "solutions generated chatgpt": 89142, "chatgpt able provide": 13481, "able provide correct": 1878, "chatgpt4 google bard": 14380, "engineering questions scenarios": 29013, "pass fe exam": 70531, "survey large language": 93034, "poses significant challenge": 72783, "language models neural": 50600, "recently pretrained language": 80536, "pretraining transformer models": 74617, "strong capabilities solving": 91015, "nlp tasks researchers": 66813, "size larger size": 88484, "significant performance improvement": 87813, "smallscale language models": 88808, "recent advances llms": 80207, "techniques particular focus": 95571, "directions large language": 25472, "exceptional performance various": 31379, "appropriate instructions chatgpt": 7241, "findings suggest llms": 34760, "chat models chatgpt": 13386, "chatgpt shown impressive": 14223, "shown impressive capabilities": 87477, "automatically generate highquality": 8870, "opensource large language": 68347, "model resulting model": 61351, "new technique called": 66553, "models data released": 62152, "data released research": 21557, "released research purposes": 81418, "online demo available": 67983, "benchmarking large language": 10294, "paper investigates effectiveness": 69794, "investigates effectiveness large": 47738, "assess performance models": 7867, "samples training set": 85146, "fewshot settings findings": 34314, "surpasses baseline models": 92924, "number training samples": 67393, "analysis era large": 5500, "era large language": 29733, "llms case study": 55561, "statistically significant differences": 90564, "models trained highresource": 64391, "trained highresource languages": 97838, "languages like english": 51311, "high cost obtaining": 41396, "results demonstrate strong": 83565, "llms textdavinci003 chatgpt": 56933, "zeroshot fewshot settings": 104782, "impressive performance english": 43617, "particularly lowresource languages": 70485, "lowresource languages limited": 57621, "access openai gpt4": 2077, "paper presents comprehensive": 69853, "presents comprehensive survey": 74126, "gpt35 gpt4 research": 39625, "applications diverse domains": 6454, "world wide web": 104422, "domains findings reveal": 26523, "findings reveal significant": 34742, "language processing applications": 50965, "insights chatgpts capabilities": 46063, "chatgpts capabilities potential": 14425, "future advancements field": 36694, "parameterefficient finetuning large": 70139, "language models success": 50839, "like gpt4 chatgpt": 54152, "comparable better performance": 16365, "llms paper presents": 56488, "llms different tasks": 55802, "empirical studies impact": 28353, "different reasoning tasks": 25178, "tasks arithmetic reasoning": 94382, "arithmetic reasoning commonsense": 7493, "reasoning commonsense reasoning": 79833, "results demonstrate using": 83569, "reasoning tasks large": 80054, "tasks large language": 94803, "modern large language": 64602, "models llms directly": 63103, "llms tend generate": 56925, "gap paper proposes": 36956, "require intensive human": 82264, "llms paper focuses": 56484, "models codex codegen": 62028, "tasks like image": 94823, "like image captioning": 54171, "mean average precision": 58693, "like chatgpt exhibited": 54073, "chatgpt exhibited remarkable": 13780, "exhibited remarkable abilities": 31583, "natural language processingnlp": 65711, "research advancements field": 82476, "based opensource llms": 9649, "opensource llms llama": 68370, "improves translation performance": 44087, "refer github project": 80924, "models llms increased": 63240, "language generation knowledge": 49242, "including machine translation": 44416, "machine translation machine": 57748, "knowledge bases using": 48450, "using zeroshot learning": 101860, "rely extensive training": 81573, "models llms perform": 63345, "llms perform zeroshot": 56511, "perform zeroshot learning": 70947, "zeroshot learning zsl": 104817, "different domains including": 25052, "available open source": 9075, "models neural network": 63668, "contemporary large language": 18576, "models llms make": 63300, "commonly used human": 16201, "rapid adoption generative": 79289, "language models brought": 49685, "concerns regarding potential": 17705, "remain underexplored study": 81634, "underexplored study evaluate": 99454, "study evaluate performance": 91607, "systems recently large": 93548, "prompt engineering llms": 76305, "strong generalization ability": 91028, "wide range applications": 103657, "models especially large": 62349, "language models gained": 49901, "models chatgpt developed": 61989, "chatgpt developed openai": 13711, "customer service education": 20844, "provide valuable insights": 77596, "valuable insights potential": 102161, "success failure technology": 92194, "responses generated chatgpt": 83224, "performance gpt3 gpt4": 71268, "despite impressive capabilities": 24069, "impressive capabilities large": 43582, "capabilities large language": 11959, "guides chatgpt generate": 40769, "bias chatgpt using": 10832, "models llms test": 63477, "future research avenues": 36758, "bias large language": 10858, "language models capabilities": 49691, "models continue advance": 62114, "garnered increasing attention": 37011, "investigates challenges risks": 47735, "nature training data": 65819, "training data model": 98036, "models various applications": 64493, "mitigate biases language": 60253, "biases language models": 10932, "models emphasizing need": 62302, "responsible ai systems": 83342, "generative ai learning": 38554, "research paper explores": 82697, "paper explores utility": 69735, "aigenerated synthetic media": 4674, "generating functionally correct": 37913, "functionally correct code": 36515, "models llms openais": 63330, "llms openais codex": 56460, "openais codex demonstrated": 68195, "generate code natural": 37395, "wide range programming": 103680, "range programming tasks": 79194, "evaluate ability llms": 30134, "ability llms generate": 1706, "advancements llm capabilities": 3837, "paper aims address": 69596, "aims address gap": 4777, "popular defects4j dataset": 72627, "empirically evaluate performance": 28378, "performance stateoftheart llms": 71594, "results llms capable": 83715, "introduces groundbreaking approach": 47520, "openais large language": 68219, "automated item generation": 8705, "item generation aig": 48033, "models generate new": 62553, "improve efficiency effectiveness": 43697, "carefully engineered prompts": 12421, "chatbots based large": 13431, "automated essay scoring": 8693, "openai chatgpt google": 68146, "chatgpt google bard": 13878, "investigate chatgpts ability": 47630, "gap supervised methods": 36980, "methods heavily rely": 59668, "science large language": 85594, "models llms significant": 63443, "llms significant progress": 56802, "significant progress recent": 87829, "progress recent years": 76009, "recent years achieving": 80422, "critical domains like": 20322, "llms access external": 55410, "study evaluates potential": 91614, "attention general public": 8313, "recent works explored": 80415, "explored use chatgpt": 32788, "generate plausible answers": 37552, "empirical evaluation regarding": 28319, "information extraction tasks": 45475, "language model glm": 49410, "work propose novel": 104223, "fully unleashing power": 36476, "tasks shows significant": 95109, "shows significant improvements": 87618, "abilities foundation models": 1509, "foundation models tackle": 35965, "pursuit artificial general": 78065, "benchmark specifically designed": 10251, "stateoftheart foundation models": 90345, "foundation models including": 35947, "models including gpt4": 62732, "including gpt4 chatgpt": 44369, "require complex reasoning": 82233, "specific domain knowledge": 89686, "understanding knowledge reasoning": 99787, "models strengths limitations": 64261, "providing valuable insights": 77814, "valuable insights future": 102156, "insights future directions": 46092, "performance realworld scenarios": 71520, "data code model": 21055, "recently released gpt4": 80547, "release november 2022": 81386, "november 2022 chatgpt": 67295, "language models translate": 50887, "models translate natural": 64431, "translate natural language": 98664, "natural language query": 65720, "controllable text generation": 19241, "text generation ctg": 96240, "teachers students alike": 95355, "improve quality educational": 43783, "content recent work": 18679, "use classroom setting": 100506, "recent advances large": 80203, "address challenges introduce": 3368, "better instruction following": 10736, "instruction following language": 46337, "language models chinese": 49710, "models performance study": 63799, "influence training data": 45360, "highquality instruction datasets": 41767, "set 1000 samples": 86834, "offering valuable insights": 67817, "training inference efficiency": 98141, "proprietary language models": 77298, "make model data": 58013, "model data code": 60728, "data code publicly": 21058, "conversational search conversational": 19398, "search conversational search": 85860, "multiturn natural language": 65393, "language generation model": 49247, "new evaluation setup": 66400, "leads significant improvements": 52906, "significant improvements existing": 87777, "systems large language": 93499, "analysis provides insights": 5626, "facilitate future work": 33497, "language models attracted": 49656, "instruction tuning samples": 46411, "multitask instruction tuning": 65355, "unified information extraction": 100025, "information extraction large": 45470, "extraction large language": 33310, "prompts recent studies": 76810, "recent studies shown": 80366, "existing large models": 31739, "achieved f1 score": 2623, "dataset significantly lower": 22076, "performance paper propose": 71461, "validate proposed method": 102104, "information extraction datasets": 45468, "results demonstrate method": 83552, "demonstrate method achieves": 23124, "method achieves comparable": 59188, "comparable performance bert": 16387, "gpt35 zeroshot settings": 39688, "instruction data instruction": 46313, "instruction following large": 46338, "following large language": 35684, "language model recently": 49529, "instructiontuning large language": 46618, "language models crucial": 49759, "research field natural": 82595, "tuning techniques lora": 99107, "model experimental results": 60839, "model training dataset": 61530, "model training cost": 61528, "language models especially": 49835, "especially field chinese": 29880, "help researchers better": 41279, "model code released": 60665, "students academic performance": 91279, "evaluated case study": 30326, "offer valuable insights": 67777, "critical thinking students": 20366, "language processing research": 51043, "high costs associated": 41398, "costs associated training": 19924, "research large language": 82651, "language models llama": 50055, "languages paper propose": 51338, "capabilities understanding generating": 12110, "ability follow instructions": 1645, "secondary pretraining using": 85962, "data finetune model": 21235, "enhancing models ability": 29355, "experimental results indicate": 32045, "proficiency understanding generating": 75804, "yield competitive performance": 104634, "competitive performance models": 16812, "size pretrained models": 88518, "open research community": 68103, "models generalization capabilities": 62538, "text corpus containing": 96152, "data filtering process": 21231, "bert t5 model": 10559, "input context window": 45884, "models trained additional": 64377, "paradigm shift advent": 70053, "unlike conventional search": 100165, "conventional search engines": 19294, "attracted 100 million": 8410, "100 million users": 128, "short period time": 87296, "raised concerns regarding": 79064, "vulnerable adversarial examples": 103278, "valuable insights chatgpts": 102154, "security large language": 86017, "perspectives large language": 71968, "paper discuss possible": 69682, "ban chatgpt generative": 9323, "chatgpt generative pretrained": 13868, "pretrained transformer chatbot": 74463, "github users italy": 38849, "users italy european": 101127, "italy european countries": 48029, "data sudden announcement": 21665, "sudden announcement ban": 92299, "announcement ban differenceindifferences": 5973, "ban differenceindifferences framework": 9327, "various realworld tasks": 102550, "plays important role": 72384, "concerns raised potential": 17701, "potential ethical issues": 73090, "study results showed": 91814, "languages severely underrepresented": 51358, "covering nlp tasks": 20080, "tasks named entity": 94877, "benchmark datasets covering": 10125, "new benchmark dataset": 66346, "language models furthermore": 49899, "models furthermore explore": 62521, "models better suited": 61930, "prompting language models": 76554, "lowresource african languages": 57614, "llms large language": 56274, "language models increasingly": 49987, "systems language models": 93497, "humans generative models": 42602, "conduct user studies": 17931, "models openais gpt3": 63709, "sentiment analysis model": 86587, "qualitative analysis shows": 78190, "development large language": 24664, "llms gpt4 generate": 56102, "gpt4 generate computer": 39900, "used llms including": 100845, "llms including gpt4": 56182, "instructions natural language": 46540, "commonsense knowledge base": 16214, "commonsense knowledge bases": 16215, "extensive experiments comparing": 33051, "new evaluation set": 66399, "challenging large language": 13186, "models llm chatgpt": 62951, "chatgpt codes data": 13627, "codes data available": 15626, "release large language": 81375, "achieving competitive performance": 2841, "languages limited resources": 51314, "people use chatgpt": 70746, "data code models": 21056, "code models available": 15409, "readily available ai": 79513, "taskspecific models study": 95295, "various tasks finetuning": 102597, "proposed approach achieved": 77175, "language model present": 49513, "gap providing systematic": 36972, "systematic analysis existing": 93315, "conversational ai models": 19356, "openais chatgpt demonstrated": 68188, "chatgpt demonstrated great": 13687, "demonstrated great potential": 23264, "improve ai models": 43665, "chatgpt text annotation": 14310, "recent studies demonstrated": 80355, "studies demonstrated promising": 91376, "chatgpt study investigates": 14278, "era generative ai": 29731, "concerns responsible ai": 17709, "address challenges paper": 3370, "challenges paper presents": 13089, "key design decisions": 48288, "research machine learning": 82663, "outputs produced models": 69250, "language models strong": 50831, "prompt engineering demonstrate": 76293, "introductory physics course": 47568, "providing meaningful feedback": 77773, "review large language": 84261, "mathematics using llms": 58610, "llms perform worse": 56510, "model faces challenges": 60857, "models prompting large": 63918, "models llms excel": 63128, "llms excel tasks": 55893, "enhance llm performance": 29177, "performance gpt4 gpt35": 71278, "davinci2 davinci3 gpt35turbo": 22495, "effectiveness incontext learning": 27532, "incontext learning improving": 44610, "trained reinforcement learning": 97900, "accuracy incontext learning": 2293, "incontext learning gpt4": 44602, "gpt4 performed best": 40015, "accuracy test set": 2374, "demonstrate appropriate prompting": 23025, "background large language": 9269, "models chatgpt capable": 61984, "medical texts clinical": 58926, "texts clinical notes": 96548, "content generated chatgpt": 18633, "written human experts": 104515, "machine learning workflows": 57732, "texts generated chatgpt": 96569, "machine learning methods": 57703, "texts written humans": 96614, "capability large language": 12179, "paper focus assessing": 69739, "experts findings reveal": 32412, "findings reveal chatgpts": 34733, "reveal chatgpts performance": 84136, "exhibits excellent performance": 31606, "datasets code available": 22165, "openais gpt4 large": 68213, "gpt4 large language": 39950, "generated artificial intelligence": 37657, "fundamentals engineering exam": 36567, "recent years advancements": 80423, "advancements artificial intelligence": 3800, "ai led development": 4452, "led development large": 53519, "models like gpt4": 62926, "demonstrating potential applications": 23438, "potential applications various": 73011, "applications various fields": 6596, "various fields including": 102432, "fields including education": 34429, "education study investigates": 27188, "study investigates feasibility": 91708, "using chatgpt gpt4": 101348, "chatgpt gpt4 based": 13894, "gpt4 based model": 39784, "shows significant improvement": 87617, "research directions emphasizing": 82557, "evaluating performance chatgpt": 30472, "performance chatgpt context": 71044, "contributes valuable insights": 19155, "insights potential applications": 46120, "language models educational": 49806, "ai continues evolve": 4352, "findings offer foundation": 34705, "chatgpt conversational agent": 13661, "recent development large": 80238, "models llms demonstrate": 63056, "openais gpt35 model": 68207, "tasks surpassing baseline": 95170, "breakthrough large language": 11397, "language models chatbots": 49702, "conventional ai models": 19274, "recent large pretrained": 80284, "understanding human emotions": 99762, "intelligent tutoring systems": 46927, "experiences provide comprehensive": 31950, "compression large language": 17357, "language models rise": 50773, "models rise large": 64119, "rise large language": 84477, "models llms revolutionizing": 63413, "information retrieval question": 45604, "retrieval question answering": 84012, "input output tokens": 45930, "llms focusing specifically": 55997, "specifically gpt35 gpt4": 89831, "initial results indicate": 45782, "results indicate gpt4": 83677, "shown impressive ability": 87476, "evaluate chatgpts performance": 30156, "applications machine learning": 6523, "development advanced generative": 24605, "generative chat models": 38611, "general artificial intelligence": 37110, "artificial intelligence chatgpt": 7630, "domains including medicine": 26532, "including medicine law": 44422, "models performed poorly": 63802, "language models mark": 50559, "milestone field artificial": 60015, "field artificial intelligence": 34347, "language models conversation": 49754, "language models interact": 49999, "multidimensional evaluation text": 64894, "investigate potential chatgpt": 47684, "existing automatic metrics": 31667, "automatic metrics chatgpt": 8805, "metrics chatgpt achieves": 59894, "chatgpt achieves competitive": 13492, "correlations human judgments": 19783, "role large language": 84788, "language models multidimensional": 50590, "text generation harnessing": 96245, "downstream natural language": 26703, "data training data": 21701, "training data test": 98058, "provide detailed discussion": 77448, "cases large language": 12536, "language models various": 50902, "traditional natural language": 97684, "present various use": 74082, "various use cases": 102622, "llms realworld scenarios": 56641, "ensure comprehensive understanding": 29446, "models wide range": 64537, "systems generative ai": 93464, "generative ai systems": 38572, "opens new opportunities": 68299, "field ai alignment": 34343, "human values paper": 42412, "text images relatively": 96297, "language models create": 49757, "computational social science": 17485, "synthetically generated data": 93307, "tasks varying complexity": 95247, "training data sizes": 98055, "findings reveal models": 34738, "models trained humanlabeled": 64395, "trained humanlabeled data": 97845, "comparable performance compared": 16388, "tasks studies investigated": 95146, "questionanswer pairs collected": 78726, "comprehensive automatic human": 17206, "automatic human evaluation": 8792, "chatgpt demonstrated exceptional": 13686, "demonstrated exceptional performance": 23253, "tasks limited research": 94831, "limited research evaluating": 54458, "performance stateoftheart models": 71595, "outperforms current stateoftheart": 69037, "current stateoftheart models": 20786, "chatgpt similar generative": 14240, "similar generative ai": 88071, "results demonstrate chatgpt": 83538, "use ai tools": 100464, "recent language models": 80276, "data generation pipeline": 21269, "prompt large language": 76354, "performance models trained": 71409, "models new domains": 63671, "perform thorough analysis": 70935, "engineering large language": 28987, "problems large language": 75161, "llms shown great": 56774, "solving complex problems": 89220, "challenging task paper": 13238, "increasingly powerful large": 44898, "powerful large language": 73449, "using training data": 101821, "training data gpt4": 98019, "training examples generating": 98102, "prompt gpt4 generate": 76336, "models llms instruction": 63253, "generative capabilities models": 38606, "broad set topics": 11498, "analysis instruction dataset": 5559, "generate responses instructions": 37578, "responses instructions using": 83245, "evaluate performance models": 30256, "results demonstrate proposed": 83559, "generative ai perceptions": 38562, "language processing tool": 51056, "generate coherent contextually": 37398, "coherent contextually relevant": 15780, "contextually relevant responses": 18980, "responses various prompts": 83327, "generating appropriate responses": 37866, "quantitatively evaluate performance": 78427, "promising performance various": 76183, "prompt engineering pe": 76309, "relation classification tasks": 81236, "exhibits exceptional proficiency": 31609, "remains formidable challenge": 81659, "automated circuit discovery": 8680, "behaviors transformer models": 10014, "transformer models paper": 98535, "analysis strengths weaknesses": 5685, "llms foundation models": 56008, "adapting large language": 3129, "model performance different": 61226, "performance different data": 71140, "significantly fewer parameters": 87931, "tasks explicitly trained": 94616, "poorly understood paper": 72609, "plays crucial role": 72379, "critical thinking problemsolving": 20364, "make informed decisions": 58002, "leveraging capabilities chatgpt": 53823, "language models instruction": 49997, "models instruction tuning": 62791, "instruction tuning instructiontuned": 46393, "code generated chatgpt": 15269, "code generation program": 15325, "llms generate code": 56045, "used measure performance": 100849, "performance various llms": 71685, "functional correctness generated": 36501, "correctness generated code": 19738, "popular llms gpt4": 72647, "performance llms code": 71363, "opens new direction": 68298, "fewshot relation extraction": 34305, "language models revolutionized": 50771, "nlp tasks little": 66799, "models paper investigate": 63757, "new stateoftheart fewshot": 66538, "relation extraction datasets": 81241, "hope work inspire": 41967, "work inspire future": 104132, "inspire future research": 46161, "models plms achieved": 63817, "plms achieved remarkable": 72407, "achieved remarkable success": 2661, "remarkable success nlp": 81829, "success nlp tasks": 92226, "nlp tasks despite": 66778, "despite great success": 24057, "high deployment costs": 41409, "finetuning specific task": 35257, "data paper propose": 21467, "language models consider": 49744, "model demonstrates strong": 60748, "demonstrates strong generalization": 23410, "large models gpt3": 52258, "incontext learning knowledge": 44616, "learning knowledge base": 53228, "answering knowledge bases": 6114, "wide variety possible": 103705, "natural language questions": 65722, "different knowledge bases": 25084, "leverages large language": 53797, "experimental results public": 32065, "future research code": 36759, "research code available": 82512, "advanced natural language": 3726, "generation models like": 38282, "ai computer science": 4345, "computer science education": 17531, "science education paper": 85579, "using chatgpt api": 101335, "code openly accessible": 15426, "preliminary evaluation indicates": 73862, "possible future research": 72903, "fewshot event detection": 34232, "detection empirical study": 24295, "paper presents thorough": 69873, "thorough empirical study": 96825, "propose simple effective": 77111, "simple effective baseline": 88180, "methods large margin": 59706, "extraction using large": 33340, "demonstrations incontext learning": 23473, "bridge gap llms": 11421, "addresses aforementioned issues": 3509, "better understand impact": 10801, "advancements generative ai": 3820, "models present new": 63860, "present new opportunities": 74018, "related use chatgpt": 81225, "social network analysis": 88903, "study underscores importance": 91873, "underscores importance responsible": 99567, "responsible ethical use": 83348, "ethical use ai": 30092, "learning chatgpt bing": 53066, "chatgpt bing chat": 13573, "case study study": 12498, "study study investigates": 91854, "study investigates potential": 91713, "constructionist theoretical framework": 18480, "theoretical framework singlecase": 96737, "framework singlecase study": 36274, "singlecase study methodology": 88408, "study methodology used": 91742, "methodology used analyse": 59500, "used analyse extensive": 100736, "analyse extensive interaction": 5386, "extensive interaction logs": 33106, "interaction logs students": 47020, "logs students ai": 57292, "students ai systems": 91282, "ai systems simulated": 4571, "learning experiences results": 53143, "experiences results highlight": 31952, "results highlight ability": 83637, "highlight ability chatgpt": 41573, "ability chatgpt bing": 1605, "study concludes chatgpt": 91537, "concludes chatgpt bing": 17745, "offer promising avenues": 67764, "promising avenues revolutionise": 76154, "avenues revolutionise stem": 9120, "revolutionise stem education": 84326, "stem education constructionist": 90599, "education constructionist lens": 27140, "constructionist lens fostering": 18478, "smaller model sizes": 88767, "deploying large language": 23583, "models llms challenging": 63008, "amounts training data": 5361, "data achieve comparable": 20940, "achieve comparable performance": 2493, "training small models": 98298, "achieves better performance": 2720, "better performance using": 10763, "substantially smaller model": 92140, "reduce model size": 80792, "model outperforms fewshot": 61183, "dataset release code": 22055, "extent language model": 33164, "language model infer": 49430, "pretrained large amounts": 74358, "finetuned model perform": 34939, "results suggest language": 83872, "suggest language models": 92373, "language models learn": 50037, "outputs large language": 69235, "despite impressive generative": 24072, "impressive generative capabilities": 43605, "capabilities paper propose": 12035, "based user preferences": 9755, "generation experimental results": 38154, "datasets demonstrate effectiveness": 22208, "demonstrate effectiveness approach": 23056, "numerous ai models": 67415, "designed specific tasks": 23950, "remarkable capabilities various": 81755, "capabilities various aspects": 12122, "approach achieves remarkable": 6714, "achieves remarkable results": 2777, "computer vision natural": 17543, "vision natural language": 102998, "extensive experiments ablation": 33045, "experiments ablation studies": 32099, "ablation studies demonstrate": 1807, "popularity large language": 72700, "alignment human values": 5078, "generalpurpose ai assistants": 37343, "llms propose novel": 56604, "popular llms chatgpt": 72644, "automated code generation": 8682, "code generation capabilities": 15286, "language models mainly": 50556, "training new dataset": 98217, "new dataset containing": 66373, "models fewshot settings": 62463, "opportunities natural language": 68503, "language processing generative": 50981, "pretrained transformer gpt4": 74474, "advancements field natural": 3813, "potential applications challenges": 73005, "language translation text": 51148, "text summarization questionanswering": 96447, "finetuning transformer models": 35283, "models require significant": 64072, "require significant amounts": 82289, "amounts finetuning data": 5345, "ii finetuned models": 42972, "paper investigate using": 69791, "investigate using chatgpt": 47713, "models perform experiments": 63789, "model paper present": 61201, "paper present novel": 69837, "using chatgpt large": 101349, "effectiveness prompt engineering": 27568, "prompt engineering techniques": 76317, "advanced prompt engineering": 3733, "prompt engineering methods": 76306, "model findings demonstrate": 60882, "model prompt engineering": 61288, "paper provides comprehensive": 69921, "exploring potential large": 32863, "language models context": 49749, "shared task aims": 87196, "entity recognition ner": 29575, "release dataset code": 81367, "results room improvement": 83829, "room improvement chatgpt": 84833, "ai recent advances": 4527, "chatgpt empirical study": 13747, "aspect human intelligence": 7756, "furthermore investigate impact": 36634, "investigate impact different": 47655, "empirical findings propose": 28329, "capacity large language": 12297, "language models despite": 49778, "prompt tuning simple": 76443, "simple efficient method": 88192, "efficient method significantly": 27799, "method significantly improves": 59424, "significantly improves performance": 87954, "llms paper propose": 56489, "propose simple efficient": 77116, "simple efficient approach": 88191, "approach based prompt": 6755, "based prompt engineering": 9674, "prompt engineering leverages": 76303, "language model optimize": 49496, "demonstrate superiority proposed": 23207, "instructions instruction tuning": 46521, "improve crosstask generalization": 43685, "language models challenging": 49701, "help language models": 41257, "tasks provide detailed": 94983, "language models extensive": 49866, "models extensive experiments": 62426, "different model sizes": 25118, "quality evaluation results": 78265, "models different scales": 62228, "models knowledge distillation": 62832, "using llms prompt": 101590, "llms use different": 56994, "recent release large": 80333, "llm based chatbots": 54981, "foundation models serve": 35964, "early stages design": 26986, "architecture paper propose": 7363, "language models research": 50756, "test large language": 95908, "language models evaluate": 49837, "ai models gpt3": 4469, "fewshot information extractors": 34247, "models llms pretrained": 63359, "llms pretrained massive": 56564, "pretrained massive corpora": 74383, "nlp tasks common": 66773, "llms natural language": 56421, "text paper propose": 96350, "code instead natural": 15362, "instead natural language": 46253, "entity recognition relation": 29582, "recognition relation extraction": 80615, "method consistently outperforms": 59243, "serving large language": 86823, "models llms power": 63353, "experimental results compared": 32018, "results compared stateoftheart": 83511, "models llms recently": 63381, "intelligence ai research": 46822, "trained massive amounts": 97869, "massive amounts data": 58445, "used wide range": 100933, "range tasks including": 79213, "tasks including language": 94728, "including language translation": 44394, "generation question answering": 38375, "ai systems exhibit": 4565, "languages lowresource languages": 51318, "alignment different languages": 5063, "agent large language": 4139, "language model optimized": 49497, "sentence similarity classification": 86522, "unlabeled training data": 100150, "question large language": 78683, "like chatgpt recently": 54095, "chatgpt recently demonstrated": 14156, "recently demonstrated impressive": 80469, "impressive capabilities natural": 43586, "various applications including": 102351, "malicious purposes fraud": 58160, "paper propose framework": 69883, "propose framework named": 76984, "providing new way": 77778, "online service providers": 68008, "plays critical role": 72377, "based artificial intelligence": 9444, "intelligence ai remarkable": 46821, "widely used various": 103749, "challenges future development": 13025, "code generation large": 15304, "llms chatgpt shown": 55612, "code generation llms": 15308, "chainofthought cot prompting": 12819, "designed natural language": 23929, "language generation low": 49243, "generation low accuracy": 38251, "low accuracy code": 57497, "accuracy code generation": 2222, "novel prompting technique": 67236, "intermediate reasoning steps": 47214, "generate final code": 37459, "llms code generation": 55629, "code generation apply": 15277, "benchmarks humaneval mbpp": 10356, "outperforms stateoftheart baseline": 69117, "evaluation shows human": 30780, "shows human developers": 87586, "human developers prefer": 42155, "developers prefer programs": 24558, "achieves substantial improvements": 2807, "increasing model capacity": 44840, "pretraining dataset size": 74521, "building recent progress": 11647, "demonstrate proposed framework": 23167, "longform question answering": 57381, "question answering longform": 78610, "question answering lfqa": 78609, "information retrieval based": 45601, "finetune pretrained language": 34848, "numerous studies highlighted": 67442, "capabilities various tasks": 12133, "encompassing wide range": 28771, "programming languages python": 75913, "languages python java": 51349, "average human score": 9160, "potential areas improvement": 73017, "provide experimental evidence": 77470, "small language models": 88687, "english language models": 29080, "tools natural language": 97449, "hundreds millions parameters": 42690, "introduce new paradigm": 47460, "augmentation large language": 8539, "models llms remarkable": 63398, "size poses challenges": 88508, "poses challenges terms": 72766, "challenges terms computational": 13132, "language models slms": 50812, "paper introduce novel": 69764, "models specifically tailored": 64245, "dataset demonstrate effectiveness": 21898, "16 billion parameters": 360, "billion parameters outperforms": 11025, "publicly available facilitate": 77975, "shown promise various": 87520, "promise various fields": 76140, "various fields potential": 102433, "remains largely untapped": 81674, "study evaluates performance": 91611, "models llms gpt": 63193, "llms gpt 35": 56074, "gpt 35 gpt": 39177, "demonstrating superior performance": 23453, "underscores need research": 99571, "increasing popularity large": 44848, "llms chatgpt led": 55601, "safety security risks": 85054, "paper aims provide": 69606, "aims provide overview": 4824, "security risks associated": 86036, "code generation private": 15323, "present empirical study": 73975, "study contributes ongoing": 91555, "ethical security implications": 30085, "security implications llms": 86014, "complex task completion": 17015, "researchers exploring potential": 82858, "graphical user interfaces": 40429, "user interfaces guis": 101005, "language interfaces nlis": 49294, "models llms exhibited": 63140, "conduct comprehensive evaluations": 17843, "data open source": 21452, "approaches large language": 7158, "commonsense question answering": 16226, "task automatically generating": 93947, "answers given question": 6188, "dense passage retrieval": 23507, "extensive experiments benchmark": 33049, "substantial improvements compared": 92088, "improvements compared strong": 43966, "compared strong baselines": 16643, "empirical study large": 28359, "like chatgpt shown": 54098, "chatgpt shown remarkable": 14227, "understanding reasoning paper": 99859, "datasets experimental results": 22253, "experimental results showcase": 32067, "results showcase chatgpt": 83839, "impact incontext learning": 43215, "incontext learning chainofthought": 44585, "conduct ablation study": 17822, "ablation study various": 1816, "foundation future work": 35915, "contextually relevant knowledge": 18979, "robustness large language": 84727, "text classification tasks": 96123, "advancements pretrained language": 3852, "language models critical": 49758, "representative large language": 82141, "using benchmark dataset": 101312, "analyze performance current": 5778, "current multilingual models": 20740, "context experimental results": 18764, "experimental results reveal": 32066, "language models current": 49761, "large generalpurpose language": 51435, "tasks present paper": 94952, "structure large language": 91141, "deployed language models": 23566, "language models tool": 50868, "datasets poses significant": 22369, "applications study aims": 6579, "aims knowledge gap": 4816, "gap proposing comprehensive": 36969, "overall paper offers": 69307, "paper offers valuable": 69817, "offers valuable insights": 67868, "valuable insights researchers": 102165, "paving way effective": 70656, "training data make": 98033, "urgent need effective": 100407, "model llm gpt3": 61094, "understanding question answering": 99852, "llms empirical study": 55846, "models llms brought": 63004, "including chatgpt llama": 44296, "yield correct answer": 104636, "llms raises concerns": 56626, "enhancing large language": 29339, "advancements large language": 3830, "interactions artificial intelligence": 47047, "artificial intelligence systems": 7661, "closedsource models like": 15012, "like chatgpt opensource": 54090, "opensource models like": 68384, "distributionally robust optimization": 25961, "baseline model trained": 9797, "model trained using": 61526, "assessment large language": 7956, "language models given": 49928, "existing llms generate": 31749, "paper study problem": 69963, "llms various sizes": 57023, "llms results reveal": 56724, "data compromises models": 21094, "et al 2013": 30039, "ability generalize knowledge": 1653, "vast amounts knowledge": 102667, "shown remarkable capabilities": 87531, "paper propose new": 69888, "propose new paradigm": 77051, "lowrank adapters lora": 57605, "approach substantially improves": 7043, "match outperform larger": 58494, "language models fit": 49890, "ability generate meaningful": 1663, "questions evaluate ability": 78841, "report large language": 81981, "models able generate": 61740, "generate high quality": 37476, "code generation code": 15288, "generation code generation": 38080, "aims automatically generate": 4783, "llms shown remarkable": 56786, "remarkable code generation": 81764, "tasks generate code": 94669, "remains challenging paper": 81648, "challenging paper introduce": 13204, "framework code generation": 36065, "code generation leverages": 15307, "significantly enhances ability": 87919, "enhances ability llms": 29276, "ability llms solve": 1714, "llms solve competitionlevel": 56832, "competitionlevel programming problems": 16784, "processing nlp applications": 75514, "models perform better": 63786, "task large language": 94121, "detection large language": 24312, "shown remarkable performance": 87535, "remarkable performance various": 81800, "realworld tasks demonstrate": 79709, "model size inference": 61419, "paper introduce new": 69763, "prompt learning method": 76364, "currently fall short": 20812, "generating humanlike text": 37926, "novel framework finetuning": 67168, "framework finetuning llms": 36140, "pretrained llm finetuned": 74371, "framework achieves comparable": 36016, "comparable performance gpt3": 16394, "strong language understanding": 91042, "understanding generation capabilities": 99749, "llms directly generate": 55808, "generate response based": 37576, "end propose novel": 28836, "extensive experiments proposed": 33083, "zeroshot oneshot settings": 104835, "software engineering se": 89006, "engineering se tasks": 29019, "application artificial intelligence": 6341, "various evaluation criteria": 102423, "generative ai large": 38551, "ai large language": 4447, "models llms including": 63233, "ai models specifically": 4479, "models specifically chatgpt": 64241, "evaluate chatgpts ability": 30154, "results suggest chatgpt": 83869, "study contributes growing": 91552, "contributes growing body": 19143, "growing body research": 40646, "highlights potential chatgpt": 41666, "automatically generated natural": 8874, "generated natural language": 37744, "high school graduation": 41455, "school graduation examination": 85549, "dataset large language": 21989, "evaluating large language": 30443, "models llms introduced": 63257, "vietnamese national high": 102908, "national high school": 65528, "answering text generation": 6162, "visual question answering": 103104, "chatgpt bingchat perform": 13576, "perform human level": 70881, "mathematics physics chemistry": 58606, "physics chemistry biology": 72079, "encoderdecoder language models": 28723, "distillation methods fail": 25821, "distilling large language": 25846, "recent years significant": 80439, "years significant progress": 104616, "significant progress developing": 87825, "learning sentence representations": 53408, "paper provide overview": 69919, "area natural language": 7428, "automatic code summarization": 8764, "support software developers": 92831, "concise natural language": 17722, "given code snippet": 38865, "recently emergence large": 80485, "attracted wide attention": 8426, "software engineering community": 89000, "unclear chatgpt performs": 99398, "paper focus evaluating": 69740, "comparing stateoftheart sota": 16699, "guide chatgpt generate": 40730, "ask chatgpt generate": 7711, "metrics including bleu": 59933, "bleu meteor rougel": 11170, "meteor rougel measure": 59175, "rougel measure quality": 84867, "discuss advantages disadvantages": 25651, "advantages disadvantages chatgpt": 3937, "code summarization based": 15525, "based findings outline": 9536, "challenges opportunities chatgptbased": 13086, "models llms raises": 63374, "data collection methodology": 21072, "data using chatgpt": 21734, "lead robust models": 52818, "thematic analysis semistructured": 96722, "analysis semistructured interviews": 5667, "models llms emerged": 63112, "llms emerged powerful": 55841, "paper presents results": 69870, "analysis previous research": 5614, "thematic analysis qualitative": 96721, "analysis commonly used": 5462, "research paper presents": 82700, "task machine translation": 94136, "demonstrate proposed approach": 23165, "prompting bloom model": 76507, "pipeline large language": 72162, "models llms revolutionized": 63410, "comes significant computational": 16041, "significant computational costs": 87717, "computational costs paper": 17453, "costs paper propose": 19933, "paper propose efficient": 69882, "efficient llm inference": 27792, "power llms approach": 73382, "model results demonstrate": 61353, "making valuable addition": 58146, "valuable addition existing": 102143, "natural language explanations": 65576, "language explanations nles": 49211, "learning recently emerged": 53377, "billions parameters making": 11038, "parameterefficient finetuning techniques": 70147, "perform automatic human": 70821, "human evaluations assess": 42194, "evaluations assess quality": 30835, "chatgpt search engines": 14201, "built large language": 11667, "model llm chatgpt": 61086, "generation long text": 38249, "llms code available": 55627, "language models rely": 50746, "propose using large": 77160, "language models discover": 49792, "findings demonstrate chatgpt": 34653, "tasks face challenges": 94626, "model weights making": 61589, "address shortcomings propose": 3491, "use cases chatgpt": 100489, "automated machine learning": 8710, "machine learning automl": 57696, "tasks intuitive natural": 94769, "utilize large language": 101942, "multiple llm instances": 65217, "solving complex tasks": 89222, "ability foundation models": 1647, "wide range linguistic": 103667, "chatgpt language model": 13970, "language processing model": 50994, "model capable producing": 60633, "findings indicate chatgpt": 34684, "potential valuable tool": 73314, "explore alternative approaches": 32633, "covid19 pandemic highlighted": 20107, "underlying large language": 99501, "provided correct answer": 77609, "models propose new": 63923, "reading comprehension dataset": 79521, "using gpt 35": 101480, "order magnitude larger": 68707, "language models questions": 50708, "models context lengths": 62110, "conversational artificial intelligence": 19360, "led development powerful": 53522, "produce text indistinguishable": 75661, "text indistinguishable humangenerated": 96304, "chatgpts performance comparable": 14439, "findings offer insights": 34706, "context large language": 18797, "provide detailed analysis": 77446, "generative capability llms": 38608, "zeroshot finetuning settings": 104784, "benchmark natural language": 10219, "language understanding long": 51172, "datasets including novel": 22300, "conduct comprehensive evaluation": 17841, "language models finding": 49882, "outperforms chatgpt gpt4": 69026, "achieves highest average": 2749, "highest average score": 41544, "language models scaling": 50784, "like chatgpt scaling": 54097, "leading improved performance": 52849, "covers wide range": 20099, "wide range topics": 103694, "opensource models including": 68383, "ability neural language": 1729, "models use input": 64463, "comprehensive evaluations reveal": 17251, "developing language models": 24584, "models llms data": 63055, "commonsense reasoning datasets": 16235, "evaluate effectiveness finetuning": 30171, "multilingual models mbert": 64984, "models mbert xlmr": 63593, "data compare performance": 21084, "data generated llms": 21256, "furthermore conduct human": 36589, "human evaluation asking": 42168, "struggle generate meaningful": 91218, "languages like tamil": 51312, "chatgpt falls short": 13812, "hallucination large language": 40840, "compared previous stateoftheart": 16613, "instructiontuned large language": 46589, "llms exhibited impressive": 55912, "language understanding capacity": 51157, "evaluate zeroshot performance": 30308, "various prompting strategies": 102539, "foundation model training": 35932, "different prompting strategies": 25168, "question answering systems": 78629, "language models offers": 50614, "techniques natural language": 95564, "math word problem": 58560, "word problem solving": 103917, "models llms smaller": 63451, "furthermore provide comprehensive": 36652, "learn human feedback": 52947, "human feedback large": 42224, "models trained human": 64393, "trained human data": 97842, "field large language": 34383, "zeroshot fewshot chainofthought": 104769, "huge performance gap": 42046, "performance gap chatgpt": 71242, "data code released": 21060, "code released github": 15471, "math reasoning problems": 58555, "hold great potential": 41883, "raises privacy concerns": 79084, "teachers large language": 95352, "multistep math reasoning": 65329, "language models inference": 49993, "models inference tasks": 62774, "inference tasks large": 45305, "tasks like question": 94825, "like question answering": 54213, "llm families llama": 55079, "llama gpt35 palm": 54757, "perform significantly worse": 70920, "address challenges propose": 3374, "existing code generation": 31684, "current stateoftheart model": 20785, "test cases generated": 95875, "factchecking large language": 33569, "rapid development large": 79314, "llms chatgpt gpt3": 55595, "exploring incontext learning": 32849, "incontext learning capabilities": 44580, "llms zeroshot setting": 57062, "significant room improvement": 87850, "room improvement compared": 84835, "promising approach future": 76148, "remarkable language understanding": 81779, "better human alignment": 10729, "help external knowledge": 41245, "instructing large language": 46300, "aligned large language": 5024, "utilize incontext learning": 101938, "significantly higher quality": 87933, "sparse mixtureofexperts moe": 89539, "models llms increasing": 63241, "cost instruction tuning": 19856, "llms follow instructions": 55999, "models particular conduct": 63775, "conduct empirical studies": 17858, "zeroshot generalization downstream": 104789, "generalization downstream tasks": 37256, "benchmark tasks using": 10264, "language models framework": 49898, "outperform existing methods": 68933, "accuracy despite using": 2239, "models lms struggle": 63542, "additional training significantly": 3266, "families including opt": 33835, "answering complex questions": 6089, "models llms produce": 63362, "address issue propose": 3430, "propose adapt pretrained": 76923, "language models capable": 49692, "model soft prompts": 61437, "opt llama2 models": 68542, "reducing inference costs": 80878, "retrievalaugmented language modeling": 84048, "extend context window": 32935, "lack largescale highquality": 49033, "strong baselines including": 91008, "dataset code available": 21853, "develop large language": 24455, "model llm able": 61077, "llm able perform": 54931, "finetuning llms using": 35135, "using instruction tuning": 101525, "instruction tuning particular": 46404, "instruction tuning dataset": 46374, "significantly outperforms traditional": 88007, "impressive generalization capabilities": 43603, "generalization capabilities unseen": 37251, "emerges promising solution": 28212, "approach specifically tailored": 7032, "fully automated way": 36441, "language understanding natural": 51174, "understanding natural language": 99822, "language generation reasoning": 49262, "generation reasoning tasks": 38385, "gpt large language": 39204, "highquality instruction data": 41766, "data high quality": 21291, "previous studies used": 74719, "propose method called": 77022, "factual errors caused": 33630, "wide range coding": 103659, "code datasets released": 15217, "paper aim understand": 69594, "based internal knowledge": 9582, "deep learning approaches": 22759, "remarkable performance gains": 81787, "chatgpt gpt35 gpt4": 13888, "llms demonstrated powerful": 55750, "demonstrated powerful capabilities": 23305, "domains tasks including": 26599, "tasks including context": 94726, "understanding code generation": 99692, "code generation language": 15303, "drawn great attention": 26821, "carefully designing prompts": 12418, "gpt4 experimental results": 39876, "models demonstrated exceptional": 62184, "performance variety language": 71667, "variety language tasks": 102302, "control language models": 19211, "directly finetuning language": 25497, "language models effective": 49807, "baseline methods including": 9794, "promising results highlight": 76197, "semantic textual similarity": 86358, "described natural language": 23665, "language model evaluation": 49388, "diverse natural language": 26054, "science era chatgpt": 85583, "era chatgpt large": 29724, "language models generative": 49918, "models generative ai": 62563, "intelligence ai chatgpt": 46802, "advent generative ai": 3957, "era ai chatgpt": 29719, "challenges artificial intelligence": 12967, "intelligence ai machine": 46809, "ai machine learning": 4459, "ai language model": 4444, "internet things iot": 47252, "robotics computer vision": 84634, "automatic code generation": 8761, "code generation tools": 15339, "social biases generated": 88845, "generation models codex": 38278, "provide useful insights": 77591, "language models resulted": 50760, "downstream tasks work": 26750, "model perform tasks": 61218, "text generation qa": 96265, "long text generation": 57339, "significantly outperforms zeroshot": 88009, "outperforms zeroshot gpt35": 69138, "pose significant challenges": 72750, "use knowledge learned": 100590, "directed acyclic graph": 25440, "acyclic graph dag": 3023, "language model finetune": 49398, "gap open closed": 36952, "lms current methods": 57113, "abilities large language": 1525, "emergent reasoning capabilities": 28205, "capabilities llms trained": 11995, "llms trained general": 56946, "paper set investigate": 69950, "aim evaluate effectiveness": 4708, "evaluate effectiveness llms": 30172, "tasks potential llms": 94948, "conduct systematic study": 17924, "findings reveal llms": 34737, "llms ability generate": 55403, "average success rate": 9180, "hallucinations large language": 40869, "language models evaluation": 49838, "mitigation large language": 60311, "models large lms": 62863, "work present comprehensive": 104208, "opendomain text generation": 68249, "question answering analysis": 78574, "achieves high accuracy": 2744, "artificial intelligence language": 7644, "intelligence language models": 46864, "testing language models": 96011, "language models understanding": 50893, "question generation qg": 78673, "task generating valid": 94081, "evaluation using large": 30822, "higher correlation human": 41494, "tasks unlike prior": 95227, "unlike prior works": 100183, "pretrained lms gpt2": 74378, "13 times larger": 265, "chatgpt chat generative": 13602, "november 30 2022": 67299, "family large language": 33848, "language models serve": 50791, "supervised reinforcement learning": 92737, "reinforcement learning techniques": 81165, "received widespread attention": 80153, "common software engineering": 16176, "using chatgpt study": 101356, "tasks using chatgpt": 95232, "respective state art": 83051, "chatgpt does perform": 13728, "small finetuned models": 88676, "model weights available": 61585, "smaller large language": 88759, "language models partially": 50638, "models llms acquire": 62980, "results provide evidence": 83792, "capabilities pretrained large": 12049, "models recent studies": 64008, "gpt2 empirically demonstrate": 39274, "rich contextual information": 84411, "work sheds light": 104263, "models lack understanding": 62841, "understanding user intent": 99900, "response generation model": 83136, "content generated llms": 18634, "adopting large language": 3625, "large language modelsllms": 52229, "framework simple effective": 36272, "experiments demonstrate approach": 32151, "assessments study explores": 7991, "open ais generative": 68044, "ais generative pretrained": 4845, "ai detection tool": 4363, "comparable performance gpt4": 16395, "research contributes understanding": 82527, "excel various natural": 31337, "nlp tasks current": 66775, "tasks current research": 94507, "current research focuses": 20766, "study aims evaluate": 91483, "demonstrate incontext learning": 23108, "incontext learning instruction": 44613, "learning instruction tuning": 53221, "achieve f1 scores": 2520, "gpt3 chatgpt gpt4": 39425, "increasingly integrated lives": 44890, "cuttingedge language models": 20870, "models gpt3 chatgpt": 62598, "use data obtained": 100520, "language generation task": 49263, "findings indicate llms": 34689, "language models retrieval": 50763, "performance gap small": 71245, "training language modeling": 98158, "systematic study comprehensive": 93354, "study comprehensive evaluation": 91535, "comprehensive evaluation chatgpt": 17238, "datasets remains underexplored": 22393, "ground truth paper": 40558, "paper aim present": 69593, "present thorough evaluation": 74073, "thorough evaluation chatgpts": 96827, "evaluation chatgpts performance": 30541, "datasets covering tasks": 22195, "tasks like questionanswering": 94827, "strengths weaknesses chatgpt": 90965, "chatgpt various tasks": 14346, "various tasks provide": 102603, "provide insights future": 77506, "insights future research": 46093, "research using llms": 82822, "models extensive evaluation": 62425, "extensive evaluation shows": 33030, "performance benchmark datasets": 71014, "llms realworld applications": 56639, "using generative pretrained": 101476, "transformer gpt models": 98510, "results demonstrated proposed": 83571, "recent advancements large": 80183, "models llms offer": 63323, "multiple dimensions including": 65176, "incontext learning number": 44629, "incontext learning strategies": 44647, "models llms powerful": 63354, "recent social science": 80350, "type annotation task": 99202, "research highlights potential": 82622, "highlights potential llms": 41667, "potential llms educational": 73176, "llms educational settings": 55828, "events large language": 30932, "machine learning community": 57699, "responsible ai evaluations": 83341, "address issue developed": 3419, "benchmark demonstrate superiority": 10136, "generative ai genai": 38545, "ai genai models": 4411, "stable diffusion chatgpt": 90091, "design large language": 23802, "like gpt4 outperform": 54160, "models llms specifically": 63457, "llms specifically gpt4": 56853, "common natural language": 16155, "humanlevel performance various": 42515, "performance various professional": 71694, "various professional academic": 102529, "professional academic benchmarks": 75755, "used practical applications": 100873, "paper explore potential": 69716, "explore potential llms": 32726, "setting experimental results": 86992, "like gpt4 demonstrate": 54154, "potential future advancements": 73096, "propose future research": 76986, "language models mathematics": 50561, "language model capabilities": 49355, "language models instructgpt": 49996, "instructgpt chatgpt gpt4": 46286, "burgeoning field artificial": 11694, "gpt models specifically": 39229, "problems varying difficulty": 75221, "varying difficulty levels": 102649, "capabilities ai models": 11829, "enhance ai models": 29137, "foundation models gpt4": 35945, "models gpt4 dalle": 62615, "llm empowered software": 55055, "ensembling large language": 29431, "introduce benchmark dataset": 47403, "performance generative pretrained": 71260, "transformer gpt model": 98509, "previous studies focused": 74715, "paper concludes discussing": 69639, "recently released chatgpt": 80545, "model performs better": 61245, "capacity pretrained language": 12306, "results showed finetuned": 83843, "using opensource llm": 101669, "improving zeroshot performance": 44173, "variety downstream tasks": 102296, "downstream tasks code": 26717, "tasks code data": 94442, "explore generative ai": 32685, "tasks generative ai": 94674, "zeroshot performance chatgpt": 104837, "results reveal chatgpt": 83820, "work highlights challenges": 104118, "paving way future": 70657, "way future research": 103362, "future research address": 36755, "explore potential chatgpt": 32719, "highlight potential risks": 41606, "potential risks associated": 73251, "logical reasoning abilities": 57267, "chatgpt proves beneficial": 14124, "models brought immense": 61950, "nlp applications models": 66708, "models expensive train": 62399, "data design decisions": 21150, "pretrained models work": 74425, "pretraining large language": 74559, "models previous sota": 63884, "previous sota model": 74704, "sota model trained": 89317, "model trained data": 61519, "models consistently outperform": 62099, "consistently outperform baselines": 18302, "gap propose novel": 36966, "conduct empirical study": 17859, "root cause analysis": 84843, "children language models": 14526, "deep language models": 22753, "gpt2 models scratch": 39322, "models tend learn": 64346, "shed new light": 87224, "reasoning question answering": 79999, "question answering language": 78604, "entities pretrained language": 29544, "questionanswering tasks work": 78750, "structured knowledge graphs": 91168, "answering questions require": 6147, "lossless text compression": 57483, "models provide new": 63934, "natural languages nls": 65769, "comprehensive benchmark study": 17212, "study wide range": 91897, "achieve highest performance": 2533, "language models bloom": 49684, "social media posts": 88894, "social media users": 88899, "models education enhancing": 62272, "enhancing incontext learning": 29333, "question answering recent": 78627, "recent emergence large": 80251, "models specific tasks": 64239, "output paper propose": 69176, "new prompting strategy": 66503, "llms incontext learning": 56195, "model llm output": 61100, "llms fall short": 55971, "et al 2004": 30038, "far large language": 33871, "chatgpt recently gained": 14158, "recently gained immense": 80495, "empirical evidence indicates": 28324, "benchmark large language": 10201, "shown remarkable abilities": 87529, "intelligence agi provide": 46797, "human raters provide": 42344, "compared humans models": 16574, "models revolutionized natural": 64114, "applications conversational agents": 6438, "conversational agents models": 19352, "solve complex tasks": 89169, "address challenges present": 3372, "evaluation suite designed": 30802, "unlike previous works": 100180, "model performance including": 61232, "methods findings reveal": 59649, "models demonstrate impressive": 62176, "models work introduces": 64548, "2023 shared task": 561, "various baseline models": 102364, "achieved second place": 2666, "capabilities largelanguage models": 11965, "models particularly openais": 63778, "text summarization natural": 96446, "processing nlp task": 75540, "documents recent advances": 26264, "models chatgpt demonstrated": 61988, "models llms text": 63479, "llms text generation": 56930, "require massive amounts": 82275, "users specific requirements": 101181, "extensive experiments conducted": 33052, "experiments conducted using": 32141, "evaluate proposed model": 30269, "results demonstrate model": 83555, "demonstrate model outperforms": 23135, "make wellinformed decisions": 58041, "instruction tuned models": 46368, "instruction tuning language": 46394, "models demonstrated ability": 62182, "incontext learning using": 44653, "supervised learning requires": 92720, "models various tasks": 64498, "training data required": 98048, "match performance stateoftheart": 58496, "models conduct experiments": 62082, "100 training data": 136, "training data results": 98049, "based chat assistants": 9461, "strong llms judges": 91048, "publicly available internet": 77979, "image datasets results": 43035, "quality diversity generated": 78257, "improve factual accuracy": 43701, "analysis responses models": 5643, "multiplechoice questions vietnamese": 65293, "graduation examination vnhsge": 40322, "chatgpts performance varies": 14443, "study shown chatgpt": 91843, "suggest chatgpt potential": 92353, "data address challenges": 20949, "address challenges presented": 3373, "achieves new stateoftheart": 2762, "new stateoftheart result": 66540, "code summarization task": 15528, "multilingual pretrained models": 64999, "reasoning tasks multilingual": 80059, "pretrained model does": 74392, "different types tasks": 25245, "multilingual reasoning abilities": 65003, "natural language corpus": 65564, "results approach improves": 83467, "information large language": 45525, "llm like chatgpt": 55155, "gain insight capabilities": 36813, "models including alpaca": 62721, "automated human evaluation": 8702, "human evaluation generated": 42177, "results highlight need": 83642, "language models perspective": 50645, "paper explores possibility": 69727, "highlights pervasive nature": 41663, "translation large language": 98713, "language models nonenglish": 50608, "analysis recent years": 5635, "recent years large": 80429, "years large language": 104600, "gpt4 metas llama": 39973, "metas llama googles": 59168, "content moderation systems": 18660, "systems search engines": 93567, "extend capabilities large": 32929, "language models languages": 50024, "models work explore": 64546, "work explore capabilities": 104079, "explanation large language": 32467, "developing deploying large": 24575, "large multilingual language": 52271, "privacy data security": 74894, "data security risk": 21603, "text summarization sentence": 96448, "chatgpt garnered significant": 13844, "short natural language": 87293, "faithfulness generated text": 33754, "texts findings indicate": 96566, "general language model": 37144, "language large language": 49304, "models recent progress": 64004, "recent progress artificial": 80312, "progress artificial intelligence": 75971, "evolution generative artificial": 31022, "intelligence ai including": 46806, "interactive ai agents": 47088, "llms telecom domain": 56922, "demonstrate use case": 23217, "accuracy gpt2 model": 2276, "achieves similar performance": 2790, "large models present": 52269, "optimization algorithm performs": 68585, "hoffmann et al": 41879, "democratizing large language": 22997, "represent revolution ai": 82039, "pose significant risks": 72751, "significant risks presence": 87844, "risks presence biased": 84532, "presence biased private": 73920, "opensource language models": 68345, "boost ai development": 11269, "ai development make": 4368, "development make accessible": 24677, "language models gpt35": 49942, "models gpt35 gpt4": 62605, "results showed chatgpt": 83842, "range subjects including": 79211, "ai tools like": 4597, "like chatgpt increasingly": 54085, "ai code generation": 4335, "code generation systems": 15335, "reasoning strategies tailored": 80036, "predictions conduct experiments": 73736, "tasks including question": 94733, "including question answering": 44457, "question answering commonsense": 78580, "answering commonsense reasoning": 6086, "sentiment analysis named": 86589, "analysis named entity": 5585, "semantic role labeling": 86343, "significantly boost performance": 87891, "boost performance chatgpt": 11276, "language models science": 50785, "science higher education": 85589, "education primary focus": 27172, "effects large language": 27615, "highlight transformative potential": 41615, "transformative potential llms": 98478, "impact generative ai": 43210, "regarding use chatgpt": 81076, "chatgpt education artificial": 13734, "education artificial intelligence": 27130, "different scientific domains": 25190, "artificial intelligencebased chatbot": 7675, "chatbot developed openai": 13408, "community impressive performance": 16323, "input natural language": 45926, "issues concerns raised": 47981, "concerns raised regarding": 17702, "legal ethical implications": 53560, "potential use cases": 73297, "generative ai chatgpt": 38537, "progress large language": 75989, "assessments higher education": 7987, "programming courses paper": 75894, "recent developments large": 80244, "developments large language": 24746, "models llm abilities": 62950, "generation code explanation": 38079, "language model develop": 49376, "data collection processing": 21076, "collection processing analysis": 15907, "transformative potential ai": 98474, "perspective large language": 71954, "humanlike cognitive abilities": 42525, "different models benchmarks": 25121, "questions different fields": 78828, "accuracy recall f1": 2344, "personalized learning experiences": 71915, "recent advances language": 80201, "language learning models": 49310, "models zeroshot learning": 64565, "learning capabilities chatgpt": 53050, "case study simple": 12497, "challenges posed limited": 13097, "alignment instruction following": 5083, "llms instruction tuning": 56233, "plays vital role": 72392, "aligning llms human": 5049, "llms human preferences": 56147, "performance nonenglish languages": 71430, "transfer capabilities language": 98398, "capabilities language generation": 11956, "language generation instruction": 49240, "generation instruction following": 38211, "smaller parameter size": 88786, "gpt4 automatic evaluation": 39774, "instruction test set": 46363, "test set called": 95942, "demonstrates outstanding performance": 23388, "language models scientific": 50786, "various large language": 102467, "llms chatgpt gained": 55589, "chatgpt gained significant": 13841, "gained significant attention": 36836, "significant attention impressive": 87686, "impressive natural language": 43611, "llms study aims": 56875, "study aims address": 91482, "provides comprehensive evaluation": 77648, "comprehensive evaluation llms": 17246, "evaluation llms crucial": 30657, "toxicity language models": 97603, "aims enhance understanding": 4797, "development language models": 24662, "new large language": 66440, "significantly smaller size": 88025, "llm reinforcement learning": 55231, "learning rl emerged": 53393, "proximal policy optimization": 77832, "policy optimization ppo": 72550, "investigating potential large": 47773, "new avenues exploration": 66339, "paper provides promising": 69927, "avenues future research": 9115, "future research field": 36769, "opportunities risks llms": 68508, "explore opportunities risks": 32712, "tasks emergence large": 94573, "llms chatgpt revolutionized": 55611, "advanced deep learning": 3689, "models used improve": 64467, "utilizing chatgpt generate": 102005, "provide qualitative analysis": 77551, "future directions improving": 36717, "model llm like": 61098, "methods experimental results": 59632, "current stateoftheart sota": 20787, "approach achieves high": 6713, "emergence foundation models": 28165, "foundation models large": 35948, "gpt4 texttoimage models": 40130, "agile software development": 4266, "play vital role": 72354, "explores using chatgpt": 32828, "recommendations future research": 80661, "using variational inference": 101837, "models llms seen": 63415, "challenging task requires": 13239, "task requires deep": 94225, "knowledge reasoning ability": 48732, "choose best possible": 14605, "language models release": 50745, "training evaluating models": 98096, "models struggle identify": 64271, "future work area": 36790, "generation artificial intelligence": 38039, "processing models like": 75507, "demonstrating impressive capabilities": 23433, "driven large language": 26844, "compared results human": 16629, "cases ai models": 12510, "continuously evaluate llms": 19042, "feedback natural language": 34113, "specific examples introduce": 89694, "language model prompt": 49520, "conduct case studies": 17832, "use largescale pretrained": 100605, "received significant attention": 80151, "datasets case study": 22159, "powerful language model": 73443, "case study conducted": 12479, "research underscores potential": 82814, "underscores potential ai": 99573, "ai models like": 4472, "new research opportunities": 66517, "research opportunities potential": 82691, "employing large language": 28452, "developed large language": 24506, "models largescale language": 62877, "recent llms possess": 80292, "suggest llms capable": 92379, "reasoning process external": 79987, "discuss potential implications": 25679, "language processing computer": 50975, "processing computer vision": 75471, "models especially transformer": 62350, "survey presents comprehensive": 93041, "presents comprehensive overview": 74124, "sequential decisionmaking tasks": 86706, "potential avenues future": 73035, "risks language models": 84519, "risks large language": 84521, "help manage risks": 41266, "amazon mechanical turk": 5304, "despite significant progress": 24123, "address problem using": 3475, "problem using large": 75098, "generate adversarial examples": 37374, "adversarial examples enhance": 3975, "significantly improves robustness": 87958, "models data code": 62149, "improve performance large": 43753, "large vision models": 52374, "achieve higher accuracy": 2530, "achieves higher accuracy": 2746, "language models solving": 50818, "solving programming problems": 89247, "programming problems using": 75926, "problems using large": 75214, "source code recently": 89362, "llms transformerbased models": 56966, "transformerbased models like": 98583, "codex chatgpt shown": 15658, "solving wide range": 89262, "problem training data": 75093, "tackling code generation": 93749, "introductory programming problems": 47572, "problems experimental results": 75138, "code generation performance": 15321, "stateoftheart sota models": 90485, "finetuning parameterefficient finetuning": 35169, "adapt pretrained language": 3053, "applied various domains": 6638, "various domains tasks": 102412, "tasks paper propose": 94930, "additional training enables": 3265, "model based llama": 60592, "results demonstrate approach": 83534, "significantly outperform existing": 87978, "analysis using large": 5716, "language models support": 50845, "coding widely used": 15723, "widely used qualitative": 103746, "reasoning tasks study": 80064, "explore use llms": 32756, "case study using": 12500, "study using gpt35": 91882, "available data sets": 9026, "language model application": 49333, "multiple domains including": 65181, "including natural language": 44428, "highperformance computing hpc": 41726, "facilitate research development": 33506, "stateoftheart models generate": 90401, "scientific machine learning": 85654, "demonstrate potential use": 23151, "exams large language": 31307, "language models emergence": 49815, "processing nlp models": 75532, "nlp models like": 66753, "chatgpt raised concerns": 14143, "did significantly impact": 24956, "gpt4 findings suggest": 39889, "nlp tasks previous": 66808, "tasks previous research": 94960, "diversity generated data": 26146, "training data generation": 98016, "additionally present comprehensive": 3334, "present comprehensive empirical": 73956, "comprehensive empirical study": 17233, "key observations firstly": 48327, "synthetic datasets generated": 93275, "plays pivotal role": 72387, "pivotal role enhancing": 72206, "enhancing model performance": 29353, "tasks assessed performance": 94386, "commercial large language": 16078, "models llms gpt35turbo": 63204, "llms gpt35turbo gpt4": 56097, "models fell short": 62456, "available github chatgpt": 9044, "states medical licensing": 90522, "medical licensing examination": 58903, "arabic nlp tasks": 7307, "nlp tasks using": 66817, "using chatgpt models": 101353, "chatgpt models large": 14020, "performance various downstream": 71681, "tasks requiring finetuning": 95055, "models exhibit remarkable": 62384, "performance gpt35 gpt4": 71272, "findings reveal gpt4": 34734, "gpt4 outperforms gpt35": 40001, "conduct extensive analysis": 17877, "analysis sentiment analysis": 5669, "sentiment analysis task": 86596, "like gpt3 palm": 54142, "fewshot learning additionally": 34254, "language models rarely": 50719, "real world use": 79558, "llms generate highquality": 56054, "mediqachat 2023 shared": 58943, "experiment results demonstrate": 31974, "evaluated automatic metrics": 30317, "automatic metrics rouge": 8809, "furthermore conducted comparative": 36592, "conducted comparative analysis": 17942, "models hold great": 62671, "recent works studied": 80419, "lack systematic study": 49061, "chatgpt based gpt35": 13563, "based gpt35 gpt4": 9558, "introductory python programming": 47574, "techniques improve performance": 95532, "prominent large language": 76095, "llms openais chatgpt": 56459, "findings highlight potential": 34674, "leverage pretrained language": 53756, "web search results": 103495, "effective prompting methods": 27350, "methods automatically generate": 59544, "knowledge enhancement method": 48548, "employ threestage training": 28415, "models empirical results": 62304, "empirical results various": 28349, "tasks demonstrate effectiveness": 94517, "evaluated capability generative": 30323, "capability generative pretrained": 12169, "gpt4 automatically generate": 39777, "reasoning code generation": 79828, "code generation machine": 15309, "generation machine translation": 38255, "typically requires large": 99302, "software development processes": 88994, "method does rely": 59268, "model based transformer": 60594, "evaluation results demonstrate": 30754, "competitive performance compared": 16811, "compared supervised methods": 16645, "models llms capture": 63005, "address issue work": 3434, "manner experimental results": 58235, "original gpt2 model": 68777, "llms generate effective": 56050, "pose significant threat": 72754, "drawing inspiration recent": 26812, "chatgpt code generation": 13625, "code generation propose": 15329, "generation propose new": 38359, "propose new approach": 77038, "new approach named": 66330, "language models emergent": 49818, "paper investigate potential": 69788, "investigate potential using": 47689, "models gpt4 claude": 62614, "language models automatic": 49662, "large language modelpowered": 51550, "traditional search engines": 97700, "answering straightforward questions": 6154, "better user experiences": 10810, "perceived ease use": 70762, "study offers valuable": 91759, "recent introduction large": 80271, "introduction large language": 47557, "generate text response": 37623, "generating prompts llms": 37959, "prompts llms based": 76776, "estimation large language": 30028, "demonstrated remarkable potential": 23330, "potential natural language": 73206, "presents promising solution": 74162, "llms remains significant": 56697, "analysis reveals significant": 5657, "popular offtheshelf llms": 72660, "demonstrate superior performance": 23202, "holds great promise": 41900, "chatbots like chatgpt": 13450, "capabilities ai systems": 11830, "negative attitudes ai": 66054, "methods require pretraining": 59784, "pretraining large text": 74562, "datasets method outperforms": 22336, "method outperforms existing": 59378, "text classification methods": 96115, "language models outperform": 50626, "proprietary models like": 77314, "prior research demonstrated": 74855, "demonstrated high performance": 23266, "high performance chatgpt": 41435, "numerous nlp tasks": 67436, "opensource llms like": 68369, "different temperature parameters": 25225, "achieves best performance": 2715, "opensource llms outperform": 68374, "chatgpt specific tasks": 14259, "case study large": 12486, "using domain knowledge": 101421, "domain knowledge llms": 26407, "process mining artifacts": 75360, "chatgpt microsoft bing": 14014, "models llms openai": 63328, "llms openai chatgpt": 56454, "autoregressive large language": 8967, "high computation cost": 41386, "generation address issue": 38015, "data science education": 21596, "education large language": 27160, "language models rapid": 50712, "rapid advances large": 79306, "case studies using": 12476, "using llms paper": 101589, "play significant role": 72352, "shed light emerging": 87216, "models ai chatbots": 61811, "transformers large language": 98621, "using nexttoken prediction": 101644, "significantly improve accuracy": 87939, "text data training": 96163, "work highlights importance": 104119, "nextword prediction objective": 66666, "provides useful reference": 77719, "problem work propose": 75103, "generate synthetic training": 37613, "using synthetic data": 101803, "integrating large language": 46728, "extremely promising results": 33399, "cognitive abilities knowledge": 15733, "text simplification task": 96421, "domain expert knowledge": 26378, "models based t5": 61905, "ai tools chatgpt": 4589, "generative ai technology": 38575, "bing web search": 11069, "efficacy large language": 27641, "language models generating": 49916, "et al 2023": 30050, "present extensive evaluation": 73984, "benchmarking generative models": 10289, "generative models including": 38660, "question answering paper": 78616, "demonstrate gpt35 gpt4": 23094, "critical machine learning": 20339, "llms like codex": 56313, "trained huge corpora": 97840, "achieving state art": 2883, "state art performance": 90273, "performance software engineering": 71576, "unlike natural language": 100176, "programming language current": 75906, "code treat code": 15554, "abstract syntax tree": 1936, "syntax tree ast": 93198, "learning ml models": 53270, "various se tasks": 102564, "source code need": 89357, "foundation large language": 35921, "natural language interface": 65613, "largelanguage models llms": 52401, "llms limited context": 56335, "limited context window": 54410, "context window size": 18877, "shortterm longterm memory": 87338, "learning computer vision": 53082, "investigate large language": 47663, "chatgpt widely used": 14355, "widely used large": 103736, "used large language": 100840, "approach opens new": 6961, "comprehensive evaluation chatgpts": 17239, "influence large language": 45352, "demonstrating remarkable performance": 23443, "data structures algorithms": 21657, "chatgpt ability generate": 13476, "solve problem hand": 89186, "technology acceptance model": 95638, "paper presents findings": 69861, "use chatgpt tool": 100504, "acceptance model tam": 2048, "chatgpt shows promise": 14232, "needed address limitations": 66010, "generators large language": 38743, "language models exhibit": 49846, "release openais chatgpt": 81388, "proprietary large language": 77300, "language model text": 49557, "model text generation": 61506, "finetuned reinforcement learning": 34959, "main contribution paper": 57819, "code training data": 15549, "model architecture training": 60562, "language models set": 50792, "work introduces novel": 104142, "introduces novel task": 47535, "technical report present": 95421, "domain adaptation task": 26349, "model performance compared": 61222, "performance compared baseline": 71081, "generated using gpt35": 37816, "slight decrease performance": 88631, "findings shed light": 34749, "shed light potential": 87220, "models larger language": 62874, "models gpt3 shown": 62601, "response large language": 83144, "code data experiments": 15184, "extraction language models": 33308, "paper present framework": 69832, "work shown models": 104275, "pretraining large amounts": 74558, "large amounts text": 51387, "amounts text data": 5358, "concept using large": 17611, "near stateoftheart performance": 65844, "text large language": 96320, "training data future": 98014, "models work investigate": 64549, "widely used programming": 103745, "results suggest users": 83878, "language models answer": 49646, "models answer questions": 61836, "training data using": 98061, "models llm like": 62957, "gained significant recognition": 36841, "based results present": 9703, "llms future research": 56017, "future research focus": 36770, "modules natural language": 64679, "understanding users query": 99902, "using recently released": 101730, "model knowledge graph": 61040, "models llms achieved": 62970, "success various tasks": 92250, "especially scenarios requiring": 29913, "external knowledge graphs": 33192, "knowledge graphs kg": 48602, "reasoning paper propose": 79967, "treats llm agent": 98813, "based retrieved knowledge": 9706, "new approach called": 66328, "additional training cost": 3263, "lower computational cost": 57556, "models llms enabled": 63120, "impressive zeroshot capabilities": 43655, "capabilities various natural": 12125, "systems automated assessment": 93394, "simple general effective": 88199, "demonstrate llms exhibit": 23121, "llms exhibit strong": 55907, "methods improve performance": 59674, "models open source": 63701, "open source community": 68113, "present comparative study": 73950, "evaluation methods discuss": 30669, "sota large language": 89309, "conduct comparative analysis": 17835, "demonstrates superior performance": 23415, "wide range subjects": 103690, "chatgpt exhibits better": 13783, "multiple large language": 65210, "chatbots large language": 13446, "revolutionized artificial intelligence": 84340, "intelligence ai services": 46823, "understanding generating humanlike": 99745, "particular seen widespread": 70420, "llm service providers": 55255, "offers indepth understanding": 67840, "chatbots chatgpt bard": 13436, "chatgpt bard bing": 13559, "jailbreak prompts leveraging": 48098, "urgent need robust": 100409, "role artificial intelligence": 84757, "intelligence ai specifically": 46824, "compared ground truth": 16563, "measures human evaluation": 58765, "employ machine learning": 28407, "forms generative ai": 35851, "generative ai gained": 38544, "usage generative ai": 100433, "gpt4 march 2023": 39969, "follow user instructions": 35658, "need continuous monitoring": 65925, "llama open foundation": 54786, "finetuned chat models": 34871, "finetuned large language": 34914, "billion 70 billion": 11017, "70 billion parameters": 1211, "models outperform opensource": 63738, "provide detailed description": 77447, "detailed description approach": 24159, "language processing machine": 50992, "processing machine learning": 75503, "learning led development": 53248, "generate toxic harmful": 37629, "toxic harmful responses": 97587, "remains open research": 81688, "open research question": 68106, "existing research focuses": 31811, "generate toxic responses": 37631, "improvements artificial intelligence": 43961, "recent breakthroughs large": 80226, "breakthroughs large language": 11403, "publicly available tools": 77992, "language learning chatbots": 49309, "asr error correction": 7799, "processing nlp technologies": 75551, "learners paper explores": 53002, "paper explores use": 69732, "error correction models": 29779, "standard error correction": 90170, "need indomain training": 65963, "indomain training data": 45129, "generative ai software": 38568, "emergence generative ai": 28167, "answers generated chatgpt": 6185, "2022 large language": 541, "models llms prominent": 63364, "prominent llms like": 76101, "like chatgpt bard": 54063, "text generation models": 96258, "models llms bert": 63001, "training data paper": 98041, "potential impact chatgpt": 73126, "use cases including": 100492, "effectiveness code generation": 27501, "detection using llms": 24378, "matrix multiplication convolution": 58618, "novel prompting strategy": 67235, "number false positives": 67341, "assess capabilities large": 7824, "using real data": 101723, "analysis offers valuable": 5593, "integration artificial intelligence": 46754, "models shown remarkable": 64190, "remarkable success various": 81833, "success various natural": 92247, "remains challenging existing": 81647, "benchmarks primarily focus": 10397, "does necessarily imply": 26313, "evaluation protocol called": 30738, "task label words": 94115, "model families datasets": 60866, "language models offer": 50611, "language models results": 50762, "results reveal gpt4": 83822, "underscoring transformative potential": 99588, "opening new avenues": 68277, "tasks opendomain question": 94902, "llms chatgpt demonstrated": 55583, "tasks remains unclear": 95038, "questions accuracy responses": 78765, "evaluation long context": 30659, "context language models": 18795, "models recently growing": 64020, "extending context length": 32964, "context length large": 18803, "length large language": 53595, "process long inputs": 75355, "bridge gap propose": 11425, "conducted comprehensive study": 17946, "evaluation models large": 30690, "large language modelbased": 51547, "provide immediate feedback": 77495, "learning paper proposes": 53320, "uses large language": 101236, "paper proposes method": 69908, "potential largescale language": 73162, "llms specifically openais": 56854, "binary classification task": 11051, "performance traditional machine": 71638, "traditional machine learning": 97675, "minimizing false positives": 60119, "underscore potential llms": 99550, "laying groundwork future": 52770, "capabilities llms diverse": 11988, "knowledge distillation large": 48510, "distillation large language": 25816, "extensive manual effort": 33114, "llms trained using": 56951, "using prompt engineering": 101696, "prompt engineering llm": 76304, "realization artificial general": 79584, "prevalence large language": 74631, "llms like gpt35": 56320, "like gpt35 gpt4": 54146, "remarkable capabilities language": 81746, "capabilities language comprehension": 11955, "language comprehension generation": 49165, "generation interaction reasoning": 38215, "introduces novel methodology": 47534, "human feedback comprehensive": 42219, "source code publicly": 89360, "language processing demonstrated": 50977, "models llms improve": 63231, "chatbots based llms": 13434, "llms chatgpt bard": 55581, "assessing large language": 7917, "language models ability": 49608, "models ability predict": 61735, "leveraging generative ai": 53845, "long context understanding": 57303, "llms recently achieved": 56655, "better generalization sample": 10719, "following natural language": 35691, "python programs generated": 78110, "model solve various": 61439, "higher success rate": 41527, "success rate prior": 92238, "programming languages paper": 75912, "study feasibility using": 91635, "llms useful tool": 57001, "lowresource programming languages": 57636, "using machine learning": 101599, "models understand code": 64454, "code propose novel": 15453, "propose novel benchmark": 77063, "novel benchmark task": 67122, "benchmark task called": 10262, "stateoftheart llms used": 90385, "including openais gpt4": 44439, "googles bard anthropics": 39148, "bard anthropics claude": 9346, "prediction task finally": 73724, "models significantly reducing": 64201, "reducing inference time": 80879, "different ways data": 25256, "ways data augmentation": 103411, "investigate efficacy chatgpt": 47643, "using chatgpt data": 101339, "chatgpt data augmentation": 13676, "yields suboptimal results": 104682, "generative ai tool": 38576, "generated text particular": 37801, "wider range tasks": 103769, "generated texts tend": 37805, "detecting factual errors": 24243, "experiments different tasks": 32173, "code generation mathematical": 15311, "scientific literature review": 85652, "efficacy proposed method": 27653, "proposed method release": 77228, "method release code": 59411, "potential artificial intelligence": 73021, "tool results indicate": 97314, "indicate chatgpt provide": 44982, "electronic design automation": 27954, "design automation eda": 23753, "difficulties selecting appropriate": 25316, "preliminary results demonstrate": 73874, "adversarial machine learning": 3984, "learning case study": 53059, "efficient language model": 27782, "advances language modeling": 3878, "lexical simplification ls": 53929, "methods based pretrained": 59549, "pretrained models different": 74405, "multilingual neural machine": 64992, "demonstrate approach surpasses": 23022, "domainspecific language model": 26633, "paper presents development": 69857, "presents development evaluation": 74130, "competencies large language": 16767, "domain knowledge effectively": 26404, "critical review large": 20350, "language models sensitivity": 50790, "models llms addressing": 62983, "models llms involves": 63260, "supervised finetuning sft": 92711, "finetuning sft reinforcement": 35241, "sft reinforcement learning": 87154, "commercial llms chatgpt": 16083, "research development efforts": 82549, "existing opensource llms": 31786, "instruction tuning llms": 46399, "multilingual instruction tuning": 64964, "generating realistic text": 37965, "paper presents case": 69849, "presents case study": 74114, "employ chatgpt generate": 28390, "chatgpt generate humanlike": 13856, "current stateoftheart llm": 20781, "chatgpt demonstrated remarkable": 13691, "significant attention researchers": 87692, "llms multiplechoice questions": 56416, "longterm action anticipation": 57409, "action anticipation lta": 2939, "anticipation lta task": 6248, "lta task aims": 57658, "task aims predict": 93935, "hypothesize large language": 42743, "propose twostage framework": 77148, "effectiveness proposed approach": 27571, "stateoftheart performance benchmarks": 90430, "models llms currently": 63052, "llms currently forefront": 55708, "currently forefront intertwining": 20814, "intelligence ai systems": 46825, "ai systems human": 4566, "systems human communication": 93479, "human communication everyday": 42135, "communication everyday life": 16265, "aligning human values": 5039, "stateoftheart llms gpt4": 90379, "conduct series experiments": 17914, "achieve impressive results": 2538, "impressive results various": 43645, "results various natural": 83912, "research work propose": 82827, "work propose incontext": 104219, "enables llms perform": 28600, "achieve performance comparable": 2560, "contrastive learning approach": 19103, "method surpasses performance": 59438, "achieving new stateoftheart": 2866, "tasks code available": 94440, "language models education": 49805, "exploration using large": 32606, "models llms support": 63469, "study utilized chatgpt": 91890, "feedback provided chatgpt": 34125, "subject matter experts": 91945, "language models tackle": 50854, "natural language sentences": 65727, "finetuned gpt3 model": 34900, "convert natural language": 19443, "models llms transformative": 63489, "llms transformative impact": 56963, "results natural language": 83739, "natural language text": 65743, "lacking paper introduce": 49076, "introduce new dataset": 47455, "publicly available information": 77978, "information retrieval dataset": 45602, "ask human annotators": 7717, "language model gained": 49401, "problemsolving information retrieval": 75232, "search engines language": 85870, "bias potential amplify": 10874, "testing large language": 96013, "language models field": 49879, "software security testing": 89031, "highlevel task planning": 41568, "promising initial results": 76170, "tasks wide range": 95254, "ethical issues raised": 30077, "state art models": 90269, "googles gemini pro": 39154, "current stateoftheart llms": 20783, "research highlights need": 82621, "applications artificial intelligence": 6410, "matching surpassing human": 58527, "surpassing human performance": 92964, "human feedback training": 42231, "feedback training pipeline": 34148, "gpt3 gpt35 gpt4": 39470, "great success large": 40498, "llms playing increasingly": 56527, "playing increasingly important": 72371, "increasingly important role": 44886, "models llms sparked": 63453, "llms sparked debate": 56839, "given sufficient training": 38965, "performance llms wide": 71377, "llms wide range": 57044, "range tasks involving": 79216, "tasks involving natural": 94779, "involving natural language": 47874, "novel high quality": 67179, "included training data": 44244, "results indicate llms": 83679, "acquired emergent ability": 2914, "recent advent large": 80216, "advent large language": 3959, "conversational agents chatgpt": 19350, "research paper delves": 82696, "success rate 98": 92234, "language models enhanced": 49830, "llms demonstrate remarkable": 55732, "improving training efficiency": 44162, "training efficiency paper": 98088, "leveraging chain thought": 53825, "chain thought prompting": 12808, "information results suggest": 45598, "achieve improved performance": 2540, "generative ai particularly": 38561, "ai particularly tools": 4501, "particularly tools like": 70506, "complex data analysis": 16923, "reasoning capabilities promise": 79809, "answers stack overflow": 6223, "study conducted evaluate": 91543, "indepth analysis chatgpt": 44943, "questions stack overflow": 78955, "analysis user study": 5714, "user study participants": 101053, "language models computer": 49739, "language models chatgpt35": 49709, "led paradigm shift": 53528, "performance different large": 71142, "different large language": 25091, "primary objective assess": 74810, "explore strengths limitations": 32745, "2022 march 2023": 545, "evaluating chatgpt gpt4": 30402, "visual programming generative": 103099, "generating personalized feedback": 37950, "question models perform": 78691, "visual programming domains": 103098, "maze challenge codedotorg": 58659, "results models perform": 83733, "directions future work": 25468, "future work developing": 36793, "new paradigm shift": 66478, "stateoftheart artificial intelligence": 90310, "intelligence language model": 46863, "language model multiple": 49490, "results revealed high": 83826, "prompt style content": 76425, "openais gpt35turbo gpt4": 68209, "multiplechoice questions mcq": 65292, "llms information extraction": 56222, "code generation recent": 15331, "llms software engineering": 56828, "code generation results": 15333, "results llms highly": 83716, "code generation research": 15332, "code generation problems": 15324, "problems code generation": 75118, "code generation benchmarks": 15285, "results indicate potential": 83684, "potential application generative": 73003, "using generative ai": 101464, "scaling instruction tuning": 85330, "instruction tuning significantly": 46412, "models 540b parameters": 61719, "step significantly reduce": 90657, "generating synthetic data": 37984, "existing evaluation methods": 31709, "recent advancements foundation": 80178, "advancements foundation models": 3818, "average bleu score": 9143, "data augmentation method": 21001, "language processing nlpbased": 51036, "adequately represent range": 3575, "language model iterative": 49436, "model iterative process": 61034, "model performance significantly": 61237, "new language model": 66437, "results suggest possible": 83877, "build high quality": 11592, "language models improve": 49972, "model specifically tuned": 61447, "chatgpt using gpt4": 14336, "alternatives human evaluation": 5283, "papers rapid growth": 70004, "field generative artificial": 34372, "subfields natural language": 91932, "presents significant challenge": 74171, "natural language learning": 65619, "llms specifically chatgpt": 56849, "empirical study using": 28367, "study using large": 91884, "language models analyze": 49644, "software supply chain": 89035, "supply chain security": 92783, "processing nlp techniques": 75550, "techniques large language": 95545, "average accuracy 68": 9135, "improve llm performance": 43728, "results reveal significant": 83824, "language models alignment": 49642, "models llms realworld": 63376, "llms address issue": 55447, "address issue paper": 3422, "issue paper presents": 47945, "results indicate general": 83674, "llms various applications": 57021, "generation selfsupervised pretraining": 38413, "speech music sound": 89955, "paper proposes framework": 69907, "using gpt2 model": 101482, "latent diffusion model": 52631, "advantages incontext learning": 3943, "latent diffusion models": 52632, "stateoftheart competitive performance": 90327, "code pretrained model": 15438, "ways using large": 103424, "ablation study conducted": 1813, "chatgpt opensource llms": 14051, "llms llama models": 56341, "developed openai ushered": 24519, "openai ushered new": 68183, "ushered new era": 101266, "new era ai": 66389, "field drug discovery": 34367, "chatgpt study introduces": 14277, "study introduces novel": 91687, "introduces novel approach": 47531, "approach drug discovery": 6818, "research sheds light": 82776, "synergy human expertise": 93158, "human expertise ai": 42212, "paper explores integration": 69724, "models llms exemplified": 63134, "llms exemplified chatgpt": 55899, "chatgpt openai bard": 14046, "openai bard google": 68144, "remarkable proficiency various": 81813, "novel framework leverages": 67170, "demonstrate efficacy proposed": 23070, "efficacy proposed framework": 27652, "discrete prompt optimization": 25629, "prompt optimization methods": 76385, "address research gap": 3487, "research gap propose": 82611, "learning rl framework": 53394, "robustness generalization ability": 84718, "source code summarization": 89363, "summarization paper presents": 92552, "writing natural language": 104481, "intelligence ai generative": 46805, "gpt generative pretrained": 39196, "aigenerated text significant": 4678, "humans performing tasks": 42629, "different types questions": 25244, "types questions answered": 99260, "analysis shows chatgpt": 5678, "different types text": 25246, "commit message generation": 16112, "crucial software development": 20532, "highquality commit messages": 41741, "commit messages tedious": 16114, "significantly improve quality": 87944, "lack historical data": 49019, "programming languages use": 75915, "methodology achieves average": 59484, "achieve f1 score": 2519, "setting new benchmark": 87009, "intelligence ai large": 46808, "bard bing ai": 9349, "various difficulty levels": 102402, "dialogue large language": 24875, "llms chatgpt increasingly": 55600, "wide array tasks": 103645, "answering general questions": 6104, "taskoriented dialogue tod": 94321, "data contamination large": 21114, "contamination large language": 18567, "downstream tasks training": 26747, "training data large": 98027, "models llms potential": 63350, "straightforward effective method": 90767, "data contamination llms": 21117, "incontext learning prompt": 44639, "human experts findings": 42215, "findings indicate gpt4": 34688, "retrieval multihop question": 84000, "multihop question answering": 64918, "answer complex questions": 5993, "previous approaches developed": 74661, "new stateoftheart performance": 66539, "analysis offer insights": 5591, "machine learning deep": 57700, "learning deep learning": 53101, "valuable insights llms": 102158, "language model used": 49565, "training data prompt": 98045, "code open source": 15424, "language model powered": 49510, "models llms showcased": 63417, "research paper introduces": 82699, "empowered large language": 28496, "demonstrated proficiency handling": 23307, "model exhibited superior": 60833, "exhibited superior performance": 31591, "performance compared gpt4": 71085, "language models optimization": 50623, "behavior large language": 9976, "supervised finetuning reinforcement": 92708, "prompt engineering guided": 76299, "specified natural language": 89908, "natural language specification": 65731, "language models outofdistribution": 50624, "outofdistribution ood detection": 68883, "models emergence large": 62294, "models llms catalyzed": 63006, "processing tasks existing": 75578, "like bert roberta": 54056, "llms focusing llama": 55996, "pretraining objective llms": 74581, "downstream tasks findings": 26727, "enhances understanding llms": 29299, "gpt35 palm2 llama2": 39654, "ground truth compare": 40557, "outofthebox large language": 68903, "understanding large language": 99791, "llms shown impressive": 56776, "opendomain nlp tasks": 68240, "nlp tasks llms": 66800, "input output format": 45929, "domains experimental results": 26517, "domains conduct empirical": 26507, "scaling data model": 85325, "automation large language": 8919, "models parameterefficient finetuning": 63769, "domainspecific pretrained models": 26643, "models despite success": 62209, "contrast large language": 19075, "tasks remains largely": 95036, "remains largely unexplored": 81670, "framework leverages capabilities": 36196, "finetuning peft methods": 35176, "diverse publicly available": 26076, "experiments provide insights": 32273, "components including input": 17090, "generate conversational data": 37416, "simulate human behaviors": 88305, "synthetic conversation dataset": 93254, "training set sizes": 98287, "manual evaluation shows": 58268, "latest llama model": 52675, "achieves sota performance": 2793, "production language models": 75735, "models trained specific": 64408, "trained specific downstream": 97911, "specific downstream tasks": 89690, "models hugging face": 62680, "leverages language model": 53795, "dynamic model selection": 26925, "gpt 35 turbo": 39180, "gpt models proficient": 39227, "present training data": 74076, "answer questions correctly": 6050, "models performance overall": 63797, "performance overall study": 71454, "improvements gpt models": 43972, "model size number": 61422, "size number parameters": 88498, "despite recent advancements": 24106, "llama llama2 models": 54772, "number tokens required": 67388, "like chatgpt gpt4": 54080, "chatgpt gpt4 attracted": 13892, "attracted great attention": 8417, "experiments method significantly": 32249, "generalization ability unseen": 37246, "language instructions large": 49286, "models llms enable": 63119, "natural language provide": 65718, "models require extensive": 64071, "datasets pretrained models": 22374, "generation using llms": 38499, "foundational language models": 35974, "language models foundational": 49897, "reinforcement learning approach": 81145, "ai paper presents": 4495, "using artificial intelligence": 101299, "chatgpt demonstrate chatgpt": 13682, "overall results demonstrate": 69316, "potential humanai collaboration": 73123, "ability chatgpt gpt4": 1609, "chatgpt gpt4 different": 13899, "ethical considerations furthermore": 30066, "language models augmenting": 49660, "models llms present": 63356, "capabilities machine translation": 11999, "instruction tuning standard": 46414, "results demonstrate significant": 83562, "demonstrate significant improvements": 23186, "deploying models practice": 23589, "provide natural language": 77526, "language models represented": 50752, "models represented chatgpt": 64068, "models like llama": 62928, "utilizes chatgpt generate": 101979, "chatgpt generate highquality": 13855, "code summarization generation": 15527, "model performance notably": 61233, "accessible broader range": 2106, "model weights data": 61586, "weights data public": 103549, "model generate diverse": 60928, "messages large language": 59126, "llms increasingly capable": 56205, "gpt4 produce diverse": 40028, "llm specific knowledge": 55269, "quality generated responses": 78281, "potential research opportunities": 73243, "models generate natural": 62551, "information natural language": 45552, "guide language model": 40738, "language model training": 49562, "language models finally": 49880, "graphs language models": 40439, "convergence experimental results": 19307, "language models improves": 49974, "comparative study chatgpt": 16438, "chatgpt stack overflow": 14268, "study compare performance": 91528, "stack overflow chatgpt": 90104, "time taken complete": 97033, "taken complete tasks": 93803, "tasks additionally conducted": 94350, "complete programming tasks": 16870, "use large transformerbased": 100600, "transformerbased models bert": 98579, "models bert gpt": 61919, "led significant advancements": 53533, "significant advancements natural": 87671, "models computationally expensive": 62076, "effectiveness knowledge distillation": 27538, "models range natural": 63957, "emergence machine learning": 28176, "problemsolving various domains": 75244, "various domains code": 102406, "appropriate prompt engineering": 7243, "languages java python": 51299, "gpt models generative": 39219, "models revolutionized field": 64113, "revolutionized field natural": 84344, "despite success large": 24129, "high computational requirements": 41391, "responsible development usage": 83344, "relatively small models": 81330, "challenges future research": 13027, "deep reinforcement learning": 22801, "field research recent": 34408, "research recent years": 82757, "dataset size diversity": 22079, "vision language models": 102982, "language models presents": 50671, "explored paper proposes": 32779, "employs t5 model": 28484, "language model prompting": 49521, "efficacy proposed approach": 27651, "recent progress large": 80318, "development artificial intelligence": 24611, "intelligence ai based": 46799, "second language acquisition": 85937, "dataset evaluate effectiveness": 21925, "addition investigate influence": 3195, "various prompting techniques": 102540, "chainofthought cot think": 12824, "cot think stepbystep": 19967, "evaluation popular llms": 30717, "models using methods": 64478, "significant performance improvements": 87814, "performance improvements compared": 71302, "models different sizes": 62229, "natural language description": 65568, "demonstrated strong ability": 23343, "paper present alternative": 69825, "open source model": 68124, "single 16gb gpu": 88345, "chatgpt paper aims": 14062, "paper aims investigate": 69605, "inconsistent responses address": 44554, "models llms enhance": 63121, "unified language model": 100028, "language model work": 49573, "tasks success rate": 95153, "models llms typified": 63495, "marked significant advancement": 58385, "significant advancement artificial": 87662, "advancement artificial intelligence": 3767, "artificial intelligence trained": 7667, "intelligence trained vast": 46901, "trained vast amounts": 97929, "vast amounts text": 102670, "capable understanding generating": 12273, "llms exploring potential": 55940, "stateoftheart llms gpt35": 90377, "inherent capabilities llms": 45722, "propose llmbased framework": 77017, "traditional methods like": 97680, "llms data preprocessing": 55713, "accuracy f1 score": 2264, "study underscores promise": 91875, "experiments chatgpt explore": 32123, "prompts chatgpt api": 76662, "instructionfollowing language models": 46455, "misinformation large language": 60176, "address limitation propose": 3447, "language model called": 49353, "experiments widely used": 32344, "demonstrate approach achieves": 23017, "approach achieves stateoftheart": 6715, "strategy improving efficiency": 90893, "performance language model": 71332, "textual entailment rte": 96671, "fewer llm calls": 34194, "number llm calls": 67359, "best knowledge work": 10606, "efficiency large language": 27693, "shed light future": 87217, "light future research": 54007, "future research large": 36772, "ai systems better": 4563, "hope work serve": 41972, "llms recently demonstrated": 56656, "recently demonstrated remarkable": 80471, "demonstrated remarkable capabilities": 23313, "model training evaluation": 61531, "practical realworld applications": 73526, "realworld applications finally": 79643, "comparative study large": 16440, "modeling natural language": 61657, "studies large language": 91410, "nlp tasks explicit": 66785, "parameters paper present": 70260, "findings provide guidance": 34719, "aigenerated content paper": 4668, "content paper examines": 18667, "models like gpt": 62917, "gpt language model": 39201, "language model family": 49395, "findings study serve": 34755, "content generated ai": 18632, "language models automated": 49661, "propose hypotheses explain": 76996, "systems automatically generate": 93397, "exhibits superior performance": 31638, "domain knowledge knowledge": 26406, "knowledge knowledge graphs": 48641, "knowledge graphs large": 48605, "graphs large language": 40441, "solve different tasks": 89173, "emergent ability generalizability": 28196, "ability generalizability llms": 1651, "lack domainspecific knowledge": 49003, "graph neural networks": 40397, "neural networks gnns": 66271, "knowledge external knowledge": 48564, "external knowledge bases": 33189, "llms strong abilities": 56866, "retrieval paper propose": 84004, "zeroshot manner additionally": 104821, "llms reasoning processes": 56648, "conduct experiments datasets": 17866, "open information extraction": 68072, "stateoftheart supervised methods": 90490, "assess capabilities llms": 7829, "technical report large": 95418, "progress opensource llms": 76005, "7b parameter models": 1301, "parameter models 8k": 70119, "models achieve comparable": 61754, "achieve comparable better": 2492, "better results compared": 10783, "sequence modeling tasks": 86660, "modeling tasks shows": 61683, "agents large language": 4199, "language models latest": 50036, "ai deep learning": 4359, "deep learning led": 22768, "language model llmbased": 49478, "conversational agent development": 19347, "generating training data": 37993, "llms achieved remarkable": 55429, "nlp multimodal tasks": 66755, "existing evaluations focus": 31712, "experimental results model": 32054, "achieves performance comparable": 2770, "models despite impressive": 62206, "retrieved external knowledge": 84083, "llama family models": 54747, "chatgpt prominent large": 14112, "effectiveness chatgpt code": 27497, "cyberphysical systems cps": 20884, "realworld applications users": 79647, "users ask questions": 101076, "including gpt3 flan": 44361, "gpt3 flan t5": 39461, "believe work findings": 10044, "work findings encourage": 104096, "findings encourage facilitate": 34664, "encourage facilitate research": 28787, "emerging large language": 28225, "models llms particular": 63338, "prompt engineering chatgpt": 76290, "language models reduce": 50741, "models human feedback": 62684, "natural language queries": 65719, "medical systematic reviews": 58921, "performs significantly worse": 71821, "based information available": 9573, "aims shed light": 4827, "construct comprehensive dataset": 18416, "analyzing experimental results": 5811, "smaller transformerbased language": 88799, "million parameter model": 60036, "model produce coherent": 61283, "use existing large": 100543, "enhance learning process": 29175, "common sense reasoning": 16171, "natural language create": 65565, "llms complex reasoning": 55655, "complex reasoning tasks": 16994, "think step step": 96792, "models llms attracted": 62990, "attracted attention industry": 8413, "publicly available llms": 77984, "llms results gpt4": 56723, "demonstrate significant potential": 23189, "downstream tasks recent": 26743, "tasks recent times": 95015, "recent times significant": 80384, "times significant advancements": 97082, "language models particularly": 50640, "particularly emergence large": 70455, "llms trained vast": 56952, "vast amounts data": 102665, "platforms like reddit": 72316, "research aims investigate": 82487, "language models specifically": 50824, "comparative analysis language": 16422, "roberta pretrained using": 84610, "downstream tasks potential": 26742, "potential gender bias": 73103, "using sentiment analysis": 101756, "models downstream tasks": 62263, "conclusion findings suggest": 17754, "text generated llms": 96229, "generalpurpose large language": 37352, "realm autonomous driving": 79608, "prominent llms including": 76100, "llms including gpt35": 56177, "including gpt35 gpt4": 44364, "gpt35 gpt4 palm": 39621, "gpt4 palm llama": 40006, "prior work shown": 74871, "multiple language models": 65207, "multiple evaluation metrics": 65186, "models llms variants": 63508, "taskspecific training data": 95305, "makes key contributions": 58062, "responses generated llms": 83226, "aspects generated text": 7774, "iteratively improve performance": 48079, "results demonstrate efficacy": 83545, "demonstrate efficacy approach": 23069, "used text generation": 100917, "approach provide valuable": 6991, "ability produce accurate": 1750, "using advanced language": 101288, "language models software": 50816, "fewshot prompt engineering": 34286, "ability stateoftheart large": 1776, "tasks findings reveal": 94640, "short human performance": 87287, "chatgpt shows promising": 14233, "shows promising potential": 87609, "guidance future research": 40719, "data annotation evaluation": 20977, "comparing performance human": 16688, "manually curated goldstandard": 58302, "models llms various": 63509, "llms various tasks": 57027, "maintaining strong performance": 57903, "require world knowledge": 82302, "social media content": 88879, "achieve stateoftheart performance": 2590, "developers data scientists": 24551, "converts natural language": 19453, "language prompts executable": 51068, "exploring large language": 32854, "llms gpt series": 56078, "gpt series flant5": 39238, "significantly advanced field": 87875, "advanced field natural": 3693, "novel geometric perspective": 67176, "parameter gpt2 model": 70106, "high low resource": 41427, "resource languages large": 82967, "languages large language": 51305, "range language tasks": 79166, "language tasks including": 51127, "tasks including machine": 94731, "published experimental evidence": 78007, "reveal gpt models": 84149, "highresource languages hrls": 41807, "lowresource languages lrls": 57623, "texttotext pretrained language": 96646, "language models t5": 50853, "term generative ai": 95775, "content text images": 18698, "training data widespread": 98062, "discuss opportunities challenges": 25673, "widely applied wide": 103716, "applied wide range": 6643, "wide range software": 103687, "range software engineering": 79207, "advantages limitations chatgpt": 3945, "summarization text generation": 92572, "received little attention": 80145, "largescale software systems": 52571, "capabilities chatgpt perform": 11853, "coding assistants like": 15693, "assistants like github": 8054, "like github copilot": 54128, "technology generative ai": 95651, "generative ai able": 38529, "exploring potential chatgpt": 32862, "chatgpt automated code": 13553, "empirical study code": 28355, "model demonstrated impressive": 60745, "paper conduct empirical": 69643, "dataset high quality": 21964, "chatgpt results chatgpt": 14184, "results chatgpt achieves": 83492, "provides insights potential": 77681, "insights potential chatgpt": 46122, "process highlights potential": 75327, "potential research directions": 73242, "language models comprehensive": 49736, "language models essential": 49836, "context traditional chinese": 18865, "evaluate capabilities language": 30146, "models despite existence": 62204, "address gap propose": 3403, "language models traditional": 50870, "traditional chinese benchmarks": 97658, "offer comprehensive evaluation": 67739, "comprehensive evaluation framework": 17242, "assessment language models": 7954, "different tasks paper": 25222, "evaluate performance gpt35": 30248, "evaluation results highlight": 30755, "performance comparable gpt35": 71076, "connecting large language": 18096, "language models evolutionary": 49839, "llms excel various": 55894, "excel various tasks": 31340, "carefully crafted prompts": 12410, "substantial human effort": 92084, "prompt optimization called": 76384, "evolutionary algorithms eas": 31038, "natural language expressions": 65578, "powerful language processing": 73445, "processing capabilities llms": 75465, "opensource llms including": 68367, "covering language understanding": 20078, "tasks bigbench hard": 94409, "bigbench hard bbh": 10995, "significantly outperforms humanengineered": 87998, "outperforms humanengineered prompts": 69069, "prompts existing methods": 76712, "automatic prompt generation": 8816, "generated using large": 37817, "refine generated explanations": 80974, "using incontext learning": 101518, "highquality dataset leads": 41748, "significant improvements shown": 87778, "evaluation human evaluation": 30634, "chatgpt finetuned data": 13826, "finally discuss potential": 34522, "discuss potential applications": 25677, "aigenerated text detectors": 4677, "code interpreter able": 15367, "language models dynamic": 49803, "llms revolutionized natural": 56733, "generative nlp tasks": 38680, "making large language": 58115, "models various scenarios": 64495, "proposed method demonstrated": 77222, "stanford alpaca dataset": 90242, "dataset instruction following": 21979, "results superior performance": 83882, "memory usage inference": 59072, "rlhf large language": 84570, "language model aligned": 49329, "aligned human intents": 5018, "using lowrank adaptation": 101596, "lowrank adaptation lora": 57601, "release code pretrained": 81358, "code pretrained checkpoints": 15437, "chatgpt recently developed": 14157, "language models deployed": 49774, "text data pretraining": 96162, "foundation language model": 35918, "language models develop": 49785, "chatgpt provides correct": 14130, "correct partially correct": 19675, "partially correct answers": 70352, "using llms facilitate": 101583, "eliminate manual effort": 28002, "gpt4 generate correct": 39901, "multilingual speech recognition": 65010, "speech recognition language": 89965, "recently gained popularity": 80496, "additionally explore feasibility": 3304, "using parameterefficient finetuning": 101674, "parameterefficient finetuning methods": 70143, "demonstrate significant performance": 23187, "opendomain dialogue systems": 68235, "dialogue systems research": 24909, "content dialogue context": 18613, "address issue introduce": 3420, "chatgpt employed annotate": 13750, "annotate unlabeled data": 5856, "language model apply": 49335, "using openais gpt": 101662, "despite recent advances": 24107, "language models commonsense": 49731, "models commonsense reasoning": 62048, "reasoning remains challenging": 80010, "remains challenging task": 81649, "method improving commonsense": 59331, "knowledge graph synthesized": 48599, "reinforcement learning empirical": 81146, "learning empirical results": 53126, "empirical results tasks": 28348, "publicly release code": 77994, "release code dataset": 81355, "study investigated potential": 91701, "prediction task using": 73725, "zeroshot prompting finetuning": 104851, "language model openai": 49494, "capabilities perform systematic": 12040, "perform systematic empirical": 70928, "systematic empirical assessment": 93324, "reducing need extensive": 80888, "opensource models similar": 68387, "benchmarks like mmlu": 10372, "research community better": 82518, "community better understanding": 16303, "chatgpt gpt4 bard": 13893, "llms viable approach": 57032, "advances generative ai": 3875, "ai conversational models": 4354, "introductory programming education": 47571, "explanations large language": 32503, "models exhibit superior": 62388, "enhance capabilities large": 29142, "study performance gpt4": 91770, "high degree agreement": 41404, "model demonstrate effectiveness": 60743, "demonstrate effectiveness attack": 23057, "exact match em": 31068, "attack success rate": 8183, "selfsupervised language models": 86268, "models exhibit impressive": 62382, "large foundation models": 51429, "student instructor perspectives": 91254, "models llms prompted": 63366, "addresses gap conducting": 3514, "offers insights current": 67842, "analysis ai era": 5427, "ai especially largescale": 4389, "data analysis research": 20967, "conducted semistructured interviews": 17982, "chatgpt qualitative analysis": 14138, "training paper aims": 98227, "performance trained models": 71641, "best configuration outperforms": 10593, "13b model trained": 296, "training tokens significant": 98330, "models trained cerebras": 64378, "language models complex": 49734, "models llm shown": 62962, "data privacy concerns": 21503, "evaluation text generation": 30811, "text generation quality": 96266, "using chatgpt finally": 101344, "pretrained transformer language": 74475, "models lms represent": 63539, "specifically russian language": 89875, "little attention paper": 54676, "models readily available": 63980, "model architecture design": 60561, "llms chatgpt assist": 55580, "language instructions code": 49285, "document information extraction": 26210, "localization large language": 57216, "models llm revolutionized": 62961, "llms successfully applied": 56883, "visually rich document": 103154, "learning text classification": 53450, "learning icl using": 53203, "icl using large": 42767, "language models tasks": 50857, "xu et al": 104573, "engineering instruction tuning": 28984, "llms paper introduces": 56486, "proficiency comprehending generating": 75782, "comprehending generating natural": 17142, "store retrieve knowledge": 90739, "study propose novel": 91793, "llms extensive experimental": 55945, "extensive experimental results": 33040, "encourage research area": 28795, "models llms presents": 63357, "llms presents significant": 56558, "llms publicly available": 56615, "carefully designed prompt": 12416, "interact large language": 46980, "applications paper introduce": 6538, "largescale dataset containing": 52505, "serve valuable resource": 86782, "advancing llm capabilities": 3913, "calculations large language": 11745, "language models highquality": 49964, "model finetuned llama": 60895, "finetuned llama model": 34919, "code models datasets": 15411, "models datasets available": 62155, "models llms model": 63305, "impact academic integrity": 43186, "high school students": 41459, "paper aims explore": 69604, "generative ai social": 38567, "models inherent biases": 62781, "inherent biases potential": 45720, "ai systems including": 4569, "including large language": 44397, "peer review systems": 70695, "models llms facilitated": 63159, "llms facilitated development": 55964, "knowledge base kb": 48438, "domain experts accuracy": 26382, "challenges large language": 13054, "zero shot performance": 104708, "nlp tasks demonstrating": 66776, "high quality synthetic": 41444, "datasets downstream tasks": 22225, "used augment existing": 100747, "evaluate performance gpt4": 30250, "replacement human annotators": 81932, "annotators low resource": 5967, "reading comprehension tasks": 79525, "llms synthetic data": 56902, "autonomous ai agents": 8930, "paper explore capabilities": 69711, "significant gap understanding": 87754, "code generation gpt4": 15302, "reading comprehension ability": 79520, "leveraging advanced capabilities": 53819, "language models exemplified": 49845, "generation automatic evaluation": 38046, "enhance reading comprehension": 29206, "chatgpt prompt patterns": 14118, "generation automated evaluation": 38044, "improve quality generated": 43784, "utilizes large language": 101991, "language models make": 50557, "subject human review": 91942, "integration large language": 46772, "paper introduce comprehensive": 69761, "wireless communication systems": 103849, "language models google": 49931, "models google bard": 62583, "achieved significantly higher": 2669, "addressing challenges associated": 3529, "findings contribute growing": 34650, "contribute growing body": 19125, "development ai systems": 24607, "based deep neural": 9496, "utilizing reinforcement learning": 102043, "feedback rlhf current": 34136, "neural networks symbolic": 66276, "pitfalls large language": 72189, "nlp large language": 66740, "llms emerged important": 55838, "emerged important breakthroughs": 28138, "impressive skills language": 43649, "skills language generation": 88602, "end paper introduces": 28829, "evaluation llms benchmark": 30655, "tasks text summarization": 95198, "popular llms gpt35": 72645, "performance opensource llms": 71447, "better understanding llms": 10806, "present use cases": 74080, "models gpt4 using": 62622, "reasoning ability llms": 79769, "random baseline chatgpt": 79100, "gpt4 significantly better": 40087, "significantly better performance": 87888, "llms achieve higher": 55419, "evaluate llms gpt35": 30220, "generative ai chatbots": 38536, "rise generative ai": 84474, "software development process": 88993, "findings suggest chatgpt": 34757, "based findings recommend": 9538, "answering qa models": 6138, "figurative language understanding": 34453, "work investigate llms": 104147, "llmbased code generation": 55345, "models llms automatic": 62994, "llms automatic code": 55504, "models play pivotal": 63813, "play pivotal role": 72348, "generated code contain": 37676, "age gender race": 4104, "code generated models": 15272, "bias testing framework": 10895, "framework specifically designed": 36280, "posing risks unintended": 72796, "models evaluate bias": 62355, "fewshot chainofthought cot": 34217, "oneshot fewshot learning": 67946, "users build trust": 101079, "knowledge logical reasoning": 48667, "logical reasoning remains": 57272, "does chatgpt perform": 26283, "100 randomly selected": 131, "generative ai development": 38539, "generative ai technologies": 38574, "computing large language": 17565, "artificial intelligence technologies": 7663, "natural language perform": 65628, "llms generate factually": 56052, "use framework investigate": 100556, "scales 7b 13b": 85304, "7b 13b 70b": 1280, "llms shown promise": 56783, "shown promise enhancing": 87519, "questions spanning various": 78951, "diverse question types": 26078, "question types including": 78716, "advanced prompting strategies": 3735, "prompting strategies like": 76617, "chainofthought cot treeofthought": 12826, "cot treeofthought tot": 19969, "especially smaller models": 29916, "smaller models like": 88775, "models like llama2": 62929, "rapid advancement large": 79294, "advancement large language": 3784, "assess capabilities limitations": 7827, "capabilities limitations existing": 11977, "better results work": 10784, "models offers valuable": 63698, "data improves llms": 21315, "improves llms reasoning": 44041, "llms reasoning capability": 56647, "analysis sheds light": 5674, "revolutionized field artificial": 84342, "enabling natural language": 28651, "language model series": 49539, "models finetuned human": 62478, "base language models": 9407, "chat models particularly": 13388, "significantly improved performance": 87947, "academic integrity students": 1983, "programming task generating": 75934, "asked complete programming": 7731, "complex data structures": 16924, "pretrained transformers gpt": 74485, "chatgpt artificial intelligence": 13536, "intelligence ai natural": 46813, "ai natural language": 4482, "chatgpt similar ai": 14238, "similar ai tools": 88051, "main goal facilitate": 57827, "results chatgpt able": 83490, "ai tools large": 4595, "tools large language": 97432, "llms gpt4 gpt35": 56103, "use cases education": 100491, "labeled data scarce": 48905, "llms chainofthought cot": 55569, "chainofthought cot reasoning": 12823, "expertise large language": 32390, "effective improving zeroshot": 27309, "improving zeroshot fewshot": 44172, "zeroshot fewshot performance": 104775, "offers effective efficient": 67830, "chain thoughts prompting": 12811, "proficiency complex reasoning": 75779, "reasoning tasks like": 80057, "solving math word": 89236, "primary aim research": 74796, "approach training large": 7064, "tasks results suggest": 95070, "results suggest models": 83876, "mean squared error": 58696, "representations large language": 82104, "exhibit remarkable performance": 31546, "remain elusive work": 81619, "representational similarity analysis": 82085, "understanding latent representations": 99796, "research practical applications": 82716, "human values using": 42413, "language models advent": 49631, "models advent large": 61803, "models llms paved": 63343, "llms paved way": 56501, "finetuning opensource models": 35164, "achieving comparable results": 2839, "approach large language": 6922, "diverse table tasks": 26113, "build unified model": 11615, "different model families": 25116, "context downstream tasks": 18756, "downstream tasks different": 26720, "tasks different model": 94547, "text question answering": 96378, "answering qa trained": 6141, "sequence sequence models": 86664, "finetuned variants models": 34991, "topic limited scope": 97511, "facilitate comprehensive evaluation": 33485, "reasoning capabilities large": 79803, "llms conduct extensive": 55664, "using popular llms": 101682, "llms gpt4 llama2": 56105, "fewshot learning scenarios": 34268, "findings indicate models": 34691, "reasoning abilities llms": 79758, "llms diffusion models": 55806, "training data points": 98043, "makes challenging use": 58051, "setting large language": 87002, "models work propose": 64551, "orders magnitude faster": 68723, "language models temporal": 50858, "providing nuanced understanding": 77781, "data recent advancements": 21543, "llms demonstrated potential": 55749, "relation extraction tasks": 81246, "notable limitation existing": 67009, "reasoning paths using": 79970, "opensource llm series": 68358, "method achieves stateoftheart": 59189, "models llms gained": 63172, "significant attention academia": 87682, "attention academia industry": 8279, "capabilities opensource llms": 12032, "token classification tasks": 97126, "explore potential leveraging": 32725, "substantially outperforms llms": 92136, "work shed light": 104261, "experiments gpt35 gpt4": 32208, "gpt35 gpt4 examining": 39611, "zeroshot oneshot fewshot": 104832, "evaluators large language": 30903, "conducted extensive experiments": 17966, "extensive experiments diverse": 33068, "achieving average relative": 2831, "gpt models achieve": 39213, "stateoftheart gpt4 model": 90351, "use llms automated": 100615, "test generation tools": 95896, "generation tools evosuite": 38476, "code generate code": 15266, "similar written humans": 88123, "models trained generate": 64390, "27 billion parameters": 684, "models trained data": 64380, "overall work highlights": 69342, "automated test generation": 8745, "largescale transformerbased language": 52580, "paper addresses challenge": 69585, "architecture language modeling": 7352, "handling long contexts": 40951, "context lengths 32k": 18807, "research software engineering": 82785, "manual analysis generated": 58255, "autonomous driving large": 8932, "driving large language": 26859, "present new dataset": 74015, "question answer pairs": 78569, "models llms transformed": 63491, "novel framework automatically": 67164, "based multiagent collaboration": 9624, "evaluate capabilities llms": 30148, "reasoning abilities tasks": 79760, "offers new opportunities": 67849, "new opportunities software": 66471, "opportunities software engineering": 68510, "paper introduces evaluates": 69772, "using gpt4 model": 101495, "false positives potentially": 33816, "understand llms capabilities": 99624, "question answering code": 78579, "empirical study systematically": 28366, "relevance readability informativeness": 81438, "conducted user study": 17989, "knowledge chatgpt capabilities": 48469, "capabilities shed light": 12075, "recent advances ai": 80194, "programaided language models": 75857, "models generate better": 62544, "querying language model": 78557, "decoderonly language models": 22646, "language modeling question": 49592, "modeling question answering": 61671, "strategies large language": 90829, "llms recently emerged": 56659, "llms provide reliable": 56610, "recent academic literature": 80167, "information sources responses": 45636, "11 f1 score": 189, "popular opensource projects": 72666, "shown neural networks": 87505, "consistently outperforms existing": 18307, "existing methods different": 31758, "improving zeroshot chainofthought": 44171, "language model inference": 49431, "models llms exploded": 63151, "llms exploded popularity": 55934, "various domains law": 102410, "experiments conducted study": 32140, "recent stateoftheart llm": 80352, "developed meta ai": 24511, "knowledge work study": 48813, "require external knowledge": 82251, "produce correct code": 75614, "points success rate": 72510, "remains open problem": 81685, "language models contain": 49748, "downstream tasks finetuning": 26728, "tasks finetuning language": 94645, "language models employ": 49821, "strategy substantially improve": 90921, "data training evaluation": 21703, "zeroshot chain thought": 104742, "freely available research": 36356, "llms chatgpt achieved": 55579, "despite impressive performance": 24074, "impressive performance models": 43620, "llms chatgpt recently": 55610, "issues applying llms": 47970, "tackle issues propose": 93732, "problem machine learning": 75045, "given task description": 38970, "agents perform actions": 4216, "ml models tasks": 60371, "adaptation large language": 3080, "gpt4 recently demonstrated": 40044, "general domain tasks": 37121, "effective domain adaptation": 27291, "knowledge base finally": 48437, "answer generate final": 6008, "generate final answer": 37458, "method improves accuracy": 59328, "mining large language": 60129, "models recent advancements": 63997, "language processing particularly": 51039, "processing particularly development": 75557, "models llms zeroshot": 63517, "zeroshot incontext learning": 104799, "samples fewshot learning": 85116, "fewshot learning findings": 34257, "sufficient training data": 92342, "deep learningbased natural": 22783, "learningbased natural language": 53490, "language processing techniques": 51054, "defending large language": 22846, "language models jailbreaking": 50006, "models jailbreaking attacks": 62822, "jailbreaking attacks despite": 48103, "despite efforts align": 24041, "efforts align large": 27894, "align large language": 4997, "models llms human": 63225, "llms human values": 56148, "llms gpt llama": 56076, "given input prompt": 38901, "publicly available following": 77976, "interaction large language": 47016, "language models includes": 49976, "role generative ai": 84778, "ai models providing": 4477, "buggy programs recent": 11566, "stateoftheart models various": 90410, "limits generative ai": 54500, "model generate hints": 60929, "failing test cases": 33699, "model student model": 61460, "achieving artificial general": 2824, "commonly used benchmarks": 16199, "realworld scenarios address": 79692, "scenarios address gap": 85402, "grade school math": 40283, "limitations current llms": 54314, "information training data": 45657, "language using large": 51196, "inherent ambiguity natural": 45716, "ambiguity natural language": 5311, "using openais gpt4": 101666, "evaluation generated code": 30618, "rapid advancements artificial": 79298, "llm like openais": 55158, "llama shown great": 54796, "best knowledge comprehensive": 10602, "component language model": 17077, "instruction following model": 46341, "models llms advanced": 62984, "llms primarily focused": 56569, "primarily focused english": 74785, "human value alignment": 42408, "base model llama2": 9417, "pretrained models weights": 74424, "effectiveness wide applicability": 27596, "benchmarks large language": 10365, "language models pass": 50641, "language understanding benchmark": 51154, "primary school level": 74813, "smaller models bloomz": 88769, "use tests validate": 100708, "capabilities stateoftheart llms": 12089, "stateoftheart llms including": 90380, "llms including opensource": 56190, "finetuned opensource llms": 34948, "using various prompt": 101842, "various prompt engineering": 102535, "retrievalaugmented generation rag": 84041, "aiming offer comprehensive": 4771, "language models augmented": 49659, "models llms need": 63315, "learning techniques work": 53447, "work paves way": 104201, "tools based large": 97366, "dialogue systems recent": 24908, "paper systematically study": 69974, "different models including": 25122, "realm natural language": 79615, "language processing text": 51055, "processing text data": 75585, "text data augmentation": 96160, "data augmentation methods": 21003, "poses unique challenges": 72788, "efficacy generated data": 27636, "models gained significant": 62526, "diverse linguistic contexts": 26045, "linguistic contexts paper": 54569, "present comprehensive evaluation": 73958, "language models mbert": 50562, "performance diverse set": 71155, "classification text generation": 14809, "data plays crucial": 21477, "model performance identify": 61231, "study contributes deeper": 91550, "contributes deeper understanding": 19140, "language models enhance": 49829, "language models learning": 50038, "models llms learn": 63267, "explore potential models": 32727, "despite orders magnitude": 24092, "orders magnitude smaller": 68725, "responses produced chatgpt": 83281, "models chinese large": 61996, "chinese large language": 14556, "gpt4 demonstrated remarkable": 39827, "demonstrated remarkable abilities": 23312, "abilities natural language": 1541, "produce harmful content": 75632, "openended questions covering": 68265, "compared existing methods": 16542, "models outperform opensourced": 63739, "llms like gpt35turbo": 56322, "like gpt35turbo smaller": 54150, "using chatgpt discussion": 101341, "ability develop software": 1628, "systematic experimental study": 93335, "study effects different": 91592, "effects different prompting": 27602, "different prompting methods": 25167, "using llms like": 101587, "lacking far paper": 49074, "remarkable capabilities natural": 81747, "llms achieve similar": 55420, "achieve similar better": 2582, "similar better performance": 88056, "assess performance llms": 7866, "performance llms present": 71374, "llms present comprehensive": 56553, "popular llms llama": 72649, "improve llms performance": 43730, "demonstrate capabilities llms": 23035, "earlier generalpurpose models": 26960, "performance compared human": 71086, "results suggest gpt4": 83871, "text language models": 96317, "model performs similarly": 61246, "models llms finetuned": 63162, "gap present extensive": 36960, "finetuning sft reward": 35244, "wide range realworld": 103683, "realworld scenarios models": 79696, "variety use cases": 102338, "launch november 2022": 52696, "chatgpt specific training": 14260, "results underscore importance": 83900, "continual learning large": 18993, "llms demonstrate exceptional": 55728, "continual learning benchmarks": 18991, "instruction tuning paper": 46403, "tuning paper introduce": 99072, "novel benchmark designed": 67119, "benchmark designed evaluate": 10141, "capabilities code generation": 11858, "mathematical reasoning datasets": 58589, "standardized unified format": 90226, "unified format allowing": 100014, "format allowing effortless": 35818, "allowing effortless automatic": 5173, "effortless automatic evaluation": 27886, "automatic evaluation llms": 8774, "performance specific tasks": 71585, "empirical findings suggest": 28330, "language models resolve": 50758, "software engineering problems": 89003, "perform complex reasoning": 70842, "stateoftheart proprietary models": 90459, "ai technologies including": 4578, "models llms multimodal": 63307, "multimodal generative models": 65056, "coding capabilities models": 15699, "existing opensource models": 31787, "code data models": 15190, "comprehensive experiments demonstrate": 17259, "various agent tasks": 102344, "partially observable environments": 70355, "providing key insights": 77768, "finetune large language": 34829, "models llms simulate": 63450, "use gpt4 generate": 100569, "acceleration large language": 2027, "sparse finetuning large": 89531, "llms finetuning pretrained": 55986, "finetuning pretrained llms": 35197, "pretrained llms specialized": 74374, "analysis paper introduce": 5598, "capabilities generative pretrained": 11923, "position paper argue": 72805, "models based large": 61902, "models alpaca vicuna": 61830, "models chatgpt gpt4": 61991, "chatgpt gpt4 series": 13909, "designed automatically generate": 23882, "highquality instructiontuning data": 41773, "engage multiturn conversations": 28909, "multiturn conversations chatgpt": 65385, "performance 13b opensource": 70953, "language early stages": 49197, "explore impact llm": 32688, "methods instruction data": 59689, "open source models": 68125, "models varying sizes": 64500, "wide range settings": 103686, "reduce inference latency": 80785, "time series forecasting": 97022, "time series models": 97023, "time series data": 97021, "model size generally": 61416, "data collection model": 21074, "incontext learning capability": 44581, "learning capability large": 53052, "expertise prompt engineering": 32393, "user study involving": 101052, "answering qa tasks": 6140, "particularly development large": 70448, "model llm chat": 61085, "used llm generate": 100843, "language paper propose": 50951, "chat gpt35 gpt4": 13374, "question answering task": 78630, "llms exhibited exceptional": 55909, "exhibited exceptional performance": 31572, "recent studies focused": 80360, "llms knowledge understanding": 56266, "llms shedding light": 56767, "question answering information": 78599, "information retrieval semantic": 45607, "masked language model": 58428, "language model enhance": 49385, "achieves f1 score": 2742, "hidden test set": 41355, "validation set data": 102129, "set data set": 86860, "lightweight language model": 54041, "achieves comparable performances": 2728, "link prediction task": 54615, "transformers learn incontext": 98626, "gradient descent gd": 40294, "conduct comprehensive empirical": 17840, "models pretrained natural": 63877, "models recent work": 64013, "wang et al": 103306, "overall results provide": 69318, "relatively small number": 81331, "generative ai approach": 38533, "produced impressive results": 75679, "poses significant hurdle": 72785, "limitation propose novel": 54289, "propose novel paradigm": 77075, "natural language space": 65729, "harnessing large language": 41089, "approach employs key": 6829, "empirical evaluations demonstrate": 28321, "boosts model performance": 11304, "model performance complex": 61223, "performance complex reasoning": 71099, "dialogue evaluation benchmark": 24863, "benchmark recent advancements": 10239, "highquality human annotations": 41762, "evaluation benchmark address": 30520, "conduct comprehensive analyses": 17838, "applied question answering": 6629, "generation tasks language": 38453, "tasks language models": 94798, "language model decoding": 49370, "large number tasks": 52289, "substantially improves performance": 92128, "improves performance existing": 44052, "pretrained transformer framework": 74465, "employs gpt4 generate": 28474, "dataset social media": 22082, "demonstrates potential llms": 23392, "complement human expertise": 16853, "physical world paper": 72070, "data reasoning tasks": 21541, "techniques paper present": 95569, "effective prompt engineering": 27348, "prompt engineering fewshot": 76297, "engineering fewshot learning": 28971, "potential using llms": 73308, "detecting certain types": 24239, "llms powerful general": 56544, "increasingly integrated various": 44891, "generating harmful content": 37918, "elicit harmful content": 27986, "realworld scenarios paper": 79697, "scenarios paper introduce": 85466, "achieves attack success": 2707, "agents simulate human": 4234, "ability understand human": 1789, "assess effectiveness approach": 7843, "automated software engineering": 8737, "stateoftheart llm gpt4": 90372, "prompting incontext learning": 76549, "incontext learning taskspecific": 44650, "learning taskspecific prompting": 53443, "significantly outperform finetuning": 87979, "finetuned model outperforms": 34938, "model outperforms gpt4": 61185, "human provides feedback": 42340, "achieve best results": 2484, "automated prompt engineering": 8731, "openai large language": 68167, "question answering generation": 78595, "answering generation coherent": 6106, "generation coherent text": 38084, "coherent text code": 15791, "llm convert natural": 55024, "language model planning": 49507, "remains major challenge": 81679, "work explores potential": 104088, "explores potential large": 32817, "evaluate stateoftheart llms": 30289, "language models excelled": 49844, "remarkable reasoning capabilities": 81821, "advanced prompting techniques": 3736, "techniques fall short": 95517, "fall short tasks": 33788, "short tasks require": 87303, "tasks require exploration": 95045, "require exploration strategic": 82246, "challenging reasoning tasks": 13218, "require multiple rounds": 82278, "natural question arises": 65774, "llm automatically generate": 54976, "chain thought approach": 12802, "respectively large language": 83077, "language models incontext": 49984, "large space possible": 52347, "explore application large": 32636, "application large language": 6365, "models llms incontext": 63238, "introduce novel framework": 47469, "synthesis visual programming": 93225, "domain experimental results": 26376, "significantly better baseline": 87887, "llms showcased remarkable": 56769, "code generation automated": 15279, "generation automated code": 38042, "generation challenging requires": 38070, "natural language requirements": 65725, "rich semantic features": 84423, "bridge gap paper": 11422, "information source code": 45633, "source code data": 89349, "enhancing code generation": 29314, "code generation accuracy": 15276, "benchmarks humaneval humanevalet": 10354, "humaneval humanevalet mbpp": 42477, "like chatgpt demonstrate": 54065, "chatgpt demonstrate remarkable": 13683, "learn new concepts": 52955, "objects work propose": 67547, "benchmarks code available": 10316, "role social media": 84805, "recent years offering": 80433, "posts news articles": 72966, "data collected multiple": 21067, "zeroshot commonsense question": 104753, "zeroshot commonsense questionanswering": 104755, "qa pairs constructed": 78144, "knowledge bases cskbs": 48444, "experiments demonstrate effectiveness": 32153, "approach outperforms baselines": 6965, "framework significantly improves": 36269, "model checkpoints available": 60648, "tasks paper proposes": 94931, "incontext learning method": 44624, "promising performance automatic": 76180, "models based incontext": 61900, "based incontext learning": 9571, "contextual information available": 18943, "time incontext learning": 96976, "harnesses large language": 41080, "language models previous": 50680, "models previous studies": 63885, "framework automatically generates": 36046, "llms answering questions": 55476, "systematically evaluate stateoftheart": 93366, "openai gpt3 model": 68160, "tasks specific domains": 95133, "including text detection": 44495, "table structure recognition": 93685, "data model training": 21423, "generative ai applications": 38531, "models using small": 64480, "used language models": 100836, "models lms typically": 63545, "large pretrained model": 52320, "llama llama2 falcon": 54771, "llama2 falcon families": 54828, "capabilities artificial intelligence": 11841, "artificial intelligence research": 7659, "training data makes": 98034, "instruction tuning using": 46416, "llms like llama": 56330, "responses paper propose": 83271, "llm using novel": 55310, "consistently improves performance": 18297, "small mediumsized enterprises": 88702, "taskspecific training datasets": 95306, "results indicate significant": 83686, "slightly lower performance": 88640, "models demonstrated remarkable": 62189, "widely used benchmark": 103732, "benchmark evaluating robustness": 10160, "human gpt4 evaluations": 42239, "potential advanced language": 72987, "teaching language models": 95365, "math reasoning tasks": 58556, "contrast prior work": 19085, "train small model": 97776, "small models improve": 88706, "models improve performance": 62713, "use llm agents": 100612, "address limitations present": 3453, "limitations present new": 54360, "conduct experiments diverse": 17867, "experiments diverse set": 32177, "tasks method consistently": 94862, "public large language": 77929, "models llms chatgptgpt4": 63042, "multimodal large language": 65067, "language models mllm": 50578, "empowering llms ability": 28509, "enhancing efficiency accuracy": 29326, "study highlights importance": 91660, "like chatgpt education": 54070, "feature large language": 33971, "report provides preliminary": 81990, "provides preliminary evaluation": 77694, "prompt llms generate": 76372, "collaboration large language": 15826, "large amounts data": 51385, "minimal training data": 60104, "language models focusing": 49892, "language models process": 50684, "higher degree similarity": 41497, "number attention heads": 67330, "remains poorly understood": 81691, "pretrained foundation models": 74259, "extension visual studio": 32985, "models llms improved": 63232, "various programming languages": 102532, "generating instructiontuning data": 37933, "al 2023 train": 4874, "proposed method yields": 77234, "instruction tuning data": 46372, "models understand better": 64453, "cover wide range": 20054, "models llms different": 63101, "experiments human evaluations": 32217, "significantly improves llms": 87953, "improves llms ability": 44040, "application natural language": 6376, "offensive language detection": 67725, "data augmentation strategies": 21007, "models trained using": 64410, "study paper explores": 91764, "exploratory factor analysis": 32621, "additionally explore potential": 3305, "assess strengths limitations": 7876, "using chatgpt roles": 101355, "intervention remains necessary": 47342, "instruction tuned large": 46366, "llms chatgpt demonstrate": 55582, "remarkable performance wide": 81804, "llms various nlp": 57022, "various nlp benchmarks": 102505, "remains lack comprehensive": 81666, "lack comprehensive investigation": 48988, "address gap present": 3401, "multilingual pretrained language": 64997, "comprehensive analysis reveals": 17199, "analysis reveals existing": 5652, "instruction tuned llms": 46367, "chatgpt outperforms llms": 14056, "language processing aims": 50963, "address limitation introduce": 3445, "experimental results widelyused": 32076, "approach significantly enhances": 7020, "types training samples": 99271, "style transfer construct": 91914, "style content information": 91907, "used previous works": 100878, "previous works proposed": 74740, "provides effective way": 77660, "helps improve performance": 41309, "method outperforms stateoftheart": 59381, "outperforms stateoftheart baselines": 69118, "benchmark evaluating large": 10156, "current landscape large": 20699, "like llama mistral": 54187, "texts existing work": 96563, "existing work focuses": 31850, "datasets various settings": 22461, "structured knowledge bases": 91167, "knowledge bases kbs": 48446, "remains open question": 81686, "tasks lack comprehensive": 94792, "lack comprehensive evaluation": 48987, "compare performance llms": 16483, "performance llms various": 71376, "various openended tasks": 102514, "base models using": 9419, "llms perform competitively": 56507, "challenging task natural": 13235, "methods require significant": 59785, "substantial training time": 92114, "need extensive training": 65947, "training data furthermore": 98013, "reducing training time": 80895, "time experimental results": 96963, "results indicate compared": 83672, "compared previous sota": 16611, "previous sota methods": 74703, "benchmark dataset designed": 10121, "dataset designed evaluate": 21906, "comprising 10000 questions": 17395, "diverse sources including": 26109, "gpt35 gpt4 results": 39627, "gpt4 results highlight": 40059, "significantly enhances performance": 87923, "shedding light need": 87227, "vast amounts information": 102666, "potential llms domain": 73175, "extensive automatic human": 32998, "experiments framework outperforms": 32203, "framework outperforms baseline": 36222, "outperforms baseline methods": 69015, "thematic analysis ta": 96724, "models llms research": 63406, "research shown llms": 82781, "various tasks particular": 102601, "case studies proposed": 12474, "improves large language": 44036, "generation evaluation tasks": 38146, "challenging natural language": 13199, "multiple llms including": 65220, "llms including vicuna": 56193, "improving constraint satisfaction": 44106, "researchers industry professionals": 82867, "paper investigates use": 69802, "llms produce highquality": 56580, "incontext learning furthermore": 44599, "human large language": 42281, "models evaluating performance": 62359, "models llms models": 63306, "models chatgpt demonstrate": 61987, "crucial role ensuring": 20527, "outperforms best baseline": 69021, "work try better": 104296, "try better understand": 98975, "zeroshot translation performance": 104884, "pretrained large models": 74366, "large models finetuning": 52257, "abilities pretrained large": 1555, "handle specific tasks": 40935, "training data making": 98035, "source domain target": 89373, "domain target domains": 26456, "model feature extractor": 60873, "vision downstream tasks": 102967, "model performance better": 61221, "human sentence processing": 42365, "models method requires": 63612, "experiments chatgpt good": 32124, "multiparty conversations mpcs": 65127, "generative llms chatgpt": 38643, "empirical analysis conducted": 28311, "ensure comprehensive coverage": 29445, "gpt4 human evaluations": 39930, "demonstrate chatgpt potential": 23041, "stories language models": 90747, "seen significant growth": 86093, "task study explores": 94258, "models pretrained scratch": 63879, "finetuning findings suggest": 35070, "language models limited": 50054, "models limited data": 62938, "nlp tasks work": 66818, "tasks work explore": 95262, "novel use case": 67279, "neural network architecture": 66248, "performance machine translation": 71385, "translation mt tasks": 98724, "mean absolute error": 58691, "neural architecture search": 66216, "architecture search nas": 7371, "bridge gap proposing": 11426, "standard language modeling": 90188, "comparable model sizes": 16384, "information language models": 45522, "models llms equipped": 63122, "introduce new task": 47462, "mandarin chinese english": 58202, "various methods including": 102482, "methods including gpt4": 59681, "llms traditional machine": 56944, "traditional machine translation": 97678, "translation information retrieval": 98706, "human evaluation metrics": 42181, "language models practical": 50666, "generalpurpose ai agents": 37342, "training set paper": 98286, "llama2 70b model": 54815, "language models scalable": 50781, "existing benchmarks metrics": 31675, "highquality dataset containing": 41747, "new benchmark evaluating": 66349, "conduct systematic analysis": 17922, "multimodal models multiple": 65090, "harms generative ai": 41061, "metrics large language": 59939, "models llms associated": 62989, "responsible use llms": 83355, "models rapid advancement": 63966, "generate diverse highquality": 37434, "models trained datasets": 64381, "incorporating instruction tuning": 44704, "synthetic dataset demonstrates": 93272, "yields impressive results": 104667, "method large language": 59345, "great potential natural": 40479, "nlp tasks recent": 66811, "conduct comprehensive experiments": 17844, "demonstrate effectiveness method": 23061, "recently released llms": 80548, "dataset sentiment analysis": 22068, "languages paper introduce": 51337, "new dataset called": 66371, "stateoftheart language model": 90357, "model conduct experiments": 60692, "conduct experiments evaluate": 17869, "language models grant": 49950, "llms emerged promising": 55842, "believe work provides": 10048, "work provides valuable": 104237, "llmdriven web agents": 55367, "pretraining finetuning result": 74536, "dialogue systems aim": 24905, "dialogue generation tasks": 24868, "tasks require generating": 95047, "conditional variational autoencoder": 17799, "ordinary differential equations": 68732, "using generative large": 101473, "quadratic weighted kappa": 78178, "evaluate performance generative": 30246, "transfer learning based": 98415, "learning based approaches": 53044, "offensive language identification": 67726, "data languages paper": 21362, "artificial intelligence genai": 7637, "tools increasingly prevalent": 97426, "increasingly prevalent software": 44901, "software development offering": 88990, "development offering assistance": 24687, "notable examples tools": 67000, "examples tools include": 31294, "github copilot amazon": 38837, "copilot amazon codewhisperer": 19514, "recent publications explored": 80330, "develop research agenda": 24477, "design software engineering": 23845, "field software engineering": 34412, "prompt engineering research": 76313, "prompt engineering applied": 76287, "exhibit impressive reasoning": 31526, "reasoning data augmentation": 79852, "capabilities various nlp": 12128, "tasks small models": 95121, "opt bloom series": 68531, "indicate data augmentation": 44987, "syntactic language models": 93176, "wellknown artificial intelligence": 103593, "used generate new": 100809, "detecting mitigating hallucinations": 24248, "methods require finetuning": 59782, "require finetuning entire": 82254, "takes input text": 93820, "comprehensive evaluation multiple": 17247, "gpt llama families": 39207, "models despite having": 62205, "despite having fewer": 24062, "having fewer parameters": 41120, "systems using large": 93595, "closedsource opensource llms": 15016, "opensource llms gpt4": 68366, "smaller opensource models": 88783, "like llama 7b": 54185, "llama 7b 13b": 54715, "opensource models achieve": 68382, "models achieve competitive": 61755, "achieve competitive performance": 2499, "llms realworld business": 56640, "ability generate highquality": 1659, "foundation model technical": 35929, "model technical report": 61496, "spur future research": 90050, "potential recent large": 73235, "llms exhibited remarkable": 55913, "exhibited remarkable performance": 31585, "performance various domains": 71680, "conduct experiments using": 17871, "datasets findings reveal": 22265, "insights llms performance": 46111, "interpretable text classification": 47290, "produce final prediction": 75627, "datasets using gpt4": 22456, "real world tasks": 79557, "summarization content generation": 92526, "use cases address": 100488, "performance commonly used": 71071, "match exceed performance": 58488, "tools help instructors": 97418, "conducted controlled experiment": 17948, "human supervision large": 42383, "supervision large language": 92758, "high data annotation": 41401, "data annotation costs": 20976, "selects incontext examples": 86187, "quality extensive experiments": 78269, "achieves superior performance": 2810, "significantly outperforms human": 87997, "human annotations tasks": 42088, "set human participants": 86884, "turing test participants": 99124, "generative models study": 38672, "factual consistency summaries": 33626, "introduce innovative approach": 47434, "limitation current llms": 54282, "models llms novel": 63321, "entity mentions text": 29567, "text task poses": 96458, "task poses significant": 94190, "poses significant challenges": 72784, "current stateoftheart approaches": 20777, "poor generalization performance": 72595, "calibrated confidence scores": 11756, "outperforms previous stateoftheart": 69099, "terms f1 score": 95817, "significantly outperforms chatgpt": 87992, "leverage user feedback": 53767, "study provides indepth": 91799, "present publicly available": 74043, "poses greater challenge": 72775, "falls short human": 33801, "shows language models": 87592, "engineering education study": 28963, "plms extensive experiments": 72418, "datasets demonstrate superior": 22210, "release chatgpt generative": 81349, "achieved tremendous success": 2683, "neural network approaches": 66247, "falls short meeting": 33803, "task propose novel": 94207, "reward model training": 84373, "eliminates need additional": 28007, "surpasses gpt4 tasks": 92935, "relations large language": 81273, "utilizing large language": 102030, "categories language models": 12612, "gptj 6b parameters": 40220, "claimed large language": 14668, "training data observe": 98039, "al 2023 demonstrated": 4873, "achieve outstanding results": 2557, "quantization large language": 78442, "addressing limitations traditional": 3547, "llama2 model family": 54843, "detect given text": 24219, "generated language model": 37725, "texts generated gpt35": 96571, "widespread use chatgpt": 103797, "attention potential ethical": 8363, "especially highstakes applications": 29886, "data images research": 21307, "model parameters experiments": 61213, "enhance llms ability": 29179, "llms ability follow": 55401, "leading significant performance": 52882, "performance improvement variety": 71300, "finetuning pretrained models": 35199, "task requiring extensive": 94227, "requiring extensive training": 82433, "resources posing challenges": 83026, "overcome limitations present": 69357, "resulting significantly improved": 83444, "compared traditional finetuning": 16649, "traditional finetuning methods": 97669, "chatgpt support software": 14290, "verification large language": 102746, "engineering tasks code": 29026, "code generation debugging": 15294, "chatgpt generate code": 13852, "steps answering question": 90677, "shows chatgpt able": 87567, "results language model": 83699, "language model successful": 49553, "experiments language models": 32235, "zeroshot fewshot prompting": 104778, "using opensource llms": 101670, "models llms llama2": 63297, "retrieval augmented generation": 83964, "augmented generation rag": 8573, "using direct preference": 101416, "direct preference optimization": 25427, "preference optimization dpo": 73805, "pairs preference data": 69513, "data demonstrate significant": 21145, "challenges future directions": 13026, "models lms capable": 63524, "extensive manual efforts": 33115, "current evaluation metrics": 20686, "evaluation metrics method": 30683, "models lms acquire": 63522, "cost training models": 19885, "enlarging model sizes": 29390, "model 13 billion": 60456, "foundation model pretrained": 35928, "significantly outperforms models": 88001, "models multiple benchmarks": 63648, "language models codellms": 49723, "solution code generation": 89082, "approach provides better": 6993, "results method achieves": 83722, "achieve average improvement": 2481, "fewshot setting llms": 34312, "llms demonstrate impressive": 55730, "significantly reduces human": 88018, "paper introduces novel": 69776, "enhancing language models": 29337, "closely related language": 15032, "engineering using generative": 29034, "prompt engineering critical": 76292, "metrics precision recall": 59957, "reference researchers practitioners": 80940, "evaluate different prompt": 30167, "chatgpt user study": 14332, "language models explosion": 49864, "reflect differences model": 81005, "differences model performance": 24983, "observe large language": 67589, "language models share": 50793, "models various sizes": 64497, "encoded large language": 28680, "large models possessing": 52266, "recent successes large": 80378, "successes large language": 92255, "realworld use case": 79712, "rdf knowledge graphs": 79462, "400 rdf kgs": 911, "evaluation benchmark includes": 30522, "reading comprehension tests": 79526, "contamination language models": 18565, "synthetic dataset generated": 93273, "language models nlp": 50605, "systems based large": 93399, "models machine translation": 63568, "use prompt engineering": 100663, "impressive capabilities various": 43592, "alignment human preferences": 5077, "human evaluation framework": 42176, "capabilities question answering": 12063, "question answering reasoning": 78625, "judgments human evaluators": 48194, "thorough assessment llms": 96823, "time machine learning": 96991, "explored work present": 32791, "weights used downstream": 103571, "compared existing approaches": 16538, "existing training data": 31842, "used reinforcement learning": 100889, "generate training data": 37633, "structural equation modeling": 91119, "findings underscore importance": 34767, "future research explore": 36768, "highlights significant potential": 41671, "social science research": 88915, "supervised machine learning": 92724, "machine learning classification": 57697, "supervised classification models": 92698, "using new dataset": 101640, "performance chatgpt significant": 71049, "gpt 35 finetuned": 39176, "training data set": 98052, "language models zero": 50925, "models zero shot": 64561, "scientific literature data": 85651, "discovery large language": 25614, "models llms hold": 63223, "generation capabilities various": 38063, "models zeroshot fewshot": 64563, "exploring generative ai": 32846, "fewshot learning techniques": 34272, "small number examples": 88713, "models propose data": 63922, "detect data contamination": 24214, "llms pretraining data": 56566, "existing detection methods": 31700, "provide broad understanding": 77418, "developments artificial intelligence": 24739, "chatgpt demonstrated ability": 13685, "sentiment analysis using": 86599, "using nlp techniques": 101647, "generative models like": 38661, "like chatgpt present": 54094, "applicability large language": 6322, "language model generated": 49404, "model generated text": 60933, "remains unexplored study": 81722, "study addresses gap": 91473, "different parameter sizes": 25137, "model size grows": 61417, "nlp particularly large": 66759, "particularly large language": 70479, "aim bridge gap": 4693, "bridge gap introducing": 11420, "performance teacher model": 71624, "additionally explore utility": 3307, "data processing large": 21508, "highresource languages chatgpt": 41805, "english nlp tasks": 29092, "tasks validate effectiveness": 95242, "benchmarks like glue": 10370, "like glue superglue": 54130, "benchmark empirical study": 10147, "recently emerged powerful": 80480, "emerged powerful tool": 28147, "tasks like fact": 94820, "like fact verification": 54119, "study investigates key": 91709, "investigates key research": 47744, "key research questions": 48338, "research questions chatgpt": 82749, "fact verification tasks": 33563, "comparing performance different": 16687, "performance different prompts": 71147, "tasks despite impressive": 94533, "computational resources making": 17480, "particularly complex tasks": 70441, "requirements finetuning utilizing": 82342, "potential address challenges": 72983, "designed enhance performance": 23903, "underscores urgent need": 99580, "urgent need evaluate": 100408, "evaluate alignment human": 30139, "human values current": 42410, "fall short effectively": 33782, "models achieving high": 61776, "manually crafted prompts": 58294, "evaluation findings indicate": 30602, "llms highlighting need": 56134, "evaluate new models": 30238, "benchmark publicly available": 10232, "data used pretrain": 21727, "stateoftheart results compared": 90465, "compared competitive baselines": 16519, "challenge limited data": 12902, "llms recent studies": 56653, "closedsource llms chatgpt": 15006, "opensource code llms": 68318, "dataset specifically designed": 22087, "feedback using dataset": 34156, "marks significant advancement": 58414, "model checkpoints publicly": 60650, "checkpoints publicly available": 14497, "recently large pretrained": 80519, "llms demonstrated superior": 55772, "language understanding abilities": 51152, "recent llms like": 80291, "language models documentlevel": 49796, "tackle issue propose": 93728, "holds potential broader": 41908, "potential broader applications": 73045, "level large language": 53666, "enhancing models performance": 29356, "chatgpt case study": 13592, "released publicly accessible": 81416, "knowledge llms tend": 48665, "models llms resulting": 63408, "models capabilities limitations": 61957, "like gpt35turbo gpt4": 54149, "gpt4 palm2 llama2": 40008, "recent studies highlighted": 80361, "models llms known": 63263, "trained using autoregressive": 97925, "autoregressive blank infilling": 8951, "propose novel training": 77081, "novel training method": 67272, "pretrained causal language": 74238, "models new data": 63670, "robustness incontext learning": 84720, "incontext learning natural": 44627, "language inference recent": 49278, "demonstrated large language": 23290, "llms excel diverse": 55892, "improve robustness llms": 43797, "language inference datasets": 49275, "introduce new approach": 47452, "evaluate popular llms": 30261, "popular llms gpt35turbo": 72646, "demonstrated capabilities generating": 23232, "source code common": 89348, "open source llms": 68123, "language model responses": 49532, "prior work demonstrated": 74867, "underexplored study introduce": 99455, "study introduce novel": 91683, "recently instructionfollowing audiolanguage": 80508, "instructionfollowing audiolanguage models": 46443, "audiolanguage models received": 8495, "models received broad": 63994, "received broad attention": 80136, "human speech natural": 42372, "speech natural sounds": 89957, "natural sounds music": 65783, "achieves impressive performance": 2751, "tasks requiring taskspecific": 95057, "recent advancements natural": 80189, "yield good performance": 104639, "popular large language": 72637, "classification machine translation": 14761, "machine translation question": 57756, "different language families": 25086, "compared highresource languages": 16565, "generative tasks like": 38719, "information extraction extracting": 45469, "models proposed benchmark": 63927, "explore potential capability": 32718, "answer question directly": 6044, "current llms lack": 20722, "level language models": 53664, "models text classification": 64356, "spurious correlations arising": 90054, "training data icl": 98020, "previous research primarily": 74694, "domains large language": 26540, "exhibit remarkable capacity": 31545, "models 70b parameters": 61722, "proprietary models gpt35": 77312, "best knowledge study": 10605, "complex reasoning code": 16991, "models recent times": 64012, "commercially available llms": 16106, "available llms gpt35": 9066, "gpt35 gpt4 palm2": 39622, "gpt4 performs best": 40017, "answer multiplechoice questions": 6031, "classes higher education": 14708, "answers multiplechoice questions": 6199, "differences capabilities models": 24973, "recent studies established": 80358, "capabilities limitations models": 11982, "models study provides": 64280, "propose new evaluation": 77042, "visual language reasoning": 103083, "students computer science": 91293, "llms chatgpt google": 55593, "computer science students": 17535, "llm released openai": 55235, "chatgpt findings suggest": 13823, "chatgpt emerged powerful": 13743, "range languages chatgpt": 79168, "language models minimal": 50574, "machine learning research": 57722, "challenges achieving autonomous": 12954, "raising concerns potential": 79090, "opensource proprietary llms": 68399, "exhibit notable performance": 31537, "llms demonstrated considerable": 55735, "domain knowledge required": 26408, "active learning al": 2992, "work conduct empirical": 104021, "datasets different domains": 22218, "llms small models": 56820, "small models trained": 88711, "small models outperform": 88710, "similar performance gpt4": 88100, "language models systematic": 50850, "study present systematic": 91782, "performance remains challenging": 71534, "systems code data": 93410, "chatgpt35 chatgpt4 google": 14369, "google bard microsoft": 39135, "bard microsoft bing": 9366, "models llms serve": 63416, "llms face challenges": 55959, "sixthgrade reading level": 88449, "significant milestone field": 87798, "transformer models like": 98533, "generative adversarial networks": 38526, "networks advancement generative": 66170, "models llms extensive": 63154, "recent research shows": 80344, "gpt language models": 39202, "language models recognize": 50740, "ethical social implications": 30087, "chatgpt shown great": 14221, "direct comparison human": 25418, "causal reasoning ability": 12668, "reasoning ability chatgpt": 79762, "general large language": 37154, "models llms represented": 63402, "llms represented chatgpt": 56705, "chatgpt demonstrated significant": 13695, "demonstrated significant potential": 23338, "code generation software": 15334, "llms model finetuning": 56403, "study conduct comprehensive": 91541, "performance compared general": 71084, "aim address questions": 4686, "llms specifically designed": 56851, "llms various software": 57024, "various software engineering": 102575, "models code llms": 62022, "software engineering task": 89008, "language model handle": 49423, "answering text summarization": 6163, "diverse contexts different": 26001, "training large model": 98166, "chatgpt november 2022": 14039, "higher education chatgpt": 41499, "research question arises": 82745, "potential use chatgpt": 73298, "crosslingual transfer lowresource": 20428, "transfer lowresource languages": 98427, "lowresource languages llms": 57622, "llms chatgpt palm": 55604, "downstream tasks unlike": 26748, "pretrained word embeddings": 74505, "leveraging contextual information": 53834, "dimensionality reduction techniques": 25387, "partofspeech pos tagging": 70524, "lm training finetuning": 57083, "data collection methods": 21073, "proposes novel approach": 77279, "ai especially large": 4386, "especially large language": 29892, "chatgpt explore potential": 13796, "discuss open problems": 25671, "provide opensource tool": 77531, "increasing leveraging large": 44835, "like chatgpt demonstrated": 54067, "demonstrated remarkable proficiency": 23331, "research conducted extensive": 82521, "conducted extensive empirical": 17964, "extensive empirical evaluation": 33018, "including textdavinci003 gpt35turbo": 44499, "textdavinci003 gpt35turbo gpt4": 96518, "traditional classification methods": 97660, "shortterm memory lstm": 87340, "chatgpt consistently outperforms": 13654, "findings underscore potential": 34768, "recently chatgpt attracted": 80461, "chatgpt named entity": 14027, "rapid advancements large": 79300, "effective attack method": 27266, "examine impact various": 31115, "stateoftheart ai systems": 90305, "approaches artificial intelligence": 7105, "randomized controlled experiment": 79118, "fostering critical thinking": 35907, "findings provide insights": 34720, "llms demonstrated exceptional": 55736, "demonstrated exceptional capabilities": 23251, "exceptional capabilities various": 31367, "technical report introduce": 95417, "general knowledge ability": 37141, "physics education research": 72085, "code generated code": 15270, "generated code interpreter": 37678, "offers new insights": 67848, "data curation assessment": 21133, "language model existing": 49390, "ai chatbot developed": 4329, "llms significant advancements": 56798, "apis like chatgpt": 6293, "training data lack": 98025, "better utilize power": 10813, "downstream tasks lack": 26735, "tasks lack systematic": 94793, "highperformance computing large": 41727, "llms including llama": 56186, "various generaldomain natural": 102439, "generaldomain natural language": 37210, "responses response challenge": 83299, "response challenge propose": 83125, "novel llamabased model": 67200, "model supervised finetuning": 61473, "generated qa questionanswer": 37762, "qa questionanswer instances": 78148, "demonstrate comparable performance": 23044, "comparable performance existing": 16389, "performance existing methods": 71191, "bridge performance gap": 11439, "performance gap llms": 71244, "utilization language models": 101911, "general ai assistants": 37105, "notable performance disparity": 67018, "tasks requiring professional": 95056, "finetuning peft techniques": 35177, "adapt language model": 3043, "language model create": 49367, "address issues present": 3440, "model performance extensive": 61229, "exhibit enhanced performance": 31516, "language models model": 50587, "result significant performance": 83408, "overcome problem propose": 69362, "proposed method code": 77220, "code checkpoints available": 15148, "learning icl large": 53201, "icl large language": 42760, "effective approach named": 27264, "reasoning capability llms": 79817, "extensive comprehensive experiments": 33008, "comprehensive experiments benchmarks": 17256, "reasoning benchmarks furthermore": 79790, "source code dataset": 89351, "code dataset available": 15208, "models llms widely": 63512, "llms widely used": 57047, "various languagerelated tasks": 102464, "tasks llms prone": 94836, "factually incorrect responses": 33664, "demonstrate effectiveness improving": 23060, "ethical implications chatgpt": 30073, "chatgpt higher education": 13929, "challenges using chatgpt": 13140, "using chatgpt education": 101342, "provide comprehensive overview": 77429, "comprehensive overview relevant": 17285, "artificial intelligence gai": 7635, "chatgpt generative artificial": 13866, "trained large amounts": 97855, "higher education institutions": 41500, "education institutions heis": 27157, "higher education settings": 41502, "usage higher education": 100438, "extract structured information": 33240, "extraction structured information": 33333, "work address question": 103973, "address question evaluating": 3480, "capabilities stateoftheart language": 12087, "varying degrees information": 102647, "evaluate effectiveness models": 30173, "indicate gpt models": 44996, "insights guide future": 46099, "language model outputs": 49500, "leading large language": 52857, "projectbased learning pbl": 76055, "data collection analysis": 21070, "microsoft excel google": 60001, "testing reinforcement learning": 96022, "played crucial role": 72357, "large models chatgpt": 52256, "reinforcement learning framework": 81150, "human feedback improve": 42223, "target model training": 93880, "method reinforcement learning": 59409, "model reinforcement learning": 61330, "validate effectiveness algorithm": 102094, "exploiting large language": 32580, "llms chatgpt openai": 55603, "widespread use language": 103801, "use language models": 100593, "language models heavily": 49960, "models heavily relies": 62656, "presents novel study": 74153, "language models susceptible": 50847, "social engineering attacks": 88858, "accurate safe responses": 2428, "domains remains unclear": 26582, "remains unclear study": 81711, "indepth analysis performance": 44946, "comprehensively assess capabilities": 17322, "experiments nlp datasets": 32255, "nlp datasets including": 66724, "limitations inherent current": 54335, "eu ai act": 30103, "perform prompt engineering": 70911, "improve performance text": 43766, "questionanswering qa tasks": 78744, "automatically generate qa": 8871, "qa datasets using": 78129, "llms experimental results": 55925, "bleu rouge metrics": 11176, "compared model finetuning": 16590, "approach finetuning llms": 6864, "novel approach generating": 67100, "language modelling mlm": 49598, "demonstrates significantly enhanced": 23404, "gpt3davinci gpt3curie gpt3babbage": 39728, "gpt3curie gpt3babbage gpt3ada": 39725, "models supervised manner": 64302, "techniques used extract": 95606, "model generate data": 60927, "zeroshot learning approach": 104807, "check quality generated": 14475, "demonstrating effectiveness approach": 23426, "language models identifying": 49968, "demonstrated surprising performance": 23354, "performance popular llms": 71473, "llms gpt3 gpt4": 56087, "students learning programming": 91316, "models plms paper": 63823, "primary challenge resolution": 74801, "open source datasets": 68115, "questionanswer pairs containing": 78727, "novel approach creating": 67092, "approach creating highquality": 6792, "language models suffer": 50841, "llms used generate": 56998, "generate large amounts": 37519, "using novel dataset": 101650, "models paper present": 63758, "model sizes ranging": 61432, "large langauge models": 51454, "subset training data": 92045, "open language models": 68077, "models permissive license": 63805, "ecosystem large language": 27069, "answer human questions": 6017, "llms closedsource llms": 55625, "generally outperform opensource": 37333, "chatgpt language models": 13972, "growing importance ai": 40657, "study language models": 91721, "language models core": 49756, "deploying deep learning": 23579, "work present novel": 104209, "present novel framework": 74023, "visual recognition tasks": 103115, "fewer trainable parameters": 34201, "llms llama family": 56340, "llms shown promising": 56784, "shown promising performance": 87524, "stateoftheart models like": 90405, "applications propose novel": 6550, "new benchmark called": 66344, "models llms combined": 63046, "recent studies primarily": 80362, "studies primarily focus": 91428, "llms generate diverse": 56049, "propose reinforcement learning": 77100, "optimize language model": 68631, "reasoning abilities large": 79755, "previous studies typically": 74718, "covers broad spectrum": 20094, "provides thorough evaluation": 77714, "models conduct extensive": 62083, "extensive experiments popular": 33081, "gpt4 llama2 mistral": 39961, "indicate significant performance": 45020, "significant performance gap": 87812, "models llms llms": 63298, "language model input": 49432, "incorporating external knowledge": 44697, "language models stateoftheart": 50829, "answer implicit reasoning": 6019, "implicit reasoning questions": 43421, "leverage large language": 53738, "novel prompting method": 67234, "knowledge generated gpt3": 48581, "trained knowledge distillation": 97851, "scores experimental results": 85757, "like chatgpt copilot": 54064, "recent studies suggest": 80368, "alignment large language": 5087, "models llms helpful": 63219, "benchmark evaluating llms": 10159, "data curation pipeline": 21134, "limitations language model": 54338, "language model agents": 49328, "recently emerged promising": 80482, "performance realworld applications": 71519, "work introduce new": 104137, "train new model": 97766, "leading ai companies": 52839, "language models diffusion": 49789, "models diffusion models": 62234, "models holds significant": 62675, "holds significant potential": 41913, "significant potential transforming": 87822, "data generating synthetic": 21261, "recent work proposed": 80405, "combinatorial optimization problem": 15967, "tasks discrete prompts": 94552, "remarkable achievements large": 81734, "achievements large language": 2691, "highresource languages english": 41806, "southeast asian sea": 89434, "asian sea languages": 7706, "comprehensive evaluation demonstrates": 17240, "exhibit superior performance": 31560, "novel approach utilizes": 67108, "questionanswering qa datasets": 78743, "models fall short": 62447, "fall short human": 33786, "science education recent": 85580, "recent developments generative": 80242, "developments generative ai": 24743, "generative ai especially": 38541, "generate accurate code": 37369, "accurate code solutions": 2401, "complex programming tasks": 16979, "classification tasks gpt2": 14805, "using single gpu": 101768, "code available github": 15132, "explores integration large": 32805, "unsupervised topic modeling": 100318, "prompts guide gpt4": 76736, "sentiment analysis results": 86593, "analysis results reveal": 5646, "processing nlp methods": 75531, "approach enhances efficiency": 6839, "comprehensive empirical analysis": 17231, "recent advancements generative": 80180, "pretrain prompt predict": 74226, "bridge gaps introduce": 11431, "language generation capabilities": 49236, "lowresource language use": 57617, "case study explore": 12481, "study explore current": 91621, "realworld nlp tasks": 79685, "instruction dataset covering": 46318, "classification question answering": 14778, "descriptions code snippets": 23699, "results tackle challenge": 83888, "tackle challenge introduce": 93713, "challenge introduce novel": 12891, "introduce novel approach": 47467, "improves overall quality": 44049, "free copy paper": 36337, "copy paper supplemental": 19522, "paper supplemental materials": 69970, "good bad ugly": 39108, "bad ugly large": 9289, "ugly large language": 99324, "humanlike text generation": 42542, "text generation capabilities": 96239, "inherent vulnerabilities llms": 45747, "comprehensive literature review": 17277, "interesting findings example": 47153, "code security code": 15497, "code vulnerability detection": 15567, "data privacy data": 21504, "instruction tuning recent": 46407, "hope work shed": 41974, "framework designed train": 36092, "dataset subsequently finetune": 22092, "shows competitive superior": 87571, "performance compared baselines": 71082, "use incontext learning": 100579, "results various tasks": 83916, "various tasks face": 102596, "reducing memory consumption": 80884, "address issue investigate": 3421, "zeroshot prompting gpt4": 104852, "assess effectiveness llms": 7844, "performance automatic human": 71003, "conduct extensive analyses": 17876, "reading comprehension models": 79523, "datasets results reveal": 22405, "models llms opened": 63334, "llms opened new": 56466, "opened new opportunities": 68253, "address issues paper": 3438, "adapt different contexts": 3038, "despite significant advancements": 24121, "chatgpt similar models": 14245, "spatial reasoning abilities": 89574, "reasoning abilities chatgpt": 79752, "evaluation reveals key": 30760, "reveals key insights": 84214, "models llms generation": 63186, "use llms generating": 100617, "llama large language": 54766, "key findings reveal": 48303, "models 7b 13b": 61724, "attention large language": 8329, "autonomous vehicles avs": 8940, "challenge paper introduces": 12914, "exhibits exceptional performance": 31608, "deductive logical reasoning": 22737, "bert gpt models": 10520, "constructing knowledge graphs": 18459, "biomedical knowledge graphs": 11096, "language models master": 50560, "models trained tasks": 64409, "complex logical reasoning": 16953, "highrisk use cases": 41813, "use cases study": 100497, "demonstrate techniques significantly": 23211, "prompt engineering providing": 76312, "applications continue expand": 6436, "artificial intelligence chatbots": 7629, "including higher education": 44382, "model natural language": 61151, "allow users interact": 5167, "openais generative pretrained": 68197, "support paper presents": 92823, "compare performance prominent": 16486, "models gpt palm": 62587, "models llms especially": 63123, "design space exploration": 23847, "wide spectrum applications": 103696, "large languages models": 52237, "languages models llms": 51327, "llms gpt4 shown": 56110, "address problem paper": 3472, "paper provide comprehensive": 69918, "provide comprehensive study": 77431, "demonstration selection strategy": 23465, "strategies extensive experiments": 90813, "comparing large language": 16683, "intelligence ai chatbots": 46800, "using 5point likert": 101279, "5point likert scale": 1108, "ais like chatgpt": 4850, "enormous computation resources": 29399, "chatgpt led significant": 13988, "led significant improvement": 53534, "tackle issue introduce": 93727, "issue introduce novel": 47937, "introduce novel inference": 47471, "novel inference method": 67184, "experiments confirm effectiveness": 32145, "framework easy use": 36103, "learning classification models": 53070, "gpt models including": 39225, "instructgpt gpt35 gpt4": 46290, "model achieves accuracy": 60495, "language model serving": 49541, "llms recently experienced": 56661, "widespread popularity chatgpt": 103790, "using gpt4 based": 101493, "using bert roberta": 101316, "sota performances widelyused": 89323, "assistance large language": 8029, "domainspecific large language": 26636, "models llms focus": 63163, "software development introduce": 88988, "recognition ner relation": 80608, "ner relation extraction": 66117, "extraction link prediction": 33315, "llms software development": 56827, "valuable insights models": 102159, "models generative capabilities": 62564, "models symbolic knowledge": 64316, "knowledge distillation present": 48514, "models compared previous": 62056, "reasoning tasks compared": 80046, "performance commonsense reasoning": 71073, "injection large language": 45827, "models generative large": 62565, "incorrect responses faced": 44740, "experiments benchmark datasets": 32116, "achieves average improvement": 2712, "computer science communication": 17530, "foundation models lfms": 35951, "ai technology chatgpt": 4582, "models llms llama": 63296, "code technical reports": 15537, "code data model": 15186, "data model checkpoints": 21415, "limited quantity diversity": 54453, "online social media": 68012, "implementations linear attention": 43344, "touvron et al": 97576, "et al 2023a": 30053, "language modeling experiments": 49582, "positive negative examples": 72827, "generation tasks demonstrate": 38449, "gain deeper insights": 36810, "focuses large language": 35609, "array natural language": 7509, "emerged highly promising": 28136, "shed light challenges": 87215, "llms safety alignment": 56744, "safety large language": 85038, "models llms raised": 63372, "spectrum nlp tasks": 89928, "era advanced ai": 29717, "enhance performance human": 29192, "power systems paper": 73400, "large foundation model": 51428, "capabilities foundation models": 11912, "existing methods typically": 31768, "methods typically adopt": 59831, "methods methods require": 59730, "identify factual errors": 42868, "key aspects firstly": 48273, "language models emerged": 49814, "gained substantial attention": 36843, "underlying technology chatgpt": 99521, "wide range questions": 103682, "answering qa datasets": 6137, "exact match accuracy": 31067, "study reveals chatgpt": 91818, "generative model effective": 38651, "question answering compared": 78582, "tuning large language": 99056, "effectiveness language models": 27540, "task prompt learning": 94203, "knowledge embedded large": 48530, "embedded large language": 28045, "application programming interface": 6380, "representations produced models": 82116, "tackle issues introduce": 93730, "language model bert": 49349, "performance proposed model": 71503, "experiments proposed model": 32268, "generalization performance code": 37276, "performance code available": 71061, "models llms useful": 63502, "best opensource models": 10619, "50 billion parameters": 1012, "billion parameters using": 11027, "static analysis tools": 90531, "require extensive human": 82248, "llms gpt4 llama": 56104, "artificial intelligence aibased": 7625, "multimodal foundation models": 65051, "potential wide range": 73322, "tasks scene understanding": 95082, "understanding image captioning": 99766, "findings reveal gpt4v": 34735, "realworld applications evaluating": 79640, "language models healthrelated": 49959, "integrate large language": 46663, "generation current stateoftheart": 38105, "current stateoftheart large": 20778, "provide accurate responses": 77398, "code generation dataset": 15293, "operations large language": 68463, "models llms implement": 63229, "12 billion parameters": 220, "llms different architectures": 55799, "natural language data": 65566, "llms increasingly integrated": 56207, "increasingly integrated everyday": 44889, "emulate human cognition": 28519, "ability llms comprehend": 1704, "tasks findings revealed": 94641, "llms particularly gpt4": 56497, "comparative analysis llms": 16426, "llms using human": 57005, "remarkable progress development": 81815, "significant implications development": 87768, "enhancing educational outcomes": 29323, "language models binary": 49683, "understanding code semantics": 99693, "comprehensive benchmark dataset": 17209, "extensive evaluation prominent": 33027, "evaluation prominent llms": 30729, "chatgpt gpt4 llama": 13903, "llama code llama": 54735, "nvidia a100 gpu": 67453, "a100 gpu hours": 1476, "potential llms field": 73179, "time requires significant": 97013, "generation work explore": 38509, "work explore use": 104083, "models knowledge graphs": 62833, "models effective text": 62276, "language models represent": 50751, "comprehend natural language": 17135, "complex contextual relationships": 16921, "language model meta": 49484, "model meta ai": 61128, "advancement field natural": 3777, "improve natural language": 43741, "language adaptation strategies": 49128, "aligning large language": 5043, "current instruction tuning": 20695, "degrade model performance": 22895, "model performance address": 61220, "data instruction tuning": 21334, "comparative analysis large": 16423, "generation paper presents": 38316, "llms generation code": 56062, "gpt35 gpt4 bard": 39608, "closedsource models gpt35": 15010, "superior performance various": 92659, "surpass human performance": 92911, "tasks indicating potential": 94747, "current models limitations": 20737, "evolving nature human": 31056, "complex problem solving": 16974, "software engineering provides": 89004, "integrating ai tools": 46710, "information extraction scientific": 45473, "knowledge graph construction": 48592, "relation extraction task": 81245, "baseline large language": 9786, "entity recognition using": 29584, "best performing model": 10625, "information large number": 45528, "social media post": 88893, "zeroshot gpt35 turbo": 104794, "gpt35 turbo model": 39678, "model performed best": 61242, "mixture experts moe": 60351, "applications various domains": 6594, "generative ai research": 38565, "healthcare finance education": 41187, "study highlighted importance": 91656, "study introduces innovative": 91685, "innovative framework designed": 45855, "evaluating enhancing large": 30417, "reasoning knowledge graphs": 79916, "models demonstrated robust": 62190, "robust reasoning capabilities": 84685, "manually designed prompts": 58306, "capabilities current stateoftheart": 11874, "policy gradient reinforcement": 72537, "gradient reinforcement learning": 40300, "reinforcement learning algorithm": 81144, "dataset experimental results": 21934, "method code available": 59230, "openai gpt series": 68156, "solving math problems": 89235, "generating code acting": 37873, "complex reasoning chains": 16990, "general qa tasks": 37186, "logical reasoning process": 57271, "tables extensive experiments": 93696, "significantly outperforms previous": 88002, "outperforms previous work": 69102, "stateoftheart sota performance": 90486, "case study presents": 12493, "experiments large language": 32237, "llms solve problem": 56833, "conversational generative ai": 19371, "tasks work evaluate": 95261, "language models exploring": 49863, "problemsolving large language": 75234, "proficiency handling range": 75791, "findings demonstrate llms": 34656, "study showcases potential": 91839, "showcases potential llms": 87370, "synthesizing code natural": 93243, "introduce carefully crafted": 47406, "tasks introduce new": 94766, "using training dataset": 101822, "open code llms": 68058, "llms significantly improve": 56807, "significantly improve code": 87940, "data models available": 21425, "face challenges data": 33434, "challenges data scarcity": 12987, "issues paper propose": 48005, "baselines code available": 9824, "new code generation": 66365, "code generation evaluation": 15296, "crucial large language": 20500, "scenarios paper propose": 85467, "capabilities chinese llms": 11855, "commonsense knowledge everyday": 16217, "form commonsense knowledge": 35769, "commonsense reasoning capability": 16234, "results demonstrate models": 83557, "tasks zeroshot setting": 95274, "advancement natural language": 3789, "nlp tasks particularly": 66805, "test case generation": 95871, "generate test cases": 37620, "generated code test": 37679, "code test cases": 15540, "superior performance existing": 92652, "presents comparative analysis": 74120, "analysis ability large": 5419, "lowresource languages using": 57626, "language models automating": 49664, "paper presents detailed": 69856, "exact match scores": 31070, "gpt35 large language": 39637, "models llms drawn": 63108, "drawn significant attention": 26826, "multiple prompting techniques": 65247, "utilize zeroshot fewshot": 101960, "generate fluent text": 37462, "language model attacks": 49340, "access model weights": 2074, "text generation apis": 96236, "local large language": 57201, "llms chatgpt llama": 55602, "strengths limitations llms": 90958, "using case study": 101329, "information software documentation": 45630, "information retrieval technology": 45611, "set natural language": 86903, "llms openai cohere": 56456, "llm reasoning ability": 55227, "llms able solve": 55406, "llms achieved humanlevel": 55425, "llms opensource llms": 56469, "30 billion parameters": 744, "pretraining data processing": 74518, "human feedback extensive": 42221, "feedback extensive experiments": 34080, "llms rich knowledge": 56738, "powerful language understanding": 73447, "enhancing mathematical reasoning": 29350, "mathematical reasoning capability": 58588, "reasoning capability large": 79814, "encompassing broad spectrum": 28764, "empirical analysis reveals": 28313, "findings suggest prompting": 34762, "various approaches proposed": 102354, "compared baseline methods": 16509, "preliminary empirical study": 73859, "empirical study zeroshot": 28368, "extraction aims build": 33278, "training humanannotated data": 98131, "challenging worthwhile zeroshot": 13260, "reduces time effort": 80849, "time effort data": 96954, "effort data labeling": 27869, "data labeling takes": 21355, "labeling takes recent": 48927, "takes recent efforts": 93824, "promising performance zeroshot": 76185, "zeroshot settings inspiring": 104870, "settings inspiring explore": 87063, "inspiring explore promptbased": 46195, "explore promptbased methods": 32735, "models constructed directly": 62104, "constructed directly prompting": 18447, "chatgpt experimental results": 13789, "experimental results chatgpt": 32017, "compared existing stateoftheart": 16544, "unsupervised supervised models": 100314, "need deep understanding": 65927, "user study demonstrates": 101051, "generate correct code": 37418, "code intelligence tasks": 15365, "language natural language": 50941, "natural language significant": 65728, "demonstrated superior capabilities": 23349, "answer question conduct": 6043, "existing referencebased metrics": 31808, "metrics assess quality": 59882, "potential utilizing chatgpt": 73311, "utilizing chatgpt enhance": 102004, "widely used dataset": 103734, "tasks model pretrained": 94867, "generation code translation": 38081, "code translation tasks": 15552, "comprehensive analysis effectiveness": 17198, "recent studies suggested": 80369, "better align human": 10679, "notably large language": 67037, "models llms particularly": 63339, "chatgpt shown promising": 14226, "conduct comprehensive study": 17850, "comprehensive study application": 17301, "using comprehensive set": 101372, "largescale generative models": 52520, "research focused enhancing": 82604, "work explored use": 104085, "simple effective framework": 88182, "generative tasks using": 38720, "models llms highlights": 63221, "llms highlights potential": 56137, "evaluation benchmark large": 30523, "models rapid evolution": 63972, "rapid evolution large": 79323, "evolution large language": 31026, "interactions paper introduces": 47074, "benchmark designed assess": 10140, "knowledge multihop reasoning": 48679, "various opensource proprietary": 102517, "models zero fewshot": 64559, "fewshot settings reveal": 34316, "gpt4 outperforms models": 40003, "models various languages": 64494, "evaluating performance large": 30473, "gemini pro model": 37066, "evaluation paradigm large": 30706, "paradigm large language": 70039, "language models challenges": 49700, "contributes ongoing discourse": 19149, "cognitive abilities llms": 15734, "language model assistant": 49339, "explore different ways": 32668, "enhancing language model": 29336, "language model architectures": 49337, "recent trend large": 80391, "trend large language": 98847, "models llms increase": 63239, "scale model size": 85282, "convolutional neural networks": 19473, "stateoftheart performance terms": 90445, "terms accuracy efficiency": 95789, "accuracy efficiency addition": 2251, "extension large language": 32982, "gpt4 demonstrated exceptional": 39823, "demonstrated exceptional proficiency": 23256, "exceptional proficiency natural": 31385, "proficiency natural language": 75797, "domains remains challenge": 26581, "language models annotation": 49645, "models paper explores": 63754, "open generative large": 68068, "study highlights challenges": 91658, "evaluates performance different": 30390, "models llms gaining": 63176, "llms gaining increasing": 56026, "use cases language": 100493, "associated large language": 8089, "presents new challenges": 74148, "language models burgeoning": 49689, "models like openais": 62930, "like openais chatgpt": 54203, "chatgpt represents significant": 14176, "represents significant advancement": 82183, "artificial intelligence models": 7654, "substantial challenges high": 92066, "set evaluation metrics": 86871, "evaluation metrics datasets": 30678, "comprehensive overview current": 17284, "rapidly evolving landscape": 79346, "language models arent": 49651, "paper describes architecture": 69672, "conditional random fields": 17794, "final model achieves": 34487, "remains relatively unexplored": 81694, "paper present unified": 69844, "ablation studies justify": 1811, "prompt injection attacks": 76344, "injection attacks large": 45823, "attacks large language": 8217, "vulnerabilities large language": 103259, "generate malicious content": 37526, "incorporates innovative techniques": 44681, "recently advent large": 80451, "field bridge gap": 34354, "bridge gap introduce": 11419, "weak language models": 103431, "models strong language": 64264, "language models harnessing": 49957, "models harnessing power": 62650, "humanannotated data supervised": 42438, "advancing large language": 3910, "models llms paper": 63337, "training data previous": 98044, "target data distribution": 93859, "empirically evaluate method": 28377, "method benchmark datasets": 59219, "benchmark datasets including": 10130, "significantly improve llms": 87941, "models trained direct": 64382, "trained direct preference": 97815, "review paper explores": 84269, "use artificial intelligence": 100476, "machine learning particularly": 57720, "open new research": 68091, "new research directions": 66516, "provide detailed exploration": 77449, "paper delves capabilities": 69666, "delves capabilities models": 22956, "privacy ethical implications": 74897, "need deeper understanding": 65929, "article provides comprehensive": 7555, "provides comprehensive overview": 77649, "current state llms": 20775, "potential benefits challenges": 73039, "exhibited remarkable capabilities": 31584, "remarkable capabilities understanding": 81751, "opensource language model": 68344, "support research development": 92828, "language models users": 50897, "utilization large language": 101913, "data preprocessing training": 21494, "provides insights future": 77680, "insights future development": 46091, "demonstrated powerful ability": 23304, "new artificial intelligence": 66334, "artificial intelligence generation": 7641, "case study utilizing": 12502, "setting new standard": 87010, "used study available": 100905, "effects generative ai": 27610, "generative ai computing": 38538, "models rapidly adopted": 63976, "harness capabilities llms": 41068, "small language model": 88685, "model checkpoints code": 60649, "publicly available github": 77977, "holds large language": 41904, "knowledge catastrophic forgetting": 48464, "performance various benchmarks": 71679, "demonstrating superiority existing": 23455, "superiority existing open": 92677, "models llama family": 62945, "findings provide valuable": 34721, "laying solid foundation": 52772, "models comprehensive survey": 62070, "models chatgpt dalle": 61986, "posed significant challenges": 72762, "significant challenges including": 87712, "foundation models various": 35968, "stateoftheart methods including": 90395, "paper summarizes challenges": 69968, "perspective future development": 71951, "llms trained multilingual": 56949, "evaluate performance model": 30255, "classification tasks using": 14807, "incontext learning compare": 44588, "study scaling laws": 91825, "advancing opensource language": 3916, "conduct supervised finetuning": 17920, "sft direct preference": 87150, "models evaluation results": 62361, "education rapid evolution": 27178, "rapid evolution artificial": 79320, "evolution artificial intelligence": 31017, "domain large language": 26412, "llms generative ai": 56064, "opened new avenues": 68252, "remains underexplored study": 81717, "models gpt35 turbo": 62607, "gpt35 turbo gpt4": 39676, "study sheds light": 91836, "sheds light llms": 87235, "ai technology advances": 4581, "enrich educational experiences": 29406, "exemplified models like": 31481, "large model introduce": 52254, "introduce approach termed": 47395, "empirical evidence suggests": 28325, "model like chatgpt": 61068, "large user base": 52365, "existing works ignore": 31854, "demonstrate large language": 23111, "identify correct mistakes": 42856, "timeconsuming large language": 97049, "models llms promise": 63365, "little known regarding": 54683, "study investigate capacity": 91692, "reallife tutoring dialogues": 79599, "errors models exhibit": 29828, "future work focus": 36794, "work focus enhancing": 104101, "language models enhancing": 49831, "pivotal role various": 72207, "effectiveness approach using": 27494, "results demonstrate efficiency": 83546, "demonstrate efficiency effectiveness": 23072, "effectiveness proposed methods": 27574, "methods offering promising": 59741, "instruction following ability": 46334, "new metric evaluating": 66456, "models llms ability": 62966, "evaluation advanced llms": 30505, "models increasingly integral": 62757, "like gpt4 llama": 54159, "interpretability neural networks": 47281, "significantly improves efficiency": 87952, "outperforms existing models": 69048, "development deep learning": 24629, "deep learning frameworks": 22766, "existing approaches tools": 31659, "performance study provides": 71600, "paper present empirical": 69830, "using different variants": 101414, "various sources including": 102578, "aigc detectors results": 4657, "results demonstrate existing": 83547, "existing aigc detectors": 31650, "progress various domains": 76014, "humanlike textgeneration capabilities": 42544, "models benchmarks like": 61915, "spatial reasoning capabilities": 89575, "dataset model evaluation": 22007, "limitations gpt models": 54326, "outperforms llama 70b": 69077, "mathematics code generation": 58602, "code generation multilingual": 15316, "provide model finetuned": 77522, "model finetuned follow": 60887, "finetuned follow instructions": 34889, "mixtral 8x7b instruct": 60341, "gemini pro llama": 37065, "chat model human": 13384, "base instruct models": 9403, "models released apache": 64046, "released apache 20": 81394, "apache 20 license": 6260, "knowledge multimodal large": 48681, "llms multimodal large": 56411, "language models mllms": 50579, "models mllms shown": 63631, "possess reliably perform": 72857, "tasks address gap": 94352, "applications realworld scenarios": 6555, "foundation future research": 35914, "risk data leakage": 84495, "commercial opensource models": 16092, "opensource models zeroshot": 68389, "performance compared humans": 71087, "models code llama": 62021, "debugging code generation": 22545, "adoption deep learning": 3634, "areas future work": 7440, "datasets used train": 22453, "general purpose large": 37181, "purpose large language": 78042, "monte carlo tree": 64728, "carlo tree search": 12433, "text generation method": 96254, "tree search mcts": 98822, "generated baseline methods": 37664, "gpt4 consistently outperformed": 39808, "generation tasks performance": 38456, "propose incontext learning": 77000, "incontext learning approach": 44578, "evaluate method using": 30227, "artificial intelligence including": 7643, "including chatbots like": 44289, "like chatgpt potential": 54092, "discuss strengths weaknesses": 25692, "strengths weaknesses existing": 90966, "european union united": 30115, "union united states": 100068, "integration generative ai": 46767, "future research innovation": 36771, "language models verifiable": 50907, "models llms established": 63124, "niche programming languages": 66677, "code llama34b model": 15392, "data analysis tasks": 20968, "analysis tasks paper": 5698, "tasks paper introduce": 94926, "specifically designed evaluate": 89805, "llmbased agents data": 55333, "tasks tasks require": 95183, "trustworthiness large language": 98943, "excellent natural language": 31350, "open challenges future": 68050, "privacy machine ethics": 74905, "llms generally outperform": 56041, "important note llms": 43525, "existing research mainly": 31812, "novel paradigm evaluating": 67222, "experimental results affirm": 32015, "various types llms": 102619, "models llms strong": 63463, "capabilities solving diverse": 12084, "obstacle widespread application": 67635, "llm systems developed": 55282, "prompts language model": 76763, "generation qg natural": 38369, "qg natural language": 78167, "applies large language": 6649, "automatically generated questions": 8876, "demonstrate impressive capabilities": 23103, "diverse downstream tasks": 26015, "impact data contamination": 43197, "findings offer new": 34707, "offer new insights": 67753, "evaluating code generation": 30406, "evaluate large language": 30211, "propose new benchmark": 77040, "new benchmark named": 66350, "abilities code generation": 1497, "development code generation": 24623, "language models search": 50788, "instruction tuning large": 46395, "natural language promptbased": 65713, "work explore potential": 104082, "potential instruction tuning": 73143, "tuning enhance llms": 99032, "tasks introduce novel": 94767, "datasets manually written": 22331, "empirical results reveal": 28346, "extensive experiments analyze": 33048, "models publicly accessible": 63943, "use cases llms": 100494, "answer domainspecific questions": 6001, "frequently asked questions": 36382, "reward model train": 84371, "using policy gradient": 101680, "challenges research directions": 13119, "research directions chatgpt": 82556, "model based generative": 60589, "use various domains": 100721, "explore chatgpts capabilities": 32657, "comprehensive evaluation stateoftheart": 17248, "evaluation stateoftheart llms": 30791, "health prediction tasks": 41173, "tasks mental health": 94860, "exhibits comparable performance": 31602, "larger models gpt35": 52458, "gpt4 achieving best": 39752, "achieving best performance": 2833, "performance 13 tasks": 70951, "ablation studies highlight": 1809, "capability finetuned models": 12162, "enhances overall performance": 29293, "limitations commonly used": 54309, "shows opensource models": 87601, "performance widely used": 71721, "latest version gpt4": 52683, "provide baseline models": 77409, "presents challenging task": 74118, "capabilities gpt models": 11928, "questions generated using": 78863, "generated using approach": 37814, "models human evaluation": 62683, "ranging billion 13": 79237, "commonsense reasoning factual": 16236, "cost using llms": 19888, "text classification datasets": 96110, "achieves similar better": 2789, "compared human annotations": 16568, "human annotations method": 42086, "medical diagnosis treatment": 58877, "medical domain data": 58880, "processing nlp multimodal": 75533, "human natural language": 42306, "medical domain knowledge": 58882, "utilizing language models": 102028, "language models multimodal": 50592, "medical question answering": 58910, "question answering image": 78598, "different tasks datasets": 25220, "research paving way": 82706, "rapidly evolving field": 79345, "efficient finetuning large": 27763, "efficient finetuning peft": 27767, "finetuning peft emerged": 35175, "finetuning effective way": 35053, "make language models": 58005, "instruction tuning datasets": 46375, "finetuning improves performance": 35091, "performance lowresource languages": 71383, "models llms domain": 63105, "future research endeavors": 36766, "models llms notably": 63319, "llms notably enhanced": 56436, "practical scenarios paper": 73530, "llm agents decisionmaking": 54951, "analysis results demonstrate": 5645, "improvement f1 score": 43910, "performance gpt35 model": 71274, "study contributes field": 91551, "popular llms including": 72648, "llms including llama213b": 56189, "questions answers using": 78781, "conduct indepth study": 17896, "dataset generation pipeline": 21958, "rag increases accuracy": 79042, "demonstrate finetuned model": 23083, "overall results point": 69317, "using llms adapted": 101579, "applications case study": 6421, "extensive analysis shows": 32994, "fluent humanlike text": 35479, "like mental health": 54197, "machine translation large": 57745, "enhance performance llms": 29196, "llms machine translation": 56370, "popular prompting methods": 72677, "llms like palm": 56331, "source target languages": 89393, "machine translation tools": 57764, "despite general capabilities": 24053, "general capabilities large": 37113, "knowledge reasoning safety": 48734, "factual knowledge demonstrate": 33640, "ability incontext learning": 1682, "future research application": 36756, "survey insights developed": 93032, "guide future research": 40733, "security risks users": 86037, "summarizing academic papers": 92590, "widely applied various": 103715, "qualitative quantitative evaluations": 78205, "models study presents": 64279, "interactions conversational ai": 47052, "case studies highlighting": 12473, "model instruction finetuned": 61016, "easier scale large": 27003, "benchmarks human evaluation": 10352, "models trained evaluated": 64386, "exploring role ai": 32867, "conducted semistructured interview": 17981, "process large language": 75345, "provide users concise": 77594, "automated approach leverages": 8672, "generation capabilities llms": 38062, "offering practical solution": 67801, "domains like science": 26546, "machine learning approach": 57692, "open large language": 68079, "models llms task": 63476, "llm training data": 55297, "using dataset collected": 101399, "llms llama2 mistral": 56348, "fluent coherent text": 35474, "conversational question answering": 19392, "specifically propose twostage": 89867, "propose twostage instruction": 77149, "twostage instruction tuning": 99183, "instruction tuning method": 46401, "method significantly improve": 59422, "significantly improve zeroshot": 87945, "models llms handle": 63216, "terms average score": 95795, "openai gpt models": 68155, "llm code generation": 55007, "code generation generated": 15301, "models training large": 64414, "capabilities existing llms": 11894, "validate approach using": 102090, "llms improve performance": 56166, "improve performance target": 43764, "study 12 participants": 91468, "deep machine learning": 22787, "augmentation using chatgpt": 8558, "created using chatgpt": 20208, "entity relation annotations": 29586, "advance artificial intelligence": 3660, "intelligence ai emergence": 46803, "improve user experience": 43825, "demonstrate effectiveness framework": 23059, "llms relatively little": 56685, "relatively little known": 81317, "identify key factors": 42876, "current augmentation methods": 20664, "neural networks learn": 66272, "gpt2 models trained": 39323, "language models efficient": 49810, "task performance pruning": 94184, "roberta t5 models": 84612, "trillion tokens sourced": 98886, "specific use cases": 89771, "stateoftheart performance broad": 90431, "broad spectrum tasks": 11501, "associated code publicly": 8079, "code publicly accessible": 15458, "practical applications field": 73497, "models llms triggered": 63493, "paper investigate recent": 69789, "code generated llms": 15271, "generated different models": 37693, "benchmark dataset results": 10123, "plays significant role": 72390, "different pretrained models": 25153, "intelligence ai poised": 46820, "including chatgpt claude": 44293, "chatgpt claude bard": 13621, "method commonly used": 59234, "explainable artificial intelligence": 32449, "artificial intelligence xai": 7672, "methods paper presents": 59745, "llm developed using": 55040, "replaced token detection": 81929, "language models known": 50018, "sequences paper present": 86686, "new training procedure": 66564, "training procedure consisting": 98240, "provide extensive analysis": 77474, "language models advanced": 49630, "advanced state art": 3753, "state art natural": 90270, "art natural language": 7526, "languages bridge gap": 51241, "novel large language": 67194, "showcased remarkable capabilities": 87366, "existing approaches treat": 31660, "performance paper introduce": 71459, "outperforms previous methods": 69098, "llms fewer parameters": 55976, "reduced computational overhead": 80815, "performance models finetuned": 71408, "pretrained model weights": 74397, "model weights training": 61592, "existing methods heavily": 31762, "experimental results illustrate": 32044, "framework outperforms strong": 36226, "explainability large language": 32439, "chatgpt perform tasks": 14071, "results stateoftheart methods": 83858, "potential llms chatgpt": 73174, "dialogue tod systems": 24916, "requiring additional training": 82427, "code clone detection": 15150, "demonstrated remarkable success": 23334, "generation tasks generative": 38450, "comparable performance fully": 16392, "performance fully finetuned": 71233, "fully finetuned models": 36452, "artificial intelligence applications": 7627, "chatgpt enhance human": 13757, "experiments demonstrated chatgpt": 32167, "humancomputer interaction hci": 42460, "user experience ux": 100986, "7b 13b 34b": 1279, "stateoftheart opensource models": 90428, "achieves performance par": 2772, "extreme compression large": 33379, "size poses significant": 88511, "training inference costs": 98140, "llama2 7b model": 54819, "multilingual capabilities large": 64945, "extending large language": 32966, "llms nonenglish languages": 56434, "encoderdecoder language model": 28722, "language model enhanced": 49386, "understanding generation recent": 99756, "pretrained encoderdecoder architecture": 74253, "compress large language": 17337, "cornerstone natural language": 19562, "compute memory resources": 17509, "recent works shown": 80418, "techniques face challenges": 95515, "need additional data": 65902, "zeroshot task performance": 104878, "pretrained models code": 74404, "models code available": 62012, "mllms shown impressive": 60397, "shown impressive abilities": 87475, "openais gpt4 googles": 68211, "causal reasoning capabilities": 12670, "reasoning capabilities recent": 79810, "understand capabilities limitations": 99598, "applications generative ai": 6492, "performance chatgpt gpt4": 71045, "foster critical thinking": 35896, "llms offer potential": 56444, "ai case study": 4323, "best practices adapting": 10632, "generate false information": 37455, "generation rag approach": 38378, "approach enhance accuracy": 6836, "paper investigates potential": 69801, "dataset proposed method": 22042, "proposed method outperforms": 77226, "large room improvement": 52335, "handle complex problems": 40919, "math reasoning testbed": 58557, "significant performance gain": 87810, "training curriculum learning": 97987, "retrievalbased learningbased approaches": 84063, "mitigate limitations propose": 60272, "enhanced incontext learning": 29234, "involves main components": 47851, "enables large language": 28594, "llms perform reasoning": 56508, "publicly available benchmarks": 77966, "zeroshot performance popular": 104841, "llms perform basic": 56505, "challenges dealing complex": 12989, "complex tasks involving": 17017, "task planning code": 94188, "previously acquired knowledge": 74746, "knowledge algorithms data": 48417, "programming problems chatgpt": 75925, "code generation reasoning": 15330, "demonstrated outstanding performance": 23296, "large visionlanguage models": 52377, "visionlanguage models recent": 103036, "models recent advances": 64000, "visionlanguage models lvlms": 103032, "costs work propose": 19941, "simple effective training": 88188, "parameters constant computational": 70191, "constant computational cost": 18360, "future research developing": 36761, "multilingual machine translation": 64980, "demonstrates significant performance": 23401, "nlp tasks propose": 66809, "models primarily focus": 63889, "tasks like code": 94819, "like code generation": 54110, "multiple programming languages": 65244, "extensive evaluations demonstrate": 33034, "language models specific": 50822, "lays solid foundation": 52785, "training language model": 98157, "incorporate external knowledge": 44667, "training data create": 97999, "knowledge retrieval augmentation": 48750, "play key role": 72346, "work investigate potential": 104148, "process paper examines": 75370, "development environments ides": 24639, "realworld applications existing": 79641, "applications existing benchmarks": 6472, "existing benchmarks predominantly": 31676, "capabilities multiturn interactions": 12013, "interactions address gap": 47043, "comprehensive benchmark designed": 17210, "avoid data leakage": 9198, "observe significant performance": 67597, "significant performance degradation": 87806, "encourage future research": 28789, "trained supervised finetuning": 97915, "available apache 20": 9010, "text generation text": 96274, "generation text generation": 38468, "memory bandwidth bottleneck": 59013, "generation based gpt2": 38048, "chat large language": 13381, "fundamentally change way": 36563, "agentbased modeling abm": 4156, "explored potential llms": 32784, "using llm agents": 101575, "conversational agent using": 19348, "prompt engineering develop": 76295, "original problem description": 68801, "human automatic evaluations": 42104, "available research community": 9086, "landscape natural language": 49113, "language processing paper": 51037, "attention heads transformer": 8317, "heads transformer models": 41150, "llms work contributes": 57053, "winograd schema challenge": 103842, "schema challenge wsc": 85515, "prompting method enhances": 76572, "novel dataset comprising": 67142, "evaluating generated questions": 30427, "llm achieves accuracy": 54939, "highlights critical need": 41651, "study offers insights": 91758, "novel method leverages": 67209, "llm developed openai": 55039, "indicate gpt4 turbo": 44999, "retrievalaugmented language models": 84049, "existing methods retrieve": 31766, "tasks involve complex": 94774, "involve complex multistep": 47824, "complex multistep reasoning": 16960, "prone human error": 76866, "novel framework called": 67165, "model outperforms baseline": 61180, "outperforms baseline models": 69016, "long story short": 57334, "models using gpt3": 64474, "using gpt3 base": 101484, "gpt3 base model": 39411, "sheds light complex": 87233, "language models developed": 49786, "trillion tokens english": 98885, "analyses experimental results": 5397, "open language model": 68076, "language models great": 49952, "language models fail": 49872, "different types prompts": 25243, "details training data": 24204, "training data training": 98059, "existing methods evaluating": 31759, "models face challenges": 62435, "prompt design model": 76275, "performance recently large": 71524, "models based transformer": 61906, "approaches leveraging llms": 7165, "downstream tasks existing": 26723, "code little known": 15387, "task experimental study": 94052, "finetuned gpt35 achieves": 34902, "gpt35 zeroshot fewshot": 39687, "llm agents large": 54952, "model llm agents": 61078, "users using natural": 101196, "natural language end": 65572, "multiturn interactions using": 65390, "models capable performing": 61961, "paper present method": 69834, "gpt4 smaller models": 40090, "using zeroshot prompting": 101861, "previous methods using": 74686, "different sizes gpt2": 25198, "holdout test set": 41896, "llm instruction tuning": 55132, "remarkable success raised": 81831, "success raised concerns": 92232, "concerns misuse aigenerated": 17691, "misuse aigenerated texts": 60237, "models based bert": 61898, "generated human experts": 37715, "generate instruction tuning": 37506, "proposed method significantly": 77231, "method significantly outperforms": 59426, "significantly outperforms baseline": 87987, "strong generalization capabilities": 91030, "leveraging chatgpt enhanced": 53829, "chatgpt serve viable": 14207, "serve viable alternative": 86784, "alternative human annotators": 5267, "potential replace human": 73240, "annotation using chatgpt": 5917, "using chatgpt recent": 101354, "recent research highlighted": 80339, "research highlighted potential": 82619, "text classification performance": 96117, "extended support additional": 32957, "crucial task natural": 20540, "taskoriented dialog systems": 94317, "novel lightweight framework": 67198, "achieves new sota": 2761, "llms significantly enhanced": 56806, "language processing artificial": 50968, "processing artificial intelligence": 75461, "text generation translation": 96277, "despite widespread use": 24145, "demonstrate stateoftheart performance": 23192, "stateoftheart performance various": 90446, "ethical standards ensuring": 30090, "data generation paper": 21268, "study highlights chatgpts": 91659, "existing conversational agents": 31689, "chatgpt largelanguage models": 13981, "produce inaccurate results": 75641, "mixtureofexperts language models": 60363, "precision f1 score": 73609, "highest f1 score": 41547, "computational memory requirements": 17469, "inference recent advancements": 45290, "providing practical insights": 77787, "current limitations discuss": 20714, "potential future directions": 73097, "future directions improve": 36716, "llm inference efficiency": 55127, "guardrails large language": 40707, "models llms integrated": 63254, "integrated daily lives": 46679, "identify mitigate risks": 42885, "external tools apis": 33206, "commonsense reasoning reading": 16239, "reasoning reading comprehension": 80003, "effectiveness instruction tuning": 27535, "improves performance llama": 44055, "including code model": 44304, "code model dataset": 15403, "exhibited large language": 31580, "russian chinese english": 84968, "user intent recognition": 100998, "models gpt4 turbo": 62621, "attack multimodal large": 8175, "attacks multimodal large": 8226, "various models including": 102491, "llava instructblip mplugowl2": 54910, "current stateoftheart methods": 20784, "stateoftheart methods code": 90392, "methods code available": 59564, "study explores application": 91625, "high degree consistency": 41405, "lottery ticket hypothesis": 57492, "graphenhanced large language": 40422, "propose novel technique": 77078, "novel technique called": 67265, "graphs natural language": 40445, "boost model performance": 11274, "task complexity increases": 93985, "language models semantic": 50789, "models specifically llama2": 64244, "model achieves superior": 60504, "underscore effectiveness finetuning": 99542, "demonstrates strong performance": 23411, "performance empirical evaluations": 71173, "language models autonomous": 49665, "language processing demonstrating": 50978, "paper introduces concept": 69771, "models llms popular": 63348, "regarding training data": 81072, "training data repeatedly": 98047, "concerns data contamination": 17682, "work conduct systematic": 104023, "using openais gpt35": 101664, "openais gpt35 gpt4": 68206, "models llms proven": 63368, "llms proven useful": 56608, "llms work propose": 57054, "effective training framework": 27382, "shown potential improving": 87512, "close performance gap": 14979, "text generation llm": 96253, "llms ability generalize": 55402, "generalization ability llms": 37244, "generation extensive experiments": 38162, "surpassing stateoftheart sota": 92975, "outstanding performance various": 69272, "performance various reasoning": 71697, "various reasoning tasks": 102552, "chatgpts performance task": 14442, "results inference accuracy": 83692, "sophisticated prompt engineering": 89293, "models llm gpt4": 62956, "user study comparing": 101050, "powered artificial intelligence": 73406, "recent transformerbased models": 80389, "models retrieval augmented": 64100, "task artificial intelligence": 93940, "artificial intelligence complex": 7631, "capture contextual information": 12350, "directly applying llms": 25486, "paper proposes methodology": 69909, "enhance reasoning abilities": 29208, "wide range benchmarks": 103658, "gsm8k math benchmarks": 40692, "gpt4 turbo claude21": 40137, "standard fewshot prompting": 90174, "fewshot prompting using": 34300, "fewshot prompting settings": 34299, "tasks recently large": 95020, "human software developers": 42369, "software development tasks": 88995, "chatgpt chatgpt performed": 13613, "work large language": 104158, "potential adverse effects": 72992, "extensive experiments validate": 33092, "project page available": 76049, "communication large language": 16270, "cloudbased large language": 15067, "tools various applications": 97481, "various applications models": 102352, "paper proposes simple": 69916, "simple effective mechanism": 88183, "protect user privacy": 77338, "conduct experiments tasks": 17870, "analysis tabular data": 5695, "tabular data analysis": 93705, "directly prompting llm": 25518, "work propose alternative": 104217, "sparsity large language": 89560, "natural approach reduce": 65546, "approach reduce cost": 7001, "inference existing methods": 45242, "existing methods focus": 31760, "introduce novel algorithm": 47466, "methods mainly focus": 59722, "like gpt llama": 54134, "achieves better tradeoff": 2722, "tasks outperforming stateoftheart": 94914, "model llm applications": 61079, "applications chatgpt powerful": 6427, "interactions prompt engineering": 47077, "increase user engagement": 44783, "users large language": 101132, "models survey large": 64311, "strong performance wide": 91057, "tasks release chatgpt": 95029, "release chatgpt november": 81350, "generalpurpose language understanding": 37350, "massive amounts text": 58446, "llms including popular": 56192, "evaluation metrics compare": 30677, "compare performance popular": 16484, "llms openais gpt4": 56462, "finetuning demonstrate effectiveness": 35045, "models diverse set": 62252, "instructions instruction finetuning": 46520, "instruction finetuning ift": 46330, "framework future research": 36145, "unified large language": 100030, "language model agent": 49327, "advancement paper presents": 3793, "extraction knowledge graph": 33306, "knowledge graph completion": 48591, "perform comprehensive evaluation": 70848, "aim shed light": 4736, "news social media": 66642, "news large language": 66632, "lack publicly available": 49039, "publicly available benchmark": 77965, "generation strategies artificial": 38430, "strategies experimental results": 90810, "reasoning ability generate": 79764, "previous work proposed": 74733, "stateoftheart neural network": 90423, "chatgpt family models": 13814, "accuracy large language": 2301, "study explores potential": 91628, "compared control group": 16522, "language models rlhf": 50776, "llama model significantly": 54781, "models llms great": 63214, "different llms gpt4": 25102, "gpt4 llama chat": 39959, "datasets large language": 22315, "models llms received": 63379, "received lot attention": 80148, "understanding generating human": 99744, "generating human languages": 37923, "improve language model": 43721, "model finetuned model": 60897, "finetuned model shows": 34940, "shows promising results": 87610, "different nlp tasks": 25128, "chatgpt emerged potential": 13742, "offering tailored assistance": 67812, "generative ai changing": 38534, "ai changing way": 4326, "generative ai enhance": 38540, "language model mllm": 49486, "viability large language": 102843, "issues data sparsity": 47984, "llms significant potential": 56801, "age generative ai": 4106, "answer large language": 6024, "llm called llama": 54992, "stack overflow using": 90105, "like gpt4 revolutionized": 54162, "gpt4 revolutionized natural": 40062, "training process results": 98243, "understanding underlying mechanisms": 99898, "improving radiology report": 44151, "analysis study demonstrates": 5688, "knowledge distillation method": 48513, "modeling large language": 61649, "artificial intelligence facilitated": 7632, "offering potential applications": 67798, "incorporating large language": 44708, "language models engineering": 49828, "underscore potential large": 99547, "language models addressing": 49628, "potential applications including": 73006, "case studies reveal": 12475, "reveal transformative potential": 84181, "transformative potential large": 98475, "case studies demonstrate": 12472, "language model techniques": 49555, "enhance performance reduce": 29198, "language models findings": 49883, "future artificial intelligence": 36699, "generation capabilities experiments": 38057, "gpt35 gpt4 respectively": 39626, "code base publicly": 15136, "base publicly available": 9422, "models llms using": 63503, "using massive amounts": 101610, "solely textual data": 89060, "additional training data": 3264, "understanding tasks paper": 99890, "paper investigate possibility": 69787, "llms improved performance": 56168, "addition study impact": 3212, "language models 128k": 49604, "models 128k context": 61705, "lightweight continual pretraining": 54036, "data continual pretraining": 21121, "common practice existing": 16160, "models llms typically": 63494, "downstream tasks given": 26729, "new information model": 66427, "models enabling use": 62315, "gpu memory requirements": 40265, "experiments llama2 mistral": 32242, "models prompt learning": 63914, "resulting suboptimal performance": 83446, "excessive computational cost": 31396, "distribution experimental results": 25939, "wide range datasets": 103661, "range datasets including": 79149, "including sentiment analysis": 44475, "sentiment analysis topic": 86598, "learning promptbased finetuning": 53361, "language models explored": 49862, "languages english german": 51265, "persona assigned chatgpt": 71873, "popular language models": 72635, "nexttoken probabilities computed": 66663, "llms recently gained": 56662, "results paper propose": 83757, "human llm evaluations": 42293, "precision recall assess": 73616, "evaluation framework large": 30609, "framework large language": 36187, "image generation text": 43045, "study reveals significant": 91820, "finetuned human feedback": 34905, "human feedback work": 42233, "challenges faced current": 13015, "faced current llms": 33460, "current llms generating": 20721, "llms generating diverse": 56060, "generative transformer models": 38725, "new benchmark designed": 66347, "demonstrating significant improvement": 23445, "contexts large language": 18910, "models llms deployed": 63095, "annotations reinforcement learning": 5949, "synthetic preference data": 93288, "research introduce novel": 82640, "using open source": 101658, "open source large": 68120, "source large language": 89384, "language model llama2": 49447, "power natural language": 73387, "research focuses developing": 82606, "language model provides": 49525, "low arithmetic intensity": 57501, "context address challenge": 18726, "popular models like": 72656, "language models fall": 49874, "gap introduce new": 36938, "gpt35 gpt4 llama2": 39614, "understanding ability llms": 99666, "models lms strong": 63541, "leads poor performance": 52903, "gsm8k math datasets": 40693, "reasoning knowledge graph": 79915, "paper aim improve": 69592, "improve reasoning ability": 43791, "reasoning ability large": 79766, "models llms knowledge": 63261, "llms knowledge graphs": 56264, "autonomous llmbased agent": 8937, "multihop reasoning process": 64922, "llm extensive experiments": 55075, "datasets code data": 22166, "data publicly released": 21529, "involves stepbystep reasoning": 47854, "inadequate answering multihop": 44197, "llms reasoning ability": 56645, "retrieval qa tasks": 84010, "capabilities various stateoftheart": 12130, "various stateoftheart llms": 102582, "including gpt4 gpt35": 44370, "challenge paper propose": 12915, "introduce new evaluation": 47456, "new evaluation benchmark": 66394, "experimental evaluation shows": 31997, "evaluation shows llms": 30783, "greater number parameters": 40513, "including gpt4 llama": 44371, "study emphasizes critical": 91595, "emphasizes critical role": 28290, "comprehensive evaluation benchmark": 17237, "llms perform better": 56506, "perform better tasks": 70827, "models highlighting importance": 62665, "enhanced performance fewshot": 29241, "research directions open": 82561, "defending language models": 22844, "natural language applications": 65555, "existing studies explore": 31826, "unexplored paper presents": 99967, "paper presents prompt": 69869, "natural language design": 65570, "data codes publicly": 21064, "codes publicly available": 15639, "llms shown strong": 56793, "shown strong performance": 87553, "including data contamination": 44317, "evaluate reasoning chain": 30274, "based observation llms": 9639, "potential risk data": 73249, "evaluate llms performance": 30223, "evaluate stateoftheart models": 30290, "llms demonstrated strong": 55769, "demonstrated strong performance": 23345, "capable llms like": 12250, "unlike previous methods": 100178, "outperform strong baselines": 68971, "used enhance performance": 100789, "performance llms practical": 71372, "llms practical applications": 56546, "fewer training samples": 34203, "outperform large language": 68946, "crosslingual knowledge transfer": 20422, "evaluate different llms": 30166, "comprehension generation tasks": 17167, "enhance multilingual capabilities": 29187, "safety alignment large": 85006, "model additional training": 60517, "language models safety": 50778, "models safety alignment": 64134, "synthetic data approach": 93259, "new approach generating": 66329, "data diverse domains": 21161, "training data augmented": 97992, "study investigate potential": 91699, "effective prompting strategy": 27352, "tasks relation extraction": 95026, "relation extraction event": 81242, "event argument extraction": 30916, "introduces innovative approach": 47522, "prior work focused": 74868, "guide large language": 40740, "language models align": 49641, "common european framework": 16139, "european framework reference": 30109, "framework reference languages": 36254, "reference languages cefr": 80934, "generation process effectively": 38339, "models produce better": 63901, "machine translation paper": 57755, "llms pretrained large": 56561, "t5 family models": 93628, "code quality gpt4": 15463, "comparative analysis gpt4": 16421, "different levels complexity": 25097, "increase success rate": 44778, "raised privacy concerns": 79069, "aim gain deeper": 4715, "gain deeper understanding": 36811, "valuable insights practitioners": 102164, "llms chatgpt various": 55616, "importance prompt engineering": 43471, "improve quality model": 43785, "quality model outputs": 78322, "propose novel attack": 77062, "prompts experimental results": 76714, "fixing security vulnerabilities": 35370, "security vulnerabilities large": 86047, "automated program repair": 8727, "significant research efforts": 87839, "various programming tasks": 102533, "investigate effectiveness llms": 47640, "bugs corresponding fixes": 11571, "gpt4 using fewshot": 40145, "fewshot learning finetuning": 34258, "llms data annotation": 55711, "using llms data": 101581, "future advancements critical": 36693, "language models activation": 49626, "recent efforts explored": 80248, "help llms achieve": 41264, "comparable model performance": 16383, "model performance paper": 61234, "performance paper introduces": 71460, "higher activation sparsity": 41487, "conduct extensive study": 17888, "study performance multilingual": 91771, "datasets results demonstrate": 22404, "instruction following capabilities": 46335, "superficial alignment hypothesis": 92622, "7b parameter model": 1300, "human annotation study": 42082, "labeled task data": 48914, "data highresource languages": 21294, "content existing evaluation": 18621, "existing evaluation metrics": 31710, "address ethical challenges": 3394, "realworld applications paper": 79644, "like large language": 54181, "bard large language": 9361, "capable generating text": 12241, "theoretical practical implications": 96745, "corpus large language": 19637, "remarkable potential various": 81810, "potential various domains": 73317, "exhibit significant performance": 31552, "specific capabilities llms": 89667, "corpus contains approximately": 19608, "performance llms especially": 71368, "large language modeldriven": 51548, "generation capabilities given": 38058, "widespread use generative": 103798, "basic natural language": 9882, "parameter language models": 70112, "efficient large language": 27786, "llms mobile devices": 56401, "establish strong baseline": 29978, "increase model size": 44767, "significant improvements compared": 87776, "capability small models": 12209, "llm like gpt4": 55157, "reliability large language": 81500, "responses fully supported": 83219, "methods bridge gap": 59557, "datasets extensive experiments": 22258, "model access human": 60478, "personas large language": 71932, "chatgpt results indicate": 14185, "growing concern safety": 40651, "models llms despite": 63097, "develop new benchmark": 24467, "code model data": 15402, "model data released": 60730, "limitation propose simple": 54290, "propose simple approach": 77110, "tokens encode information": 97193, "model achieve stateoftheart": 60484, "models llms general": 63182, "logical reasoning maths": 57270, "features texts generated": 34033, "texts generated llms": 96572, "models language understanding": 62849, "step understanding potential": 90662, "using chatgpt case": 101336, "case study results": 12495, "event extraction empirical": 30922, "potential medical applications": 73191, "extract adverse events": 33222, "falls short compared": 33800, "compared fully finetuned": 16549, "potential leveraging chatgpt": 73167, "significant advancement field": 87665, "analytical reasoning tasks": 5734, "understanding capabilities llms": 99682, "mistral zephyr models": 60224, "stateoftheart finetuned models": 90342, "performance levels comparable": 71355, "finetuned models findings": 34944, "understanding various aspects": 99905, "lack large annotated": 49030, "large annotated data": 51389, "llama vicuna mistral": 54806, "increase number parameters": 44769, "models llms usually": 63506, "llms training data": 56956, "faces significant challenges": 33469, "significant challenges paper": 87713, "challenges paper propose": 13090, "language models encode": 49825, "models llms retrieving": 63409, "understanding internal mechanisms": 99779, "llms probing tasks": 56576, "tasks leverage powerful": 94814, "powerful generative capability": 73438, "knowledge different layers": 48504, "space propose novel": 89462, "experiments using chatgpt": 32327, "using chatgpt llms": 101352, "leverage world knowledge": 53769, "models llms based": 62997, "models significantly outperform": 64200, "furthermore study highlights": 36663, "limited understanding llms": 54480, "understanding llms perform": 99804, "intellectual property ip": 46794, "data evaluate proposed": 21193, "benchmark experimental results": 10167, "foundation models present": 35961, "training data given": 98017, "following human instructions": 35677, "recent studies raised": 80363, "studies raised concerns": 91435, "fewshot scenarios propose": 34309, "scenarios propose novel": 85476, "incontext demonstrations using": 44561, "success rate asr": 92235, "parallel corpora remains": 70077, "comprehensive experiments representative": 17261, "experiments representative llms": 32285, "small subset neurons": 88733, "open source projects": 68126, "models structured knowledge": 64267, "demonstrated capabilities large": 23233, "stateoftheart sota model": 90484, "knowledge grounding skg": 48612, "establishes new sota": 29995, "data annotation pipeline": 20978, "achieved higher accuracy": 2632, "language models attention": 49655, "data case study": 21039, "used generate synthetic": 100810, "synthetic data training": 93269, "data training evaluating": 21702, "especially lowresource languages": 29899, "lowresource languages study": 57625, "investigate effectiveness using": 47641, "using various methods": 101841, "bestperforming llm gpt4": 10668, "llm gpt4 turbo": 55114, "evaluation prompting strategies": 30732, "prompting strategies large": 76614, "wide variety downstream": 103703, "outside training distribution": 69268, "parameters compare performance": 70185, "neural data router": 66224, "tasks require systematic": 95051, "metrics rouge bleu": 59966, "rouge bleu meteor": 84859, "use best performing": 100483, "empowering large language": 28506, "investigate potential large": 47685, "agents automate data": 4166, "consistent performance improvement": 18271, "direct code generation": 25416, "average pass rate": 9170, "expected calibration error": 31893, "models static analysis": 64256, "static analysis tasks": 90529, "represents paradigm shift": 82178, "opensource models llama": 68386, "study reveals llms": 91819, "tasks findings provide": 94639, "language model representations": 49530, "models available hugging": 61887, "models incorporating external": 62744, "llama display remarkable": 54740, "sequence labeling tasks": 86653, "token input sentence": 97137, "presents formidable challenge": 74139, "study introduces pioneering": 91689, "benchmark evaluate llms": 10151, "capability paper presents": 12195, "existing benchmarks fail": 31673, "benchmarks fail assess": 10338, "generation quality llms": 38373, "time large language": 96982, "language models quickly": 50709, "teaching large language": 95367, "training data available": 97993, "framework adapting llms": 36021, "demonstrate practical utility": 23154, "using data augmentation": 101397, "improve student learning": 43810, "student learning outcomes": 91258, "llms used augment": 56997, "reinforcement learning ai": 81141, "learning ai feedback": 53020, "ai feedback rlaif": 4398, "7b llama model": 1292, "outperforms existing stateoftheart": 69050, "language models measure": 50564, "supervised contrastive learning": 92701, "finetune pretrained models": 34852, "information retrieval survey": 45608, "challenges recent years": 13115, "recent years witnessed": 80443, "witnessed substantial increase": 103872, "processing nlp problems": 75536, "nlp tasks inspired": 66793, "apply pretrained transformer": 6670, "encoders like bert": 28741, "balancing effectiveness efficiency": 9317, "latest generative large": 52663, "llms specific tasks": 56846, "suggest directions future": 92360, "algorithms large language": 4975, "language models investigation": 50003, "paper seek examine": 69944, "llms understand execute": 56983, "llms notably gpt4": 56437, "evaluating llms code": 30451, "single forward pass": 88359, "desirable large language": 23992, "documentgrounded response generation": 26236, "open source language": 68118, "source language models": 89381, "improves response quality": 44074, "yields significant performance": 104674, "performance improvements zeroshot": 71303, "insights generative ai": 46097, "ai applications chatgpt": 4305, "applications chatgpt dalle": 6426, "deep generative models": 22751, "address question paper": 3481, "provide comprehensive review": 77430, "novel benchmark framework": 67121, "benchmark framework developed": 10175, "framework developed evaluate": 36096, "evaluate capability large": 30150, "based automatic evaluation": 9447, "creative writing tasks": 20264, "models llms chatgpt35": 63041, "additionally investigate impact": 3321, "work proposes novel": 104230, "novel approach leverages": 67102, "llms text classification": 56929, "text classification using": 96124, "systematic evaluation large": 93329, "generating programming code": 37957, "efficiency code generated": 27672, "model training testing": 61533, "reach similar performance": 79470, "similar performance compared": 88099, "performance compared using": 71092, "develop new evaluation": 24468, "new evaluation dataset": 66395, "propose novel evaluation": 77066, "llms code data": 55628, "model llm training": 61105, "human annotations proprietary": 42087, "generated synthetic data": 37792, "enhancing llm capabilities": 29343, "vast amounts publicly": 102668, "amounts publicly available": 5355, "raw sensor data": 79454, "stateoftheart sota llms": 90482, "computationally expensive finetuning": 17494, "models llms massive": 63303, "preliminary results suggest": 73876, "feedback reinforcement learning": 34131, "online learning platforms": 67993, "using case studies": 101328, "abstractive text summarization": 1952, "question generation tasks": 78676, "language models finetuned": 49885, "models llms study": 63466, "gpt35 gpt4 llama27b": 39615, "gpt4s superior performance": 40182, "capabilities smaller models": 12079, "compared larger counterparts": 16581, "surpasses baseline performance": 92925, "problems natural language": 75174, "semantics large language": 86387, "models achieved remarkable": 61769, "models llms help": 63218, "perform exploratory study": 70869, "study aims investigate": 91488, "investigate feasibility using": 47648, "feasibility using llm": 33949, "generate relevant accurate": 37574, "fall short humanlevel": 33787, "models like gpt35": 62922, "gpt35 achieve similar": 39574, "smaller models flant5": 88772, "yield comparable results": 104632, "ai technologies chatgpt": 4577, "remarkable progress recent": 81816, "extensive training datasets": 33138, "nonenglish language specifically": 66893, "research provides insights": 82740, "evaluation framework llms": 30612, "current evaluation methods": 20685, "code generation explanation": 15298, "evaluation framework called": 30608, "pretraining instruction finetuning": 74547, "instruction finetuning experimental": 46328, "finetuning experimental results": 35063, "model foundation model": 60912, "empirical results analysis": 28341, "resources publicly available": 83029, "human label variation": 42269, "significantly underperform compared": 88034, "play crucial role": 72336, "answer different types": 5998, "construct instruction tuning": 18424, "generate accurate faithful": 37371, "work underscores importance": 104299, "reasoning abilities model": 79759, "release dataset model": 81368, "generalization incontext learning": 37262, "paper try answer": 69982, "try answer question": 98973, "tasks maintaining comparable": 94846, "maintaining comparable performance": 57882, "boosting inference efficiency": 11289, "low compute utilization": 57508, "large batch sizes": 51397, "single a100 gpu": 88347, "work addresses challenges": 103976, "detailed error analysis": 24163, "significant advancements pretrained": 87674, "pretrained models large": 74412, "demonstrated remarkable language": 23320, "applications software engineering": 6576, "models llms possess": 63349, "transfer learning prompt": 98423, "learning prompt engineering": 53359, "demonstrated excellent performance": 23249, "using pretrained models": 101689, "models llms accurately": 62968, "based software engineering": 9720, "models llms involved": 63259, "datasets evaluation metrics": 22240, "evaluation metrics used": 30687, "existing approaches propose": 31657, "review aims provide": 84243, "fall short expectations": 33783, "models learn follow": 62887, "performance based findings": 71007, "finetuned llama27b model": 34926, "like chatgpt google": 54076, "google bard claude": 39134, "bard claude llama": 9352, "high computational costs": 41389, "leverages federated learning": 53786, "federated learning fl": 34054, "enhances model performance": 29288, "improved language comprehension": 43842, "exhibits good performance": 31613, "content large language": 18653, "propose alternative approach": 76931, "uses language models": 101234, "assess impact various": 7856, "conclude discussing potential": 17731, "event causality identification": 30918, "highresource languages leaving": 41808, "underexplored paper propose": 99449, "languages extensive experiments": 51276, "extensive experiments framework": 33072, "average f1 score": 9153, "examine capabilities chatgpt": 31096, "additionally experimental results": 3301, "shed light promising": 87221, "advanced ai tools": 3674, "tools like gpt4": 97438, "large artificial intelligence": 51391, "language models github": 49926, "models github copilot": 62576, "code code generated": 15152, "code generated ai": 15268, "language models response": 50759, "leveraging explainable ai": 53840, "explainable ai xai": 32446, "like chatgpt improve": 54084, "highlights importance prompt": 41655, "generative ai findings": 38542, "findings demonstrate potential": 34657, "models offer new": 63695, "llms prompt engineering": 56593, "davinci002 davinci003 gpt35turbo": 22488, "davinci003 gpt35turbo gpt4": 22492, "text generation prompted": 96262, "problem large language": 75034, "hallucination paper presents": 40846, "word problem mwp": 103916, "results extensive experiments": 83604, "learning reinforcement learning": 53381, "enhance models ability": 29185, "hallucination code data": 40827, "data evaluation benchmark": 21197, "models minimal human": 63618, "creation instruction data": 20242, "language models involves": 50004, "issue particularly pronounced": 47950, "llama 13b model": 54707, "llms different languages": 55800, "different languages paper": 25089, "openended question answering": 68263, "language question answering": 51076, "space large language": 89450, "bias gradient descent": 10847, "enumerative program synthesis": 29610, "models llms beginning": 63000, "code generation natural": 15317, "assistants github copilot": 8052, "chatgpt built large": 13582, "code humanauthored code": 15350, "recent advancements seen": 80192, "paper conducts comprehensive": 69651, "conducts comprehensive evaluation": 18005, "extensive knowledge base": 33111, "highlighting potential limitations": 41637, "large language multimodal": 52232, "language multimodal models": 50937, "using ehr data": 101426, "certain limitations including": 12766, "electronic health records": 27958, "health records ehrs": 41176, "language models proposed": 50698, "incorporating multimodal data": 44713, "data clinical notes": 21051, "utilizing deep neural": 102010, "neural network dnn": 66251, "inference language models": 45254, "language models approach": 49650, "llmbased systems large": 55361, "security privacy risks": 86029, "security privacy safety": 86030, "et al 2024": 30055, "paper present systematic": 69843, "llms perform task": 56509, "research question paper": 82746, "stateoftheart sota results": 90487, "information extraction using": 45476, "chatbased language models": 13394, "natural language paper": 65626, "language paper present": 50950, "input experimental results": 45896, "models llms demonstrating": 63094, "various tasks despite": 102594, "explores ability chatgpt": 32795, "contextually relevant information": 18978, "potential generative ai": 73109, "gaining deeper understanding": 36850, "understanding human cognition": 99761, "achieved unprecedented performance": 2685, "unprecedented performance various": 100228, "performance various applications": 71678, "like gpt4 handle": 54157, "variety question types": 102327, "training llms usually": 98182, "level playing field": 53676, "better random chance": 10776, "assess feasibility using": 7850, "feasibility using llms": 33950, "generate code explanations": 37394, "explanations generated chatgpt": 32494, "vision models fail": 102995, "accelerating llm inference": 2021, "keyvalue kv cache": 48364, "llm inference engine": 55128, "response generation using": 83138, "large language modelllm": 51549, "compared existing models": 16543, "models fewshot crosslingual": 62459, "fewshot crosslingual transfer": 34224, "language models lowresource": 50550, "models lowresource languages": 63559, "incontext learning user": 44652, "incontext learning effectively": 44592, "models typically trained": 64443, "trained predominantly english": 97890, "lowresource languages results": 57624, "despite considerable advancements": 24034, "work aims bridge": 103984, "importance data quality": 43446, "data quality quantity": 21531, "data synthetic data": 21678, "synthetic data build": 93261, "data diverse sources": 21162, "like gpt4 demonstrated": 54155, "task paper propose": 94178, "deployment low cost": 23608, "llms offers promising": 56446, "offers promising prospects": 67858, "prominent models like": 76105, "reduce computational costs": 80767, "video understanding tasks": 102890, "graph embeddings knowledge": 40380, "existing knowledge graph": 31730, "benchmark results indicate": 10243, "synthetic data model": 93267, "learning models using": 53286, "improve sample efficiency": 43800, "growing popularity generative": 40663, "particularly chatgpt sparked": 70438, "produced large language": 75681, "paper introduces innovative": 69773, "language model proposed": 49524, "immense potential ai": 43171, "models demonstrate strong": 62179, "demonstrate strong performance": 23196, "llm training using": 55298, "human evaluation quality": 42186, "feedback rlhf framework": 34137, "instruction data training": 46315, "models paving way": 63782, "paving way single": 70661, "bugs large language": 11574, "language models generated": 49915, "code empirical study": 15239, "models llms garnered": 63178, "llms garnered significant": 56031, "significant attention research": 87690, "attention research community": 8374, "standard evaluation metrics": 90172, "aims address issue": 4778, "correlation human judgments": 19773, "results popular llms": 83769, "llama alpaca vicuna": 54723, "focus large language": 35531, "tasks despite progress": 94535, "comprehensive trustworthiness evaluation": 17313, "challenge accurately assessing": 12852, "remains significant gap": 81699, "7billionparameter large language": 1308, "language models designed": 49777, "model demonstrates superior": 60749, "significant improvement compared": 87771, "open new avenues": 68090, "inference transformers emerged": 45319, "input sequence length": 45954, "sequence length batch": 86655, "length batch size": 53586, "pretrained llms llama": 74373, "groupedquery attention gqa": 40615, "era artificial intelligence": 29721, "chatgpt4 large language": 14382, "models rapid development": 63969, "applications different domains": 6451, "technical report explore": 95416, "enhance efficiency quality": 29157, "leverage power llms": 53753, "models llms marked": 63301, "llms marked significant": 56377, "marked significant milestone": 58388, "realm artificial intelligence": 79606, "artificial intelligence capabilities": 7628, "enhances performance compared": 29295, "achieves superior results": 2812, "errors large language": 29822, "openai november 2022": 68175, "llms particularly chatgpt": 56496, "remarkable conversational capabilities": 81767, "capabilities various domains": 12123, "mitigating risks associated": 60307, "models paper study": 63763, "problem multimodal large": 75049, "large language modelsmllms": 52231, "conduct systematic empirical": 17923, "jailbreak method named": 48096, "images experimental results": 43091, "achieves average attack": 2710, "average attack success": 9139, "gemini pro vision": 37068, "portuguese large language": 72730, "professional certification exams": 75757, "significant impact models": 87765, "impact models performance": 43235, "times cheaper gpt4": 97069, "scenarios large language": 85450, "tasks text generation": 95197, "evaluated llms gpt": 30347, "search engines like": 85871, "engines like google": 29045, "generation abstract level": 38006, "recent surge research": 80380, "github pull requests": 38844, "software development practices": 88992, "variety tasks including": 102336, "despite widespread adoption": 24144, "largely unexplored paper": 52424, "include code generation": 44230, "collaborative software development": 15846, "future research topic": 36776, "ai specifically large": 4556, "specifically large language": 89841, "source code code": 89347, "addressing gap introduce": 3538, "gap introduce novel": 36940, "finetuning llama2 models": 35129, "distributed training framework": 25928, "generative ai revolution": 38566, "advancement generative artificial": 3781, "gpt models chatgpt": 39214, "meet evolving needs": 58964, "based blooms taxonomy": 9456, "language model instead": 49433, "computational cost inference": 17445, "cost inference time": 19854, "model code data": 60661, "gap introduce zeroshot": 36941, "achieved promising results": 2653, "potential pathways future": 73218, "approach language models": 6920, "current alignment techniques": 20659, "models safety training": 64135, "demonstrating significant improvements": 23446, "including generative pretrained": 44353, "transformer gpt series": 98512, "approach using gpt4": 7081, "texttoimage diffusion models": 96622, "model texttoimage generation": 61510, "lack systematic studies": 49060, "generated stable diffusion": 37786, "chatgpt diffusion models": 13718, "protection methods proposed": 77343, "opensourced facilitate future": 68422, "models llms tested": 63478, "paper establish benchmark": 69693, "llms specifically context": 56850, "employ distinct evaluation": 28395, "fewshot learning strategies": 34270, "performance chainofthought cot": 71038, "understand produce language": 99644, "robust language model": 84664, "curate training dataset": 20625, "introduce automated data": 47397, "dataset trained model": 22109, "stronger llm model": 91090, "capabilities llm experiments": 11985, "like gpt35 llama2": 54147, "high performance computing": 41436, "model llm inference": 61097, "guide autoregressive generation": 40728, "efficiency proposed method": 27711, "natural language existing": 65574, "issues propose data": 48012, "model shows significant": 61403, "robust generalization ability": 84659, "generalization ability different": 37243, "explore potential using": 32729, "language models provides": 50703, "social media news": 88888, "future work large": 36797, "models efficient finetuning": 62283, "downstream tasks requires": 26745, "main objective study": 57833, "address limitations observed": 3451, "model finetuned large": 60892, "instructionfinetuned large language": 46436, "research political science": 82713, "language models accuracy": 49613, "nlp tasks deployment": 66777, "increased number parameters": 44798, "approach significantly reduces": 7026, "llms experiments realworld": 55927, "experiments realworld datasets": 32281, "vast array applications": 102675, "multiple llm models": 65218, "intelligence ai tool": 46828, "practical applications chatgpt": 73496, "potential benefits limitations": 73040, "harness power chatgpt": 41072, "artificial intelligence natural": 7655, "text generation growing": 96244, "computer science software": 17533, "science software engineering": 85611, "emergence numerous large": 28180, "numerous large language": 67429, "models finetuning llms": 62488, "properties large language": 76901, "zeroshot settings work": 104873, "present comprehensive analysis": 73954, "small medium large": 88700, "models significantly better": 64198, "counter speech generation": 19986, "llms increasingly prevalent": 56210, "increasingly prevalent various": 44902, "finetune pretrained llms": 34851, "llms align human": 55465, "align human values": 4993, "reveals significant vulnerability": 84225, "llms jailbreaking attacks": 56256, "tasks realworld applications": 95010, "realworld applications require": 79645, "data augmentation strategy": 21008, "llm generate synthetic": 55099, "model construction japanese": 60706, "financial benchmark large": 34595, "biomedical text mining": 11107, "offers insights potential": 67843, "various types reasoning": 102620, "language models explore": 49860, "variety prompt designs": 102324, "abstract meaning representation": 1931, "enhance user experience": 29220, "analyses demonstrate effectiveness": 5394, "entity recognition models": 29574, "processing nlp practitioners": 75535, "synthetic data gpt4": 93265, "dataset used finetune": 22117, "capable generating highly": 12239, "hidden markov models": 41347, "ensure responsible use": 29460, "achieve best performance": 2483, "plays central role": 72375, "llms different sizes": 55801, "documents using large": 26271, "findings suggest potential": 34761, "potential llms enhance": 73177, "specific prompt design": 89739, "models llms generating": 63185, "rapid development artificial": 79311, "artificial intelligence technology": 7664, "llms possess capability": 56537, "knowledge answer questions": 48423, "research topic research": 82808, "teaching using chatgpt": 95378, "using chatgpt control": 101338, "based research findings": 9700, "gpt35 gpt4 performance": 39623, "evaluates performance chatgpt": 30389, "gpt35 gpt4 prompt": 39624, "gpt4 prompt engineering": 40031, "statistically significant difference": 90563, "average accuracy rate": 9136, "chatgpt similar large": 14242, "similar large language": 88081, "underscores potential llms": 99574, "llms ability assist": 55400, "human evaluations develop": 42197, "potential llms enhancing": 73178, "marking significant step": 58403, "significant step forward": 87855, "chatgpt gpt4 sparked": 13913, "pretraining finetuning stages": 74537, "using supervised finetuning": 101799, "online reinforcement learning": 68002, "different training stages": 25234, "semantically similar examples": 86372, "examples prompt improve": 31272, "responsible ai development": 83340, "training data evaluate": 98005, "gpt4 zeroshot setting": 40160, "applications prior work": 6546, "language models billions": 49681, "models billions parameters": 61936, "fully explored paper": 36450, "adaptation lora technique": 3086, "conducted experiments evaluate": 17958, "experiments evaluate performance": 32188, "size model performance": 88492, "challenges paper introduces": 13088, "stable diffusion models": 90093, "code generation understanding": 15342, "findings propose novel": 34716, "novel llmbased multiagent": 67203, "gpt35 gpt4 claude2": 39610, "significantly outperforms baselines": 87989, "direct application gpt4": 25414, "study address gap": 91471, "introduce novel dataset": 47468, "conversational ai model": 19355, "new avenues improving": 66340, "study introduces new": 91686, "capable addressing diverse": 12221, "addressing diverse range": 3536, "domainspecific knowledge essential": 26631, "address issue previous": 3429, "end present novel": 28832, "novel framework named": 67171, "comprehension reasoning capabilities": 17182, "experiments conducted public": 32139, "outperforms existing approaches": 69043, "benchmarks including truthfulqa": 10360, "llms generate content": 56047, "domains use gpt4": 26605, "multistep reasoning process": 65340, "search results furthermore": 85892, "demonstrate llm agents": 23119, "llm agents achieve": 54949, "models generally achieve": 62541, "retrieval using llms": 84037, "users information needs": 101119, "methods generating multiple": 59662, "models llms understanding": 63497, "generating appropriate response": 37865, "text generated models": 96230, "significant challenge addressing": 87704, "explored possibility using": 32781, "possibility using llms": 72887, "using single llm": 101769, "text framework incorporates": 96217, "experimental results framework": 32041, "correlation human evaluation": 19772, "improves efficiency text": 44021, "llms gpt4 gemini": 56101, "alleviate issue propose": 5134, "various experiments demonstrate": 102427, "experiments demonstrate proposed": 32163, "models llms constitute": 63048, "learning exploratory study": 53151, "language models factual": 49871, "evaluated various language": 30370, "using neural language models": 101636, "neural language models nlms": 66232, "using pretrained language models": 101687, "pretrained language models lms": 74327, "language models lms various": 50547, "models lms various natural": 63547, "lms various natural language": 57185, "various natural language processing": 102497, "natural language processing tasks": 65700, "neural machine translation nmt": 66238, "language models large language": 50026, "models large language models": 62855, "largescale pretrained language models": 52559, "models achieved stateoftheart results": 61772, "large language models recently": 52139, "language models recently large": 50738, "models recently large language": 64022, "recently large language models": 80515, "large language models gpt2": 51711, "language models gpt2 shown": 49935, "nlp tasks text classification": 66816, "text classification sentiment analysis": 96121, "using large language model": 101542, "language models machine learning": 50554, "generative pretrained language model": 38684, "pretrained language model gpt2": 74287, "pretrained language models paper": 74333, "language models paper presents": 50634, "paper presents empirical study": 69859, "pretrained language models plms": 74337, "texttotext transfer transformer t5": 96650, "common sense world knowledge": 16174, "neural language models lms": 66231, "language models lms bert": 50524, "variety language understanding tasks": 102304, "covid19 open research dataset": 20105, "generation using pretrained language": 38501, "pretrained language models large": 74318, "language models large scale": 50032, "various natural language tasks": 102501, "improves downstream task performance": 44019, "knowledge pretrained language models": 48707, "neural language models trained": 66233, "neural network language models": 66255, "propose new method called": 77050, "fields natural language processing": 34437, "natural language processing nlp": 65663, "language processing nlp information": 51009, "processing nlp information retrieval": 75524, "nlp information retrieval ir": 66736, "deep learning models like": 22772, "recurrent neural networks rnns": 80728, "bidirectional encoder representations transformers": 10973, "encoder representations transformers bert": 28707, "short answer grading asag": 87273, "measuring massive multitask language": 58777, "massive multitask language understanding": 58461, "current limitations language models": 20716, "language models lms demonstrated": 50526, "models lms demonstrated impressive": 63526, "demonstrated impressive abilities generating": 23270, "paper propose novel approach": 69894, "african american vernacular english": 4095, "based generative pretrained language": 9549, "evaluations model outperforms existing": 30868, "pretrained neural language models": 74437, "language models bert gpt2": 49672, "language models bert t5": 49676, "paper presents novel approach": 69866, "chinese pretrained language model": 14573, "language model pretrained language": 49515, "model pretrained language models": 61269, "various downstream nlp tasks": 102417, "achieves strong performance nlp": 2804, "application programming interfaces apis": 6382, "outperforms stateoftheart techniques terms": 69124, "making pretrained language models": 58132, "pretrained language models better": 74300, "brown et al 2020": 11539, "et al 2020 achieves": 30047, "language models small number": 50814, "performance range nlp tasks": 71515, "training largescale language models": 98173, "neural language model gpt2": 66228, "vision supporting writers ai": 103007, "impact large language models": 43221, "capabilities limitations large language": 11979, "limitations large language models": 54343, "widespread use large language": 103804, "use large language models": 100597, "large language models provide": 52119, "large models like bert": 52261, "models like bert gpt3": 62905, "communication major bottleneck especially": 16274, "major bottleneck especially commodity": 57923, "bottleneck especially commodity systems": 11324, "recent progress natural language": 80322, "progress natural language processing": 75998, "address problem propose novel": 3474, "benchmarks weakly supervised training": 10431, "weakly supervised training paradigm": 103449, "programming large language models": 75918, "large language models fewshot": 51684, "large generative language models": 51441, "tasks provided natural language": 94986, "domains natural language processing": 26558, "large pretrained language model": 52308, "large language models shown": 52160, "language models shown promising": 50801, "models shown promising results": 64189, "radford et al 2019": 79017, "new paradigm natural language": 66476, "paradigm natural language processing": 70044, "natural language understanding generation": 65750, "largescale autoregressive language models": 52492, "nlp tasks experimental results": 66784, "tasks experimental results demonstrate": 94610, "experimental results demonstrate superior": 32036, "tasks general language understanding": 94663, "pretrained language models like": 74322, "language models like gpt3": 50048, "models like gpt3 bert": 62920, "play central role human": 72332, "generative pretrained transformer gpt2": 38697, "pretrained transformer gpt2 model": 74472, "recent success pretrained language": 80375, "success pretrained language models": 92229, "data adopt curriculum learning": 20953, "approach based pretrained language": 6754, "massive pretrained language models": 58466, "language models lms t5": 50544, "largely underexplored paper present": 52419, "current pretrained language models": 20761, "large pretrained language models": 52309, "pretrained language models recent": 74347, "language models recent years": 50734, "size pretrained language models": 88516, "downstream tasks experimental results": 26725, "gpt3 autoregressive language model": 39407, "propose new framework called": 77046, "parameter count training data": 70097, "tasks require reasoning work": 95050, "based large language model": 9595, "deep learning recommendation models": 22775, "batch size learning rate": 9898, "wide range downstream tasks": 103664, "deep learning transfer learning": 22780, "improve performance pretrained language": 43760, "performance pretrained language models": 71485, "tasks conduct extensive experiments": 94480, "language models language models": 50022, "largescale language models lms": 52540, "language models lms trained": 50545, "transformerbased pretrained language models": 98591, "language models large pretrained": 50030, "models large pretrained language": 62866, "code trained models available": 15547, "performance improves model size": 71306, "pretrained language models shown": 74350, "language models shown promise": 50799, "large language models used": 52214, "training corpora language models": 97978, "pretrained language models ptlms": 74346, "neural machine translation systems": 66240, "pretrained language models generate": 74312, "attention natural language processing": 8348, "language processing nlp domain": 51005, "general language understanding evaluation": 37150, "language models pretrained language": 50674, "models pretrained language models": 63869, "wide range natural language": 103672, "range natural language processing": 79180, "language processing nlp tasks": 51025, "adapting pretrained language models": 3139, "language understanding generation tasks": 51168, "models like gpt3 t5": 62921, "large language models bert": 51584, "language models bert gpt3": 49673, "tasks sentiment analysis product": 95093, "fake news detection using": 33761, "bert roberta gpt2 dozens": 10552, "roberta gpt2 dozens datasets": 84602, "modern natural language processing": 64613, "language models generate highquality": 49909, "models generate highquality text": 62550, "data augmentation natural language": 21006, "research natural language processing": 82677, "language processing nlp witnessed": 51035, "contextualized word embeddings cwes": 18968, "paper presents comparative study": 69852, "experimental results proposed techniques": 32063, "large language models meet": 52056, "pretrained language models gpt3": 74314, "language model capable generating": 49359, "generating code natural language": 37875, "large language models potential": 52104, "large language models understand": 52211, "suggests large language models": 92440, "code data publicly available": 15199, "outperforms models comparable size": 69085, "training large language models": 98163, "large language models new": 52078, "make code models publicly": 57975, "code models publicly available": 15414, "significant progress natural language": 87827, "achieve strong results incontext": 2596, "strong results incontext learning": 91070, "computing resources paper propose": 17576, "language models trained code": 50872, "code large language models": 15376, "large language models perform": 52100, "tasks map natural language": 94853, "adaptation pretrained language models": 3093, "remarkable success large language": 81825, "success large language models": 92213, "large language models driven": 51645, "frozen pretrained language model": 36410, "largescale generative language models": 52519, "multilingual generative language models": 64962, "capabilities wide range tasks": 12139, "artificial intelligence ai technologies": 7620, "implications large language models": 43391, "learning pretrained language models": 53342, "language models increasing scale": 49986, "generalpurpose pretrained language models": 37364, "pretrained generalpurpose language models": 74265, "language models achieve stateoftheart": 49617, "language models natural language": 50597, "finetuning reinforcement learning rl": 35220, "promptbased learning large language": 76465, "learning large language models": 53239, "large language models demonstrate": 51628, "gpt3 brown et al": 39419, "t0 sanh et al": 93610, "large transformer language models": 52355, "advent advanced language models": 3953, "output large language models": 69167, "large language models produce": 52115, "evaluating natural language processing": 30467, "natural language processing models": 65661, "machine learning ml model": 57705, "tasks using zeroshot fewshot": 95237, "using zeroshot fewshot learning": 101859, "potential large language models": 73156, "large language models capture": 51591, "generative models natural language": 38667, "failures large language models": 33721, "large language models human": 51723, "biases large language models": 10935, "large language models generate": 51700, "finetuning pretrained language models": 35192, "language models follow instructions": 49894, "example large language models": 31166, "using reinforcement learning human": 101734, "reinforcement learning human feedback": 81153, "recent work shown large": 80410, "work shown large language": 104272, "shown large language models": 87496, "large language models surprisingly": 52185, "prompting large language models": 76559, "large language models providing": 52121, "providing natural language instructions": 77776, "performance large language models": 71340, "large language models zeroshot": 52226, "instructions large language models": 46527, "natural language generation nlg": 65588, "data source code available": 21639, "language models demonstrated impressive": 49772, "demonstrated impressive ability generate": 23272, "impressive ability generate code": 43577, "graph convolutional neural network": 40369, "accuracy code data available": 2221, "language models lms recently": 50538, "models lms recently shown": 63538, "chen et al 2021": 14513, "language model outperforms gpt2": 49499, "gpt2 radford et al": 39340, "et al 2019 gpt3": 30044, "al 2019 gpt3 brown": 4866, "2019 gpt3 brown et": 528, "generalization natural language processing": 37271, "language processing nlp algorithms": 50999, "transformerbased language models lms": 98563, "language models lms gpt3": 50529, "large language models scale": 52154, "models hundreds billions parameters": 62690, "training large neural networks": 98169, "shown achieve remarkable performance": 87438, "achieve remarkable performance variety": 2568, "remarkable performance variety natural": 81798, "performance variety natural language": 71671, "variety natural language tasks": 102314, "pathways language model palm": 70598, "related large language models": 81204, "language models lms shown": 50541, "language generation nlg tasks": 49256, "transformerbased natural language processing": 98586, "language models bert roberta": 49674, "models bert roberta gpt3": 61923, "domain natural language processing": 26421, "leveraging pretrained language models": 53891, "recent advances natural language": 80209, "advances natural language processing": 3890, "language models paper introduces": 50632, "colossal clean crawled corpus": 15937, "despite order magnitude smaller": 24090, "automated natural language generation": 8722, "natural language generation metrics": 65586, "large language models present": 52110, "incontext learning incontext learning": 44612, "incontext learning performance downstream": 44635, "pretrained language models perform": 74335, "using natural language prompts": 101632, "masked language modeling mlm": 58430, "language processing nlp systems": 51023, "fewshot incontext learning icl": 34244, "large language models llms": 51776, "translation summarization question answering": 98742, "natural language task descriptions": 65739, "descriptions large language models": 23714, "language models able perform": 49611, "incontext learning language models": 44620, "reinforcement learning rl frequently": 81164, "finetuning large language models": 35112, "large language models lms": 52046, "stateoftheart performance natural language": 90437, "performance natural language processing": 71420, "field natural language processing": 34395, "pretrained language models gpt2": 74313, "pretrained language models bert": 74297, "language models including gpt3": 49981, "pretrained language models achieve": 74295, "prompt generation large language": 76331, "generation large language models": 38229, "large language models code": 51603, "language models llms code": 50130, "achieve significant performance gains": 2578, "release code data trained": 81354, "recent large language model": 80279, "large language model using": 51546, "current large language models": 20707, "largescale language models like": 52535, "pretrained transformerbased language models": 74482, "widely used natural language": 103743, "natural language understanding nlu": 65756, "language understanding nlu natural": 51178, "understanding nlu natural language": 99827, "nlu natural language generation": 66837, "language models proven effective": 50700, "synthesis large language models": 93213, "large language models codex": 51607, "codex large language model": 15672, "large language model llm": 51490, "tasks summarization machine translation": 95160, "powered large language models": 73415, "debiasing large language models": 22539, "large language models address": 51560, "artificial intelligence large language": 7648, "intelligence large language models": 46868, "large language models openais": 52085, "language models openais codex": 50618, "problems expressed natural language": 75142, "applying large language models": 6689, "personally identifiable information pii": 71927, "harness power large language": 41074, "power large language models": 73376, "large language models using": 52215, "language models using large": 50899, "models using large language": 64476, "using large language models": 101545, "large language models simulate": 52166, "language models including chatgpt": 49978, "models including chatgpt gpt4": 62724, "using language models knowledge": 101538, "language models knowledge base": 50012, "language models lms proven": 50537, "large neural language models": 52280, "train large language model": 97750, "advances large language models": 3881, "large language models work": 52223, "benefit using large language": 10460, "llms 100 billion parameters": 55390, "finetuning methods large language": 35142, "methods large language models": 59705, "large language model gpt3": 51480, "lamda large language models": 49097, "language understanding nlu tasks": 51180, "transformers shown remarkable success": 98636, "used natural language processing": 100860, "models generative pretrained transformer": 62569, "generative pretrained transformer gpt": 38693, "high bandwidth memory hbm": 41381, "recent large language models": 80280, "language models llms demonstrated": 50145, "models llms demonstrated remarkable": 63081, "models llms demonstrated impressive": 63069, "llms demonstrated impressive capabilities": 55742, "language models llms gpt3": 50251, "larger language models llms": 52445, "parameters large language models": 70239, "large language models improving": 51729, "language models fewshot learners": 49878, "large language models gpt3": 51712, "language models gpt3 brown": 49937, "models gpt3 brown et": 62595, "xglm lin et al": 104552, "model weights publicly accessible": 61591, "remains underexplored paper present": 81715, "recent success large language": 80372, "large language models text": 52197, "language models text generation": 50864, "large language models large": 51751, "language models llms shown": 50439, "generation prompting large language": 38355, "large language models case": 51592, "language models case study": 49697, "prompting pretrained language models": 76591, "generation pretrained language models": 38329, "language models code fewshot": 49719, "employ large language models": 28403, "reasoning tasks natural language": 80061, "tasks natural language tasks": 94885, "knowledge largescale language models": 48654, "largescale language models llms": 52537, "existing text augmentation methods": 31838, "reliable large language models": 81522, "language models llms impressive": 50280, "language model gpt3 test": 49418, "evaluation large language models": 30649, "questions large language models": 78882, "leveraging large language models": 53864, "large language models multiple": 52072, "language models multiple choice": 50594, "multiple choice question answering": 65155, "question answering large language": 78606, "answering large language models": 6120, "language models llms like": 50318, "models llms like gpt3": 63286, "choice question answering mcqa": 14590, "question answering mcqa tasks": 78614, "multiple choice symbol binding": 65159, "choice symbol binding mcsb": 14595, "large language models llm": 51766, "revolutionized natural language processing": 84350, "natural language processing recent": 65695, "downstream language understanding tasks": 26698, "language models conduct study": 49743, "improve performance language models": 43752, "problems using natural language": 75218, "automatically generating source code": 8882, "generating source code natural": 37977, "source code natural language": 89356, "natural language problem descriptions": 65630, "multiple natural language tasks": 65229, "zeroshot performance unseen tasks": 104843, "outperforms large language models": 69073, "generated large language models": 37730, "language models better understand": 49679, "large language models replace": 52142, "improve large language models": 43725, "large language models propose": 52117, "openaccess multilingual language model": 68139, "language model large language": 49440, "model large language models": 61049, "achieves competitive performance wide": 2736, "model flops utilization mfu": 60904, "large language models controllable": 51620, "language models llms led": 50315, "breakthroughs natural language processing": 11409, "language models llms chatgpt": 50105, "models llms chatgpt gpt4": 63024, "llms chatgpt gpt4 demonstrated": 55598, "reveal substantial room improvement": 84178, "language models llms generate": 50240, "generative language models shown": 38632, "models shown great performance": 64180, "shown great performance tasks": 87465, "improve performance various nlp": 43769, "performance various nlp tasks": 71693, "language models transformerbased large": 50885, "models transformerbased large language": 64426, "transformerbased large language models": 98568, "language models llms provide": 50395, "pretrained large language model": 74360, "language model llm based": 49454, "model llm based transformer": 61084, "language processing nlp community": 51002, "pretrained language models natural": 74330, "natural language inference large": 65601, "pretrained language models powerful": 74345, "natural language inference nli": 65602, "landscape large language models": 49110, "pretrained code generation models": 74244, "specifically propose novel approach": 89866, "propose novel approach named": 77061, "knowledge large language models": 48649, "language models llms trained": 50487, "using masked language modeling": 101608, "knowledge generative language models": 48585, "popular pretrained language models": 72673, "pretrained language models models": 74329, "large language models chatgpt": 51595, "text generation tools like": 96276, "models recent large language": 64002, "experimental results method significantly": 32053, "language models shown perform": 50798, "ability large language model": 1696, "large language model incontext": 51484, "billion parameter language model": 11021, "indicate large language models": 45003, "capabilities pretrained language models": 12048, "models orders magnitude larger": 63730, "symbolic knowledge distillation west": 93126, "knowledge distillation west et": 48520, "distillation west et al": 25832, "approaches rely vast amounts": 7197, "current language models lms": 20704, "knowledge base question answering": 48440, "base question answering kbqa": 9425, "stateoftheart pretrained language models": 90455, "language models lms like": 50532, "models lms like gpt3": 63532, "models code generation models": 62017, "code generation paper propose": 15320, "train machine learning models": 97759, "language model developed openai": 49378, "performance wide range nlp": 71715, "wide range nlp tasks": 103676, "analysis aim provide insight": 5431, "aim provide insight potential": 4729, "language models llms surprisingly": 50477, "code data prompts available": 15196, "automatic metrics human evaluation": 8808, "natural language generation pretrained": 65593, "language generation pretrained language": 49260, "successful natural language generation": 92265, "transformer models bert roberta": 98531, "models achieve high performance": 61758, "large language models trained": 52204, "work shown finetuning large": 104268, "finetuning large pretrained language": 35116, "pretrained language models collection": 74303, "language models collection tasks": 49728, "models collection tasks described": 62034, "collection tasks described instructions": 15910, "pretrained language models parameters": 74334, "pretrained language models study": 74352, "future large language models": 36737, "large language models detecting": 51636, "suggest large language models": 92376, "augmented large language models": 8580, "large generative ai models": 51438, "large language models identify": 51724, "prompting large language model": 76557, "large language model machine": 51515, "language model machine translation": 49482, "machine translation case study": 57743, "attention academic industrial communities": 8282, "impacts large language models": 43283, "models llms like chatgpt": 63272, "dataset human chatgpt comparison": 21967, "human chatgpt comparison corpus": 42121, "chatgpt comparison corpus hc3": 13636, "samples large language models": 85128, "language models llms computationally": 50133, "work paper propose novel": 104197, "datasets experiment results proposed": 22250, "pretrained language generation models": 74281, "prediction large language models": 73700, "large language models future": 51695, "language model llm generate": 49463, "advancements natural language processing": 3847, "large language model chatgpt": 51465, "understanding effectiveness large language": 99723, "effectiveness large language models": 27543, "performance various natural language": 71689, "tasks question answering summarization": 94996, "summarization large language models": 92540, "language models llms used": 50503, "instructgpt large language model": 46293, "practical applications large language": 73499, "applications large language models": 6511, "language models llms significantly": 50455, "demonstrated superior performance generating": 23351, "large language models realworld": 52130, "language model code codex": 49363, "skill large language models": 88585, "best performing models achieved": 10627, "performing models achieved accuracy": 71785, "large language models predict": 52108, "stateoftheart large language models": 90366, "large language models unlock": 52213, "potential using large language": 73306, "pretrained language models llms": 74324, "data selection language models": 21608, "models shown great potential": 64181, "generative artificial intelligence ai": 38593, "artificial intelligence ai enabled": 7601, "make code publicly available": 57978, "artificial intelligence ai technology": 7621, "language models llms codex": 50131, "hold great promise enhancing": 41885, "great promise enhancing programming": 40489, "promise enhancing programming education": 76120, "language models empirical study": 49820, "models natural language processing": 63657, "language models plms shown": 50656, "models plms shown promising": 63825, "instruction tuning incontext learning": 46390, "challenges natural language processing": 13077, "natural language processing task": 65699, "scale large language models": 85276, "models llms demonstrated ability": 63063, "variety natural language processing": 102311, "chatgpt drawn great deal": 13731, "drawn great deal attention": 26823, "representative task categories extensive": 82158, "task categories extensive empirical": 93967, "extensive empirical studies demonstrate": 33022, "translation translating natural language": 98753, "gained attention recent years": 36822, "paper provides contributions research": 69924, "language models like bert": 50042, "models like bert gpt": 62903, "fusion large language models": 36682, "natural language processing remains": 65696, "automatic speech recognition asr": 8829, "chat generative pretrained transformer": 13371, "generative pretrained transformer chatgpt": 38691, "wellknown natural language processing": 103599, "language models finetuning language": 49887, "largescale language models gpt3": 52534, "blackbox large language models": 11137, "language models llms new": 50346, "generative ai models chatgpt": 38556, "artificial intelligence ai models": 7608, "guiding large language models": 40782, "language models llms specific": 50463, "language models plms t5": 50659, "paper conduct thorough evaluation": 69648, "success natural language processing": 92223, "opens new avenues research": 68297, "widespread adoption large language": 103780, "adoption large language models": 3642, "language models chatgpt bard": 49704, "generative large language models": 38637, "language models llms introduce": 50305, "improving large language models": 44135, "large language models external": 51679, "feedback large language models": 34100, "models llms chatgpt able": 63010, "llms chatgpt able generate": 55577, "chatgpt able generate humanlike": 13479, "able generate humanlike fluent": 1854, "generate humanlike fluent responses": 37490, "large language models like": 51758, "generative pretrained language models": 38685, "search engine used retrieve": 85867, "commercially available large language": 16105, "math word problems mwps": 58565, "various domains including healthcare": 102409, "size large language models": 88481, "receptance weighted key value": 80569, "weighted key value rwkv": 103538, "release models research community": 81383, "existing large language models": 31737, "trained large language models": 97859, "large language models help": 51722, "models demonstrated impressive performance": 62188, "demonstrated impressive performance various": 23282, "impressive performance various natural": 43630, "artificial intelligence ai tools": 7623, "adoption generative ai tools": 3639, "generative ai tools trained": 38583, "pretrained language models plm": 74336, "prompts large language models": 76766, "language models trained large": 50874, "fundamental task natural language": 36556, "task natural language processing": 94154, "emergence large language models": 28170, "models llms chatgpt provides": 63033, "llms chatgpt provides opportunity": 55608, "machine translation text summarization": 57762, "large openscience openaccess multilingual": 52299, "capabilities natural language generation": 12016, "natural language generation tasks": 65597, "artificial intelligence generated content": 7639, "intelligence generated content aigc": 46855, "advanced large language models": 3710, "language models like chatgpt": 50043, "critical cooling rates metallic": 20317, "cooling rates metallic glasses": 19488, "pretrained large language models": 74362, "large language models led": 51756, "model works phases phase": 61599, "experimental results demonstrate effectiveness": 32027, "results demonstrate effectiveness proposed": 83543, "demonstrate effectiveness proposed framework": 23065, "support vector machines svms": 92844, "compare large language models": 16465, "capable performing various tasks": 12255, "interface using natural language": 47182, "performance chatgpt large language": 71047, "chatgpt large language model": 13975, "natural language processing large": 65655, "language processing large language": 50989, "processing large language models": 75497, "language models llms rely": 50416, "answer set programming asp": 6061, "study large language models": 91725, "large language models investigate": 51744, "language models llms generative": 50244, "models llms generative pretrained": 63190, "generative pretrained transformers gpts": 38705, "attention exceptional natural language": 8305, "exceptional natural language processing": 31374, "natural language processing capabilities": 65642, "performance natural language understanding": 71423, "models ability generate humanlike": 61731, "ability generate humanlike responses": 1661, "language models pretrained large": 50676, "reinforcement learning large language": 81158, "language models llms increasingly": 50292, "models llms increasingly used": 63249, "reasoning large language models": 79926, "language models llms emerging": 50183, "large language models simple": 52165, "augmenting large language models": 8599, "large language models conversational": 51621, "conversational large language models": 19379, "language models llms open": 50356, "models shown impressive performance": 64183, "shown impressive performance natural": 87482, "impressive performance natural language": 43622, "language processing tasks language": 51051, "tasks language understanding reasoning": 94800, "llms including chatgpt gpt4": 56172, "experiments gpt4 artificial intelligence": 32211, "gpt4 artificial intelligence ai": 39765, "refining large language models": 80997, "language models llms exhibit": 50201, "models llms exhibit remarkable": 63137, "llms exhibit remarkable capabilities": 55905, "remarkable capabilities variety domains": 81753, "capabilities variety domains tasks": 12118, "variety domains tasks challenging": 102293, "domains tasks challenging understanding": 26597, "tasks challenging understanding learning": 94427, "challenging understanding learning cognition": 13254, "artificial general intelligence agi": 7591, "chatgpt chatgpt large language": 13611, "learning human feedback rlhf": 53192, "attention computational linguistics community": 8298, "fewshot prompting large language": 34294, "large language models demonstrated": 51630, "ability perform incontext learning": 1740, "based observation propose novel": 9641, "usage large language models": 100444, "large language models fake": 51683, "text generated large language": 96227, "large language models including": 51731, "recent advances artificial intelligence": 80196, "multilingual large language models": 64972, "language processing nlp research": 51022, "recent proliferation large language": 80326, "proliferation large language models": 76079, "language processing nlp increasingly": 51008, "large language model trained": 51543, "large language models gpt4": 51716, "underexplored paper conduct comprehensive": 99446, "help large language models": 41260, "large language models right": 52151, "advances artificial intelligence ai": 3865, "scaling large language models": 85337, "large language models empirical": 51655, "significantly enhances models performance": 87922, "realworld use cases paper": 79714, "large language models based": 51583, "potential future research directions": 73100, "data large language models": 21365, "language models llms downstream": 50174, "text classification large language": 96113, "classification large language models": 14757, "large language models assist": 51576, "analysis large language models": 5570, "models llms gpt3 demonstrated": 63200, "paper explores potential integrating": 69729, "attention computation fundamental task": 8294, "computation fundamental task training": 17421, "fundamental task training large": 36558, "task training large language": 94272, "large language models transformer": 52208, "large language models standard": 52177, "nlp tasks including semantic": 66792, "finetuned publicly available code": 34956, "publicly available code github": 77970, "using zero fewshot learning": 101855, "chatbot powered large language": 13418, "language models llms gpt35": 50256, "models llms gpt35 gpt4": 63203, "engineering hope work help": 28980, "foundation models like chatgpt": 35953, "incontext learning code generation": 44587, "language models llms gpt4": 50260, "potential pretrained large language": 73226, "language models llms use": 50502, "brazilian university admission exams": 11373, "exame nacional ensino medio": 31083, "nacional ensino medio enem": 65457, "code data used experiments": 15205, "data used experiments available": 21724, "used experiments available httpsgithubcompiresramongpt4enem": 100797, "documents large language models": 26253, "language models llms leveraged": 50317, "study provides valuable insights": 91803, "natural language reasoning tasks": 65724, "chain thought cot prompting": 12805, "humans large language models": 42618, "writing single line code": 104496, "using stateoftheart large language": 101789, "stateoftheart large language model": 90364, "language model llm finetuned": 49460, "artificial intelligence ai particularly": 7612, "chatgpt able provide correct": 13482, "survey large language models": 93035, "large language models language": 51749, "recently pretrained language models": 80537, "achieve significant performance improvement": 2579, "directions large language models": 25473, "shown exceptional performance various": 87456, "exceptional performance various natural": 31380, "opensource large language model": 68348, "data released research purposes": 21558, "benchmarking large language models": 10295, "investigates effectiveness large language": 47739, "analysis era large language": 5501, "era large language models": 29735, "models trained highresource languages": 64392, "large language models paper": 52091, "models paper presents comprehensive": 63760, "paper presents comprehensive survey": 69855, "finetuning reinforcement learning human": 35218, "natural language processing applications": 65635, "parameterefficient finetuning large language": 70140, "large language models success": 52182, "models llms like gpt4": 63290, "llms like gpt4 chatgpt": 56324, "arithmetic reasoning commonsense reasoning": 7494, "reasoning tasks large language": 80055, "tasks large language models": 94804, "modern large language models": 64603, "language models llms directly": 50170, "tasks like image captioning": 94824, "llms like chatgpt exhibited": 56303, "language models llms increased": 50290, "tasks natural language processing": 94883, "ability large language models": 1697, "language models llms perform": 50372, "models llms perform zeroshot": 63346, "large language models neural": 52076, "language models neural network": 50601, "contemporary large language models": 18577, "language models llms make": 50332, "systems recently large language": 93549, "large language models gained": 51696, "impressive performance various tasks": 43632, "models chatgpt developed openai": 61990, "provide valuable insights potential": 77598, "despite impressive capabilities large": 24070, "impressive capabilities large language": 43583, "capabilities large language models": 11961, "language models llms test": 50482, "bias large language models": 10859, "large language models capabilities": 51589, "language models continue advance": 49752, "mitigate biases language models": 60254, "generating functionally correct code": 37914, "language models llms openais": 50360, "models llms openais codex": 63332, "llms openais codex demonstrated": 56461, "generate code natural language": 37396, "code natural language descriptions": 15418, "wide range programming tasks": 103681, "paper aims address gap": 69597, "translating natural language descriptions": 98676, "openais large language model": 68220, "automated item generation aig": 8706, "chatbots based large language": 13432, "based large language models": 9597, "openai chatgpt google bard": 68147, "science large language models": 85595, "language models llms significant": 50451, "models llms significant progress": 63446, "significant progress recent years": 87830, "potential large language model": 73155, "pursuit artificial general intelligence": 78066, "models including gpt4 chatgpt": 62733, "providing valuable insights future": 77815, "language models translate natural": 50888, "models translate natural language": 64432, "translate natural language code": 98665, "controllable text generation ctg": 19242, "recent advances large language": 80204, "make model data code": 58014, "model data code publicly": 60729, "data code publicly available": 21059, "conversational search conversational search": 19399, "systems large language models": 93500, "information extraction large language": 45471, "extraction large language models": 33311, "experimental results demonstrate method": 32030, "instruction following large language": 46339, "following large language model": 35685, "large language model recently": 51532, "instructiontuning large language models": 46619, "large language models crucial": 51624, "research field natural language": 82596, "large language models especially": 51663, "natural language processing research": 65697, "high costs associated training": 41399, "research large language models": 82652, "large language models llama": 51765, "unlike conventional search engines": 100166, "attracted 100 million users": 8411, "provides valuable insights chatgpts": 77723, "security large language models": 86018, "perspectives large language models": 71969, "ban chatgpt generative pretrained": 9324, "chatgpt generative pretrained transformer": 13869, "generative pretrained transformer chatbot": 38690, "github users italy european": 38850, "users italy european countries": 101128, "data sudden announcement ban": 21666, "sudden announcement ban differenceindifferences": 92300, "announcement ban differenceindifferences framework": 5974, "tasks named entity recognition": 94878, "models finetuning language models": 62484, "llms large language models": 56275, "large language models increasingly": 51735, "generative large language model": 38635, "language models openais gpt3": 50619, "development large language models": 24665, "based natural language instructions": 9631, "conduct extensive experiments comparing": 17883, "language models llm chatgpt": 50058, "data code models available": 21057, "models openais chatgpt demonstrated": 63707, "chatgpt demonstrated great potential": 13688, "recent studies demonstrated promising": 80357, "address challenges paper presents": 3371, "review large language models": 84262, "language models llms excel": 50194, "models llms excel tasks": 63130, "background large language models": 9270, "language models chatgpt capable": 49705, "models chatgpt capable generating": 61985, "medical texts clinical notes": 58927, "capability large language models": 12181, "openais gpt4 large language": 68214, "gpt4 large language model": 39951, "generated artificial intelligence ai": 37658, "advancements artificial intelligence ai": 3801, "ai led development large": 4453, "led development large language": 53520, "language models like gpt4": 50051, "potential applications various fields": 73012, "future research directions emphasizing": 36765, "valuable insights potential applications": 102162, "recent development large language": 80239, "language models llms demonstrate": 50141, "breakthrough large language models": 11398, "compression large language models": 17358, "large language models rise": 52152, "language models rise large": 50774, "models rise large language": 64120, "rise large language models": 84478, "language models llms revolutionizing": 50433, "information retrieval question answering": 45605, "retrieval question answering summarization": 84013, "generative chat models chatgpt": 38612, "domains including medicine law": 26533, "milestone field artificial intelligence": 60016, "automatic metrics chatgpt achieves": 8806, "role large language models": 84789, "large language models multidimensional": 52071, "downstream natural language processing": 26704, "cases large language models": 12537, "large language models various": 52217, "natural language understanding tasks": 65760, "present various use cases": 74083, "generative ai systems chatgpt": 38573, "models trained humanlabeled data": 64396, "comprehensive automatic human evaluation": 17207, "demonstrated exceptional performance various": 23254, "experiments publicly available datasets": 32277, "chatgpt similar generative ai": 14241, "prompt large language model": 76355, "large language model palm": 51524, "engineering large language models": 28988, "problems large language models": 75162, "models llms shown great": 63423, "llms shown great potential": 56775, "increasingly powerful large language": 44899, "powerful large language models": 73452, "language models llms instruction": 50302, "generate responses instructions using": 37579, "chatgpt natural language processing": 14032, "natural language processing tool": 65709, "generate coherent contextually relevant": 37399, "promising performance various tasks": 76184, "adapting large language models": 3130, "model performance different data": 61227, "language models instruction tuning": 49998, "language models code generation": 49720, "functional correctness generated code": 36502, "generation large language model": 38228, "hope work inspire future": 41968, "work inspire future research": 104133, "language models plms achieved": 50650, "models plms achieved remarkable": 63818, "plms achieved remarkable success": 72408, "remarkable success nlp tasks": 81830, "data paper propose novel": 21468, "incontext learning knowledge base": 44617, "learning knowledge base question": 53229, "question answering knowledge bases": 78603, "leverages large language models": 53799, "baseline future research code": 9778, "future research code available": 36760, "natural language generation models": 65587, "language generation models like": 49250, "generation models like chatgpt": 38283, "computer science education paper": 17532, "possible future research directions": 72904, "propose simple effective baseline": 77113, "extraction using large language": 33341, "improving large language model": 44134, "large language model gpt": 51478, "learning chatgpt bing chat": 53067, "case study study investigates": 12499, "constructionist theoretical framework singlecase": 18481, "theoretical framework singlecase study": 96738, "framework singlecase study methodology": 36275, "singlecase study methodology used": 88409, "study methodology used analyse": 91743, "methodology used analyse extensive": 59501, "used analyse extensive interaction": 100737, "analyse extensive interaction logs": 5387, "extensive interaction logs students": 33107, "interaction logs students ai": 47021, "logs students ai systems": 57293, "students ai systems simulated": 91283, "learning experiences results highlight": 53144, "experiences results highlight ability": 31953, "results highlight ability chatgpt": 83638, "highlight ability chatgpt bing": 41574, "ability chatgpt bing chat": 1606, "study concludes chatgpt bing": 91538, "concludes chatgpt bing chat": 17746, "offer promising avenues revolutionise": 67765, "promising avenues revolutionise stem": 76155, "avenues revolutionise stem education": 9121, "revolutionise stem education constructionist": 84327, "stem education constructionist lens": 90600, "education constructionist lens fostering": 27141, "language models training data": 50879, "deploying large language models": 23584, "language models llms challenging": 50104, "data achieve comparable performance": 20941, "models pretrained large amounts": 63873, "results suggest language models": 83873, "outputs large language models": 69236, "despite impressive generative capabilities": 24073, "computer vision natural language": 17544, "vision natural language processing": 102999, "extensive experiments ablation studies": 33046, "popularity large language models": 72701, "language models generate text": 49914, "large language models recent": 52132, "large language models mainly": 52051, "natural language processing generative": 65649, "generative pretrained transformer gpt4": 38700, "advancements field natural language": 3814, "language translation text summarization": 51149, "models require significant amounts": 64073, "paper investigate using chatgpt": 69792, "large language model paper": 51525, "language model paper present": 49503, "paper present novel approach": 69838, "using chatgpt large language": 101350, "large language model specifically": 51539, "exploring potential large language": 32864, "large language models context": 51619, "named entity recognition ner": 65472, "chatgpt large language models": 13978, "ai recent advances artificial": 4528, "large language model developed": 51469, "capacity large language models": 12298, "paper propose simple efficient": 69900, "leverages large language model": 53798, "language models extensive experiments": 49867, "language models knowledge distillation": 50013, "recent release large language": 80334, "model llm based chatbots": 61083, "large language models research": 52148, "test large language models": 95909, "large language models evaluate": 51665, "language models llms pretrained": 50384, "code instead natural language": 15363, "named entity recognition relation": 65478, "entity recognition relation extraction": 29583, "serving large language models": 86824, "language models llms power": 50378, "experimental results compared stateoftheart": 32019, "language models llms recently": 50406, "field artificial intelligence ai": 34348, "artificial intelligence ai research": 7616, "models trained massive amounts": 64400, "wide range tasks including": 103692, "range tasks including language": 79214, "tasks including language translation": 94729, "including language translation text": 44395, "agent large language model": 4140, "question large language models": 78684, "models like chatgpt recently": 62910, "recently demonstrated impressive capabilities": 80470, "demonstrated impressive capabilities natural": 23275, "impressive capabilities natural language": 43587, "capabilities natural language understanding": 12019, "finding large language model": 34629, "artificial intelligence ai remarkable": 7615, "code generation large language": 15305, "models llms chatgpt shown": 63038, "llms chatgpt shown impressive": 55613, "chatgpt shown impressive performance": 14224, "designed natural language generation": 23930, "natural language generation low": 65584, "language generation low accuracy": 49244, "generation low accuracy code": 38252, "low accuracy code generation": 57498, "accuracy code generation paper": 2223, "performance llms code generation": 71364, "llms code generation apply": 55630, "human evaluation shows human": 42190, "evaluation shows human developers": 30781, "shows human developers prefer": 87587, "human developers prefer programs": 42156, "longform question answering longform": 57383, "longform question answering lfqa": 57382, "finetune pretrained language models": 34850, "programming languages python java": 75914, "tools natural language processing": 97450, "augmentation large language models": 8540, "language models llms remarkable": 50419, "size poses challenges terms": 88509, "poses challenges terms computational": 72767, "small language models slms": 88688, "shown promise various fields": 87521, "promise various fields potential": 76141, "language models llms gpt": 50248, "llms gpt 35 gpt": 56075, "increasing popularity large language": 44849, "models llms chatgpt led": 63028, "paper aims provide overview": 69608, "graphical user interfaces guis": 40430, "natural language interfaces nlis": 65615, "language models llms exhibited": 50203, "approaches large language models": 7159, "substantial improvements compared strong": 92089, "improvements compared strong baselines": 43967, "empirical study large language": 28360, "models like chatgpt shown": 62912, "like chatgpt shown remarkable": 54099, "robustness large language models": 84728, "advancements pretrained language models": 3853, "large language models critical": 51623, "representative large language models": 82142, "large language models current": 51625, "structure large language models": 91142, "large language models follow": 51691, "paper offers valuable insights": 69818, "success large language model": 92211, "language model llm gpt3": 49465, "language models llms brought": 50100, "llms including chatgpt llama": 56173, "enhancing large language models": 29341, "advancements large language models": 3831, "assessment large language models": 7957, "large language models given": 51708, "paper propose new paradigm": 69891, "report large language models": 81982, "language models able generate": 49610, "code generation code generation": 15290, "models llms shown remarkable": 63433, "remarkable code generation abilities": 81765, "language processing nlp applications": 51001, "task large language models": 94122, "detection large language models": 24313, "llms shown remarkable performance": 56789, "shown remarkable performance various": 87539, "remarkable performance various tasks": 81803, "strong language understanding generation": 91043, "language understanding generation capabilities": 51164, "empirical results demonstrate proposed": 28343, "software engineering se tasks": 89007, "generative ai large language": 38552, "ai large language models": 4448, "language models llms including": 50283, "generative ai models specifically": 38560, "study contributes growing body": 91553, "contributes growing body research": 19144, "automatically generated natural language": 8875, "high school graduation examination": 41456, "dataset large language models": 21990, "evaluating large language models": 30445, "language models llms introduced": 50306, "vietnamese national high school": 102909, "national high school graduation": 65529, "question answering text generation": 78633, "mathematics physics chemistry biology": 58607, "distilling large language models": 25847, "recent years significant progress": 80440, "years significant progress developing": 104617, "area natural language processing": 7429, "recently emergence large language": 80486, "bleu meteor rougel measure": 11171, "meteor rougel measure quality": 59176, "language models llms raises": 50399, "thematic analysis semistructured interviews": 96723, "language models llms emerged": 50179, "models llms emerged powerful": 63115, "large language models study": 52181, "pipeline large language models": 72163, "language models llms revolutionized": 50431, "comes significant computational costs": 16042, "significant computational costs paper": 87718, "natural language explanations nles": 65577, "perform automatic human evaluations": 70822, "human evaluations assess quality": 42195, "built large language model": 11668, "language model llm chatgpt": 49458, "propose using large language": 77161, "automated machine learning automl": 8711, "utilize large language models": 101944, "natural language processing model": 65660, "underlying large language model": 99502, "produce text indistinguishable humangenerated": 75662, "context large language models": 18798, "large language models introduce": 51743, "natural language understanding long": 65752, "language models generate new": 49912, "language models llms data": 50140, "furthermore conduct human evaluation": 36590, "large language models computational": 51614, "instructiontuned large language models": 46592, "models llms exhibited impressive": 63144, "math word problem solving": 58562, "language models llms smaller": 50458, "human feedback large language": 42225, "models trained human data": 64394, "field large language models": 34384, "data code released github": 21061, "hallucination large language models": 40841, "large language models inference": 51737, "models inference tasks large": 62775, "tasks like question answering": 94826, "factchecking large language models": 33570, "rapid development large language": 79315, "models llms chatgpt gpt3": 63023, "exploring incontext learning capabilities": 32850, "remarkable language understanding generation": 81780, "instructing large language models": 46301, "language models llms increasing": 50291, "zeroshot generalization downstream tasks": 104790, "language models lms struggle": 50543, "language models llms produce": 50387, "instructiontuned large language model": 46590, "develop large language model": 24456, "language model llm able": 49449, "natural language understanding natural": 65754, "language understanding natural language": 51175, "understanding natural language generation": 99823, "natural language generation reasoning": 65595, "models llms demonstrated powerful": 63078, "language models demonstrated exceptional": 49771, "era chatgpt large language": 29725, "large language models generative": 51703, "language models generative ai": 49919, "large language models artificial": 51575, "artificial intelligence ai chatgpt": 7599, "artificial intelligence ai machine": 7606, "intelligence ai machine learning": 46810, "models propose new paradigm": 63924, "code generation models codex": 15315, "directed acyclic graph dag": 25441, "abilities large language models": 1526, "reasoning capabilities llms trained": 79807, "hallucinations large language models": 40870, "large language models evaluation": 51666, "mitigation large language models": 60312, "language models large lms": 50029, "language models openais chatgpt": 50617, "artificial intelligence language models": 7646, "evaluation using large language": 30823, "outperforms strong baselines including": 69128, "chatgpt chat generative pretrained": 13603, "family large language models": 33849, "large language models serve": 52158, "smaller large language models": 88760, "large language models partially": 52096, "language models llms acquire": 50078, "capabilities pretrained large language": 12050, "language models recent studies": 50732, "extensive experiments demonstrate approach": 33056, "ais generative pretrained transformer": 4846, "excel various natural language": 31338, "processing nlp tasks current": 75542, "incontext learning instruction tuning": 44614, "language models gpt3 chatgpt": 49939, "systematic study comprehensive evaluation": 93355, "thorough evaluation chatgpts performance": 96828, "provide insights future research": 77508, "using generative pretrained transformer": 101477, "pretrained transformer gpt models": 74468, "recent advancements large language": 80184, "language models llms offer": 50353, "language models llms powerful": 50379, "research highlights potential llms": 82623, "events large language models": 30933, "generative ai genai models": 38546, "design large language models": 23803, "llms like gpt4 outperform": 56328, "language models llms specifically": 50464, "models llms specifically gpt4": 63460, "humanlevel performance various professional": 42516, "performance various professional academic": 71695, "various professional academic benchmarks": 102530, "paper explore potential llms": 69717, "llms like gpt4 demonstrate": 56325, "propose future research directions": 76987, "burgeoning field artificial intelligence": 11695, "transformer gpt models specifically": 98511, "problems varying difficulty levels": 75222, "foundation models gpt4 dalle": 35946, "ensembling large language models": 29432, "opensource large language models": 68350, "performance generative pretrained transformer": 71261, "pretrained transformer gpt model": 74467, "capacity pretrained language models": 12307, "models large language modelsllms": 62862, "tasks code data publicly": 94443, "evaluate zeroshot performance chatgpt": 30309, "paving way future research": 70659, "highlight potential risks associated": 41607, "language models brought immense": 49686, "pretraining large language models": 74560, "entities pretrained language models": 29545, "language models provide new": 50702, "recent emergence large language": 80252, "llms incontext learning performance": 56197, "evaluating large language model": 30444, "language model llm output": 49471, "far large language models": 33872, "benchmark large language models": 10202, "llms shown remarkable abilities": 56787, "general intelligence agi provide": 37136, "large language models revolutionized": 52150, "models revolutionized natural language": 64115, "language processing nlp task": 51024, "language models chatgpt demonstrated": 49707, "language models llms text": 50484, "models llms text generation": 63480, "results demonstrate model outperforms": 83556, "language models demonstrated ability": 49770, "school graduation examination vnhsge": 85550, "achieves new stateoftheart result": 2764, "information large language models": 45526, "translation large language models": 98714, "large language models nonenglish": 52080, "recent years large language": 80430, "years large language models": 104601, "large language models open": 52084, "gpt4 metas llama googles": 39974, "extend capabilities large language": 32930, "explanation large language models": 32468, "large language models general": 51699, "large multilingual language models": 52273, "general language model glm": 37145, "language large language models": 49305, "language models recent progress": 50729, "models recent progress artificial": 64005, "recent progress artificial intelligence": 80313, "progress artificial intelligence ai": 75972, "evolution generative artificial intelligence": 31023, "artificial intelligence ai including": 7603, "hoffmann et al 2022": 41880, "capabilities natural language processing": 12017, "pose significant risks presence": 72752, "significant risks presence biased": 87845, "risks presence biased private": 84533, "boost ai development make": 11270, "ai development make accessible": 4369, "large language models gpt35": 51714, "language models gpt35 gpt4": 49944, "use ai tools like": 100465, "ai tools like chatgpt": 4598, "nlp tasks including question": 66790, "tasks including question answering": 94734, "question answering commonsense reasoning": 78581, "reasoning natural language inference": 79956, "sentiment analysis named entity": 86590, "analysis named entity recognition": 5586, "significantly boost performance chatgpt": 87892, "large language models science": 52155, "effects large language models": 27616, "chatgpt education artificial intelligence": 13735, "progress large language models": 75990, "recent developments large language": 80245, "developments large language models": 24747, "language models llm abilities": 50057, "data collection processing analysis": 21077, "perspective large language models": 71955, "llms like chatgpt shown": 56311, "transfer capabilities language generation": 98399, "language generation instruction following": 49241, "various large language models": 102468, "models llms chatgpt gained": 63019, "llms chatgpt gained significant": 55590, "chatgpt gained significant attention": 13842, "gained significant attention impressive": 36838, "large language model code": 51466, "llm reinforcement learning rl": 55232, "reinforcement learning rl emerged": 81162, "proximal policy optimization ppo": 77834, "investigating potential large language": 47774, "tasks emergence large language": 94574, "models llms chatgpt revolutionized": 63037, "advanced deep learning techniques": 3690, "language model llm like": 49469, "outperforms current stateoftheart sota": 69038, "foundation models large language": 35949, "inference large language models": 45257, "language models llms seen": 50435, "reasoning natural language understanding": 79957, "language processing models like": 50996, "processing models like gpt3": 75508, "driven large language models": 26845, "use largescale pretrained language": 100606, "ai models like chatgpt": 4473, "employing large language models": 28455, "developed large language models": 24507, "language models llms training": 50490, "natural language processing computer": 65644, "language processing computer vision": 50976, "survey presents comprehensive overview": 93042, "potential avenues future research": 73036, "risks large language models": 84522, "problem using large language": 75099, "models data code publicly": 62150, "problems using large language": 75215, "solving wide range programming": 89263, "tackling code generation tasks": 93750, "finetuning parameterefficient finetuning peft": 35170, "large language model based": 51460, "language model based llama": 49346, "analysis using large language": 5717, "large language models support": 52184, "coding widely used qualitative": 15724, "case study using gpt35": 12501, "publicly available data sets": 77972, "exams large language models": 31308, "large language models emergence": 51652, "advanced natural language processing": 3727, "language processing nlp models": 51016, "present comprehensive empirical study": 73957, "commercial large language models": 16079, "language models llms gpt35turbo": 50258, "models llms gpt35turbo gpt4": 63205, "states medical licensing examination": 90523, "chatgpt models large language": 14021, "llms demonstrated impressive performance": 55744, "impressive performance various downstream": 43628, "performance various downstream tasks": 71682, "models exhibit remarkable capabilities": 62385, "performance gpt35 gpt4 models": 71273, "large language model capabilities": 51463, "large language models plms": 52103, "mediqachat 2023 shared task": 58944, "furthermore conducted comparative analysis": 36593, "models hold great promise": 62672, "models llms openais chatgpt": 63331, "leverage pretrained language models": 53757, "evaluated capability generative pretrained": 30324, "code generation machine translation": 15310, "language models llms capture": 50101, "propose new approach named": 77039, "large language models emergent": 51654, "language models gpt4 claude": 49946, "study offers valuable insights": 91760, "recent introduction large language": 80272, "introduction large language models": 47558, "generating prompts llms based": 37960, "estimation large language models": 30029, "llms demonstrated remarkable potential": 55763, "results demonstrate superior performance": 83567, "datasets method outperforms existing": 22337, "proprietary models like chatgpt": 77315, "case study large language": 12487, "language models llms openai": 50358, "models llms openai chatgpt": 63329, "autoregressive large language models": 8968, "paper propose simple effective": 69899, "education large language models": 27161, "large language models rapid": 52124, "rapid advances large language": 79307, "data science education paper": 21597, "large language models ai": 51566, "language models ai chatbots": 49637, "transformers large language models": 98622, "generate synthetic training data": 37614, "integrating large language models": 46729, "generative ai tools chatgpt": 38578, "efficacy large language models": 27642, "large language models generating": 51702, "models llms like codex": 63282, "abstract syntax tree ast": 1937, "machine learning ml models": 57706, "foundation large language models": 35922, "llms limited context window": 56336, "limited context window size": 54411, "investigate large language models": 47664, "widely used large language": 103737, "used large language model": 100841, "influence large language models": 45353, "technology acceptance model tam": 95639, "generators large language models": 38744, "large language models exhibit": 51673, "proprietary large language model": 77301, "language model text generation": 49558, "finetuned reinforcement learning human": 34960, "work introduces novel task": 104143, "models larger language models": 62875, "larger language models gpt3": 52444, "language models gpt3 shown": 49940, "response large language models": 83145, "recent work shown models": 80412, "concept using large language": 17612, "text large language models": 96321, "adopting large language models": 3626, "large language models answer": 51573, "language models llm like": 50064, "models llm like chatgpt": 62958, "modules natural language understanding": 64680, "reasoning large language model": 79925, "language models llms achieved": 50073, "language models llms enabled": 50186, "capabilities various natural language": 12126, "sota large language models": 89310, "demonstrates superior performance compared": 23416, "multiple large language model": 65211, "chatbots large language models": 13447, "artificial intelligence ai services": 7617, "proficiency understanding generating humanlike": 75805, "understanding generating humanlike text": 99746, "role artificial intelligence ai": 84758, "artificial intelligence ai specifically": 7618, "large language models models": 52069, "finetuned large language models": 34916, "billion 70 billion parameters": 11018, "natural language processing machine": 65658, "language processing machine learning": 50993, "generate toxic harmful responses": 37630, "remains open research question": 81689, "recent breakthroughs large language": 80227, "breakthroughs large language models": 11404, "language processing nlp technologies": 51034, "2022 large language models": 542, "language models llms prominent": 50389, "prominent llms like chatgpt": 76102, "llms like chatgpt bard": 56299, "language models llms bert": 50097, "assess capabilities large language": 7825, "analysis offers valuable insights": 5594, "models shown remarkable success": 64191, "remarkable success various natural": 81834, "success various natural language": 92248, "large language models offer": 52082, "large language models results": 52149, "tasks opendomain question answering": 94903, "opendomain question answering qa": 68245, "models llms chatgpt demonstrated": 63016, "llms chatgpt demonstrated impressive": 55584, "solving wide range tasks": 89264, "language models recently growing": 50737, "context length large language": 18804, "length large language models": 53596, "evaluation models large language": 30691, "uses large language models": 101239, "potential largescale language models": 73163, "models llms specifically openais": 63461, "performance traditional machine learning": 71639, "knowledge distillation large language": 48511, "models llms trained using": 63484, "realization artificial general intelligence": 79585, "prevalence large language models": 74632, "models llms like gpt35": 63288, "llms like gpt35 gpt4": 56321, "source code publicly available": 89361, "natural language processing demonstrated": 65646, "language models llms improve": 50281, "assessing large language models": 7918, "large language models ability": 51553, "models llms recently achieved": 63382, "following natural language instructions": 35692, "novel benchmark task called": 67123, "googles bard anthropics claude": 39149, "performance software engineering tasks": 71577, "different ways data augmentation": 25257, "code generation mathematical reasoning": 15312, "proposed method release code": 77229, "electronic design automation eda": 27955, "large language models gpt": 51710, "recent advances language modeling": 80202, "methods based pretrained language": 59550, "based pretrained language models": 9661, "multilingual neural machine translation": 64993, "experimental results demonstrate approach": 32025, "results demonstrate approach surpasses": 83536, "competencies large language models": 16768, "critical review large language": 20351, "language models llms addressing": 50081, "language models llms involves": 50308, "supervised finetuning sft reinforcement": 92712, "finetuning sft reinforcement learning": 35242, "sft reinforcement learning human": 87155, "paper presents case study": 69850, "llms chatgpt demonstrated remarkable": 55586, "chatgpt demonstrated remarkable performance": 13692, "demonstrated remarkable performance various": 23325, "longterm action anticipation lta": 57410, "action anticipation lta task": 2940, "lta task aims predict": 57659, "hypothesize large language models": 42744, "demonstrate effectiveness proposed approach": 23064, "achieves stateoftheart performance benchmarks": 2800, "language models llms currently": 50138, "models llms currently forefront": 63053, "llms currently forefront intertwining": 55709, "artificial intelligence ai systems": 7619, "ai systems human communication": 4567, "systems human communication everyday": 93480, "human communication everyday life": 42136, "results various natural language": 83913, "achieving new stateoftheart results": 2867, "large language models education": 51647, "exploration using large language": 32607, "language models llms support": 50476, "large language models tackle": 52192, "translating natural language sentences": 98677, "convert natural language sentences": 19444, "language models llms transformative": 50493, "models llms transformative impact": 63490, "testing large language models": 96014, "large language models field": 51685, "learning human feedback training": 53195, "human feedback training pipeline": 42232, "great success large language": 40499, "llms playing increasingly important": 56528, "playing increasingly important role": 72372, "model large language model": 61047, "language models llms sparked": 50460, "models llms sparked debate": 63455, "llms wide range tasks": 57045, "tasks involving natural language": 94780, "recent advent large language": 80217, "advent large language models": 3960, "large language models enhanced": 51660, "models llms demonstrate remarkable": 63061, "ai particularly tools like": 4502, "large language models computer": 51615, "large language models chatgpt35": 51598, "performance different large language": 71143, "different large language models": 25092, "artificial intelligence language model": 7645, "using natural language instructions": 101630, "llms software engineering tasks": 56829, "large language model evaluation": 51471, "recent advancements foundation models": 80179, "natural language processing nlpbased": 65690, "language model iterative process": 49437, "large language models improve": 51728, "language model specifically tuned": 49551, "field generative artificial intelligence": 34373, "subfields natural language processing": 91933, "models llms specifically chatgpt": 63458, "study using large language": 91885, "large language models analyze": 51571, "software supply chain security": 89036, "language processing nlp techniques": 51033, "techniques large language models": 95546, "large language models alignment": 51570, "language models llms realworld": 50401, "address issue paper presents": 3424, "ways using large language": 103425, "developed openai ushered new": 24520, "openai ushered new era": 68184, "ushered new era ai": 101267, "language models llms exemplified": 50199, "models llms exemplified chatgpt": 63135, "chatgpt openai bard google": 14047, "address research gap propose": 3488, "reinforcement learning rl framework": 81163, "models pretrained large language": 63874, "artificial intelligence ai generative": 7602, "gpt generative pretrained transformer": 39197, "artificial intelligence ai large": 7605, "models llms chatgpt increasingly": 63027, "data contamination large language": 21115, "contamination large language models": 18568, "large language models data": 51626, "training data large language": 98028, "language models llms potential": 50375, "retrieval multihop question answering": 84001, "achieve new stateoftheart performance": 2550, "machine learning deep learning": 57701, "models large language model": 62854, "large language model large": 51486, "large language model powered": 51526, "language models llms showcased": 50437, "empowered large language model": 28497, "model exhibited superior performance": 60834, "behavior large language models": 9977, "supervised finetuning reinforcement learning": 92709, "large language models outofdistribution": 52089, "models emergence large language": 62295, "language models llms catalyzed": 50102, "diverse natural language processing": 26055, "language processing tasks existing": 51049, "like bert roberta gpt2": 54057, "understanding large language models": 99792, "models llms shown impressive": 63425, "llms shown impressive ability": 56777, "scaling data model size": 85326, "automation large language models": 8920, "contrast large language models": 19076, "tasks remains largely unexplored": 95037, "parameterefficient finetuning peft methods": 70145, "manual evaluation shows model": 58269, "performance overall study provides": 71455, "llms like chatgpt gpt4": 56306, "method significantly improves accuracy": 59425, "strong generalization ability unseen": 91029, "natural language instructions large": 65609, "language instructions large language": 49287, "language models llms enable": 50185, "using artificial intelligence ai": 101300, "large language models augmenting": 51578, "language models llms present": 50381, "experimental results demonstrate significant": 32034, "results demonstrate significant improvements": 83564, "large language models represented": 52145, "language models represented chatgpt": 50753, "opensource models like llama": 68385, "code model weights data": 15405, "model weights data public": 61587, "large language model generate": 51476, "language model generate diverse": 49403, "models llms increasingly capable": 63243, "language models generate natural": 49910, "models generate natural language": 62552, "time taken complete tasks": 97034, "significant advancements natural language": 87672, "models range natural language": 63958, "gpt models generative pretrained": 39220, "revolutionized field natural language": 84345, "field research recent years": 34409, "recent progress large language": 80319, "development artificial intelligence ai": 24612, "artificial intelligence ai based": 7596, "chainofthought cot think stepbystep": 12825, "language models llms enhance": 50187, "language models llms typified": 50499, "marked significant advancement artificial": 58386, "significant advancement artificial intelligence": 87663, "artificial intelligence trained vast": 7668, "intelligence trained vast amounts": 46902, "vast amounts text data": 102671, "capable understanding generating humanlike": 12274, "stateoftheart llms gpt35 gpt4": 90378, "misinformation large language models": 60177, "remarkable performance various natural": 81801, "knowledge pretrained language model": 48706, "results demonstrate approach achieves": 83535, "efficiency large language models": 27694, "shed light future research": 87218, "future research large language": 36773, "models llms recently demonstrated": 63383, "comparative study large language": 16441, "modeling natural language processing": 61658, "studies large language models": 91411, "language models like gpt": 50047, "large language models automated": 51579, "knowledge graphs large language": 48606, "graphs large language models": 40442, "emergent ability generalizability llms": 28197, "graph neural networks gnns": 40399, "knowledge external knowledge bases": 48565, "technical report large language": 95419, "agents large language models": 4200, "large language models latest": 51754, "large language model llmbased": 51514, "models llms achieved remarkable": 62974, "llms achieved remarkable success": 55432, "large language models despite": 51633, "language models despite impressive": 49780, "chatgpt prominent large language": 14113, "prominent large language model": 76096, "effectiveness chatgpt code generation": 27498, "use llms like chatgpt": 100620, "remarkable performance variety language": 81796, "performance variety language understanding": 71668, "models including gpt3 flan": 62729, "including gpt3 flan t5": 44362, "believe work findings encourage": 10045, "work findings encourage facilitate": 104097, "findings encourage facilitate research": 34665, "emerging large language models": 28226, "language models llms particular": 50366, "largescale language models chatgpt": 52532, "smaller transformerbased language models": 88800, "use existing large language": 100544, "llms complex reasoning tasks": 55656, "language models llms attracted": 50088, "recent times significant advancements": 80385, "particularly emergence large language": 70456, "llms trained vast amounts": 56953, "trained vast amounts data": 97930, "llms including gpt35 gpt4": 56178, "language models llms variants": 50510, "insights potential applications challenges": 46121, "ability stateoftheart large language": 1777, "language models llms various": 50511, "models llms various tasks": 63511, "llms significantly outperform existing": 56810, "natural language prompts executable": 65716, "exploring large language models": 32855, "models llms gpt series": 63195, "llms gpt series flant5": 56079, "significantly advanced field natural": 87876, "advanced field natural language": 3694, "high low resource languages": 41428, "low resource languages large": 57533, "resource languages large language": 82968, "languages large language models": 51306, "tasks including machine translation": 94732, "pretrained language models t5": 74353, "widely applied wide range": 103717, "applied wide range software": 6644, "wide range software engineering": 103688, "range software engineering tasks": 79208, "coding assistants like github": 15694, "assistants like github copilot": 8055, "model demonstrated impressive performance": 60746, "paper conduct empirical study": 69644, "large language models essential": 51664, "evaluate capabilities language models": 30147, "language models despite existence": 49779, "address gap propose novel": 3404, "connecting large language models": 18097, "large language models evolutionary": 51667, "models llms excel various": 63131, "paper propose novel framework": 69896, "powerful language processing capabilities": 73446, "language processing capabilities llms": 50973, "tasks bigbench hard bbh": 94410, "significantly outperforms humanengineered prompts": 87999, "generated using large language": 37818, "large language models dynamic": 51646, "models llms revolutionized natural": 63411, "llms revolutionized natural language": 56734, "making large language models": 58116, "using lowrank adaptation lora": 101597, "release code pretrained checkpoints": 81359, "large language models deployed": 51631, "correct partially correct answers": 19676, "using parameterefficient finetuning methods": 101675, "demonstrate significant performance improvements": 23188, "large language models commonsense": 51610, "reinforcement learning empirical results": 81147, "publicly release code dataset": 77995, "perform systematic empirical assessment": 70929, "llms demonstrated remarkable performance": 55758, "demonstrated remarkable performance variety": 23323, "opensource models similar size": 68388, "explanations large language models": 32504, "enhance capabilities large language": 29143, "language models exhibit impressive": 49848, "large language models powerful": 52106, "language models llms prompted": 50391, "language models llm shown": 50068, "pretrained transformer language models": 74476, "language models lms represent": 50540, "received little attention paper": 80146, "models llms chatgpt assist": 63013, "localization large language models": 57217, "language models llm revolutionized": 50067, "incontext learning icl using": 44608, "learning icl using large": 53204, "icl using large language": 42768, "large language models tasks": 52194, "xu et al 2023": 104574, "proficiency comprehending generating natural": 75783, "comprehending generating natural language": 17143, "llms extensive experimental results": 55946, "extensive experimental results demonstrate": 33041, "language models llms presents": 50382, "models llms presents significant": 63358, "interact large language models": 46981, "models llms realworld scenarios": 63377, "calculations large language models": 11746, "utilize large language model": 101943, "code models datasets available": 15412, "language models llms model": 50337, "including large language models": 44398, "language models llms facilitated": 50219, "models llms facilitated development": 63160, "challenges large language models": 13055, "paper evaluate performance gpt4": 69697, "large language models widely": 52222, "large language models exemplified": 51672, "utilizes large language models": 101992, "large language models make": 52052, "integration large language models": 46773, "large language models automatic": 51580, "language models google bard": 49932, "based deep neural networks": 9497, "utilizing reinforcement learning human": 102044, "human feedback rlhf current": 42229, "pitfalls large language models": 72190, "nlp large language models": 66741, "models llms emerged important": 63113, "llms emerged important breakthroughs": 55839, "impressive skills language generation": 43650, "language models gpt4 using": 49949, "evaluate llms gpt35 gpt4": 30221, "question answering qa models": 78621, "language models llms automatic": 50092, "models play pivotal role": 63814, "computing large language models": 17566, "natural language understanding reasoning": 65759, "language understanding reasoning capabilities": 51184, "scales 7b 13b 70b": 85305, "models llms shown promise": 63431, "chainofthought cot treeofthought tot": 12827, "rapid advancement large language": 79295, "advancement large language models": 3785, "assess capabilities limitations existing": 7828, "models offers valuable insights": 63699, "revolutionized field artificial intelligence": 84343, "base language models models": 9408, "generative pretrained transformers gpt": 38704, "chatgpt artificial intelligence ai": 13537, "artificial intelligence ai natural": 7609, "intelligence ai natural language": 46814, "ai natural language processing": 4483, "chatgpt similar ai tools": 14239, "ai tools large language": 4596, "processing nlp tasks including": 75544, "expertise large language models": 32391, "language models generative pretrained": 49922, "proficiency complex reasoning tasks": 75780, "solving math word problems": 89237, "representations large language models": 82105, "large language models advent": 51563, "language models advent large": 49632, "models advent large language": 61804, "language models llms paved": 50370, "models llms paved way": 63344, "approach large language models": 6923, "downstream tasks different model": 26721, "question answering qa trained": 78624, "large language models reasoning": 52131, "reasoning capabilities large language": 79804, "setting large language models": 87003, "large language models temporal": 52195, "data recent advancements llms": 21544, "method achieves stateoftheart performance": 59190, "language models llms gained": 50231, "gained significant attention academia": 36837, "zeroshot oneshot fewshot learning": 104833, "evaluators large language models": 30904, "test generation tools evosuite": 95897, "larger language models trained": 52446, "largescale transformerbased language models": 52581, "autonomous driving large language": 8933, "language models llms transformed": 50495, "new opportunities software engineering": 66472, "language modeling question answering": 49593, "strategies large language models": 90830, "models llms recently emerged": 63385, "finetuning large language model": 35110, "large language model inference": 51485, "language models llms exploded": 50211, "models llms exploded popularity": 63152, "pretrained language models contain": 74304, "tasks finetuning language models": 94646, "zeroshot chain thought prompting": 104743, "models llms chatgpt achieved": 63012, "tasks natural language inference": 94882, "agent large language models": 4141, "models llms chatgpt recently": 63036, "adaptation large language models": 3081, "mining large language models": 60130, "language models recent advancements": 50726, "natural language processing particularly": 65693, "language processing particularly development": 51040, "largescale language models pretrained": 52541, "language models llms zeroshot": 50519, "deep learningbased natural language": 22784, "learningbased natural language processing": 53491, "natural language processing techniques": 65707, "defending large language models": 22847, "large language models jailbreaking": 51746, "language models jailbreaking attacks": 50007, "models jailbreaking attacks despite": 62823, "despite efforts align large": 24042, "efforts align large language": 27895, "align large language models": 4998, "language models llms human": 50275, "models llms human values": 63226, "code publicly available following": 15460, "interaction large language models": 47017, "large language models includes": 51730, "role generative ai models": 84779, "models recent advancements large": 63998, "achieving artificial general intelligence": 2825, "realworld scenarios address gap": 79693, "language using large language": 51197, "inherent ambiguity natural language": 45717, "rapid advancements artificial intelligence": 79299, "models llm like openais": 62959, "language models llms advanced": 50082, "llms primarily focused english": 56570, "pretrained language models instruction": 74317, "benchmarks large language models": 10366, "large language models pass": 52099, "multitask language understanding benchmark": 65358, "language models llms need": 50345, "tools based large language": 97367, "advances natural language generation": 3889, "realm natural language processing": 79616, "natural language processing text": 65708, "text data augmentation methods": 96161, "language models gained significant": 49903, "models gained significant attention": 62527, "diverse linguistic contexts paper": 26046, "paper present comprehensive evaluation": 69829, "language models mbert xlmr": 50563, "data plays crucial role": 21478, "language models llms learn": 50314, "despite orders magnitude smaller": 24093, "large language models chinese": 51599, "language models chinese large": 49711, "models chinese large language": 61997, "chinese large language models": 14558, "like chatgpt gpt4 demonstrated": 54081, "abilities natural language understanding": 1543, "using llms like chatgpt": 101588, "llms demonstrated remarkable capabilities": 55755, "demonstrated remarkable capabilities natural": 23314, "remarkable capabilities natural language": 81748, "achieve similar better performance": 2583, "language models llms finetuned": 50222, "supervised finetuning sft reward": 92714, "launch november 2022 chatgpt": 52697, "continual learning large language": 18994, "aligned large language models": 5025, "models llms demonstrate exceptional": 63057, "novel benchmark designed evaluate": 67120, "standardized unified format allowing": 90227, "unified format allowing effortless": 100015, "format allowing effortless automatic": 35819, "allowing effortless automatic evaluation": 5174, "effortless automatic evaluation llms": 27887, "adoption generative ai gai": 3638, "language models llms multimodal": 50339, "finetune large language models": 34830, "language models llms simulate": 50457, "acceleration large language models": 2028, "large language models consider": 51618, "sparse finetuning large language": 89532, "llms finetuning pretrained llms": 55987, "capabilities generative pretrained transformer": 11924, "models based large language": 61903, "chat models chatgpt gpt4": 13387, "engage multiturn conversations chatgpt": 28910, "incontext learning capability large": 44582, "learning capability large language": 53053, "large language models learn": 51755, "question answering qa tasks": 78623, "particularly development large language": 70449, "language model llm chat": 49457, "models llms exhibited exceptional": 63141, "exceptional performance various tasks": 31382, "language models recent work": 50733, "wang et al 2022": 103307, "address limitation propose novel": 3448, "harnessing large language models": 41090, "model performance complex reasoning": 61224, "performance complex reasoning tasks": 71100, "generative pretrained transformer framework": 38692, "leveraging machine learning ml": 53879, "prompt engineering fewshot learning": 76298, "models llms powerful general": 63355, "achieves attack success rate": 2708, "tasks code generation code": 94446, "question answering generation coherent": 78596, "answering generation coherent text": 6107, "generation coherent text code": 38085, "llm convert natural language": 55025, "explores potential large language": 32818, "large language models excelled": 51671, "fall short tasks require": 33789, "short tasks require exploration": 87304, "tasks require exploration strategic": 95046, "large language models incontext": 51734, "explore application large language": 32637, "application large language models": 6366, "language models llms incontext": 50288, "models llms showcased remarkable": 63418, "code generation automated code": 15280, "generation automated code generation": 38043, "bridge gap paper proposes": 11423, "information source code data": 45634, "benchmarks humaneval humanevalet mbpp": 10355, "like chatgpt demonstrate remarkable": 54066, "zeroshot commonsense question answering": 104754, "commonsense knowledge bases cskbs": 16216, "extensive experiments demonstrate effectiveness": 33058, "models based incontext learning": 61901, "harnesses large language models": 41081, "language models previous studies": 50681, "gpt4 large language models": 39953, "models like chatgpt gpt4": 62907, "used language models lms": 100837, "language models lms typically": 50546, "finetuning large pretrained models": 35118, "large language model gpt4": 51482, "large language models instruction": 51740, "models llms like llama": 63294, "potential advanced language models": 72988, "address limitations present new": 3454, "conduct experiments diverse set": 17868, "public large language models": 77930, "language models llms chatgptgpt4": 50128, "multimodal large language models": 65072, "large language models mllm": 52061, "tools like chatgpt education": 97436, "feature large language models": 33972, "report provides preliminary evaluation": 81991, "collaboration large language models": 15827, "large language models textual": 52200, "extension visual studio code": 32986, "language models llms improved": 50282, "using incontext learning icl": 101519, "et al 2023 train": 30052, "language models llms different": 50168, "additionally explore potential chatgpt": 3306, "models llms chatgpt demonstrate": 63015, "remarkable performance wide range": 81805, "performance wide range tasks": 71717, "remains lack comprehensive investigation": 81667, "multilingual pretrained language models": 64998, "natural language processing aims": 65633, "benchmark evaluating large language": 10157, "current landscape large language": 20700, "challenging task natural language": 13236, "paper introduce novel framework": 69767, "experimental results indicate compared": 32047, "compared previous sota methods": 16612, "gpt35 gpt4 results highlight": 39628, "leveraging large language model": 53863, "language models llms research": 50427, "capabilities large language model": 11960, "human large language models": 42284, "language models llms models": 50338, "models language models lms": 62848, "work try better understand": 104297, "source domain target domains": 89374, "results natural language processing": 83740, "generative llms chatgpt gpt4": 38644, "language models emergence large": 49816, "language models pretrained scratch": 50678, "machine translation mt tasks": 57752, "neural architecture search nas": 66217, "language models llms equipped": 50188, "metrics large language models": 59940, "language models llms associated": 50087, "capabilities stateoftheart llms gpt4": 12090, "language models rapid advancement": 50713, "models rapid advancement large": 63967, "various language models including": 102460, "method large language models": 59346, "great potential natural language": 40480, "potential natural language processing": 73207, "processing nlp tasks recent": 75549, "conduct comprehensive experiments demonstrate": 17846, "comprehensive experiments demonstrate effectiveness": 17260, "experiments demonstrate effectiveness method": 32154, "results demonstrate proposed approach": 83560, "models llms emerged promising": 63116, "work provides valuable insights": 104238, "valuable insights future research": 102157, "stateoftheart language models gpt35": 90359, "using generative large language": 101474, "generative artificial intelligence genai": 38602, "tools increasingly prevalent software": 97427, "software development offering assistance": 88991, "notable examples tools include": 67001, "chatgpt github copilot amazon": 13873, "github copilot amazon codewhisperer": 38838, "capabilities various nlp tasks": 12129, "systems using large language": 93596, "large language models practical": 52107, "like llama 7b 13b": 54186, "foundation model technical report": 35930, "model technical report present": 61497, "potential recent large language": 73236, "models llms exhibited remarkable": 63145, "llms exhibited remarkable performance": 55915, "exhibited remarkable performance various": 31586, "human supervision large language": 42384, "supervision large language models": 92759, "demonstrated remarkable capabilities various": 23316, "remarkable capabilities various tasks": 81756, "high data annotation costs": 41402, "achieves superior performance compared": 2811, "language models llms novel": 50351, "text task poses significant": 96459, "task poses significant challenges": 94191, "falls short human performance": 33802, "utilizing large language models": 102032, "claimed large language models": 14669, "et al 2023 demonstrated": 30051, "quantization large language models": 78443, "text generated language model": 96225, "compared traditional finetuning methods": 16650, "verification large language models": 102747, "software engineering tasks code": 89010, "engineering tasks code generation": 29027, "language models llms llama2": 50329, "retrieval augmented generation rag": 83967, "using direct preference optimization": 101417, "direct preference optimization dpo": 25428, "distillation large language models": 25817, "language models lms capable": 50525, "language models lms acquire": 50523, "cost training models scratch": 19886, "model 13 billion parameters": 60457, "large language models codellms": 51606, "work propose novel framework": 104225, "observe large language models": 67590, "large language models share": 52159, "encoded large language models": 28681, "successes large language models": 92256, "large language models framework": 51694, "rdf knowledge graphs kgs": 79463, "systems based large language": 93400, "models machine translation mt": 63569, "llms shown impressive capabilities": 56778, "shown impressive capabilities various": 87478, "impressive capabilities various natural": 43593, "large language models zero": 52224, "language models zero shot": 50926, "discovery large language models": 25615, "language models llms hold": 50273, "relatively small number examples": 81332, "language models propose data": 50696, "developments artificial intelligence ai": 24740, "generative models like chatgpt": 38662, "models like chatgpt present": 62909, "applicability large language model": 6323, "language model generated text": 49405, "large language models conduct": 51616, "nlp particularly large language": 66760, "particularly large language models": 70480, "aim bridge gap introducing": 4694, "knowledge large language model": 48648, "processing nlp tasks paper": 75547, "benchmarks like glue superglue": 10371, "recently emerged powerful tool": 80481, "tasks like fact verification": 94821, "study investigates key research": 91710, "investigates key research questions": 47745, "tasks despite impressive performance": 94534, "applications natural language processing": 6531, "model checkpoints publicly available": 60651, "recently large pretrained language": 80520, "models llms demonstrated superior": 63092, "large language models documentlevel": 51642, "holds potential broader applications": 41909, "level large language models": 53667, "chatgpt widely used various": 14356, "language models llms resulting": 50429, "language models llms known": 50311, "propose novel training method": 77082, "pretrained causal language models": 74239, "incontext learning natural language": 44628, "natural language inference recent": 65603, "demonstrated large language models": 23291, "models llms excel diverse": 63129, "tasks incontext learning icl": 94742, "natural language inference datasets": 65600, "large language model responses": 51533, "recently instructionfollowing audiolanguage models": 80509, "instructionfollowing audiolanguage models received": 46444, "audiolanguage models received broad": 8496, "models received broad attention": 63995, "human speech natural sounds": 42373, "speech natural sounds music": 89958, "recent advancements natural language": 80190, "popular large language models": 72640, "machine translation question answering": 57757, "domains large language models": 26541, "llms exhibit remarkable capacity": 55906, "proprietary models gpt35 gpt4": 77313, "large language models specifically": 52174, "language models specifically chatgpt": 50825, "llms shown impressive performance": 56780, "shown impressive performance various": 87484, "commercially available llms gpt35": 16107, "available llms gpt35 gpt4": 9067, "llms gpt35 gpt4 palm2": 56095, "models llms chatgpt google": 63021, "llms chatgpt google bard": 55594, "undergraduate computer science students": 99472, "models llms demonstrated considerable": 63064, "large language models systematic": 52189, "chatgpt35 chatgpt4 google bard": 14370, "google bard microsoft bing": 39136, "language models llms serve": 50436, "language models llms extensive": 50214, "causal reasoning ability chatgpt": 12669, "general large language models": 37155, "language models llms represented": 50423, "models llms represented chatgpt": 63403, "chatgpt demonstrated significant potential": 13696, "llms various software engineering": 57025, "various software engineering tasks": 102576, "tasks question answering text": 94997, "question answering text summarization": 78634, "crosslingual transfer lowresource languages": 20429, "capabilities artificial intelligence ai": 11842, "ai especially large language": 4387, "especially large language models": 29893, "models shown promise various": 64186, "increasing leveraging large language": 44836, "llms like chatgpt demonstrated": 56300, "like chatgpt demonstrated remarkable": 54068, "chatgpt demonstrated remarkable proficiency": 13694, "including textdavinci003 gpt35turbo gpt4": 44500, "long shortterm memory lstm": 57332, "findings underscore potential llms": 34769, "chatgpt named entity recognition": 14028, "rapid advancements large language": 79301, "approaches artificial intelligence ai": 7106, "models llms demonstrated exceptional": 63065, "demonstrated exceptional capabilities various": 23252, "openai large language models": 68168, "models llms significant advancements": 63444, "highperformance computing large language": 41728, "models llms including llama": 63237, "various generaldomain natural language": 102440, "generaldomain natural language processing": 37211, "processing nlp tasks performance": 75548, "responses response challenge propose": 83300, "generated qa questionanswer instances": 37763, "parameterefficient finetuning peft techniques": 70146, "incontext learning icl large": 44606, "learning icl large language": 53202, "language models llms widely": 50514, "models llms widely used": 63513, "generative artificial intelligence gai": 38600, "chatgpt generative artificial intelligence": 13867, "higher education institutions heis": 41501, "capabilities stateoftheart language models": 12088, "large language model outputs": 51523, "exploiting large language models": 32581, "models llms chatgpt openai": 63030, "widespread use language models": 103802, "paper presents novel study": 69868, "large language models susceptible": 52186, "despite great success large": 24058, "masked language modelling mlm": 58432, "gpt3davinci gpt3curie gpt3babbage gpt3ada": 39729, "large language models identifying": 51725, "language models plms paper": 50655, "novel approach creating highquality": 67093, "large language models suffer": 52183, "language models paper present": 50633, "ecosystem large language models": 27070, "deploying deep learning models": 23580, "llms shown promising performance": 56785, "stateoftheart models like chatgpt": 90406, "language models llms combined": 50132, "propose reinforcement learning rl": 77101, "reasoning abilities large language": 79756, "large language models understanding": 52212, "language models conduct extensive": 49741, "models conduct extensive experiments": 62084, "conduct extensive experiments popular": 17885, "results indicate significant performance": 83687, "indicate significant performance gap": 45021, "language models llms llms": 50330, "answer implicit reasoning questions": 6020, "leverage large language models": 53739, "alignment large language models": 5088, "language models llms helpful": 50271, "introduce new benchmark called": 47454, "large language models diffusion": 51638, "language models diffusion models": 49790, "models holds significant potential": 62676, "remarkable achievements large language": 81735, "achievements large language models": 2692, "southeast asian sea languages": 89435, "models exhibit superior performance": 62389, "work propose novel approach": 104224, "models fall short human": 62448, "recent developments generative ai": 80243, "developments generative ai especially": 24744, "generate accurate code solutions": 37370, "explores integration large language": 32806, "sentiment analysis results reveal": 86594, "traditional natural language processing": 97685, "language processing nlp methods": 51015, "generative language models current": 38628, "evaluating natural language generation": 30466, "natural language generation capabilities": 65583, "classification question answering summarization": 14779, "large language model generation": 51477, "free copy paper supplemental": 36338, "copy paper supplemental materials": 19523, "good bad ugly large": 39109, "bad ugly large language": 9290, "ugly large language models": 99325, "models llms chatgpt bard": 63014, "revolutionized natural language understanding": 84353, "hope work shed light": 41975, "applicability large language models": 6324, "language models llms opened": 50363, "models llms opened new": 63335, "llms opened new opportunities": 56467, "language models llms generation": 50242, "llama large language model": 54767, "presents significant challenge paper": 74172, "models llms including gpt4": 63236, "openais generative pretrained transformer": 68198, "language models llms especially": 50189, "large languages models llms": 52238, "models llms gpt4 shown": 63212, "artificial intelligence ai chatbots": 7597, "using 5point likert scale": 101280, "introduce novel inference method": 47472, "machine learning classification models": 57698, "large language model serving": 51536, "models llms recently experienced": 63387, "assistance large language models": 8030, "large language models software": 52168, "language models llms focus": 50223, "entity recognition ner relation": 29578, "recognition ner relation extraction": 80609, "symbolic knowledge distillation present": 93125, "injection large language models": 45828, "language models generative large": 49920, "models generative large language": 62566, "knowledge knowledge graphs kgs": 48642, "extensive experiments benchmark datasets": 33050, "language models llms llama": 50328, "code data model checkpoints": 15187, "interactions large language models": 47066, "touvron et al 2023": 97577, "focuses large language models": 35610, "safety large language models": 85039, "language models llms raised": 50397, "question answering qa datasets": 78620, "tuning large language models": 99057, "knowledge embedded large language": 48531, "embedded large language models": 28046, "pretrained language model bert": 74284, "experiments proposed model achieves": 32269, "language models llms useful": 50505, "models llms gpt4 llama": 63208, "paper introduces novel approach": 69777, "potential wide range tasks": 73323, "large language models healthrelated": 51721, "integrate large language models": 46664, "current stateoftheart large language": 20779, "large language models effective": 51648, "operations large language models": 68464, "language models llms implement": 50279, "models llms increasingly integrated": 63245, "llms increasingly integrated everyday": 56208, "large language models binary": 51587, "extensive evaluation prominent llms": 33028, "evaluation prominent llms including": 30730, "language models knowledge graphs": 50014, "large language models represent": 52144, "large language model meta": 51517, "language model meta ai": 49485, "advancement field natural language": 3778, "natural language understanding abilities": 65746, "degrade model performance address": 22896, "comparative analysis large language": 16424, "generation paper presents comprehensive": 38317, "models llms generation code": 63187, "baseline large language models": 9787, "data source code publicly": 21640, "applications various domains including": 6595, "evaluating enhancing large language": 30418, "current stateoftheart llm gpt4": 20782, "policy gradient reinforcement learning": 72538, "large language models complex": 51613, "abilities natural language processing": 1542, "approach significantly outperforms previous": 7025, "large language models exploring": 51678, "problemsolving large language models": 75235, "study showcases potential llms": 91840, "synthesizing code natural language": 93244, "code data models available": 15191, "face challenges data scarcity": 33435, "address issues paper propose": 3439, "crucial large language models": 20501, "advancement natural language processing": 3790, "analysis ability large language": 5420, "large language models automating": 51581, "gpt35 large language models": 39639, "language models llms drawn": 50175, "propose simple effective approach": 77112, "local large language models": 57202, "models llms chatgpt llama": 63029, "language understanding generation abilities": 51163, "learning human feedback extensive": 53190, "human feedback extensive experiments": 42222, "largescale language model llm": 52530, "reasoning capability large language": 79815, "superior performance compared baseline": 92648, "reduces time effort data": 80850, "time effort data labeling": 96955, "effort data labeling takes": 27870, "data labeling takes recent": 21356, "labeling takes recent efforts": 48928, "promising performance zeroshot settings": 76186, "performance zeroshot settings inspiring": 71729, "zeroshot settings inspiring explore": 104871, "settings inspiring explore promptbased": 87064, "inspiring explore promptbased methods": 46196, "models constructed directly prompting": 62105, "llms demonstrated superior capabilities": 55773, "potential utilizing chatgpt enhance": 73312, "code generation code translation": 15291, "generation code translation tasks": 38082, "notably large language models": 67038, "language models llms particularly": 50367, "large language models better": 51586, "llms natural language understanding": 56423, "models llms highlights potential": 63222, "evaluation benchmark large language": 30524, "language models rapid evolution": 50717, "models rapid evolution large": 63973, "rapid evolution large language": 79324, "evolution large language models": 31027, "proprietary large language models": 77303, "large language models excel": 51670, "evaluating performance large language": 30474, "evaluation paradigm large language": 30707, "paradigm large language models": 70040, "trend large language models": 98848, "language models llms increase": 50289, "demonstrate proposed approach significantly": 23166, "terms accuracy efficiency addition": 95790, "extension large language models": 32983, "chatgpt gpt4 demonstrated exceptional": 13897, "demonstrated exceptional proficiency natural": 23257, "exceptional proficiency natural language": 31386, "proficiency natural language processing": 75798, "large language models annotation": 51572, "open generative large language": 68069, "study evaluates performance different": 91613, "models llms gaining increasing": 63177, "variety use cases language": 102339, "associated large language models": 8090, "large language models burgeoning": 51588, "models like openais chatgpt": 62931, "advancement artificial intelligence models": 3769, "prompt injection attacks large": 76345, "injection attacks large language": 45824, "attacks large language models": 8218, "vulnerabilities large language models": 103260, "recently advent large language": 80452, "advancing large language models": 3911, "language models llms paper": 50365, "models trained direct preference": 64383, "trained direct preference optimization": 97816, "use artificial intelligence ai": 100477, "paper delves capabilities models": 69667, "article provides comprehensive overview": 7556, "provides comprehensive overview current": 77650, "llms exhibited remarkable capabilities": 55914, "utilization large language models": 101915, "large language model training": 51544, "llms demonstrated powerful ability": 55751, "code publicly available github": 15461, "holds large language models": 41905, "findings provide valuable insights": 34722, "finetuned large language model": 34915, "various nlp tasks existing": 102507, "advancing opensource language models": 3917, "sft direct preference optimization": 87151, "exhibits superior performance compared": 31639, "rapid evolution artificial intelligence": 79321, "evolution artificial intelligence ai": 31018, "domain large language models": 26413, "models llms generative ai": 63189, "models gpt35 turbo gpt4": 62608, "exemplified models like chatgpt": 31482, "demonstrate large language models": 23112, "timeconsuming large language models": 97050, "language models llms promise": 50390, "future work focus enhancing": 36795, "large language models enhancing": 51661, "language models llms ability": 50071, "large models like gpt4": 52264, "traditional machine learning models": 97677, "popular large language model": 72638, "paper present empirical study": 69831, "provide model finetuned follow": 77523, "model finetuned follow instructions": 60888, "models released apache 20": 64047, "released apache 20 license": 81395, "knowledge multimodal large language": 48682, "models llms multimodal large": 63308, "llms multimodal large language": 56412, "large language models mllms": 52062, "language models mllms shown": 50584, "tasks address gap propose": 94353, "closedsource models like gpt4": 15013, "general purpose large language": 37182, "purpose large language model": 78043, "monte carlo tree search": 64729, "carlo tree search mcts": 12434, "propose incontext learning approach": 77001, "including chatbots like chatgpt": 44290, "european union united states": 30116, "large language models verifiable": 52218, "language models llms established": 50190, "benchmark specifically designed evaluate": 10252, "trustworthiness large language models": 98944, "excellent natural language processing": 31351, "open challenges future directions": 68051, "llms generally outperform opensource": 56042, "language models llms strong": 50470, "question generation qg natural": 78674, "generation qg natural language": 38370, "performance downstream tasks paper": 71164, "downstream tasks paper explore": 26741, "findings offer new insights": 34708, "evaluate large language models": 30212, "paper propose new benchmark": 69889, "instruction tuning large language": 46396, "demonstrated impressive capabilities various": 23277, "conduct extensive experiments analyze": 17882, "using reinforcement learning rl": 101736, "chatgpt language model based": 13971, "language model based generative": 49344, "experimental results indicate chatgpt": 32046, "comprehensive evaluation stateoftheart llms": 17249, "larger models gpt35 gpt4": 52459, "gpt4 achieving best performance": 39753, "language models improve performance": 49973, "generative language models lms": 38631, "chatgpt exhibited remarkable performance": 13781, "ranging billion 13 billion": 79238, "data natural language processing": 21435, "language processing nlp multimodal": 51017, "efficient finetuning large language": 27764, "parameter efficient finetuning peft": 70102, "language models llms domain": 50172, "language models llms notably": 50349, "models llms notably enhanced": 63320, "extensive analysis shows chatgpt": 32995, "machine translation large language": 57746, "nlp tasks including machine": 66788, "despite general capabilities large": 24054, "process large language models": 75346, "large language models scientific": 52156, "open large language models": 68081, "language models llms task": 50481, "conversational question answering qa": 19393, "propose twostage instruction tuning": 77150, "language models llms handle": 50268, "large language models training": 52207, "language models training large": 50880, "models training large language": 64415, "advance artificial intelligence ai": 3661, "artificial intelligence ai emergence": 7600, "language models llms triggered": 50497, "artificial intelligence ai poised": 7614, "explainable artificial intelligence xai": 32450, "large language models advanced": 51562, "advanced state art natural": 3754, "state art natural language": 90271, "art natural language processing": 7527, "large language model designed": 51468, "llms showcased remarkable capabilities": 56770, "existing methods heavily rely": 31763, "explainability large language models": 32440, "taskoriented dialogue tod systems": 94322, "llms demonstrated remarkable success": 55764, "comparable performance fully finetuned": 16393, "provide insights future directions": 77507, "extreme compression large language": 33380, "size poses significant challenges": 88512, "multilingual capabilities large language": 64946, "extending large language models": 32967, "compress large language models": 17338, "cornerstone natural language processing": 19563, "models mllms shown impressive": 63632, "models llms offer potential": 63324, "augmented generation rag approach": 8574, "enables large language models": 28595, "performance popular llms gpt4": 71474, "llms code generation reasoning": 55631, "visionlanguage models recent advances": 103037, "large visionlanguage models lvlms": 52380, "propose simple effective training": 77115, "parameters constant computational cost": 70192, "provide valuable insights future": 77597, "demonstrates significant performance improvements": 23402, "pretrained language models nlp": 74331, "language models nlp tasks": 50606, "code generation code completion": 15289, "large language models specialized": 52171, "realworld applications existing benchmarks": 79642, "large language models model": 52068, "available apache 20 license": 9011, "landscape natural language processing": 49114, "natural language processing paper": 65691, "attention heads transformer models": 8318, "winograd schema challenge wsc": 103843, "models llms like gpt": 63285, "advanced large language model": 3708, "tasks involve complex multistep": 94775, "involve complex multistep reasoning": 47825, "using gpt3 base model": 101485, "data training evaluation code": 21704, "performance recently large language": 71525, "llm agents large language": 54953, "language model llm agents": 49450, "users using natural language": 101197, "language models capable performing": 49694, "remarkable success raised concerns": 81832, "proposed method significantly outperforms": 77232, "chatgpt serve viable alternative": 14208, "recent research highlighted potential": 80340, "crucial task natural language": 20541, "task natural language understanding": 94156, "llms like gpt3 chatgpt": 56319, "models llms significantly enhanced": 63449, "natural language processing artificial": 65638, "language processing artificial intelligence": 50969, "demonstrate stateoftheart performance various": 23193, "substantial computational memory requirements": 92070, "guardrails large language models": 40708, "language models llms integrated": 50303, "commonsense reasoning reading comprehension": 16240, "language models gpt4 turbo": 49948, "attack multimodal large language": 8176, "multimodal large language model": 65068, "attacks multimodal large language": 8227, "stateoftheart methods code available": 90393, "graphenhanced large language models": 40423, "opensource llms including gpt4": 68368, "propose novel technique called": 77079, "large language models semantic": 52157, "large language models autonomous": 51582, "models llms chatgpt palm": 63031, "natural language processing demonstrating": 65647, "llms natural language processing": 56422, "language models llms popular": 50374, "work conduct systematic analysis": 104024, "using openais gpt35 gpt4": 101665, "language models llms proven": 50393, "models llms proven useful": 63369, "performance various reasoning tasks": 71698, "language models llm gpt4": 50063, "language models retrieval augmented": 50764, "models retrieval augmented generation": 64101, "tasks recently large language": 95021, "work large language models": 104159, "large language models achieve": 51556, "aligning large language models": 5044, "communication large language models": 16271, "cloudbased large language models": 15068, "sparsity large language models": 89561, "natural approach reduce cost": 65547, "llms like gpt llama": 56317, "study large language model": 91724, "language model llm applications": 49451, "users large language models": 101133, "models survey large language": 64312, "strong performance wide range": 91058, "performance wide range natural": 71713, "range natural language tasks": 79183, "release chatgpt november 2022": 81351, "compare performance popular llms": 16485, "open challenges future research": 68052, "llms openais gpt4 googles": 56463, "models diverse set tasks": 62253, "large language model agent": 51457, "news large language models": 66633, "finetuned llama model significantly": 34921, "llama model significantly outperforms": 54782, "language models llms great": 50266, "datasets large language models": 22316, "language models llms received": 50404, "generative ai changing way": 38535, "large language model mllm": 51519, "viability large language models": 102844, "gpt4 revolutionized natural language": 40063, "modeling large language models": 61650, "incorporating large language models": 44710, "large language models engineering": 51658, "underscore potential large language": 99548, "large language models addressing": 51561, "transformative potential large language": 98476, "large language models specific": 52172, "code base publicly available": 15137, "language models llms using": 50506, "scaling language models 128k": 85333, "language models 128k context": 49605, "language models llms typically": 50498, "language models prompt learning": 50691, "large language models explored": 51677, "evaluation framework large language": 30610, "framework large language models": 36189, "image generation text generation": 43046, "models finetuned human feedback": 62479, "challenges faced current llms": 13016, "new benchmark designed assess": 66348, "contexts large language models": 18911, "language models llms deployed": 50162, "annotations reinforcement learning human": 5950, "open source large language": 68121, "large language model llama2": 51489, "transformerbased large language model": 98566, "language models fall short": 49875, "address gap introduce new": 3399, "gap introduce new benchmark": 36939, "language models lms strong": 50542, "reasoning ability large language": 79767, "language models llms knowledge": 50309, "models llms knowledge graphs": 63262, "llms knowledge graphs kgs": 56265, "llm extensive experiments demonstrate": 55076, "code data publicly released": 15200, "capabilities various stateoftheart llms": 12131, "various stateoftheart llms including": 102583, "stateoftheart llms including gpt4": 90383, "llms including gpt4 gpt35": 56184, "llms including gpt4 llama": 56185, "data codes publicly available": 21065, "models llms shown strong": 63439, "llms shown strong performance": 56794, "models llms demonstrated strong": 63089, "performance llms practical applications": 71373, "outperform large language models": 68947, "safety alignment large language": 85007, "language models safety alignment": 50779, "guide large language models": 40741, "common european framework reference": 16140, "european framework reference languages": 30110, "framework reference languages cefr": 36255, "llms pretrained large language": 56562, "improve quality model outputs": 43786, "challenge paper propose novel": 12916, "security vulnerabilities large language": 86048, "paper investigate effectiveness llms": 69783, "models gpt4 using fewshot": 62623, "gpt4 using fewshot learning": 40146, "model performance paper introduces": 61235, "like large language models": 54182, "bard large language models": 9362, "corpus large language models": 19638, "exhibit significant performance gap": 31553, "widespread use generative ai": 103799, "use generative ai tools": 100562, "efficient large language models": 27788, "reliability large language model": 81501, "personas large language models": 71933, "language models llms despite": 50164, "pretrained language models improving": 74316, "large language models performance": 52101, "language models llms general": 50238, "using chatgpt case study": 101337, "significant advancement field natural": 87666, "lack large annotated data": 49031, "language models llms usually": 50508, "large language models encode": 51657, "language models llms retrieving": 50430, "tools like chatgpt present": 97437, "large language models optimization": 52088, "language models llms based": 50094, "large language model called": 51462, "recent studies raised concerns": 80364, "attack success rate asr": 8184, "conduct comprehensive experiments representative": 17847, "models structured knowledge grounding": 64268, "demonstrated capabilities large language": 23234, "structured knowledge grounding skg": 91170, "used generate synthetic data": 100811, "evaluation prompting strategies large": 30733, "prompting strategies large language": 76615, "wide variety downstream tasks": 103704, "empowering large language models": 28507, "work investigate potential large": 104149, "investigate potential large language": 47686, "models available hugging face": 61888, "models incorporating external knowledge": 62745, "language models perform better": 50643, "existing benchmarks fail assess": 31674, "time large language models": 96983, "large language models quickly": 52122, "teaching large language models": 95368, "large language models struggle": 52179, "improve student learning outcomes": 43811, "reinforcement learning ai feedback": 81142, "learning ai feedback rlaif": 53021, "demonstrate superior performance compared": 23203, "language processing nlp problems": 51020, "latest generative large language": 52664, "despite recent advances natural": 24108, "algorithms large language models": 4976, "large language models investigation": 51745, "natural language understanding capabilities": 65747, "desirable large language models": 23993, "open source language models": 68119, "yields significant performance improvements": 104676, "benchmark framework developed evaluate": 10176, "evaluate capability large language": 30151, "language models llms chatgpt35": 50127, "systematic evaluation large language": 93330, "propose novel evaluation framework": 77067, "language model llm training": 49476, "proprietary models like gpt4": 77316, "trained vast amounts publicly": 97931, "vast amounts publicly available": 102669, "language models llms massive": 50335, "language models llms study": 50473, "semantics large language models": 86388, "large language models achieved": 51557, "language models achieved remarkable": 49621, "models achieved remarkable success": 61770, "general language understanding tasks": 37152, "language models llms help": 50270, "remarkable progress recent years": 81817, "instruction finetuning experimental results": 46329, "paper try answer question": 69983, "tasks maintaining comparable performance": 94847, "pretrained models large language": 74413, "language models like gpt35": 50050, "llms like chatgpt google": 56305, "like chatgpt google bard": 54077, "chatgpt google bard claude": 13879, "leverages federated learning fl": 53787, "extensive experiments framework outperforms": 33073, "advanced ai tools like": 3675, "ai tools like gpt4": 4600, "large artificial intelligence ai": 51392, "language models github copilot": 49927, "study highlights importance prompt": 91661, "highlights importance prompt engineering": 41656, "language models offer new": 50612, "davinci002 davinci003 gpt35turbo gpt4": 22489, "problem large language models": 75035, "math word problem mwp": 58561, "hallucination code data available": 40828, "instruction data evaluation benchmark": 46311, "language models minimal human": 50575, "space large language models": 89451, "program synthesis large language": 75849, "large language models pretrained": 52112, "language models llms beginning": 50096, "automatic code generation natural": 8762, "code generation natural language": 15318, "chatgpt built large language": 13583, "paper conducts comprehensive evaluation": 69652, "large language multimodal models": 52233, "electronic health records ehrs": 27959, "large language models proposed": 52118, "deep neural network dnn": 22794, "approach significantly improves accuracy": 7022, "llmbased systems large language": 55362, "language models shown impressive": 50796, "language models llms demonstrating": 50161, "potential generative ai models": 73110, "achieved unprecedented performance various": 2686, "llms like gpt4 handle": 56327, "assess feasibility using llms": 7851, "feasibility using llms generate": 33951, "llms generate code explanations": 56046, "models fewshot crosslingual transfer": 62460, "language models lowresource languages": 50551, "llms like gpt4 demonstrated": 56326, "knowledge graph embeddings knowledge": 48594, "machine learning models using": 57716, "paper introduces innovative approach": 69774, "large language model proposed": 51528, "models demonstrate strong performance": 62180, "model reinforcement learning rl": 61331, "human feedback rlhf framework": 42230, "bugs large language models": 11575, "large language models generated": 51701, "llmbased code generation tools": 55346, "language models llms garnered": 50235, "models llms garnered significant": 63180, "llms garnered significant attention": 56032, "significant attention research community": 87691, "paper aims address issue": 69598, "higher correlation human judgments": 41495, "focus large language models": 35532, "large language models designed": 51632, "achieving stateoftheart performance various": 2886, "model demonstrates superior performance": 60750, "sequence length batch size": 86656, "era artificial intelligence ai": 29722, "language models rapid development": 50715, "models rapid development large": 63970, "language models llms marked": 50333, "models llms marked significant": 63302, "errors large language models": 29823, "power large language model": 73375, "language models paper study": 50636, "problem multimodal large language": 75050, "multimodal large language modelsmllms": 65077, "achieves average attack success": 2711, "portuguese large language models": 72731, "significant impact models performance": 87766, "scenarios large language models": 85451, "search engines like google": 85872, "remains largely unexplored paper": 81672, "generative ai specifically large": 38570, "ai specifically large language": 4557, "specifically large language models": 89842, "addressing gap introduce novel": 3539, "advancement generative artificial intelligence": 3782, "named entity recognition using": 65480, "pretrained language models using": 74356, "computational cost inference time": 17446, "model code data available": 60662, "including generative pretrained transformer": 44354, "pretrained transformer gpt series": 74470, "opensourced facilitate future research": 68423, "language models llms tested": 50483, "performance chainofthought cot prompting": 71039, "models like gpt35 llama2": 62923, "language model llm inference": 49468, "explore potential using large": 32730, "future work large language": 36798, "language models efficient finetuning": 49811, "large language model finetuned": 51474, "model finetuned large language": 60893, "instructionfinetuned large language models": 46437, "processing nlp tasks deployment": 75543, "llms experiments realworld datasets": 55928, "artificial intelligence ai tool": 7622, "generative pretrained transformer language": 38701, "computer science software engineering": 17534, "emergence numerous large language": 28181, "numerous large language models": 67430, "properties large language models": 76902, "models llms increasingly prevalent": 63248, "llms align human values": 55466, "financial benchmark large language": 34596, "large language models explore": 51676, "named entity recognition models": 65471, "large language models natural": 52074, "language processing nlp practitioners": 51019, "documents using large language": 26272, "paper explores integration large": 69725, "language models llms generating": 50241, "rapid development artificial intelligence": 79312, "development artificial intelligence technology": 24613, "study evaluates performance chatgpt": 91612, "chatgpt similar large language": 14243, "similar large language models": 88082, "marking significant step forward": 58404, "language models billions parameters": 49682, "conducted experiments evaluate performance": 17959, "present novel framework named": 74024, "language models llms understanding": 50500, "explored possibility using llms": 32782, "language models llms constitute": 50134, "language models lms various natural": 50548, "models lms various natural language": 63548, "lms various natural language processing": 57186, "various natural language processing tasks": 102500, "language models large language models": 50027, "large language models recently large": 52140, "language models recently large language": 50739, "models recently large language models": 64023, "generation using pretrained language models": 38502, "fields natural language processing nlp": 34438, "natural language processing nlp information": 65673, "language processing nlp information retrieval": 51010, "processing nlp information retrieval ir": 75525, "bidirectional encoder representations transformers bert": 10974, "measuring massive multitask language understanding": 58778, "language models lms demonstrated impressive": 50527, "based generative pretrained language model": 9550, "language model pretrained language models": 49516, "making pretrained language models better": 58133, "capabilities limitations large language models": 11980, "widespread use large language models": 103805, "large models like bert gpt3": 52262, "communication major bottleneck especially commodity": 16275, "major bottleneck especially commodity systems": 57924, "recent progress natural language processing": 80323, "progress natural language processing nlp": 75999, "benchmarks weakly supervised training paradigm": 10432, "large language models shown promising": 52162, "language models shown promising results": 50803, "largescale pretrained language models plms": 52563, "new paradigm natural language processing": 66477, "paradigm natural language processing nlp": 70045, "generative pretrained transformer gpt2 model": 38698, "recent success pretrained language models": 80376, "pretrained language models recent years": 74348, "size pretrained language models plms": 88517, "improve performance pretrained language models": 43761, "language models large pretrained language": 50031, "models large pretrained language models": 62867, "large pretrained language models shown": 52319, "large pretrained language models generate": 52313, "attention natural language processing nlp": 8349, "natural language processing nlp domain": 65669, "language models pretrained language models": 50675, "models pretrained language models plms": 63871, "wide range natural language processing": 103673, "range natural language processing nlp": 79181, "natural language processing nlp tasks": 65686, "language models like gpt3 t5": 50049, "large language models bert gpt3": 51585, "bert roberta gpt2 dozens datasets": 10553, "research natural language processing nlp": 82678, "natural language processing nlp witnessed": 65689, "large pretrained language models gpt3": 52314, "large pretrained language models lms": 52317, "make code models publicly available": 57976, "significant progress natural language processing": 87828, "achieve strong results incontext learning": 2597, "remarkable success large language models": 81826, "promptbased learning large language models": 76466, "gpt3 brown et al 2020": 39420, "evaluating natural language processing models": 30468, "tasks using zeroshot fewshot learning": 95238, "using reinforcement learning human feedback": 101735, "work shown large language models": 104273, "demonstrated impressive ability generate code": 23273, "language models lms recently shown": 50539, "gpt2 radford et al 2019": 39341, "radford et al 2019 gpt3": 79018, "et al 2019 gpt3 brown": 30045, "al 2019 gpt3 brown et": 4867, "2019 gpt3 brown et al": 529, "natural language processing nlp algorithms": 65664, "shown achieve remarkable performance variety": 87439, "achieve remarkable performance variety natural": 2569, "remarkable performance variety natural language": 81799, "performance variety natural language tasks": 71673, "pretrained language models lms shown": 74328, "natural language generation nlg tasks": 65591, "language models bert roberta gpt3": 49675, "recent advances natural language processing": 80210, "using pretrained language models paper": 101688, "automated natural language generation metrics": 8723, "natural language processing nlp systems": 65684, "various natural language processing nlp": 102499, "large language models lms gpt3": 52047, "stateoftheart performance natural language processing": 90438, "performance natural language processing nlp": 71421, "prompt generation large language models": 76332, "success large language models llms": 92214, "large language models llms code": 51807, "natural language understanding nlu natural": 65757, "language understanding nlu natural language": 51179, "understanding nlu natural language generation": 99828, "nlu natural language generation nlg": 66838, "artificial intelligence large language models": 7649, "large language models openais codex": 52087, "harness power large language models": 41075, "large language models using large": 52216, "language models using large language": 50900, "models using large language models": 64477, "benefit using large language models": 10461, "using large language models llms": 101552, "finetuning methods large language models": 35143, "natural language understanding nlu tasks": 65758, "widely used natural language processing": 103744, "models generative pretrained transformer gpt": 62570, "recent large language models llms": 80283, "large language models llms demonstrated": 51818, "language models llms demonstrated remarkable": 50156, "language models llms demonstrated impressive": 50150, "models llms demonstrated impressive capabilities": 63071, "models large language models llms": 62858, "large language models llms gpt3": 51881, "large language models gpt3 brown": 51713, "language models gpt3 brown et": 49938, "models gpt3 brown et al": 62596, "recent success large language models": 80373, "large language models text generation": 52198, "large language models large language": 51752, "large language models llms shown": 52000, "generation prompting large language models": 38356, "large language models case study": 51593, "prompting pretrained language models plms": 76592, "large language models llms impressive": 51896, "questions large language models llms": 78883, "large language models multiple choice": 52073, "question answering large language models": 78607, "answering large language models llms": 6121, "large language models llms like": 51920, "language models llms like gpt3": 50323, "multiple choice question answering mcqa": 65156, "choice question answering mcqa tasks": 14591, "multiple choice symbol binding mcsb": 65160, "models large language models llm": 62857, "automatically generating source code natural": 8883, "generating source code natural language": 37978, "language model large language models": 49441, "model large language models llms": 61050, "large language models llms led": 51918, "breakthroughs natural language processing nlp": 11410, "large language models llms chatgpt": 51803, "language models llms chatgpt gpt4": 50115, "models llms chatgpt gpt4 demonstrated": 63025, "large language models llms generate": 51875, "improve performance various nlp tasks": 43770, "language models transformerbased large language": 50886, "models transformerbased large language models": 64427, "transformerbased large language models llms": 98569, "large language models llms provide": 51971, "pretrained large language model llm": 74361, "large language model llm based": 51495, "language model llm based transformer": 49456, "natural language processing nlp community": 65667, "using large language model llm": 101544, "landscape large language models llms": 49111, "knowledge large language models llms": 48650, "large language models llms trained": 52023, "recent large language models chatgpt": 80281, "models recent large language models": 64003, "symbolic knowledge distillation west et": 93127, "knowledge distillation west et al": 48521, "knowledge base question answering kbqa": 48441, "language models lms like gpt3": 50533, "performance wide range nlp tasks": 71716, "analysis aim provide insight potential": 5432, "large language models llms surprisingly": 52016, "natural language generation pretrained language": 65594, "language generation pretrained language models": 49261, "transformerbased large language models trained": 98570, "finetuning large pretrained language models": 35117, "language models collection tasks described": 49729, "models collection tasks described instructions": 62035, "leveraging large language models llms": 53867, "large language model machine translation": 51516, "impacts large language models llms": 43284, "language models llms like chatgpt": 50319, "dataset human chatgpt comparison corpus": 21968, "human chatgpt comparison corpus hc3": 42122, "samples large language models llms": 85129, "large language models llms computationally": 51810, "large language model llm generate": 51501, "advancements natural language processing nlp": 3849, "understanding effectiveness large language models": 99724, "performance various natural language processing": 71690, "summarization large language models llms": 92541, "large language models llms used": 52035, "practical applications large language models": 73500, "applications large language models llms": 6513, "large language models llms significantly": 52003, "best performing models achieved accuracy": 10628, "potential using large language models": 73307, "using large language models large": 101550, "large language models llms codex": 51808, "hold great promise enhancing programming": 41886, "great promise enhancing programming education": 40490, "models natural language processing nlp": 63658, "language models plms shown promising": 50657, "scale large language models llms": 85277, "language models llms demonstrated ability": 50146, "variety natural language processing nlp": 102312, "chatgpt drawn great deal attention": 13732, "representative task categories extensive empirical": 82159, "pretrained language models like bert": 74323, "chat generative pretrained transformer chatgpt": 13372, "large language models llms new": 51937, "generative artificial intelligence ai models": 38595, "large language models llms specific": 52008, "pretrained language models plms t5": 74344, "widespread adoption large language models": 103781, "generative large language models llms": 38639, "large language models llms introduce": 51910, "feedback large language models llms": 34101, "language models llms chatgpt able": 50106, "models llms chatgpt able generate": 63011, "llms chatgpt able generate humanlike": 55578, "chatgpt able generate humanlike fluent": 13480, "able generate humanlike fluent responses": 1855, "recently large language models like": 80516, "large language models like gpt3": 51761, "receptance weighted key value rwkv": 80570, "impressive performance various natural language": 43631, "generative artificial intelligence ai tools": 38599, "prompts large language models llms": 76767, "large neural language models trained": 52281, "emergence large language models llms": 28172, "language models llms chatgpt provides": 50122, "models llms chatgpt provides opportunity": 63034, "artificial intelligence generated content aigc": 7640, "large language models like chatgpt": 51759, "recently large language models llms": 80518, "critical cooling rates metallic glasses": 20318, "experimental results demonstrate effectiveness proposed": 32028, "results demonstrate effectiveness proposed framework": 83544, "performance chatgpt large language model": 71048, "natural language processing large language": 65656, "language processing large language models": 50990, "processing large language models llms": 75498, "large language models llms rely": 51982, "large language models llms generative": 51878, "language models llms generative pretrained": 50246, "attention exceptional natural language processing": 8306, "exceptional natural language processing capabilities": 31375, "reinforcement learning large language models": 81159, "learning large language models llms": 53241, "large language models llms increasingly": 51904, "language models llms increasingly used": 50298, "reasoning large language models llms": 79928, "large language models llms emerging": 51838, "conversational large language models llms": 19380, "large language models llms open": 51944, "shown impressive performance natural language": 87483, "impressive performance natural language processing": 43623, "performance natural language processing tasks": 71422, "natural language processing tasks language": 65704, "experiments gpt4 artificial intelligence ai": 32212, "refining large language models llms": 80998, "large language models llms exhibit": 51851, "language models llms exhibit remarkable": 50202, "models llms exhibit remarkable capabilities": 63138, "remarkable capabilities variety domains tasks": 81754, "capabilities variety domains tasks challenging": 12119, "variety domains tasks challenging understanding": 102294, "domains tasks challenging understanding learning": 26598, "tasks challenging understanding learning cognition": 94428, "chatgpt chatgpt large language model": 13612, "chatgpt large language model llm": 13977, "reinforcement learning human feedback rlhf": 81155, "fewshot prompting large language models": 34295, "prompting large language models large": 76560, "text generated large language models": 96228, "natural language processing nlp research": 65683, "recent proliferation large language models": 80327, "proliferation large language models llms": 76080, "natural language processing nlp increasingly": 65672, "recent advances artificial intelligence ai": 80197, "large language models empirical study": 51656, "data large language models llms": 21366, "large language models llms downstream": 51832, "text classification large language models": 96114, "analysis large language models llms": 5571, "language models llms gpt3 demonstrated": 50254, "attention computation fundamental task training": 8295, "computation fundamental task training large": 17422, "fundamental task training large language": 36559, "task training large language models": 94273, "training large language models transformer": 98165, "finetuned publicly available code github": 34957, "powered large language models llms": 73416, "large language models llms gpt35": 51882, "language models llms gpt35 gpt4": 50257, "large language models llms gpt4": 51884, "potential pretrained large language models": 73227, "pretrained large language models llms": 74363, "large language models llms use": 52034, "exame nacional ensino medio enem": 31084, "code data used experiments available": 15206, "data used experiments available httpsgithubcompiresramongpt4enem": 21725, "large language models llms leveraged": 51919, "large language model llm finetuned": 51499, "exceptional performance various natural language": 31381, "benchmarking large language models fewshot": 10296, "investigates effectiveness large language models": 47740, "effectiveness large language models llms": 27544, "analysis era large language models": 5502, "use large language models llms": 100599, "large language models paper presents": 52095, "language models paper presents comprehensive": 50635, "finetuning reinforcement learning human feedback": 35219, "parameterefficient finetuning large language models": 70141, "language models llms like gpt4": 50325, "models llms like gpt4 chatgpt": 63291, "reasoning tasks large language models": 80056, "modern large language models llms": 64604, "large language models llms directly": 51828, "models llms like chatgpt exhibited": 63275, "large language models llms increased": 51902, "tasks natural language processing nlp": 94884, "ability large language models llms": 1698, "large language models llms perform": 51952, "large language models neural network": 52077, "contemporary large language models llms": 18578, "large language models llms make": 51926, "systems recently large language models": 93550, "despite impressive capabilities large language": 24071, "impressive capabilities large language models": 43584, "generated large language models llms": 37731, "large language models llms test": 52019, "largescale language models like chatgpt": 52536, "descriptions large language models llms": 23715, "large language models llms openais": 51946, "language models llms openais codex": 50362, "models llms openais codex demonstrated": 63333, "chatbots based large language models": 13433, "based large language models llm": 9598, "science large language models llms": 85596, "large language models llms significant": 52002, "language models llms significant progress": 50453, "pursuit artificial general intelligence agi": 78067, "language models translate natural language": 50889, "recent advances large language models": 80205, "advances large language models llms": 3883, "make model data code publicly": 58015, "information extraction large language models": 45472, "instruction following large language model": 46340, "research field natural language processing": 82597, "security large language models llms": 86019, "ban chatgpt generative pretrained transformer": 9325, "chatgpt generative pretrained transformer chatbot": 13870, "github users italy european countries": 38851, "data sudden announcement ban differenceindifferences": 21667, "sudden announcement ban differenceindifferences framework": 92301, "generative large language model llm": 38636, "development large language models llms": 24667, "large language models llm chatgpt": 51768, "opensource large language model llm": 68349, "prompting large language models llms": 76561, "large language models llms excel": 51848, "language models llms excel tasks": 50196, "language models chatgpt capable generating": 49706, "capability large language models llms": 12182, "openais gpt4 large language model": 68215, "gpt4 large language model llm": 39952, "led development large language models": 53521, "development large language models like": 24666, "large language models like gpt4": 51763, "recent development large language models": 80240, "large language models llms demonstrate": 51817, "large language models rise large": 52153, "language models rise large language": 50775, "models rise large language models": 64121, "rise large language models llms": 84479, "large language models llms revolutionizing": 51995, "downstream natural language processing nlp": 26705, "natural language understanding generation tasks": 65751, "demonstrated exceptional performance various natural": 23255, "problems large language models llms": 75163, "language models llms shown great": 50441, "models llms shown great potential": 63424, "instructions large language models llms": 46528, "large language models llms instruction": 51907, "adapting large language models llms": 3131, "evaluation large language models code": 30650, "large language models code generation": 51604, "power large language models llms": 73378, "hope work inspire future research": 41969, "pretrained language models plms achieved": 74338, "language models plms achieved remarkable": 50651, "models plms achieved remarkable success": 63819, "incontext learning knowledge base question": 44618, "learning knowledge base question answering": 53230, "baseline future research code available": 9779, "extraction using large language models": 33342, "constructionist theoretical framework singlecase study": 18482, "theoretical framework singlecase study methodology": 96739, "framework singlecase study methodology used": 36276, "singlecase study methodology used analyse": 88410, "study methodology used analyse extensive": 91744, "methodology used analyse extensive interaction": 59502, "used analyse extensive interaction logs": 100738, "analyse extensive interaction logs students": 5388, "extensive interaction logs students ai": 33108, "interaction logs students ai systems": 47022, "logs students ai systems simulated": 57294, "learning experiences results highlight ability": 53145, "experiences results highlight ability chatgpt": 31954, "results highlight ability chatgpt bing": 83639, "highlight ability chatgpt bing chat": 41575, "study concludes chatgpt bing chat": 91539, "offer promising avenues revolutionise stem": 67766, "promising avenues revolutionise stem education": 76156, "avenues revolutionise stem education constructionist": 9122, "revolutionise stem education constructionist lens": 84328, "stem education constructionist lens fostering": 90601, "deploying large language models llms": 23585, "large language models llms challenging": 51802, "computer vision natural language processing": 17545, "popularity large language models llms": 72702, "advancements field natural language processing": 3815, "field natural language processing nlp": 34398, "using chatgpt large language model": 101351, "exploring potential large language models": 32865, "ai recent advances artificial intelligence": 4529, "chatgpt large language model developed": 13976, "large language model developed openai": 51470, "language model llm based chatbots": 49455, "large language models llms pretrained": 51961, "named entity recognition relation extraction": 65479, "large language models llms power": 51957, "research large language models llms": 82653, "large language models llms recently": 51980, "range tasks including language translation": 79215, "tasks including language translation text": 94730, "language models like chatgpt recently": 50045, "demonstrated impressive capabilities natural language": 23276, "impressive capabilities natural language understanding": 43588, "capabilities natural language understanding generation": 12020, "code generation large language models": 15306, "generation large language models llms": 38232, "language models llms chatgpt shown": 50126, "models llms chatgpt shown impressive": 63039, "designed natural language generation low": 23931, "natural language generation low accuracy": 65585, "language generation low accuracy code": 49245, "generation low accuracy code generation": 38253, "low accuracy code generation paper": 57499, "accuracy code generation paper propose": 2224, "human evaluation shows human developers": 42191, "evaluation shows human developers prefer": 30782, "shows human developers prefer programs": 87588, "large language models llms remarkable": 51984, "size poses challenges terms computational": 88510, "shown promise various fields potential": 87522, "performance large language models llms": 71341, "large language models llms gpt": 51880, "increasing popularity large language models": 44850, "language models llms chatgpt led": 50117, "large language models llms exhibited": 51852, "substantial improvements compared strong baselines": 92090, "empirical study large language models": 28361, "language models like chatgpt shown": 50046, "models like chatgpt shown remarkable": 62913, "pretrained language models large language": 74319, "large language models follow instructions": 51692, "success large language model llm": 92212, "large language model llm gpt3": 51503, "large language models llms brought": 51798, "models large language models lms": 62859, "based large language models llms": 9599, "language models llms shown remarkable": 50447, "natural language processing nlp applications": 65666, "detection large language models llms": 24314, "models llms shown remarkable performance": 63436, "llms shown remarkable performance various": 56790, "shown remarkable performance various tasks": 87541, "parameters large language models llms": 70240, "llms large language models llms": 56276, "strong language understanding generation capabilities": 91044, "generative ai large language models": 38553, "ai large language models llms": 4449, "large language models llms including": 51899, "study contributes growing body research": 91554, "evaluating large language models llms": 30447, "large language models llms introduced": 51911, "vietnamese national high school graduation": 102910, "national high school graduation examination": 65530, "recent years significant progress developing": 80441, "recently emergence large language models": 80487, "bleu meteor rougel measure quality": 11172, "large language models llms raises": 51974, "large language models llms emerged": 51837, "language models llms emerged powerful": 50181, "pipeline large language models llms": 72164, "large language models llms revolutionized": 51994, "comes significant computational costs paper": 16043, "finetuning pretrained language models plms": 35193, "large language model llm chatgpt": 51497, "using large language model chatgpt": 101543, "utilize large language models chatgpt": 101945, "underlying large language model llm": 99503, "large language models llms data": 51816, "instructiontuned large language models llms": 46594, "language models llms exhibited impressive": 50206, "capabilities large language models llms": 11963, "large language models llms smaller": 52005, "human feedback large language models": 42226, "tasks large language models llms": 94805, "rapid development large language models": 79316, "language models llms chatgpt gpt3": 50114, "remarkable language understanding generation capabilities": 81781, "large language models llms increasing": 51903, "large language models llms produce": 51964, "develop large language model llm": 24457, "large language model llm able": 51491, "natural language understanding natural language": 65755, "language understanding natural language generation": 51176, "language models llms demonstrated powerful": 50154, "era chatgpt large language models": 29726, "large language models generative ai": 51704, "artificial intelligence ai machine learning": 7607, "abilities large language models critical": 1527, "large language models large lms": 51753, "large language models openais chatgpt": 52086, "evaluation using large language models": 30824, "chatgpt chat generative pretrained transformer": 13604, "suggests large language models llms": 92441, "large language models llms acquire": 51779, "capabilities pretrained large language models": 12051, "pretrained large language models recent": 74365, "large language models recent studies": 52137, "excel various natural language processing": 31339, "language processing nlp tasks current": 51026, "generative pretrained transformer gpt models": 38695, "recent advancements large language models": 80185, "advancements large language models llms": 3833, "large language models llms offer": 51942, "large language models llms powerful": 51958, "events large language models llms": 30934, "large language models llms specifically": 52009, "language models llms specifically gpt4": 50467, "humanlevel performance various professional academic": 42517, "performance various professional academic benchmarks": 71696, "pretrained transformer gpt models specifically": 74469, "opensource large language models llms": 68351, "performance generative pretrained transformer gpt": 71262, "generative pretrained transformer gpt model": 38694, "language models large language modelsllms": 50028, "tasks code data publicly available": 94444, "entities pretrained language models lms": 29546, "large language models provide new": 52120, "recent emergence large language models": 80253, "large language model llm output": 51508, "far large language models llms": 33873, "benchmark large language models large": 10203, "models llms shown remarkable abilities": 63434, "artificial general intelligence agi provide": 7592, "models revolutionized natural language processing": 64116, "natural language processing nlp task": 65685, "potential large language models llms": 73160, "large language models llms text": 52021, "language models llms text generation": 50485, "high school graduation examination vnhsge": 41457, "task large language models llms": 94123, "information large language models llms": 45527, "recent years large language models": 80431, "extend capabilities large language models": 32931, "large language models recent progress": 52135, "language models recent progress artificial": 50730, "models recent progress artificial intelligence": 64006, "recent progress artificial intelligence ai": 80314, "pose significant risks presence biased": 72753, "significant risks presence biased private": 87846, "boost ai development make accessible": 11271, "using large language models gpt35": 101549, "large language models gpt35 gpt4": 51715, "use ai tools like chatgpt": 100466, "nlp tasks including question answering": 66791, "sentiment analysis named entity recognition": 86591, "progress large language models gpt4": 75991, "recent developments large language models": 80246, "large language models llm abilities": 51767, "perspective large language models llms": 71956, "models llms like chatgpt shown": 63281, "translation large language models large": 98715, "language models llms chatgpt gained": 50112, "models llms chatgpt gained significant": 63020, "llms chatgpt gained significant attention": 55591, "finetuning large language models llms": 35113, "investigating potential large language models": 47775, "applying large language models llms": 6690, "tasks emergence large language models": 94575, "language models llms chatgpt revolutionized": 50125, "large language model llm like": 51507, "foundation models large language models": 35950, "inference large language models llms": 45258, "large language models llms seen": 51997, "natural language processing models like": 65662, "language processing models like gpt3": 50997, "driven large language models llms": 26846, "use largescale pretrained language models": 100607, "largescale pretrained language models llms": 52562, "pretrained language models llms chatgpt": 74325, "large language models llms training": 52024, "natural language processing computer vision": 65645, "risks large language models llms": 84523, "problem using large language models": 75100, "using large language models generate": 101548, "models data code publicly available": 62151, "problems using large language models": 75216, "large language model based llama": 51461, "using large language models support": 101555, "advanced natural language processing nlp": 3728, "natural language processing nlp models": 65677, "bias large language models llms": 10860, "commercial large language models llms": 16080, "large language models llms gpt35turbo": 51883, "language models llms gpt35turbo gpt4": 50259, "chatgpt models large language models": 14022, "models llms demonstrated impressive performance": 63072, "demonstrated impressive performance various downstream": 23283, "impressive performance various downstream tasks": 43629, "pretrained large language models plms": 74364, "models hold great promise enhancing": 62673, "language models llms openais chatgpt": 50361, "large language models llms capture": 51799, "recent introduction large language models": 80273, "introduction large language models llms": 47559, "models llms demonstrated remarkable potential": 63085, "experimental results demonstrate superior performance": 32037, "case study large language models": 12488, "study large language models llms": 91726, "large language models llms openai": 51945, "language models llms openai chatgpt": 50359, "rapid advances large language models": 79308, "large language models ai chatbots": 51567, "language models llms like codex": 50320, "llms limited context window size": 56337, "widely used large language model": 103738, "finetuned reinforcement learning human feedback": 34961, "concept using large language models": 17613, "large language models llm like": 51772, "language models llm like chatgpt": 50065, "modules natural language understanding nlu": 64681, "large language models llms achieved": 51778, "developments large language models llms": 24748, "large language models llms enabled": 51841, "sota large language models llms": 89311, "chatbots large language models llms": 13448, "finetuned large language models llms": 34917, "natural language processing machine learning": 65659, "recent breakthroughs large language models": 80228, "natural language processing nlp technologies": 65688, "2022 large language models llms": 543, "large language models llms prominent": 51966, "large language models llms bert": 51796, "assess capabilities large language models": 7826, "remarkable success various natural language": 81835, "success various natural language processing": 92249, "advances large language models offer": 3884, "language models llms chatgpt demonstrated": 50111, "models llms chatgpt demonstrated impressive": 63017, "context length large language models": 18805, "length large language models llms": 53597, "language models llms specifically openais": 50468, "language models llms trained using": 50489, "language models llms like gpt35": 50324, "models llms like gpt35 gpt4": 63289, "large language models llms improve": 51897, "language models llms recently achieved": 50407, "prediction large language models llms": 73701, "methods based pretrained language models": 59551, "experimental results demonstrate approach surpasses": 32026, "competencies large language models llms": 16769, "review large language models llms": 84263, "large language models llms addressing": 51782, "large language models llms involves": 51913, "supervised finetuning sft reinforcement learning": 92713, "finetuning sft reinforcement learning human": 35243, "sft reinforcement learning human feedback": 87156, "models llms chatgpt demonstrated remarkable": 63018, "chatgpt demonstrated remarkable performance various": 13693, "demonstrated remarkable performance various tasks": 23327, "longterm action anticipation lta task": 57411, "hypothesize large language models llms": 42745, "large language models llms currently": 51815, "language models llms currently forefront": 50139, "models llms currently forefront intertwining": 63054, "ai systems human communication everyday": 4568, "systems human communication everyday life": 93481, "results various natural language tasks": 83915, "exploration using large language models": 32608, "large language models llms support": 52015, "large language models llms transformative": 52026, "language models llms transformative impact": 50494, "reinforcement learning human feedback training": 81156, "learning human feedback training pipeline": 53196, "great success large language models": 40500, "llms playing increasingly important role": 56529, "large language models llms sparked": 52007, "language models llms sparked debate": 50462, "recent advent large language models": 80218, "advent large language models llm": 3961, "leveraging large language models enhanced": 53865, "language models llms demonstrate remarkable": 50144, "performance different large language models": 71144, "generative artificial intelligence ai particularly": 38596, "subfields natural language processing nlp": 91934, "language models llms specifically chatgpt": 50465, "study using large language models": 91886, "natural language processing nlp techniques": 65687, "large language models llms realworld": 51976, "using large language models evaluate": 101547, "developed openai ushered new era": 24521, "large language models llms exemplified": 51850, "language models llms exemplified chatgpt": 50200, "models pretrained large language models": 63875, "language models llms chatgpt increasingly": 50116, "data contamination large language models": 21116, "training data large language models": 98029, "large language models llms potential": 51955, "large language model large language": 51487, "large language models llms showcased": 51999, "supervised finetuning reinforcement learning human": 92710, "models emergence large language models": 62296, "large language models llms catalyzed": 51800, "diverse natural language processing tasks": 26057, "natural language processing tasks existing": 65702, "understanding large language models llms": 99794, "language models llms shown impressive": 50442, "models llms shown impressive ability": 63426, "contrast large language models llms": 19077, "ais generative pretrained transformer gpt": 4847, "models llms like chatgpt gpt4": 63278, "natural language instructions large language": 65610, "language instructions large language models": 49288, "large language models llms enable": 51840, "large language models llms present": 51959, "experimental results demonstrate significant improvements": 32035, "large language models represented chatgpt": 52146, "code model weights data public": 15406, "language models llms increasingly capable": 50293, "language models generate natural language": 49911, "significant advancements natural language processing": 87673, "models range natural language processing": 63959, "range natural language processing tasks": 79182, "gpt models generative pretrained transformer": 39221, "revolutionized field natural language processing": 84346, "recent progress large language models": 80320, "progress large language models llms": 75992, "large language models chatgpt demonstrated": 51596, "large language models llms enhance": 51842, "large language models llms typified": 52031, "marked significant advancement artificial intelligence": 58387, "artificial intelligence trained vast amounts": 7669, "capable understanding generating humanlike text": 12275, "shown remarkable performance various natural": 87540, "remarkable performance various natural language": 81802, "language models llms recently demonstrated": 50408, "modeling natural language processing nlp": 61659, "studies large language models llms": 91412, "large language models like gpt": 51760, "knowledge graphs large language models": 48607, "technical report large language models": 95420, "report large language models llms": 81983, "language models llms achieved remarkable": 50076, "models llms achieved remarkable success": 62977, "large language models despite impressive": 51634, "chatgpt prominent large language model": 14114, "remarkable performance variety language understanding": 81797, "performance variety language understanding tasks": 71669, "models including gpt3 flan t5": 62730, "believe work findings encourage facilitate": 10046, "work findings encourage facilitate research": 104098, "emerging large language models llms": 28227, "large language models llms particular": 51949, "use existing large language models": 100545, "existing large language models llms": 31738, "large language models llms attracted": 51788, "particularly emergence large language models": 70457, "utilize large language models llms": 101946, "large language models llms variants": 52040, "systems large language models llms": 93501, "potential large language models generating": 73158, "evaluation large language models llms": 30651, "large language models llms various": 52041, "language models llms various tasks": 50513, "language models llms gpt series": 50250, "models llms gpt series flant5": 63196, "significantly advanced field natural language": 87877, "advanced field natural language processing": 3695, "low resource languages large language": 57534, "resource languages large language models": 82969, "languages large language models llms": 51307, "widely applied wide range software": 103718, "applied wide range software engineering": 6645, "wide range software engineering tasks": 103689, "coding assistants like github copilot": 15695, "language models llms excel various": 50197, "generated using large language models": 37819, "language models llms revolutionized natural": 50432, "models llms revolutionized natural language": 63412, "llms revolutionized natural language processing": 56735, "revolutionized natural language processing nlp": 84351, "models llms demonstrated remarkable performance": 63084, "llms demonstrated remarkable performance variety": 55760, "demonstrated remarkable performance variety natural": 23324, "models large language models exhibit": 62856, "enhance capabilities large language models": 29144, "large language models llms prompted": 51968, "largescale language models llms chatgpt": 52538, "impact large language models llm": 43222, "large language models llm shown": 51774, "language models llms chatgpt assist": 50108, "large language models llm revolutionized": 51773, "incontext learning icl using large": 44609, "learning icl using large language": 53205, "proficiency comprehending generating natural language": 75784, "llms extensive experimental results demonstrate": 55947, "large language models llms presents": 51960, "language models llms presents significant": 50383, "language models llms realworld scenarios": 50402, "large language models llms model": 51930, "large language models llms facilitated": 51863, "language models llms facilitated development": 50220, "challenges large language models llms": 13056, "integration large language models automatic": 46774, "utilizing reinforcement learning human feedback": 102045, "learning human feedback rlhf current": 53193, "nlp large language models llms": 66742, "language models llms emerged important": 50180, "models llms emerged important breakthroughs": 63114, "adoption large language models llms": 3643, "stateoftheart large language models llms": 90370, "large language models llms automatic": 51792, "language models llms shown promise": 50445, "capabilities natural language processing nlp": 12018, "rapid advancement large language models": 79296, "advancement large language models llms": 3786, "artificial intelligence ai natural language": 7610, "intelligence ai natural language processing": 46815, "ai natural language processing nlp": 4484, "language processing nlp tasks including": 51028, "large language models generative pretrained": 51706, "language models generative pretrained transformer": 49923, "large language models advent large": 51564, "language models advent large language": 49633, "models advent large language models": 61805, "advent large language models llms": 3962, "large language models llms paved": 51951, "language models llms paved way": 50371, "reasoning large language models reasoning": 79929, "reasoning capabilities large language models": 79805, "large language models llms gained": 51871, "evaluators large language models llms": 30905, "large language models llms transformed": 52027, "language models llms recently emerged": 50409, "finetuning large language model llm": 35111, "transformers large language models llms": 98623, "large language models llms exploded": 51856, "language models llms exploded popularity": 50212, "models pretrained language models lms": 63870, "language models llms chatgpt achieved": 50107, "language models llms chatgpt recently": 50124, "large language models recent advancements": 52133, "field natural language processing particularly": 34399, "natural language processing particularly development": 65694, "usage large language models llms": 100445, "large language models llms zeroshot": 52045, "deep learningbased natural language processing": 22785, "defending large language models jailbreaking": 22848, "large language models jailbreaking attacks": 51747, "language models jailbreaking attacks despite": 50008, "despite efforts align large language": 24043, "efforts align large language models": 27896, "align large language models llms": 4999, "large language models llms human": 51893, "language models llms human values": 50276, "language models recent advancements large": 50727, "models recent advancements large language": 63999, "achieving artificial general intelligence agi": 2826, "language using large language models": 51198, "language models llm like openais": 50066, "large language models llms advanced": 51783, "large language models llms need": 51936, "tools based large language models": 97368, "language models gained significant attention": 49904, "large language models llms learn": 51917, "large language models chinese large": 51600, "language models chinese large language": 49712, "models chinese large language models": 61998, "chinese large language models llms": 14559, "llms like chatgpt gpt4 demonstrated": 56307, "abilities natural language understanding generation": 1544, "models llms demonstrated remarkable capabilities": 63083, "llms demonstrated remarkable capabilities natural": 55756, "demonstrated remarkable capabilities natural language": 23315, "remarkable capabilities natural language understanding": 81750, "large language models llms finetuned": 51865, "continual learning large language models": 18995, "language models llms demonstrate exceptional": 50142, "standardized unified format allowing effortless": 90228, "unified format allowing effortless automatic": 100016, "format allowing effortless automatic evaluation": 35820, "allowing effortless automatic evaluation llms": 5175, "including large language models llms": 44399, "large language models llms multimodal": 51932, "large language models llms simulate": 52004, "sparse finetuning large language models": 89533, "models based large language models": 61904, "incontext learning capability large language": 44583, "learning capability large language models": 53054, "large language model llm chat": 51496, "language models llms exhibited exceptional": 50204, "model performance complex reasoning tasks": 61225, "language models llms powerful general": 50380, "question answering generation coherent text": 78597, "answering generation coherent text code": 6108, "explores potential large language models": 32819, "fall short tasks require exploration": 33790, "short tasks require exploration strategic": 87305, "explore application large language models": 32638, "application large language models llms": 6367, "large language models llms incontext": 51900, "language models llms showcased remarkable": 50438, "code generation automated code generation": 15281, "intelligence large language models llms": 46869, "large language models including chatgpt": 51732, "gpt4 large language models llms": 39954, "stateoftheart large language model gpt4": 90365, "large language models instruction tuning": 51741, "language models llms like llama": 50326, "capacity large language models llms": 12299, "large language models llms chatgptgpt4": 51805, "multimodal large language models mllm": 65075, "ai tools like chatgpt education": 4599, "feature large language models llms": 33973, "large language models llms improved": 51898, "large language models llms different": 51826, "language models llms chatgpt demonstrate": 50110, "task natural language processing aims": 94155, "benchmark evaluating large language models": 10158, "current landscape large language models": 20701, "challenging task natural language processing": 13237, "field large language models llms": 34385, "large language models llms research": 51990, "large language models llms models": 51931, "language models language models lms": 50023, "large language models emergence large": 51653, "language models emergence large language": 49817, "revolutionized natural language processing tasks": 84352, "large language models llms equipped": 51843, "metrics large language models llms": 59941, "large language models llms associated": 51787, "large language models rapid advancement": 52125, "language models rapid advancement large": 50714, "models rapid advancement large language": 63968, "method large language models llms": 59347, "great potential natural language processing": 40481, "potential natural language processing nlp": 73208, "language processing nlp tasks recent": 51032, "language models llms emerged promising": 50182, "using generative large language models": 101475, "chatgpt github copilot amazon codewhisperer": 13874, "systems using large language models": 93597, "foundation model technical report present": 35931, "family large language models llms": 33850, "potential recent large language models": 73237, "language models llms exhibited remarkable": 50207, "models llms exhibited remarkable performance": 63147, "llms exhibited remarkable performance various": 55916, "human supervision large language models": 42385, "llms demonstrated remarkable capabilities various": 55757, "demonstrated remarkable capabilities various tasks": 23317, "years large language models llms": 104603, "uses large language models llms": 101240, "large language models llms novel": 51940, "utilizing large language models llms": 102033, "claimed large language models llms": 14670, "quantization large language models llms": 78444, "software engineering tasks code generation": 89011, "large language models llms llama2": 51923, "various large language models llms": 102469, "systems based large language models": 93401, "models llms shown impressive capabilities": 63427, "llms shown impressive capabilities various": 56779, "impressive capabilities various natural language": 43594, "large language models zero shot": 52225, "large language models llms hold": 51892, "generative models like chatgpt present": 38663, "nlp particularly large language models": 66761, "language processing nlp tasks paper": 51030, "study investigates key research questions": 91711, "recently large pretrained language models": 80521, "large pretrained language models llms": 52316, "language models llms demonstrated superior": 50160, "large language models llms resulting": 51992, "large language models llms known": 51915, "demonstrated large language models llms": 23292, "language models llms excel diverse": 50195, "recently instructionfollowing audiolanguage models received": 80510, "instructionfollowing audiolanguage models received broad": 46445, "audiolanguage models received broad attention": 8497, "human speech natural sounds music": 42374, "recent advancements natural language processing": 80191, "domains large language models llms": 26542, "models llms exhibit remarkable capacity": 63139, "large language models specifically chatgpt": 52175, "benchmarks large language models llms": 10367, "models llms shown impressive performance": 63428, "commercially available llms gpt35 gpt4": 16108, "language models llms chatgpt google": 50113, "models llms chatgpt google bard": 63022, "language models llms demonstrated considerable": 50147, "investigate large language models llms": 47665, "large language models llms serve": 51998, "training large language models llms": 98164, "large language models llms extensive": 51858, "general large language models llms": 37156, "large language models llms represented": 51987, "language models llms represented chatgpt": 50424, "llms various software engineering tasks": 57026, "ai especially large language models": 4388, "especially large language models llms": 29894, "language models shown promise various": 50800, "increasing leveraging large language models": 44837, "models llms like chatgpt demonstrated": 63273, "llms like chatgpt demonstrated remarkable": 56301, "rapid advancements large language models": 79302, "language models llms demonstrated exceptional": 50148, "capabilities various natural language processing": 12127, "language models llms significant advancements": 50452, "highperformance computing large language models": 41729, "computing large language models llms": 17567, "language models llms including llama": 50287, "various generaldomain natural language processing": 102441, "generaldomain natural language processing nlp": 37212, "language processing nlp tasks performance": 51031, "incontext learning icl large language": 44607, "large language models llms widely": 52042, "language models llms widely used": 50515, "biases large language models llms": 10936, "language models llms chatgpt openai": 50119, "despite great success large language": 24059, "applications large language models llm": 6512, "pretrained language models plms paper": 74342, "large language models paper present": 52094, "large language models llms combined": 51809, "reasoning abilities large language models": 79757, "large language models conduct extensive": 51617, "language models conduct extensive experiments": 49742, "models conduct extensive experiments popular": 62085, "multilingual large language models llms": 64973, "large language models llms llms": 51924, "leverage large language models llms": 53740, "large language models llms helpful": 51890, "large language models diffusion models": 51639, "remarkable achievements large language models": 81736, "achievements large language models llms": 2693, "explores integration large language models": 32807, "traditional natural language processing nlp": 97686, "natural language processing nlp methods": 65676, "free copy paper supplemental materials": 36339, "good bad ugly large language": 39110, "bad ugly large language models": 9291, "language models llms chatgpt bard": 50109, "revolutionized natural language understanding generation": 84354, "instructiontuned large language models llm": 46593, "large language models llms opened": 51947, "language models llms opened new": 50364, "models llms opened new opportunities": 63336, "large language models llms generation": 51877, "llama large language model llm": 54768, "language models llms including gpt4": 50286, "large language models llms especially": 51844, "language models llms recently experienced": 50411, "large language models llms focus": 51866, "named entity recognition ner relation": 65475, "entity recognition ner relation extraction": 29579, "large language models generative large": 51705, "language models generative large language": 49921, "models generative large language models": 62567, "large language models llms llama": 51922, "focuses large language models llms": 35611, "safety large language models llms": 85040, "large language models llms raised": 51973, "tuning large language models llms": 99058, "large language models llms useful": 52036, "language models llms gpt4 llama": 50262, "evaluating large language models healthrelated": 30446, "integrate large language models llms": 46665, "current stateoftheart large language models": 20780, "large language models llms implement": 51895, "language models llms increasingly integrated": 50295, "models llms increasingly integrated everyday": 63246, "extensive evaluation prominent llms including": 33029, "large language model meta ai": 51518, "advancement field natural language processing": 3779, "comparative analysis large language models": 16425, "language models llms generation code": 50243, "data source code publicly available": 21641, "evaluating enhancing large language models": 30419, "integration large language models llms": 46775, "crucial large language models llms": 20502, "advancement natural language processing nlp": 3791, "large language models llms drawn": 51833, "language models llms chatgpt llama": 50118, "advancements natural language processing large": 3848, "reinforcement learning human feedback extensive": 81154, "learning human feedback extensive experiments": 53191, "reasoning capability large language models": 79816, "reduces time effort data labeling": 80851, "time effort data labeling takes": 96956, "effort data labeling takes recent": 27871, "data labeling takes recent efforts": 21357, "promising performance zeroshot settings inspiring": 76187, "performance zeroshot settings inspiring explore": 71730, "zeroshot settings inspiring explore promptbased": 104872, "settings inspiring explore promptbased methods": 87065, "code generation code translation tasks": 15292, "large language models llms particularly": 51950, "evaluation benchmark large language models": 30525, "large language models rapid evolution": 52127, "language models rapid evolution large": 50718, "models rapid evolution large language": 63974, "rapid evolution large language models": 79325, "evaluating performance large language models": 30475, "evaluation paradigm large language models": 30708, "large language models llms increase": 51901, "demonstrated exceptional proficiency natural language": 23258, "open generative large language models": 68070, "associated large language models llms": 8091, "significant advancement artificial intelligence models": 87664, "model large language model llm": 61048, "prompt injection attacks large language": 76346, "injection attacks large language models": 45825, "vulnerabilities large language models llms": 103261, "recently advent large language models": 80453, "large language models llms paper": 51948, "models trained direct preference optimization": 64384, "trained direct preference optimization dpo": 97817, "models llms exhibited remarkable capabilities": 63146, "utilization large language models llms": 101916, "models llms demonstrated powerful ability": 63079, "holds large language models llms": 41906, "large language models paper introduces": 52093, "sft direct preference optimization dpo": 87152, "rapid evolution artificial intelligence ai": 79322, "domain large language models llms": 26414, "language models llms generative ai": 50245, "demonstrate large language models llms": 23113, "timeconsuming large language models llms": 97051, "large language models llms promise": 51967, "provide model finetuned follow instructions": 77524, "models released apache 20 license": 64048, "knowledge multimodal large language models": 48683, "multimodal large language models large": 65073, "language models llms multimodal large": 50340, "models llms multimodal large language": 63309, "llms multimodal large language models": 56413, "multimodal large language models mllms": 65076, "large language models mllms shown": 52067, "general purpose large language model": 37183, "monte carlo tree search mcts": 64730, "generation large language models large": 38231, "large language models llms established": 51845, "excellent natural language processing capabilities": 31352, "large language models llms strong": 52011, "question generation qg natural language": 78675, "evaluate large language models llms": 30213, "instruction tuning large language models": 46397, "llms demonstrated impressive capabilities various": 55743, "demonstrated impressive capabilities various natural": 23278, "data natural language processing nlp": 21436, "natural language processing nlp multimodal": 65678, "efficient finetuning large language models": 27765, "large language models llms domain": 51830, "large language models llms notably": 51939, "language models llms notably enhanced": 50350, "collaboration large language models llms": 15828, "machine translation large language models": 57747, "processing nlp tasks including machine": 75545, "nlp tasks including machine translation": 66789, "particularly large language models llms": 70481, "open large language models llms": 68082, "large language models llms task": 52018, "large language models llms handle": 51887, "language models training large language": 50881, "models training large language models": 64416, "large language models llms triggered": 52029, "advanced state art natural language": 3755, "state art natural language processing": 90272, "models llms showcased remarkable capabilities": 63419, "advanced large language models llms": 3711, "explainability large language models llms": 32441, "models llms demonstrated remarkable success": 63086, "extreme compression large language models": 33381, "multilingual capabilities large language models": 64947, "extending large language models llms": 32968, "language models mllms shown impressive": 50585, "abilities large language models llms": 1528, "language models llms offer potential": 50354, "retrieval augmented generation rag approach": 83968, "pretrained language models nlp tasks": 74332, "evolution large language models llms": 31028, "language models llms like gpt": 50322, "advanced large language model llm": 3709, "tasks involve complex multistep reasoning": 94776, "use large language models chatgpt": 100598, "performance recently large language models": 71526, "large language model llm agents": 51492, "large pretrained language models plms": 52318, "language models llms significantly enhanced": 50456, "natural language processing artificial intelligence": 65639, "large language models llms integrated": 51908, "large language models gpt4 turbo": 51718, "attacks multimodal large language models": 8228, "language models llms chatgpt palm": 50120, "large language models llms popular": 51954, "large language models llms proven": 51970, "language models llms proven useful": 50394, "advances natural language processing nlp": 3891, "large language models llm gpt4": 51771, "generative artificial intelligence ai chatbots": 38594, "language models retrieval augmented generation": 50765, "tasks recently large language models": 95022, "recently large language models llm": 80517, "aligning large language models llms": 5045, "large language model llm applications": 51493, "models survey large language models": 64313, "survey large language models llms": 93036, "performance wide range natural language": 71714, "wide range natural language tasks": 103674, "finetuned llama model significantly outperforms": 34922, "large language models llms great": 51885, "datasets large language models llms": 22317, "large language models llms received": 51978, "multimodal large language model mllm": 65070, "viability large language models llms": 102845, "gpt4 revolutionized natural language processing": 40064, "tasks named entity recognition ner": 94879, "emergence large language models like": 28171, "underscore potential large language models": 99549, "transformative potential large language models": 98477, "large language models llms using": 52037, "scaling language models 128k context": 85334, "large language models llms typically": 52030, "evaluation framework large language models": 30611, "framework large language models llms": 36191, "contexts large language models llms": 18912, "large language models llms deployed": 51820, "annotations reinforcement learning human feedback": 5951, "transformerbased large language model llm": 98567, "reasoning ability large language models": 79768, "large language models llms knowledge": 51914, "language models llms knowledge graphs": 50310, "capabilities various stateoftheart llms including": 12132, "various stateoftheart llms including gpt4": 102584, "extraction large language models llms": 33312, "attacks large language models llms": 8219, "models llms shown strong performance": 63440, "language models llms demonstrated strong": 50158, "safety alignment large language models": 85008, "common european framework reference languages": 16141, "european framework reference languages cefr": 30111, "llms pretrained large language models": 56563, "security vulnerabilities large language models": 86049, "models gpt4 using fewshot learning": 62624, "efficiency large language models llms": 27695, "widespread use generative ai tools": 103800, "large language models llms despite": 51822, "large language models llms general": 51873, "significant advancement field natural language": 87667, "large language models llms usually": 52038, "large language models llms retrieving": 51993, "large language models llms based": 51794, "demonstrated capabilities large language models": 23235, "evaluation prompting strategies large language": 30734, "prompting strategies large language models": 76616, "work investigate potential large language": 104150, "investigate potential large language models": 47687, "reinforcement learning ai feedback rlaif": 81143, "natural language processing nlp problems": 65681, "latest generative large language models": 52665, "despite recent advances natural language": 24109, "large language models llms chatgpt35": 51804, "systematic evaluation large language models": 93331, "llms trained vast amounts publicly": 56954, "trained vast amounts publicly available": 97932, "large language models llms massive": 51928, "large language models llms study": 52013, "large language models achieved remarkable": 51558, "language models achieved remarkable success": 49622, "large language models llms help": 51889, "text large language models llms": 96322, "pretrained models large language models": 74414, "large language models like gpt35": 51762, "models llms like chatgpt google": 63277, "advanced ai tools like gpt4": 3676, "large artificial intelligence ai models": 51393, "study highlights importance prompt engineering": 91662, "problem large language models llms": 75036, "program synthesis large language models": 75850, "large language models pretrained large": 52113, "language models pretrained large language": 50677, "large language models llms beginning": 51795, "automatic code generation natural language": 8763, "using large language models recently": 101554, "large language models shown impressive": 52161, "language models shown impressive performance": 50797, "large language models llms demonstrating": 51819, "assess feasibility using llms generate": 7852, "interactions large language models llms": 47067, "models llms like gpt4 demonstrated": 63292, "learning human feedback rlhf framework": 53194, "chatgpt large language models llms": 13979, "large language models llms garnered": 51872, "language models llms garnered significant": 50237, "models llms garnered significant attention": 63181, "focus large language models llms": 35533, "breakthroughs large language models llms": 11406, "large language models rapid development": 52126, "language models rapid development large": 50716, "models rapid development large language": 63971, "large language models llms marked": 51927, "language models llms marked significant": 50334, "generative ai specifically large language": 38571, "ai specifically large language models": 4558, "specifically large language models llms": 89843, "scaling large language models llms": 85338, "generative artificial intelligence ai technologies": 38597, "generative pretrained transformer gpt series": 38696, "large language models llms tested": 52020, "large language model llm inference": 51506, "explore potential using large language": 32731, "using large language models automatic": 101546, "knowledge distillation large language models": 48512, "future work large language models": 36799, "model finetuned large language model": 60894, "language processing nlp tasks deployment": 51027, "generative artificial intelligence ai tool": 38598, "emergence numerous large language models": 28182, "assessment large language models llms": 7958, "language models llms increasingly prevalent": 50297, "financial benchmark large language models": 34597, "large language models natural language": 52075, "natural language processing nlp practitioners": 65680, "documents using large language models": 26273, "paper explores integration large language": 69726, "large language models llms generating": 51876, "rapid development artificial intelligence technology": 79313, "large language models llms understanding": 52032, "large language models llms constitute": 51811, "splitting": 90013, "infinitely": 45341, "fan": 33860, "mlms": 60400, "lefttoright": 53547, "island": 47915, "shortened": 87329, "964": 1452, "quantifiers": 78386, "associating": 8107, "endofsequence": 28855, "eos": 29667, "truncated": 98923, "optimus": 68666, "vae": 102077, "gigaword": 38827, "cornell": 19557, "tighter": 96920, "yelp": 104622, "3digit": 894, "glancing": 38993, "interdependency": 47137, "lite": 54636, "acute": 3020, "accents": 2034, "gaming": 36900, "languagegeneration": 51217, "discriminators": 25646, "normalizing": 66982, "controllably": 19243, "detoxifying": 24423, "greener": 40543, "reservoir": 82907, "insertion": 46034, "50k": 1035, "folds": 35640, "t5style": 93669, "calm": 11787, "dbs": 22507, "keeps": 48257, "tabletotext": 93700, "smallsize": 88811, "lvms": 57672, "expertcurated": 32378, "blanks": 11159, "metadataset": 59147, "220m": 611, "underestimate": 99436, "gpt3mix": 39731, "hugely": 42052, "deteriorating": 24398, "rotating": 84853, "flipping": 35442, "efl": 27923, "outofthe": 68899, "dexperts": 24777, "readout": 79529, "xnli": 104566, "xquad": 104567, "totaling": 97566, "zeroshotfewshot": 104889, "fuses": 36675, "08": 69, "singlesentence": 88422, "arrange": 7501, "barely": 9374, "catalan": 12576, "wordbyword": 103935, "rogue": 84751, "ambiguities": 5308, "temporarily": 95727, "traded": 97634, "financespecific": 34591, "mysteries": 65443, "guaranteeing": 40701, "bootstraps": 11309, "fn": 35497, "14m": 318, "shopping": 87268, "computergenerated": 17552, "elaborations": 27939, "retro": 84113, "25times": 666, "chunked": 14621, "consumed": 18494, "databased": 21774, "reframing": 81031, "imagined": 43143, "autobiographical": 8637, "sequentiality": 86713, "multinli": 65121, "cartography": 12448, "forced": 35725, "freezing": 36364, "zeroshort": 104719, "gpt2xl": 39385, "datafree": 21788, "multiaspect": 64873, "rho": 84404, "tokenized": 97167, "singly": 88431, "nonsemantic": 66947, "weat": 103469, "coloring": 15932, "dependencybased": 23539, "attributebased": 8443, "multiattribute": 64874, "connector": 18104, "008": 9, "regularize": 81112, "cooccur": 19477, "dog": 26339, "sentential": 86576, "archetypes": 7322, "selfsupervision": 86279, "interpolating": 47265, "ablative": 1818, "paretofrontier": 70319, "20b": 581, "flanpalm": 35387, "62b": 1142, "gamma": 36901, "shortly": 87334, "directionality": 25454, "traversal": 98792, "unambiguous": 99362, "routinely": 84889, "esnli": 29852, "modelintheloop": 61690, "nonretrieval": 66942, "perplexitybased": 71859, "endtask": 28867, "knnlm": 48402, "terrible": 95853, "f05": 33411, "conll2014": 18089, "coliee": 15809, "monot53b": 64721, "textiteg": 96525, "002": 4, "mvp": 65434, "smoothing": 88827, "probably": 74966, "conquered": 18107, "101": 158, "composable": 17099, "sampler": 85097, "tense": 95759, "clm": 14966, "1shot": 477, "telugu": 95679, "imagegrounded": 43075, "imagetotext": 43136, "germeval": 38811, "outofsample": 68897, "supreme": 92877, "nllb": 66701, "absolutely": 1924, "metaai": 59140, "totally": 97567, "perceiver": 70766, "resampler": 82463, "autoprompting": 8947, "alternates": 5257, "gradientguided": 40306, "czech": 20893, "250k": 656, "testings": 96031, "gloss": 39023, "bt": 11543, "pseudoparallel": 77866, "concatenates": 17584, "500m": 1030, "348": 817, "saliency": 85069, "verbalization": 102725, "attributions": 8466, "searchbased": 85907, "heatmap": 41209, "upalm": 100344, "mgsm": 59983, "752": 1249, "173": 398, "219": 600, "multiprompt": 65308, "euphemisms": 30105, "cd": 12717, "opt13b": 68548, "opt125m": 68546, "beir": 10023, "60x": 1126, "assert": 7812, "semiautoregressive": 86409, "diffusionbased": 25347, "defected": 22837, "semiconductor": 86410, "mtf": 64850, "machinetranslated": 57786, "hardness": 40996, "mbart50": 58661, "leader": 52830, "pronouns": 76870, "congruent": 18077, "corresponds": 19811, "spots": 90032, "workarounds": 104309, "250m": 657, "attributelevel": 8449, "plugged": 72450, "flaw": 35418, "ubiquitously": 99320, "drama": 26780, "advised": 4032, "chapter": 13311, "idiosyncratic": 42951, "cola": 15801, "317": 777, "computationallyefficient": 17497, "302": 761, "plug": 72444, "contradiction": 19054, "arc": 7321, "amt": 5374, "bounding": 11341, "pfms": 72004, "fullshot": 36432, "1200": 228, "overshadowing": 69421, "illusions": 42993, "alleged": 5129, "lowered": 57577, "byt5": 11719, "bytelevel": 11723, "byte": 11720, "lowresourced": 57640, "aspectspecific": 7794, "generalpurposed": 37365, "max": 58632, "costbased": 19891, "gpt35gpt4": 39691, "cameras": 11791, "modelname": 61698, "zeroresource": 104715, "samplingbased": 85174, "contradict": 19052, "passagelevel": 70545, "lu": 57660, "770": 1264, "dip": 25404, "geval": 38819, "mediumsize": 58947, "ignores": 42966, "sentencebysentence": 86532, "spanlevel": 89491, "52k": 1056, "anecdotes": 5842, "conceivable": 17589, "evolinstruct": 31013, "vicunas": 102876, "testset": 96060, "httpsgithubcomnlpxucanwizardlm": 42024, "amr": 5371, "srl": 90072, "823": 1342, "122": 233, "swedish": 93093, "afraid": 4090, "misunderstanding": 60232, "communicators": 16292, "ambient": 5307, "nonreproducible": 66941, "comve": 17581, "lieu": 53978, "cod": 15112, "chaining": 12813, "speculating": 89934, "staggering": 90141, "instantiating": 46240, "multilinguality": 65022, "unlikelihood": 100191, "gleu": 39001, "jfleg": 48133, "036": 27, "026": 21, "instructiondriven": 46431, "ancient": 5830, "unanimously": 99363, "usd": 100457, "800k": 1323, "replaying": 81940, "arab": 7298, "stereotyping": 90705, "duality": 26890, "sketches": 88574, "cdm": 12718, "nonllm": 66926, "interannotator": 47126, "naming": 65490, "bradleyterryluce": 11353, "btl": 11544, "entailments": 29497, "evidential": 31006, "expertdesigned": 32379, "celebrated": 12721, "mt5base": 64846, "lowconfidence": 57540, "bettercalibrated": 10816, "dialects": 24819, "usm": 101862, "tts": 98989, "exceptions": 31392, "distracting": 25912, "backpack": 9275, "englishdominant": 29122, "logit": 57284, "incomparable": 44535, "devlin": 24771, "selfconsistent": 86207, "claimevidence": 14671, "opt67b": 68553, "locates": 57227, "stringbased": 90993, "alpacas": 5241, "flame": 35380, "176": 413, "labelspecific": 48958, "nonlanguage": 66916, "fold": 35639, "587": 1099, "290": 711, "catalyze": 12583, "caveat": 12713, "overestimation": 69376, "longerrange": 57372, "plateau": 72301, "640": 1152, "avaliable": 9102, "17b": 420, "850": 1367, "manuscripts": 58327, "penguins": 70727, "instructionfinetuning": 46438, "57x": 1095, "tourist": 97572, "indias": 44975, "closeness": 15039, "mandatory": 58204, "tradition": 97650, "forming": 35845, "customizability": 20850, "feat": 33955, "practicing": 73570, "subjectively": 91959, "insufficiently": 46644, "scrutinize": 85827, "1540": 342, "experiential": 31957, "embed": 28041, "textbfevaluation": 96501, "gec": 37048, "2014": 518, "2015": 519, "extrapolating": 33373, "155": 343, "devil": 24767, "zsp": 104899, "dominates": 26662, "irish": 47894, "selfguided": 86233, "pinpointed": 72122, "uptick": 100391, "david": 22480, "exorbitant": 31864, "reliant": 81549, "closedloop": 14998, "arabiccentric": 7309, "owner": 69441, "tuningfree": 99111, "mapped": 58339, "2030": 570, "fkgl": 35371, "yardstick": 104581, "expertverified": 32425, "replicas": 81944, "construe": 18488, "bills": 11044, "chineseoriented": 14581, "llama70b": 54890, "refactored": 80920, "polysemous": 72583, "deepl": 22818, "gpt35textdavinci003": 39693, "inadequately": 44198, "cultivate": 20585, "dozen": 26761, "arabicenglish": 7310, "en": 28529, "promptlearning": 76642, "customeragent": 20847, "gpt35turbos": 39717, "clms": 14967, "synergized": 93153, "42k": 942, "quadruple": 78180, "validator": 102134, "hellaswag": 41230, "piqa": 72183, "crafts": 20133, "rrhf": 84903, "anonymization": 5981, "interestingness": 47167, "kendall": 48258, "impair": 43289, "penalizes": 70719, "liu": 54691, "auto": 8636, "neftune": 66045, "progressed": 76017, "planner": 72247, "prometheus": 76084, "versioning": 102816, "hhh": 41343, "doc": 26192, "nondifferentiable": 66890, "10times": 178, "initiates": 45808, "306": 764, "notice": 67060, "underline": 99480, "subproblems": 92000, "selfexplanations": 86228, "occlusion": 67702, "lime": 54271, "threeshot": 96892, "relabel": 81178, "2shot": 731, "banking77": 9337, "complaints": 16850, "relabeling": 81179, "5shot": 1109, "carefullydesigned": 12425, "affirms": 4073, "flant511b": 35402, "analyzers": 5797, "amazing": 5300, "exiting": 31862, "4635": 971, "replicable": 81943, "tagger": 93763, "inheriting": 45756, "illsuited": 42988, "fingpt": 35301, "unlimited": 100194, "finnish": 35309, "openorca": 68291, "seminal": 86412, "perpetuate": 71849, "nar": 65491, "degeneracy": 22880, "highlikelihood": 41677, "claudev13": 14865, "1213": 230, "2023b": 567, "judicious": 48200, "60k": 1124, "inversion": 47611, "reconstructs": 80691, "mismatches": 60195, "uncertaintyaware": 99391, "fewzeroshot": 34329, "enforce": 28901, "amalgamates": 5295, "heralding": 41321, "curvature": 20831, "noisebased": 66864, "dp": 26764, "serialization": 86717, "anticipatory": 6249, "rec": 80104, "2186": 599, "sequencelevel": 86673, "multiway": 65401, "educating": 27124, "remarks": 81849, "corroborated": 19813, "interrelationships": 47317, "indigenous": 45056, "vlsp": 103191, "mistrals": 60231, "shortage": 87315, "vaes": 102078, "flowbased": 35458, "262": 676, "preprocess": 73902, "6k": 1206, "channel": 13307, "anymore": 6255, "chronologically": 14619, "gaokaobench": 36907, "disagreements": 25542, "ascribe": 7701, "atd": 8144, "nonsignificant": 66951, "strange": 90778, "selfreference": 86253, "penultimate": 70730, "manytomany": 58332, "tower": 97578, "chomsky": 14602, "impossibility": 43561, "llama2s": 54884, "wanjuan": 103308, "instructionoutput": 46466, "yi": 104627, "contributor": 19190, "redaction": 80741, "taskdependent": 94307, "12m": 253, "winners": 103835, "sought": 89328, "exerted": 31492, "endowed": 28860, "fragment": 36004, "crossdataset": 20402, "weaver": 103473, "mini": 60071, "14b": 315, "atom": 8147, "1024": 163, "httpswwwbharatgptscom": 42026, "multivariate": 65398, "pursued": 78061, "pretext": 74218, "obviates": 67692, "highestranked": 41553, "llama27bbased": 54872, "nationality": 65532, "256k": 662, "claiming": 14672, "64k": 1155, "singlehop": 88415, "gentle": 38773, "needle": 66028, "extraneous": 33364, "ndcg10": 65836, "cascading": 12452, "adequacy": 3568, "citizen": 14653, "inapplicable": 44202, "rankingbased": 79281, "nce": 65833, "penalizing": 70720, "tta": 98987, "synergizes": 93154, "introspection": 47576, "bearing": 9926, "uncertaintybased": 99392, "variances": 102248, "culturespecific": 20611, "coin": 15799, "publically": 77953, "eleutherais": 27974, "reformatted": 81023, "4677": 973, "5663": 1084, "prize": 74934, "modelaware": 61604, "tailed": 93770, "modelsllm": 64568, "crossover": 20440, "clickthrough": 14897, "ctr": 20570, "wellcrafted": 103580, "dirty": 25531, "hire": 41856, "196": 454, "321": 784, "355m": 843, "221": 613, "undoes": 99947, "stays": 90573, "endpoints": 28865, "backdrop": 9260, "accentuates": 2036, "theorists": 96754, "domainrelated": 26483, "complexitybased": 17059, "20m": 586, "circumvents": 14642, "induces": 45139, "hardem": 40992, "expressiveness": 32922, "dualstage": 26892, "signify": 88040, "15k": 352, "standardizing": 90229, "orthographic": 68832, "han": 40892, "narrowing": 65515, "chatgptaugmented": 14392, "46x": 974, "traininginference": 98364, "supervisedtrained": 92749, "averagely": 9189, "spotting": 90033, "avg": 9193, "compute time": 17516, "focus mainly": 35537, "mainly natural": 57854, "efficacy pretrained": 27647, "generation developed": 38117, "pretrained bert": 74232, "checkpoints models": 14495, "comparing geometry": 16677, "different words": 25258, "representations layers": 82106, "embedding word": 28070, "providing justification": 77766, "text emerged": 96188, "emerged formidable": 28132, "better quality": 10773, "text detailed": 96173, "abilities work": 1580, "text wide": 96484, "characterize ways": 13342, "model scoring": 61379, "pretrained masked": 74379, "models mlms": 63633, "like gpt2": 54135, "rescoring asr": 82467, "attribute success": 8441, "scores gpt2": 85762, "use growing": 100571, "number pretrained": 67369, "crosslingual model": 20423, "translations multiple": 98759, "languages release": 51352, "sentence generation": 86504, "expansion task": 31884, "task asks": 93941, "generate intermediate": 37511, "syntactically semantically": 93190, "infilling task": 45338, "respectively leveraging": 83078, "existing largescale": 31740, "effectiveness model": 27556, "model learning": 61057, "representation generation": 82056, "fits context": 35340, "pairs english": 69493, "semantics data": 86381, "data automatically": 21014, "human agreement": 42072, "gpt2 transformerxl": 39363, "lms stateoftheart": 57171, "important challenging": 43494, "longrange coherence": 57395, "generated stories": 37788, "paper devise": 69679, "dependencies sentences": 23536, "learning combines": 53076, "baselines particularly": 9846, "gains different": 36861, "models autoregressive": 61884, "autoencoder models": 8643, "class labels": 14697, "labels text": 48953, "classification benchmarks": 14725, "benchmarks pretrained": 10394, "setting explore": 86993, "tokens text": 97235, "endofsequence eos": 28856, "specifically pretrained": 89861, "build powerful": 11605, "topk nucleus": 97538, "use recently": 100673, "terms fluency": 95820, "fluency consistency": 35465, "new metrics": 66457, "sentences pretrained": 86564, "autoencoder vae": 8645, "corpus finetuned": 19622, "compared bert": 16511, "generalize better": 37291, "structure extensive": 91131, "results wide": 83921, "modeling benchmarks": 61628, "benchmarks hope": 10349, "models era": 62342, "era largescale": 29738, "pretraining make": 74571, "methods practical": 59751, "powerful technique": 73469, "generation existing": 38152, "existing pretraining": 31796, "objectives train": 67528, "word tokens": 103932, "masked tokens": 58435, "generative question": 38711, "generation producing": 38345, "palm novel": 69555, "autoencoding autoregressive": 8648, "unlabeled corpus": 100143, "conditioned context": 17803, "context new": 18818, "palm achieves": 69545, "linguistic quality": 54595, "does generate": 26293, "text containing": 96145, "strategy mitigate": 90906, "generation dynamic": 38128, "given outline": 38922, "task generate": 94076, "need generate": 65953, "key points": 48328, "model track": 61515, "conditioning input": 17810, "learn different": 52938, "corresponding different": 19790, "demonstrate largescale": 23114, "gpt2 grover": 39296, "gpt2 achieved": 39253, "freeform text": 36350, "text specified": 96431, "simple novel": 88220, "generation proposed": 38361, "inserting new": 46033, "tokens existing": 97196, "parallel manner": 70081, "wikipedia dataset": 103813, "finetune downstream": 34819, "performance constrained": 71111, "models source": 64228, "code facilitate": 15258, "demonstrated substantial": 23346, "text followed": 96212, "task typically": 94281, "architecture method": 7356, "thousands examples": 96868, "generally perform": 37335, "task examples": 94045, "instructions current": 46485, "current nlp": 20747, "models greatly": 62634, "stateoftheart finetuning": 90343, "approaches specifically": 7204, "model 175": 60459, "gpt3 applied": 39401, "finetuning tasks": 35273, "text interaction": 96311, "reasoning domain": 79864, "time identify": 96973, "gpt3 faces": 39454, "methodological issues": 59471, "difficulty distinguishing": 25321, "finding gpt3": 34625, "gpt3 general": 39464, "challenging models": 13195, "coherent long": 15782, "especially models": 29900, "small corpus": 88670, "domains overcome": 26564, "generating images": 37928, "high resolution": 41449, "domainspecific content": 26617, "simple design": 88177, "design allows": 23748, "given small": 38959, "set examples": 86872, "examples conduct": 31198, "improves finetuned": 44028, "quality sample": 78355, "model generations": 60938, "model incrementally": 61002, "sentence sentence": 86519, "coherent faithful": 15781, "effort human": 27876, "past approaches": 70563, "transformer nonautoregressive": 98539, "translation recent": 98738, "glancing language": 38994, "method learn": 59349, "models glm": 62578, "previous single": 74698, "reducing gap": 80868, "translation despite": 98699, "google translate": 39145, "firstly demonstrate": 35320, "human machinegenerated": 42300, "machinegenerated text": 57774, "quality able": 78217, "understand prevalence": 99641, "extensive qualitative": 33120, "web articles": 103480, "articles making": 7567, "methods text": 59823, "limited success": 54471, "success recently": 92240, "new architecture": 66332, "architecture called": 7332, "tasks improving": 94718, "generation contextual": 38097, "increasingly popular": 44894, "popular topics": 72688, "models prone": 63920, "easily identified": 27017, "identified human": 42826, "improve coherence": 43678, "coherence consistency": 15769, "model aim": 60531, "solve issue": 89176, "issue training": 47961, "method analogous": 59202, "model allows": 60539, "layer pretrained": 52730, "generative discriminator": 38617, "generation largescale": 38235, "lms able": 57096, "distribution natural": 25945, "language generate": 49233, "usually contain": 101867, "lms generative": 57129, "generative discriminators": 38618, "lms make": 57147, "generation step": 38428, "bayes rule": 9909, "method achieving": 59192, "additionally training": 3349, "new topics": 66562, "new capability": 66358, "15b parameters": 350, "quality making": 78313, "fast generation": 33896, "enormous amounts": 29392, "training applying": 97944, "big models": 10987, "resulting large": 83432, "footprint making": 35718, "use performance": 100648, "performance similar": 71567, "similar gpt3": 88074, "obtained language": 67673, "gradientbased optimization": 40303, "improvements identify": 43974, "understanding small": 99876, "classification paper": 14769, "problem challenging": 74997, "challenging issues": 13182, "strong models": 91051, "mitigate label": 60269, "label bias": 48888, "augmentation framework": 8533, "framework new": 36214, "takes advantage": 93816, "perturbations input": 71991, "result present": 83402, "effective different": 27289, "gpt3 increasingly": 39478, "text questions": 96379, "argue does": 7459, "sophisticated language": 89278, "describes new": 23671, "relationship text": 81279, "simple language": 88210, "learn structural": 52967, "questions language": 78878, "learn explain": 52940, "augmentation finetuning": 8532, "investigate data": 47633, "processing especially": 75479, "especially challenging": 29858, "lowdata regimes": 57545, "yelp reviews": 104623, "including diversity": 44329, "fluency experiments": 35466, "methods quality": 59770, "approximately times": 7277, "data investigating": 21346, "systematically varies": 93376, "dataset existing": 21930, "evaluate recent": 30275, "capture human": 12356, "preferences results": 73829, "results larger": 83702, "architectures gpt2": 7392, "tend outperform": 95737, "recurrent architectures": 80721, "parameter training": 70129, "additional analyses": 3221, "feature representations": 33976, "transformers better": 98603, "lexical information": 53917, "currently used": 20822, "time step": 97030, "nlu datasets": 66834, "metrics results": 59964, "using bidirectional": 101318, "narrative generation": 65495, "generation applied": 38031, "tasks aim": 94362, "generation neural": 38296, "particular employ": 70404, "employ gpt2": 28397, "gpt2 perform": 39329, "information analyzing": 45403, "metrics correlate": 59899, "maintain consistency": 57872, "characters story": 13353, "gpt2 largescale": 39304, "stories generated": 90745, "does account": 26276, "twostage generation": 99181, "errors improve": 29818, "relation modeling": 81251, "works mainly": 104368, "sequences tokens": 86688, "alternative propose": 5273, "using explicit": 101435, "generator model": 38737, "model sample": 61369, "coarsegrained finegrained": 15100, "enable comprehensive": 28538, "corpora finetune": 19577, "margin achieves": 58358, "methods source": 59806, "novel models": 67215, "architectures models": 7399, "model long": 61111, "annotations training": 5958, "data provide": 21522, "context far": 18770, "architecture used": 7379, "specifically gpt2": 89829, "gpt2 order": 39326, "entity annotations": 29558, "architecture gpt2": 7349, "designed handle": 23917, "representations entity": 82096, "terms perplexity": 95829, "datasets key": 22307, "key differences": 48290, "furthermore approach": 36580, "approach adopted": 6725, "results range": 83801, "masked span": 58434, "model relational": 61333, "concepts crucial": 17620, "propose generative": 76990, "downstream datasets": 26690, "furthermore develop": 36600, "pretraining framework": 74540, "framework unify": 36310, "model calm": 60625, "pretrained texttotext": 74459, "margin comparable": 58360, "serve general": 86763, "models question": 63949, "shown language": 87492, "fail provide": 33686, "provide appropriate": 77406, "appropriate answers": 7235, "probabilistic models": 74949, "models predicted": 63852, "strong generative": 91031, "t5 bart": 93617, "calibrate models": 11753, "outputs inputs": 69229, "limitations methods": 54349, "released code": 81398, "key facts": 48298, "raised bar": 79061, "questions propose": 78921, "propose controlled": 76955, "metrics task": 59968, "evaluate methods": 30228, "based finetuning": 9540, "competitive fluency": 16801, "gpt2 make": 39308, "make models": 58016, "data computational": 21096, "layers result": 52759, "scale complexity": 85253, "embeddings gpt2": 28081, "training prevents": 98238, "losing information": 57456, "gpt2 english": 39276, "embeddings generate": 28080, "realistic sentences": 79570, "fully trained": 36471, "controlling large": 19257, "search dbs": 85861, "model easy": 60784, "used general": 100806, "obtain comparable": 67644, "continuous prompts": 19034, "prompts generation": 76727, "generation finetuning": 38168, "way leverage": 103383, "perform downstream": 70860, "alternative finetuning": 5264, "finetuning natural": 35152, "parameters frozen": 70219, "subsequent tokens": 92018, "virtual tokens": 102943, "tabletotext generation": 93701, "pretraining sequence": 74597, "rewriting paper": 84395, "paper generalize": 69746, "signals text": 87647, "seq2seq tasks": 86642, "sentence experiments": 86501, "improve pretraining": 43776, "model powerful": 61256, "transformerbased conditional": 98556, "variable models": 102241, "models lvms": 63565, "generation underexplored": 38486, "latent representation": 52637, "learning lack": 53231, "learning era": 53133, "effectiveness specifically": 27578, "built pretrained": 11674, "ability model": 1720, "data neural": 21440, "synthesize additional": 93229, "domains nonetheless": 26562, "available generate": 9041, "domains effectiveness": 26512, "generate fully": 37464, "fully synthetic": 36470, "synthetic useful": 93304, "data improving": 21316, "competitive recent": 16820, "bottleneck generative": 11325, "scale small": 85293, "automatically annotated": 8841, "constructing largescale": 18460, "framework jointly": 36182, "framework adapts": 36022, "parameter updates": 70133, "models according": 61746, "according estimated": 2145, "benchmark systems": 10259, "systems datasets": 93422, "improving pretrained": 44146, "information syntactic": 45643, "crucial success": 20538, "problem proposing": 75063, "pretrained checkpoint": 74240, "architecture experiments": 7347, "datasets natural": 22346, "achieve consistent": 2504, "consistent improvement": 18262, "multiple pretrained": 65241, "types pretraining": 99255, "pretraining architectures": 74509, "including autoencoding": 44274, "autoencoding models": 8649, "tasks main": 94843, "unconditional generation": 99413, "generation conditional": 38091, "based autoregressive": 9448, "results performance": 83763, "tasks glm": 94677, "varying number": 102655, "conditional unconditional": 17797, "gpt given": 39198, "given model": 38914, "single pretrained": 88389, "bert large": 10533, "generalizability different": 37230, "tasks adapting": 94345, "gpt3 acquired": 39397, "classify sentiment": 14841, "prompt lm": 76373, "learning objective": 53307, "address weakness": 3501, "optimizes zeroshot": 68656, "collection datasets": 15893, "datasets annotating": 22146, "qa format": 78133, "evaluated unseen": 30367, "increasing parameter": 44844, "models outofthebox": 63734, "true potential": 98915, "leveraging largescale": 53869, "excellent fewshot": 31346, "need finetuning": 65950, "data inference": 21323, "scalability paper": 85233, "augmentation technique": 8554, "leverages largescale": 53803, "models creating": 62135, "perform data": 70851, "methods ablation": 59507, "gpt2 create": 39265, "create synthetic": 20177, "predict likelihood": 73653, "predetermined categories": 73638, "perform effective": 70862, "training common": 97962, "data boost": 21030, "models detect": 62210, "created synthetic": 20204, "help models": 41270, "learning practitioners": 53337, "images increase": 43098, "image data": 43032, "purpose paper": 78049, "utilizing synthetic": 102047, "synthetic nlp": 93286, "restaurant reviews": 83364, "reviews dataset": 84292, "data combined": 21079, "combined model": 15982, "accuracy precision": 2330, "fewshot learner": 34250, "ability fewshot": 1643, "train serve": 97772, "lms better": 57104, "idea approach": 42781, "potential nlp": 73211, "contrastive learningbased": 19107, "easily extended": 27015, "evaluation 18": 30499, "tasks demonstrates": 94519, "demonstrates approach": 23365, "improves various": 44090, "sota fewshot": 89306, "databases paper": 21777, "called zeroshot": 11778, "databases new": 21776, "outofthe box": 68900, "need train": 66002, "model unseen": 61549, "present promising": 74040, "core challenges": 19537, "extend zeroshot": 32949, "tasks cost": 94497, "controlled text": 19251, "control attributes": 19195, "combines pretrained": 15999, "model expert": 60841, "considered likely": 18198, "generation outperform": 38311, "pretrained lm": 74375, "gpt3 work": 39558, "tuning small": 99100, "effectiveness neural": 27559, "represent reason": 82037, "contextual word": 18955, "dynamic semantics": 26933, "entity state": 29592, "version t5": 102815, "t5 leveraged": 93639, "multitasking language": 65372, "modeling objectives": 61661, "straightforward way": 90773, "way improve": 103368, "data essential": 21190, "models time": 64365, "limited labelled": 54439, "data regime": 21550, "automatically translated": 8900, "expert annotated": 32348, "english natural": 29088, "chinese dataset": 14543, "chinese tasks": 14576, "tasks 34": 94332, "best monolingual": 10615, "monolingual models": 64715, "chinese linguistic": 14561, "come important": 16032, "struggle highlighting": 91220, "benchmark chinese": 10088, "ernie 30": 29751, "enhanced pretraining": 29243, "shown scaling": 87544, "scaling pretrained": 85353, "parameters shows": 70283, "success largescale": 92218, "plain texts": 72231, "introducing knowledge": 47545, "trained autoregressive": 97798, "weak performance": 103432, "solving downstream": 89225, "tasks order": 94907, "order solve": 68715, "named ernie": 65481, "enhanced models": 29237, "network trained": 66163, "tailored natural": 93782, "finetuning trained": 35279, "10 billion": 100, "corpus consisting": 19603, "july 2021": 48204, "learning evaluation": 53135, "benchmark pretrained": 10226, "learning schemes": 53402, "learning widely": 53473, "explored compared": 32771, "compare methods": 16471, "introduce chinese": 47409, "includes tasks": 44260, "tasks machine": 94841, "tasks systematically": 95173, "effect different": 27239, "different fewshot": 25066, "performance roberta": 71546, "roberta ernie": 84599, "respectively benchmark": 83057, "benchmark used": 10273, "provide userfriendly": 77592, "online leaderboard": 67991, "help facilitate": 41246, "learning provide": 53366, "sentence semantic": 86518, "regression text": 81104, "convey information": 19458, "current popular": 20755, "methods ignore": 59671, "suffer issues": 92311, "designed generate": 23914, "capabilities largescale": 11967, "largescale english": 52514, "recently scaled": 80554, "shown exhibit": 87457, "anecdotal experiences": 5841, "shows outstanding": 87602, "given zeroshot": 38985, "extractive questionanswering": 33352, "terms model": 95824, "models changed": 61980, "networks gans": 66185, "domain text": 26459, "word generation": 103906, "wordbyword generation": 103936, "generation finetune": 38166, "finetuning widely": 35290, "datasets text": 22439, "stateoftheart quality": 90460, "abilities language": 1520, "tuning finetuning": 99039, "instruction templates": 46361, "evaluate instructiontuned": 30206, "unseen task": 100276, "surpasses zeroshot": 92949, "key success": 48343, "tuning gpt3": 99044, "nlp recent": 66764, "comparable stateoftheart": 16408, "investigated performance": 47725, "various biomedical": 102375, "biomedical nlp": 11101, "finetuned training": 34985, "achieved near": 2644, "perform effectively": 70863, "models largely": 62872, "models consistent": 62097, "consistent data": 18255, "adequately evaluate": 3573, "discover new": 25599, "experiments experiments": 32193, "similarity measures": 88141, "vital tool": 103169, "tool understanding": 97323, "applied embeddings": 6608, "gpt2 work": 39368, "measures important": 58766, "behavior model": 9982, "postprocessing techniques": 72960, "able correct": 1836, "contextual language": 18946, "generation lack": 38221, "deteriorates performance": 24397, "models dont": 62260, "dont learn": 26666, "capabilities performing": 12042, "performing par": 71787, "par stateoftheart": 70015, "evaluate multilingual": 30234, "multiclass classification": 64883, "examples context": 31199, "samples nonenglish": 85135, "random prediction": 79109, "syntactic ambiguities": 93165, "sentence completions": 86493, "methods targeted": 59815, "technique makes": 95453, "track multiple": 97619, "occasional errors": 67700, "generation scale": 38407, "performance studies": 71598, "focused generation": 35585, "relevant context": 81451, "entities sentence": 29550, "present sentence": 74053, "publicly traded": 77998, "traded companies": 97635, "dataset largest": 21992, "35 tokens": 832, "tokens sentence": 97227, "sentence making": 86508, "propose baseline": 76940, "generation algorithm": 38023, "rougel score": 84868, "test split": 95950, "additionally perform": 3330, "inference chatgpt": 45221, "chatgpt obtains": 14042, "30 rougel": 750, "difficulty dataset": 25320, "bart achieve": 9382, "outperforming vanilla": 69012, "model surpasses": 61479, "models financial": 62470, "financial text": 34615, "bias text": 10896, "impact text": 43260, "widelyused pretrained": 103758, "gpt2 recently": 39342, "paper attempt": 69618, "qualitatively quantitatively": 78214, "quantitatively identify": 78432, "inspecting hidden": 46150, "bias study": 10891, "provides concrete": 77652, "trained purely": 97896, "leveraging powerful": 53888, "success fewshot": 92195, "fewshot inference": 34245, "unsupervised data": 100303, "prompts synthesize": 76831, "synthesize highquality": 93232, "data real": 21537, "learning train": 53456, "solely synthetic": 89058, "approach serves": 7016, "effective data": 27281, "ensure specific": 29465, "decoding method": 22668, "controlled language": 19248, "simple intuitive": 88209, "sota language": 89307, "leads diverse": 52894, "outperforms competing": 69029, "competing methods": 16775, "fluency generated": 35468, "finegrained text": 34807, "set realworld": 86927, "extending new": 32970, "finegrained classes": 34786, "requirements introduce": 82345, "new problem": 66494, "problem called": 74996, "finegrained classification": 34787, "finegrained human": 34793, "leverage label": 53735, "human guidance": 42240, "pretrained generative": 74266, "models iterative": 62819, "furthermore devise": 36602, "objective based": 67491, "problem setting": 75077, "uses finetuned": 101226, "finetuned generative": 34895, "training classifier": 97957, "model refinement": 61327, "studies realworld": 91436, "performance sota": 71581, "learning recent": 53374, "work like": 104167, "tasks scaling": 95078, "size dataset": 88460, "requires huge": 82387, "method incorporates": 59333, "design method": 23808, "current largest": 20710, "thousands gpus": 96869, "training stateoftheart": 98308, "results nlp": 83745, "processing method": 75504, "designed efficiently": 23896, "based method": 9615, "expansion method": 31882, "proposed improve": 77211, "improvement observed": 43927, "observed accuracy": 67603, "presents strong": 74174, "strong capacity": 91017, "generated articles": 37655, "articles difficult": 7561, "plms fewshot": 72419, "methods adopt": 59521, "finetuning fn": 35072, "key techniques": 48348, "settings use": 87099, "expensive requires": 31924, "updating model": 100365, "encoder frozen": 28694, "frozen experiments": 36400, "effectively leverage": 27450, "tasks share": 95101, "share common": 87182, "finetuning promptbased": 35207, "number trainable": 67389, "gpt3 incontext": 39476, "fewshot adaptation": 34210, "pretrained image": 74276, "neural scaling": 66287, "significant importance": 87769, "future machine": 36743, "particularly light": 70482, "light recent": 54019, "gpt3 clip": 39427, "network performance": 66155, "performance increasing": 71312, "work consider": 104028, "learning image": 53206, "classification especially": 14741, "different source": 25201, "new image": 66424, "investigate pretraining": 47692, "data affects": 20957, "standard image": 90178, "size increases": 88475, "coming different": 16049, "performance previously": 71491, "previously seen": 74761, "seen classes": 86081, "classes findings": 14706, "light relationship": 54020, "novel corpus": 67136, "structure humans": 91134, "types coherence": 99225, "corpus covers": 19610, "formal informal": 35792, "documents generated": 26249, "analysis text": 5701, "associated lower": 8095, "leverage additional": 53708, "information plots": 45571, "improving generation": 44125, "gpt2 build": 39263, "adding additional": 3164, "global features": 39011, "predictions enable": 73737, "freetext explanations": 36360, "propose study": 77128, "realistic setting": 79571, "collection existing": 15895, "identify right": 42897, "making progress": 58135, "ample room": 5363, "approach spur": 7033, "models tackling": 64329, "imbalance issues": 43147, "shown provide": 87527, "improve classification": 43675, "performance aim": 70982, "process seed": 75400, "classifier performance": 14824, "seed selection": 86056, "leads consistent": 52893, "consistent classification": 18253, "outperform competitive": 68926, "interesting research": 47159, "models retrieving": 64106, "retrieved large": 84089, "downstream knowledgeintensive": 26694, "predict tokens": 73662, "tokens based": 97180, "magnitude data": 57803, "consumed training": 18495, "typically train": 99305, "retrieval achieve": 83958, "models explicit": 62406, "stateoftheart nlp": 90424, "networks require": 66202, "require lots": 82270, "researchers proposed": 82881, "facilitate training": 33511, "various curricula": 102396, "based range": 9690, "text relatively": 96390, "examples fewshot": 31217, "fewshot manner": 34275, "headtohead comparison": 41152, "datasets human": 22290, "human studies": 42375, "produce factual": 75622, "room improve": 84830, "improve axes": 43669, "judgments humans": 48195, "explanations approach": 32479, "able consistently": 1835, "deemed acceptable": 22744, "comparable computational": 16367, "computational tools": 17490, "tools evaluate": 97398, "cuttingedge large": 20871, "study thousands": 91866, "topic results": 97516, "narratives explore": 65503, "annotated crowdworkers": 5863, "methods results": 59788, "opportunities use": 68513, "generation processes": 38343, "patterns crafting": 70625, "crafting examples": 20130, "leading lack": 52855, "existing dataset": 31692, "uses dataset": 101217, "demonstrate challenging": 23037, "machine generated": 57687, "presents unique": 74179, "datasets remarkably": 22394, "performance outofdomain": 71449, "leveraging natural": 53882, "role humans": 84781, "complete user": 16879, "studied separately": 91357, "limitation proposing": 54291, "tasks texttotext": 95200, "aiming promote": 4772, "t5 different": 93623, "simple modifications": 88218, "tasks largely": 94806, "series controlled": 86725, "tasks opensourced": 94906, "using semisupervised": 101754, "understanding paper": 99834, "apply zeroshot": 6675, "evaluation common": 30547, "sense tasks": 86442, "model relatively": 61334, "steps compared": 90679, "compared recent": 16625, "t5 outperform": 93646, "tasks surprisingly": 95171, "result achieved": 83386, "zeroshot method": 104823, "method smaller": 59430, "finetuning larger": 35119, "class similar": 14701, "cost method": 19868, "method model": 59361, "paper bring": 69624, "results common": 83504, "tasks performing": 94942, "performing better": 71776, "literature including": 54650, "performance adversarial": 70981, "adversarial settings": 4000, "tuning based": 99019, "recently prompt": 80538, "plms obtain": 72428, "task process": 94200, "process pretraining": 75377, "mask tokens": 58424, "tokens current": 97188, "methods problem": 59760, "method paper": 59383, "hidden layer": 41345, "tokens time": 97237, "time explore": 96964, "pretraining time": 74614, "time consumption": 96941, "model facilitates": 60859, "efficient zeroshot": 27839, "learning dataset": 53097, "generation recently": 38391, "dataset scratch": 22066, "unsupervised manner": 100307, "model lstm": 61114, "inference final": 45244, "final task": 34501, "model orders": 61174, "magnitude fewer": 57805, "model utilizing": 61569, "gpt2 generation": 39287, "set small": 86935, "novel supervised": 67257, "method train": 59453, "methods achieve": 59510, "generation desired": 38113, "models vast": 64502, "evaluations select": 30884, "lms used": 57182, "used languages": 100838, "semantics context": 86380, "score 50": 85697, "gpt2 finally": 39278, "fail generalize": 33677, "syntactic transformations": 93184, "models observed": 63691, "observed models": 67622, "trained perform": 97885, "languages question": 51350, "structures neural": 91197, "works relied": 104384, "model usually": 61564, "network rnn": 66159, "gpt2 paper": 39328, "train neural": 97764, "evaluations method": 30865, "effectively applied": 27403, "different neural": 25126, "improving neural": 44143, "highquality short": 41790, "longer texts": 57371, "discriminative tasks": 25642, "time control": 96942, "target text": 93892, "text decoding": 96168, "decoding representations": 22674, "performs competitively": 71809, "15 better": 321, "text length": 96325, "limits natural": 54503, "predicting human": 73673, "diverse language": 26041, "novel experimental": 67159, "experimental approach": 31988, "considering language": 18217, "models created": 62134, "sentences likely": 86559, "model failures": 60863, "model tested": 61504, "experiments revealed": 32294, "significant shortcomings": 87852, "translation context": 98694, "text prompt": 96368, "test generated": 95893, "raises challenge": 79074, "challenge making": 12905, "written texts": 104528, "solving common": 89218, "currently does": 20807, "propose transformerbased": 77146, "tackle limitations": 93733, "architecture uses": 7380, "translation language": 98709, "desirable attributes": 23990, "works utilize": 104394, "prompt mask": 76375, "task testing": 94265, "introduces trainable": 47537, "experiments 11": 32096, "prompts generating": 76726, "performance settings": 71561, "lags far": 49086, "suggesting large": 92413, "potential improvement": 73132, "improvement paper": 43929, "explore methods": 32705, "methods utilize": 59837, "prompts method": 76780, "possible finetune": 72901, "data directly": 21157, "input inference": 45907, "manner experiments": 58236, "datasets nlp": 22349, "points terms": 72511, "accuracy gains": 2271, "gains attained": 36859, "unlabeled examples": 100146, "explanations fewshot": 32491, "reasoning does": 79863, "reasoning text": 80070, "prompts include": 76749, "multiple different": 65174, "different styles": 25212, "accuracy improvements": 2289, "able benefit": 1829, "factually grounded": 33661, "grounded input": 40572, "input simple": 45956, "llms predictions": 56550, "posthoc analysis": 72951, "consistent input": 18265, "automatically extracted": 8865, "scores assess": 85748, "reliability explanations": 81496, "does introduce": 26303, "conversations requires": 19429, "behavior modulated": 9984, "work adapt": 103970, "scale gpt3": 85266, "pretraining setup": 74598, "setup paper": 87110, "framework pretraining": 36235, "universally effective": 100118, "effective datasets": 27283, "present generalized": 73991, "different pretraining": 25154, "diverse pretraining": 26069, "pretraining paradigms": 74585, "ablative experiments": 1819, "multiple pretraining": 65242, "method pushes": 59400, "multiple diverse": 65178, "model 20b": 60464, "20b parameters": 583, "parameters achieve": 70165, "oneshot summarization": 67954, "works chainofthought": 104351, "prompting reasoning": 76599, "reasoning making": 79935, "research reasoning": 82755, "reasoning small": 80026, "parameters finally": 70213, "finally apply": 34507, "20b model": 582, "efficient trainingfree": 27829, "years growing": 104596, "data significant": 21624, "sampling enables": 85154, "controllable language": 19238, "generation need": 38293, "information sampling": 45614, "effectively guiding": 27434, "guiding language": 40778, "demonstrate gamma": 23086, "applied gpt2": 6613, "body work": 11245, "work recent": 104245, "arabic language": 7304, "addressing major": 3548, "approach second": 7014, "systematic reproducible": 93345, "models literature": 62942, "plms terms": 72437, "bertstyle models": 10584, "t5style models": 93670, "evaluation conduct": 30551, "benchmark arabic": 10075, "plms achieve": 72405, "performance discriminative": 71150, "discriminative generative": 25638, "works usually": 104393, "usually focus": 101871, "work utilize": 104305, "including t5": 44488, "additionally adapt": 3270, "networks different": 66181, "questions zeroshot": 78975, "dataset pretraining": 22033, "largescale natural": 52550, "perform different": 70857, "claim requires": 14664, "requires training": 82418, "additional examples": 3238, "examples generated": 31221, "optimal training": 68574, "genetic algorithm": 38761, "validation accuracy": 102119, "consistent accuracy": 18251, "unseen examples": 100265, "gpt3 ability": 39390, "result improved": 83395, "text average": 96096, "nlg systems": 66690, "using likert": 101564, "likert scales": 54268, "true preference": 98916, "like story": 54227, "new human": 66420, "significant results": 87841, "using highly": 101505, "transformer decoders": 98500, "studies examining": 91385, "focus output": 35543, "internal states": 47236, "gpt2 use": 39364, "models navigation": 63660, "sentences case": 86543, "impacts models": 43285, "substantial impact": 92085, "models hidden": 62660, "understanding textual": 99893, "textual explanations": 96673, "understanding recently": 99861, "recognizing textual": 80637, "rte task": 84909, "datasets current": 22201, "benchmarks suffer": 10416, "datasets esnli": 22235, "data exists": 21209, "making harder": 58102, "spanning categories": 89495, "expert annotators": 32351, "creation datasets": 20238, "complex linguistic": 16950, "step closer": 90619, "language textual": 51140, "nearest neighbor": 65846, "nonparametric memory": 66934, "similar gains": 88069, "extensively study": 33151, "study model": 91746, "showing gains": 87413, "performance boosts": 71026, "strong zeroshot": 91082, "improvement base": 43884, "adaptation training": 3101, "teaching models": 95374, "models express": 62420, "answers natural": 6200, "question model": 78689, "generates answer": 37826, "confidence levels": 18016, "calibrated model": 11757, "compare calibration": 16450, "capable generalizing": 12236, "pretrained latent": 74368, "generation sequencetosequence": 38415, "learning popular": 53333, "generally focus": 37326, "hypothesis empirically": 42734, "models encoder": 62317, "takes important": 93818, "neuron activation": 66306, "models integrating": 62796, "denoising objective": 23496, "learning better": 53047, "objective help": 67501, "tokens capture": 97182, "capture highlevel": 12355, "knowledge strengthening": 48771, "accurately achieve": 2438, "large diversity": 51425, "backbone models": 9251, "evaluation glue": 30621, "f05 score": 33412, "dataset provide": 22043, "foster future": 35900, "study legal": 91732, "legal case": 53553, "entailment task": 29495, "perform remarkably": 70915, "work experiment": 104076, "models legal": 62894, "coliee 2022": 15810, "scaling number": 85349, "previous zeroshot": 74743, "zeroshot model": 104825, "version model": 102810, "despite challenges": 24029, "realtime applications": 79623, "provide demonstration": 77444, "monot53b model": 64722, "including legal": 44402, "legal documents": 53556, "code submission": 15521, "largescale neural": 52552, "tasks tend": 95188, "underlying reasons": 99517, "quantitative experiments": 78410, "models preference": 63858, "sentence sentencelevel": 86520, "motivated findings": 64774, "achieved great": 2628, "generate sentences": 37592, "problem small": 75080, "topic control": 97504, "control tasks": 19227, "supervised pretraining": 92734, "general corpus": 37116, "showcase superior": 87362, "models motivated": 63642, "motivated success": 64783, "propose multitask": 77034, "collect largescale": 15867, "datasets 11": 22130, "11 diverse": 187, "general texttotext": 37198, "capacity perform": 12303, "utilizes recent": 101997, "recent instruction": 80268, "small plms": 88720, "effectiveness generality": 27521, "speakers utterance": 89594, "neural approach": 66213, "learning words": 53474, "scoring method": 85793, "methods pretrained": 59756, "outperformed baselines": 68976, "evaluations automatic": 30836, "entities target": 29552, "ability discover": 1632, "great progress": 40486, "information annotated": 45404, "performance methods": 71399, "module utilizes": 64670, "target entities": 93867, "experiments detailed": 32170, "detailed analyses": 24152, "paradigm pretrain": 70049, "methods popular": 59749, "used efficient": 100786, "discriminative model": 25639, "neglected paper": 66080, "novel proposed": 67238, "method experimental": 59298, "learning achieves": 53014, "overall compared": 69283, "compared pretrained": 16606, "model naturally": 61152, "model supports": 61475, "101 languages": 159, "models lag": 62843, "model useful": 61556, "realworld text": 79710, "lm perform": 57075, "operations recent": 68467, "sequence space": 86665, "proposes new": 77275, "space text": 89468, "text latent": 96323, "given arbitrary": 38859, "desired text": 24013, "approach permits": 6973, "using relevant": 101737, "relevant data": 81453, "substantially improving": 92129, "improving previous": 44147, "efficient fewshot": 27758, "performance 1shot": 70955, "model arabic": 60559, "english french": 29071, "portuguese spanish": 72732, "datasets provides": 22379, "present compelling": 73951, "short story": 87301, "unlike image": 100173, "generation image": 38199, "multiple challenges": 65151, "appropriately assessing": 7251, "scarcity problem": 85382, "clip gpt2": 14957, "imagetotext generation": 43137, "generation minimal": 38268, "generation incorporating": 38204, "incorporating stylistic": 44720, "generation conduct": 38092, "approaches compare": 7116, "compare generated": 16458, "fields ranging": 34443, "german language": 38808, "develop deep": 24441, "promise improve": 76122, "improve automatic": 43667, "models reliably": 64051, "sentences combined": 86544, "2022 shared": 546, "task text": 94266, "assessment data": 7945, "examining large": 31145, "dataset freely": 21951, "acquire general": 2903, "knowledge deployment": 48500, "proposed recently": 77252, "finetuning domainspecific": 35049, "smaller sized": 88793, "better evaluation": 10710, "finetuning relatively": 35221, "ontology concepts": 68025, "clinical cases": 14911, "bleu metrics": 11173, "pretrained selfsupervised": 74447, "learning demonstrated": 53104, "10b parameters": 172, "broad knowledge": 11492, "knowledge various": 48808, "similar sizes": 88111, "multilingual codeswitching": 64948, "outperforming existing": 68996, "languages furthermore": 51282, "humanwritten prompts": 42673, "training resulting": 98267, "learning finally": 53158, "promising directions": 76161, "research models": 82674, "learning zeroshot": 53480, "zeroshot ability": 104722, "huge model": 42041, "incurs high": 44931, "models augment": 61873, "capabilities remains": 12067, "training proposed": 98250, "specifically augment": 89782, "corpus order": 19644, "incorporate multiple": 44671, "multiple potentially": 65240, "noisy retrieved": 66875, "notably proposed": 67044, "seven evaluation": 87120, "models interpretable": 62805, "llms displayed": 55811, "specifically given": 89828, "given pretrained": 38930, "introduce interpretable": 47437, "algorithm generates": 4916, "generating explanations": 37903, "based performance": 9652, "used prompt": 100881, "prompt experiments": 76322, "meaningful insights": 58711, "groundtruth dataset": 40598, "descriptions prompts": 23724, "prompts produced": 76796, "generalization realworld": 37279, "match improve": 58490, "finally experiments": 34528, "methods data": 59585, "learning makes": 53257, "models stronger": 64265, "finetunes language": 34996, "target label": 93873, "task instruction": 94104, "improved zeroshot": 43868, "tasks containing": 94491, "likely generate": 54254, "14 tasks": 309, "16 times": 367, "97 points": 1456, "points respectively": 72508, "20 average": 483, "indicates strong": 45037, "nmt systems": 66846, "received recent": 80149, "humanlevel accuracy": 42511, "accuracy existing": 2261, "accuracy testing": 2375, "make attempt": 57965, "attempt understand": 8260, "test potential": 95927, "working mechanism": 104329, "manipulated adversarial": 58218, "reduce computation": 80764, "systems response": 93562, "response latency": 83146, "power realworld": 73396, "realworld mobile": 79682, "models clinical": 62005, "clinical domain": 14923, "developed recent": 24526, "japanese russian": 48115, "implicitly explicitly": 43427, "carefully aligned": 12406, "different original": 25134, "result shows": 83406, "setting pretraining": 87018, "pretraining scaling": 74595, "challenging scarcity": 13224, "alleviate data": 5132, "problem lack": 75031, "highquality domain": 41754, "propose prompt": 77092, "based domain": 9505, "methods addition": 59516, "facilitating future": 33538, "crosslingual data": 20419, "cost human": 19851, "examples llms": 31248, "augment training": 8520, "set model": 86899, "model 40x": 60468, "40x smaller": 928, "improvements strong": 44002, "saliency map": 85070, "saliency maps": 85071, "explain neural": 32433, "identifying important": 42921, "task translating": 94275, "maps natural": 58348, "ease understanding": 26998, "approach efficiently": 6825, "challenging bigbench": 13155, "tasks chainofthought": 94423, "diverse evaluation": 26019, "benchmark best": 10084, "tasks actually": 94343, "prior language": 74848, "model evaluations": 60825, "tasks bbh": 94398, "require multistep": 82279, "reasoning fewshot": 79884, "prompting cot": 76514, "performance capabilities": 71030, "analysis explore": 5515, "cot enables": 19947, "flat scaling": 35414, "scaling curves": 85323, "highly predictable": 41705, "instructionfinetuned language": 46433, "focus scaling": 35552, "size finetuning": 88470, "finetuning chainofthought": 35027, "fewshot cot": 34222, "cot evaluation": 19948, "mmlu bbh": 60413, "flanpalm 540b": 35388, "tasks outperforms": 94915, "outperforms palm": 69094, "fiveshot mmlu": 35346, "palm 62b": 69544, "usability pretrained": 100420, "including public": 44455, "data provided": 21523, "official test": 67872, "single nvidia": 88385, "v100 gpu": 102063, "model ensemble": 60809, "transfer method": 98428, "tuning prompt": 99082, "prompts downstream": 76691, "conditioning frozen": 17809, "parameter efficiency": 70099, "models sufficient": 64296, "settings prompt": 87084, "fails match": 33705, "performance fullmodel": 71230, "fullmodel finetuning": 36429, "prompts source": 76823, "good generalization": 39115, "ensemble methods": 29422, "based different": 9501, "approaches source": 7203, "generalization model": 37268, "prompt conduct": 76259, "work builds": 104007, "settings demonstrate": 87047, "task conduct": 93987, "relatively new": 81320, "concepts related": 17634, "contrastive search": 19112, "text autoregressive": 96093, "importance natural": 43466, "task produce": 94201, "consistency recently": 18244, "new decoding": 66375, "search based": 85857, "space language": 89447, "autoregressive lms": 8969, "model follows": 60908, "study answer": 91492, "major languages": 57933, "studies based": 91365, "search decoding": 85862, "offtheshelf lms": 67894, "lms generation": 57128, "languages experimental": 51271, "demonstrate contrastive": 23049, "methods additional": 59517, "training notably": 98220, "judged human": 48179, "evaluations code": 30839, "code related": 15468, "propose contrastive": 76953, "approach optimizes": 6962, "difference likelihood": 24963, "requires zero": 82423, "produces higher": 75696, "works model": 104371, "news story": 66645, "robust learning": 84666, "tasks target": 95177, "continues pretraining": 19020, "unseen target": 100275, "zeroshot retrieval": 104862, "bert base": 10501, "60x larger": 1127, "grammatical error": 40335, "detection targeted": 24364, "indicate pretrained": 45015, "contextual representations": 18953, "annotated training": 5878, "information relevant": 45589, "perform par": 70907, "divergence performance": 25972, "information pertaining": 45569, "diffusion language": 25338, "success diffusion": 92189, "domains images": 26527, "domains text": 26600, "diffusionbased language": 25348, "iteratively generating": 48077, "blocks text": 11204, "output length": 69169, "control using": 19229, "autoregressive gpt2": 8957, "standard quality": 90204, "metrics vastly": 59977, "extra advantage": 33210, "models failure": 62443, "failure analysis": 33709, "generation questionanswering": 38376, "long short": 57326, "short term": 87306, "model downstream": 60779, "semiconductor industry": 86411, "generative task": 38717, "task observe": 94163, "gpt2 outperformed": 39327, "model failure": 60862, "task particular": 94179, "gpt2 trained": 39358, "bert bart": 10500, "bart gpt3": 9385, "evaluation structured": 30796, "judgment existing": 48189, "finetuning mtf": 35146, "setting far": 86994, "zeroshot results": 104861, "investigate finetuning": 47650, "tasks prompts": 94978, "machinetranslated english": 57787, "prompts leads": 76769, "respective languages": 83049, "surprisingly models": 93004, "capable zeroshot": 12277, "generalization tasks": 37284, "languages intentionally": 51293, "intentionally seen": 46965, "conjecture models": 18080, "models freely": 62512, "modelgenerated explanations": 61618, "explainable nlp": 32453, "nlp shown": 66769, "enable large": 28552, "generate grammatical": 37466, "easy hard": 27032, "gpt3 varying": 39556, "incontext samples": 44659, "explanations grammatical": 32496, "generates highly": 37835, "explanations terms": 32518, "models supporting": 64304, "supporting code": 92852, "problem remains": 75067, "deployment methods": 23610, "classic nlp": 14711, "plms including": 72425, "gpt3 outperform": 39505, "outperform previous": 68959, "later used": 52649, "present latest": 74007, "introduce additional": 47392, "criteria based": 20286, "based concept": 9476, "updating language": 100362, "suggestion task": 92421, "task translation": 94277, "limited use": 54481, "follow data": 35644, "performance difference": 71137, "probe ability": 74968, "palm demonstrated": 69546, "llms date": 55717, "optimized prompts": 68643, "supervised systems": 92741, "conclude providing": 17741, "output reveals": 69188, "interesting properties": 47158, "impact language": 43218, "characteristics multilingual": 13335, "multilingual texttotext": 65015, "transfer highresource": 98410, "ones work": 67939, "understand models": 99627, "specifically mt5": 89853, "knowledge languages": 48645, "model appears": 60550, "model statistical": 61451, "data demands": 21143, "languages given": 51285, "able predict": 1873, "scale number": 85285, "number fewshot": 67342, "implicit causality": 43413, "study case": 91516, "investigates extent": 47741, "gpt2 able": 39250, "performance second": 71554, "produce sensible": 75654, "adding language": 3168, "large publicly": 52330, "pretraining limited": 74567, "prohibitively large": 76041, "apply existing": 6658, "adaptation effective": 3074, "models addition": 61787, "addition discover": 3180, "size language": 88477, "adaptation data": 3068, "capable following": 12234, "instructions zeroshot": 46579, "method teach": 59445, "languages code": 51247, "increased model": 44794, "focused encoderonly": 35579, "encoderonly architecture": 28733, "generative architectures": 38590, "suitable llms": 92461, "powerful multilingual": 73459, "pretrained sequencetosequence": 74451, "improvements previously": 43989, "published results": 78009, "metrics text": 59972, "tests synthetic": 96055, "range potential": 79190, "metrics based": 59885, "summarization experiments": 92534, "reveal interesting": 84154, "errors summarization": 29843, "built gpt2": 11662, "errors beginning": 29806, "capabilities especially": 11889, "large computation": 51407, "ability achieved": 1586, "supervised data": 92702, "modeling present": 61668, "competitive zeroshot": 16826, "compared large": 16579, "multitask settings": 65369, "language constraints": 49169, "work benchmark": 104001, "solution leverage": 89100, "leverage language": 53736, "queries language": 78495, "specified topic": 89909, "generation probabilities": 38334, "topk tokens": 97540, "instructions outperform": 46542, "available labeled": 9059, "strategies automatically": 90794, "stateoftheart machine": 90388, "step generated": 90644, "generated candidates": 37666, "data sequence": 21612, "instructiontuned language": 46586, "finetuned respond": 34962, "instructions demonstrated": 46488, "tasks depend": 94522, "diversity creativity": 26139, "generality tuned": 37228, "framework improving": 36163, "improving instructionfollowing": 44127, "instructions input": 46517, "samples language": 85124, "finetune original": 34844, "model applying": 60555, "applying method": 6692, "trained private": 97892, "annotations evaluation": 5932, "existing public": 31801, "method aligning": 59200, "models instructions": 62793, "studies instruction": 91402, "tuning code": 99021, "models considered": 62094, "trained accurately": 97794, "accurately predict": 2461, "predict token": 73661, "better worse": 10814, "top1 accuracy": 97489, "humans consistently": 42584, "coverage high": 20059, "text coherence": 96130, "improvement especially": 43904, "terms coverage": 95807, "additional layer": 3246, "given corpus": 38872, "provided gpt2": 77616, "decoder gpt2": 22632, "readable text": 79504, "tokens sequence": 97228, "models palm2": 63750, "positions sequence": 72817, "joint distribution": 48148, "various benchmark": 102368, "diverse sizes": 26106, "sizes configurations": 88548, "observations propose": 67570, "generates sentences": 37851, "humanlike writing": 42547, "task sequentially": 94237, "generation identify": 38198, "task develop": 94017, "generation editing": 38129, "test different": 95885, "different degrees": 25042, "fine tuned": 34778, "consisting key": 18321, "key steps": 48342, "generate scenes": 37583, "scenes scene": 85504, "german text": 38809, "automatic quantitative": 8818, "poor quality": 72598, "inputs chatgpt": 45986, "chatgpt machine": 14001, "translation translation": 98754, "lags significantly": 49088, "commercial systems": 16096, "biomedical abstracts": 11087, "strategy named": 90907, "asks chatgpt": 7749, "chatgpt translate": 14318, "translate source": 98666, "analysis google": 5529, "makes errors": 58057, "models investigating": 62814, "investigating utilization": 47780, "exemplified gpt3": 31479, "generation capacity": 38065, "generate stories": 37603, "situations involving": 88445, "knowledge rare": 48729, "biases order": 10941, "prompt using": 76448, "compare gpt": 16459, "align proposed": 5007, "flan collection": 35384, "designing data": 23973, "effective instruction": 27313, "methods break": 59555, "flant5 outperform": 35400, "outperform prior": 68961, "evaluation settings": 30774, "overlooked critical": 69405, "particular training": 70427, "training mixed": 98199, "settings zeroshot": 87104, "yields stronger": 104679, "experiments flant5": 32200, "tasks motivating": 94871, "accelerate research": 2008, "tuning make": 99065, "templates methods": 95702, "auxiliary data": 8983, "valuable realworld": 102168, "generalizable model": 37238, "model overfitting": 61194, "improving generalization": 44124, "limiting practicality": 54488, "allowing scale": 5183, "methods propose": 59763, "methods outperform": 59743, "methods lead": 59708, "trained produce": 97893, "gpt3 works": 39559, "data explore": 21216, "questions posed": 78912, "model collecting": 60672, "collecting responses": 15888, "participants distinguish": 70363, "rate 80": 79369, "model produced": 61284, "responses actual": 83170, "actual human": 3014, "paper improve": 69753, "ability language": 1692, "external memories": 33197, "memory inference": 59042, "time develop": 96948, "tasks included": 94721, "beir benchmark": 10024, "benchmark outperforms": 10221, "parameters computation": 70187, "computation steps": 17428, "code learning": 15379, "learning improve": 53209, "model plm": 61251, "learning despite": 53109, "tuning mpt": 99070, "range adaptation": 79136, "settings different": 87050, "configurations large": 18034, "improvement significant": 43944, "text best": 96099, "text explore": 96205, "text generative": 96281, "pipeline using": 72176, "assess generated": 7853, "use results": 100679, "generation procedure": 38337, "obtaining human": 67682, "strategy maximizing": 90905, "improves text": 44081, "overall demonstrate": 69287, "generation advanced": 38016, "short description": 87279, "generation approaches": 38036, "examine quality": 31123, "descriptions produced": 23723, "process people": 75373, "baselines study": 9853, "possibilities future": 72867, "open text": 68129, "generation prompt": 38351, "openended generative": 68258, "approach analyzing": 6737, "constraint types": 18388, "create diverse": 20156, "simple natural": 88219, "useful prompts": 100952, "analyze individual": 5770, "prompts analyze": 76651, "generalizability proposed": 37235, "aspects quality": 7786, "comparison stateoftheart": 16729, "robustness domain": 84709, "domain shifts": 26447, "translation experiment": 98703, "gpt35 textdavinci003": 39674, "results gpt": 83626, "models translation": 64434, "characteristics gpt": 13330, "helps better": 41305, "understand potential": 99640, "models pfms": 63809, "trained largescale": 97860, "parameter initialization": 70109, "shot shot": 87349, "shot prompting": 87346, "significant breakthroughs": 87699, "breakthroughs various": 11413, "components existing": 17087, "graph learning": 40392, "used different": 100779, "provides key": 77683, "challenges open": 13082, "light research": 54021, "ability crossdomain": 1621, "ability artificial": 1595, "bert recently": 10546, "chatgpt attains": 13547, "ability compared": 1614, "models quantitative": 63947, "chatgpts understanding": 14453, "ability given": 1669, "evaluating popular": 30477, "analysis questionanswering": 5631, "combining advanced": 16003, "chatgpt improved": 13945, "zeroshot information": 104801, "little human": 54679, "efforts large": 27914, "chatgpt promising": 14115, "work ask": 103995, "multiturn questionanswering": 65397, "chatgpt extensively": 13797, "framework tasks": 36297, "results datasets": 83529, "models formal": 62503, "large variety": 52367, "cultural biases": 20591, "biases induced": 10928, "popular generative": 72631, "language formal": 49226, "prompt formality": 76323, "predictions overall": 73749, "behaviors models": 10009, "informal text": 45385, "addition models": 3198, "models highly": 62667, "multilingual lms": 64977, "advances computational": 3869, "computational methods": 17470, "methods big": 59554, "form large": 35775, "words used": 103965, "limited sample": 54461, "sample sizes": 85092, "challenge especially": 12874, "learning scenario": 53399, "quality natural": 78324, "ensure sufficient": 29466, "development chatgpt": 24620, "samples multiple": 85133, "conceptually similar": 17656, "different samples": 25186, "augmented samples": 8585, "samples used": 85147, "approach stateoftheart": 7036, "accuracy distribution": 2242, "models past": 63780, "work natural": 104182, "lack dedicated": 48996, "importance scores": 43479, "decoderonly encoderdecoder": 22643, "showcase potential": 87359, "potential adopting": 72985, "gender biases": 37090, "good practices": 39121, "shown competitive": 87446, "research effectiveness": 82567, "particularly popular": 70491, "work performs": 104204, "comparison multiple": 16719, "experimental conditions": 31991, "modeling translation": 61687, "particularly cases": 70435, "source texts": 89395, "assessing efficiency": 7913, "models suggesting": 64298, "quality large": 78305, "works reference": 104382, "prompt variants": 76449, "metrics shared": 59967, "german english": 38806, "code prompt": 15448, "templates used": 95703, "scoring results": 85796, "model bloom": 60615, "multilingual ability": 64940, "performance datasets": 71123, "performance suffers": 71603, "greatly improved": 40526, "results number": 83746, "pairs study": 69521, "including prompt": 44452, "parameterefficient transfer": 70153, "setting propose": 87019, "prompts learn": 76770, "low rank": 57527, "adapt downstream": 3039, "task extensive": 94055, "finetuning baseline": 35021, "cases despite": 12522, "study recently": 91809, "tasks terms": 95189, "serve evaluation": 86760, "nlg models": 66688, "provide preliminary": 77544, "chatgpt reliability": 14167, "human evaluator": 42201, "chatgpt evaluate": 13764, "previous automatic": 74664, "addition effectiveness": 3182, "datasets created": 22196, "optimization large": 68596, "sparked significant": 89516, "capabilities leading": 11969, "applications high": 6495, "optimizing inference": 68659, "temperature max": 95681, "tokens significantly": 97230, "significantly affects": 87882, "design framework": 23781, "pruning experiments": 77849, "released models": 81408, "models extended": 62422, "articles books": 7559, "capability release": 12203, "text comparative": 96133, "image quality": 43057, "relations form": 81269, "form basis": 35767, "formulate task": 35868, "task extract": 94056, "targets aspects": 93913, "aspects directly": 7768, "directly extract": 25492, "paper comparative": 69632, "relations directly": 81266, "directly extracted": 25493, "relation extractor": 81247, "hallucination detection": 40829, "gpt3 capable": 39421, "responses wide": 83329, "known hallucinate": 48846, "hallucinate facts": 40812, "external databases": 33181, "zeroresource fashion": 104716, "external database": 33180, "leverages simple": 53813, "simple idea": 88206, "llm knowledge": 55141, "sampled responses": 85095, "likely similar": 54262, "investigate approach": 47621, "factuality generated": 33651, "generated passages": 37749, "factual sentences": 33646, "sentences ii": 86558, "considerably higher": 18175, "methods making": 59726, "correspondingly propose": 19810, "propose optimal": 77086, "optimal temperature": 68573, "depends largely": 23550, "lower temperature": 57576, "information improve": 45506, "ability improve": 1680, "proposed prompts": 77250, "community explore": 16316, "explore effects": 32673, "powerful chainofthought": 73426, "prompting enables": 76522, "summarization recent": 92558, "performance level": 71352, "investigate prompting": 47693, "level experimental": 53655, "different structures": 25210, "structures analysis": 91191, "sharing similar": 87208, "evaluator prompting": 30897, "tools fail": 97404, "address difficulties": 3391, "scheme proposed": 85528, "novel twostep": 67277, "twostep prompt": 99197, "strategy combines": 90867, "scenarios demonstrated": 85415, "translation accuracy": 98683, "systems demonstrated": 93425, "applications deployed": 6446, "deployed wild": 23574, "generate hallucinated": 37468, "safety concerns": 85019, "leaving gap": 53511, "conventional neural": 19287, "studies limited": 91413, "benchmarks small": 10411, "lack statistical": 49054, "statistical power": 90554, "power work": 73403, "extend existing": 32936, "using templatebased": 101810, "pairs evaluate": 69494, "observe high": 67584, "sensitivity models": 86476, "previous findings": 74677, "systems hard": 93472, "relatively low": 81318, "especially tasks": 29919, "require creativity": 82238, "creativity diversity": 20267, "lower human": 57561, "chainofthoughts cot": 12846, "backbone model": 9250, "human summarization": 42379, "outperforming previous": 69006, "margin propose": 58365, "behavior llmbased": 9980, "potential issue": 73148, "llmgenerated texts": 55378, "rely labeled": 81579, "especially task": 29918, "domains recently": 26579, "ability various": 1796, "paper claim": 69630, "gpt35 serve": 39665, "serve excellent": 86761, "examples make": 31251, "make llms": 58009, "propose twostep": 77151, "utilize prompt": 101954, "prompt llm": 76369, "provide explanation": 77471, "data conduct": 21101, "gpt35 surpasses": 39671, "achieves results": 2778, "comparable obtained": 16385, "obtained crowdsourced": 67669, "exploring use": 32872, "evaluation empirical": 30582, "inherent complexity": 45723, "especially chatgpt": 29859, "use assessing": 100478, "prove chatgpt": 77368, "reliable method": 81524, "document generation": 26208, "translation existing": 98702, "definitely helpful": 22872, "semisupervised method": 86426, "remove substitute": 81865, "pretraining documents": 74524, "generate different": 37431, "applying pretrained": 6697, "ability transfer": 1785, "languages makes": 51321, "demonstrate highquality": 23100, "surprising abilities": 92983, "relies heavily": 81553, "chatgpt designed": 13703, "designed translation": 23960, "language translations": 51150, "compared commercial": 16516, "perform fewshot": 70874, "provides empirical": 77661, "tasks taking": 95176, "modeling study": 61679, "focuses aspects": 35598, "contextaware prompts": 18883, "mt systems": 64838, "modelling abilities": 61693, "llms shed": 56764, "number benchmarks": 67331, "capabilities gpt35": 11929, "outperform commercial": 68925, "systems terms": 93586, "terms human": 95822, "stronger ability": 91086, "opportunities llms": 68500, "llms competitive": 55651, "translation datasets": 98698, "documents remains": 26266, "costly difficult": 19908, "rigorous human": 84449, "novel results": 67241, "took approximately": 97257, "error annotations": 29771, "preference judgments": 73799, "grammar errors": 40327, "research evaluation": 82584, "tuning gpt4": 99045, "using machinegenerated": 101600, "machinegenerated instructionfollowing": 57770, "data enables": 21180, "remarkable zeroshot": 81837, "humanwritten instructions": 42668, "present attempt": 73934, "attempt use": 8261, "generate instructionfollowing": 37507, "gpt4 leads": 39956, "leads superior": 52911, "training make": 98190, "codebase publicly": 15576, "potential handling": 73115, "advantages challenges": 3935, "factors affect": 33586, "affect llms": 4052, "gpt4 empirical": 39848, "strong supervised": 91075, "languages analysis": 51231, "analysis discover": 5491, "discover llms": 25598, "exhibit new": 31535, "task guidance": 94088, "translation exemplars": 98701, "pairs llm": 69508, "way generate": 103364, "fundamentally transform": 36564, "field chatgpt": 34356, "developed recently": 24528, "generation highly": 38194, "attention various": 8383, "exciting applications": 31410, "discovered chatgpt": 25605, "model process": 61280, "broad adoption": 11481, "different problems": 25157, "problems areas": 75113, "necessary develop": 65870, "include additional": 44227, "current paper": 20751, "evaluates chatgpt": 30375, "extremely low": 33396, "general users": 37201, "sampling conditional": 85152, "autoregressive text": 8976, "framework use": 36311, "models efficiently": 62284, "challenging benchmarks": 13153, "various strong": 102586, "margin work": 58366, "model remain": 61338, "specifically pretrain": 89860, "gptj llama": 40223, "models portuguese": 63830, "original pretraining": 68799, "fewshot evaluations": 34230, "counterparts significant": 20010, "par gpt35turbo": 70011, "language translated": 51146, "study contributions": 91556, "terms capturing": 95798, "data costly": 21126, "costly challenging": 19907, "corpus examples": 19619, "examples using": 31300, "set humanwritten": 86885, "documents llms": 26256, "dataset natural": 22013, "outperform 10x": 68916, "tuning tasks": 99105, "finally models": 34545, "instructions demonstrate": 46487, "news generation": 66627, "generation publicly": 38365, "following data": 35674, "colossal success": 15938, "manually creating": 58299, "humans struggle": 42640, "data varying": 21746, "initial set": 45785, "instructions use": 46574, "use proposed": 100665, "analyzing human": 5813, "suggest finetuning": 92361, "direction enhancing": 25444, "public httpsgithubcomnlpxucanwizardlm": 77925, "amr parsing": 5373, "collection instruction": 15897, "representation amr": 82050, "labeling srl": 48925, "indicate flant5": 44991, "finetuning lora": 35137, "understanding predicting": 99841, "need identify": 65957, "diverse reasoning": 26088, "explanations chainofthought": 32480, "token position": 97144, "transformers language": 98617, "shown stateoftheart": 87550, "known suffer": 48859, "positive examples": 72823, "lms finetuned": 57124, "benchmarks study": 10415, "propose evaluation": 76971, "models encoders": 62320, "decoders gpt2": 22658, "average drop": 9147, "performance mitigate": 71402, "mitigate effect": 60258, "methods random": 59771, "results improvement": 83661, "swedish language": 93094, "single consumergrade": 88352, "consumergrade gpu": 18500, "special tokens": 89605, "trained subset": 97913, "utilized training": 101974, "text preprocessing": 96358, "methods generative": 59663, "augmenting data": 8593, "data low": 21389, "augmentation furthermore": 8534, "key human": 48304, "increasingly employed": 44878, "examples diverse": 31205, "presenting evaluation": 74107, "evaluation compared": 30549, "finally illustrate": 34538, "models analyzing": 61833, "linguistic abilities": 54554, "improved point": 43853, "perform language": 70889, "time models": 96998, "data illustrate": 21303, "vast potential": 102690, "analyzing evaluating": 5809, "paper probe": 69876, "research program": 82728, "analyses large": 5400, "experimental designs": 31994, "provide general": 77484, "research line": 82657, "line inquiry": 54513, "using vicuna": 101844, "ner models": 66114, "online apis": 67975, "newly released": 66601, "released opensource": 81413, "llm vicuna": 55317, "entities texts": 29554, "texts second": 96595, "zeroshot capacity": 104739, "domains fewshot": 26520, "performance shot": 71564, "settings additionally": 87036, "vicuna multiple": 102869, "robust spurious": 84688, "learn correlations": 52937, "labels features": 48943, "general approach": 37108, "llms reliance": 56691, "model predicts": 61262, "freetext explanation": 36359, "answer evaluate": 6002, "method finetune": 59309, "model artificially": 60566, "constructed training": 18452, "sets containing": 86959, "containing different": 18533, "accuracy drop": 2248, "multiple model": 65223, "gains larger": 36862, "models relation": 64041, "relationships entities": 81284, "training modules": 98208, "entity spans": 29591, "conditioned input": 17804, "work evaluating": 104073, "standard tasks": 90210, "generative approaches": 38588, "evaluation fewshot": 30600, "near sota": 65842, "release model": 81378, "new baseline": 66342, "baseline tasks": 9810, "prompting elicits": 76520, "surprisingly good": 92999, "restricts practical": 83380, "augments llms": 8607, "demonstrate importance": 23101, "fewshot demonstration": 34226, "exhibit surprisingly": 31561, "having seen": 41126, "systems investigate": 93491, "signals including": 87645, "models taking": 64333, "used new": 100862, "quality finally": 78272, "finally series": 34565, "scale instruction": 85271, "tuning reinforcement": 99088, "relative importance": 81296, "65b parameter": 1169, "llama language": 54763, "finetuned standard": 34974, "supervised loss": 92722, "preference modeling": 73802, "remarkably strong": 81848, "learning follow": 53165, "specific response": 89746, "response formats": 83131, "handful examples": 40913, "model tends": 61500, "suggest knowledge": 92371, "limited instruction": 54432, "data necessary": 21437, "understanding multiple": 99819, "evaluation sets": 30772, "understanding challenging": 99688, "world understanding": 104417, "consistent different": 18256, "meaning accordingly": 58698, "correctness evaluating": 19733, "latest versions": 52684, "object study": 67483, "lacking task": 49077, "gpt4 gained": 39895, "questionanswering data": 78734, "necessitates substantial": 65887, "issues concerning": 47979, "overcome obstacles": 69360, "larger quantity": 52470, "domainspecific instruction": 26628, "data effectiveness": 21171, "domains nlp": 26561, "models correctly": 62129, "factual commonsense": 33623, "allows achieve": 5189, "acquire knowledge": 2909, "settings present": 87083, "end systematically": 28841, "evaluations multiple": 30870, "struggle correctly": 91212, "revealing interesting": 84196, "reliably reason": 81540, "domain adaptive": 26351, "learning emerging": 53124, "emerging topics": 28237, "remains nontrivial": 81682, "task misinformation": 94142, "detection good": 24307, "address data": 3387, "scarcity issue": 85378, "target examples": 93868, "feedback guide": 34090, "train initial": 97744, "initial model": 45775, "compute similarity": 17515, "based similarity": 9717, "adaptively learn": 3148, "data improved": 21313, "method perform": 59385, "performance domain": 71157, "correction task": 19708, "token using": 97159, "modeling capture": 61630, "representations target": 82124, "target context": 93857, "function minimize": 36488, "original ones": 68794, "sets respectively": 86971, "score jfleg": 85722, "tuning llama": 99060, "tackling diverse": 93754, "tasks finetuned": 94643, "practical problem": 73522, "tasks generalpurpose": 94667, "llms beneficial": 55528, "includes seven": 44258, "specifically llama": 89847, "llama instruction": 54762, "tuning experimental": 99035, "finetuning llama": 35125, "improves ability": 44010, "analyses offer": 5406, "work effectively": 104063, "effectively finetuning": 27429, "models classical": 62000, "work create": 104037, "tasks classical": 94436, "languages explore": 51274, "architectures using": 7407, "morphological syntactic": 64753, "texts experiments": 96564, "inform future": 45381, "resources large": 83015, "curated pretraining": 20637, "augmentation training": 8556, "explore parameterefficient": 32713, "parameterefficient adaptation": 70137, "tasks practical": 94949, "gradients llms": 40308, "blackbox model": 11143, "model extensive": 60850, "experiments text": 32316, "approach dubbed": 6819, "stateoftheart blackbox": 90317, "evaluation finegrained": 30603, "finegrained feedback": 34790, "automatically evaluating": 8861, "metrics high": 59927, "metrics explain": 59918, "text address": 96073, "limitation present": 54287, "metric text": 59871, "implicit knowledge": 43418, "gpt4 surprisingly": 40116, "direct supervision": 25434, "metrics like": 59943, "paradigm instructiontuning": 70036, "responses existing": 83208, "employ llm": 28404, "instructions existing": 46498, "paradigm automatic": 70023, "llms automatically": 55505, "data fields": 21229, "leveraging existing": 53838, "offers advantages": 67821, "cost generating": 19849, "comparable data": 16369, "data new": 21441, "diverse instruction": 26039, "mitigate forgetting": 60261, "tasks better": 94407, "better code": 10701, "content crucial": 18608, "crucial effective": 20485, "systems struggle": 93578, "struggle translate": 91230, "sentences containing": 86550, "remains uncertain": 81705, "evaluate variety": 30301, "propose prompting": 77094, "cultural knowledge": 20595, "robustness finetuned": 84716, "finetuned transformerbased": 34987, "finetuning changes": 35028, "layers models": 52754, "work studying": 104285, "bert finetuned": 10512, "finetuned nlp": 34946, "rigorous study": 84458, "decoder encoderdecoder": 22629, "layers using": 52764, "robustness language": 84724, "text perturbations": 96357, "gpt2 representations": 39343, "types input": 99242, "perturbation models": 71988, "weaknesses popular": 103461, "measuring cultural": 58773, "cultural bias": 20590, "models reach": 63978, "camel novel": 11790, "provides foundation": 77669, "ner sentiment": 66118, "best suited": 10650, "culturally aware": 20604, "aim generate": 4716, "generation requires": 38398, "based specific": 9722, "task construct": 93993, "chatgpt vicuna": 14350, "furthermore identify": 36627, "observed finetuned": 67606, "propose explicit": 76972, "approaches effectively": 7130, "effectively alleviate": 27399, "multidomain dataset": 64904, "domain language": 26410, "language diversity": 49192, "datasets showcasing": 22412, "showcasing superior": 87383, "capabilities compare": 11861, "traditional readability": 97694, "readability metrics": 79500, "metric measuring": 59868, "benchmarks recent": 10403, "practical settings": 73532, "detect factual": 24216, "reduce propagation": 80801, "improve trust": 43820, "trust model": 98931, "testing existing": 96006, "detection compared": 24277, "fail complex": 33674, "new protocol": 66507, "detection benchmark": 24269, "interannotator agreement": 47127, "performance highlighting": 71288, "detect inconsistencies": 24220, "causal models": 12665, "models word": 64544, "llms driven": 55820, "unclear models": 99404, "use paper": 100647, "theory theory": 96773, "causal graph": 12652, "consider variety": 18147, "causal outcomes": 12666, "structure results": 91147, "influential factors": 45370, "produce outputs": 75650, "compare outputs": 16476, "outputs various": 69260, "various systems": 102589, "complementing existing": 16861, "despite significance": 24119, "fluency factual": 35467, "judgments paper": 48197, "bradleyterryluce btl": 11354, "btl model": 11545, "reveal inherent": 84153, "consistent outputs": 18267, "implications construction": 43371, "preference evaluations": 73797, "chatgpt simple": 14246, "paper sheds": 69952, "light limitations": 54009, "limitations chatgpts": 54305, "setup results": 87111, "types inferences": 99240, "fails incorporate": 33704, "knowledge make": 48668, "make correct": 57981, "correct inferences": 19670, "causes model": 12698, "suggest despite": 92358, "despite gpts": 24055, "features act": 33984, "linguistic comprehension": 54567, "developed evaluated": 24499, "15 diverse": 325, "designed establish": 23906, "different transfer": 25235, "transfer methods": 98429, "methods incontext": 59684, "chatgpt incontext": 13949, "examples analysis": 31187, "future evaluations": 36723, "automatic translation": 8837, "rectify errors": 80715, "quality critical": 78246, "work formalize": 104109, "outputs language": 69233, "demonstrate gpt4": 23095, "improve general": 43706, "general quality": 37187, "llm notably": 55176, "notably improve": 67035, "produce hallucinated": 75630, "efficient incontext": 27775, "learning remarkable": 53382, "adoption applications": 3631, "leveraging incontext": 53852, "reducing token": 80893, "approach potentially": 6977, "significant detriment": 87732, "conducted various": 17992, "insights broader": 46057, "method diverse": 59266, "llms api": 55478, "scores language": 85770, "answer correct": 5995, "conditional probabilities": 17792, "conduct broad": 17830, "chatgpt arabic": 13532, "models efficacy": 62279, "bridge knowledge": 11433, "study conducts": 91544, "largescale automated": 52489, "chatgpt encompassing": 13752, "44 distinct": 955, "distinct language": 25868, "extensive performance": 33117, "models undergone": 64448, "undergone finetuning": 99463, "finetuning arabic": 35015, "meticulous comparison": 59848, "models handling": 62646, "employing gpt4": 28448, "work adds": 103978, "adds growing": 3561, "language speech": 51108, "speech research": 89966, "research despite": 82542, "speech processing": 89960, "gpt4 bloomz": 39789, "46 hours": 968, "texttospeech tts": 96633, "analysis focused": 5521, "trend observed": 98849, "performance gaps": 71246, "insights applicability": 46053, "instructions different": 46491, "present detailed": 73967, "given instructions": 38903, "llms stronger": 56867, "previously demonstrated": 74749, "tuning phase": 99077, "instruction learning": 46346, "uptodate knowledge": 100395, "knowledge information": 48628, "abilities complex": 1499, "case different": 12456, "information response": 45595, "finetune llama7b": 34834, "model constructed": 60703, "model needs": 61154, "needs learn": 66037, "generate target": 37615, "target response": 93885, "reasoning retrieved": 80014, "experiments finetuned": 32198, "answering fact": 6101, "study multilingual": 91750, "fact llms": 33559, "fundamental questions": 36552, "persist regarding": 71864, "users researchers": 101175, "interpretation llms": 47293, "systematic way": 93357, "performance disparities": 71151, "investigate phenomenon": 47680, "llms insufficient": 56236, "employ novel": 28409, "models vector": 64503, "space models": 89456, "semantically close": 86364, "modern pretrained": 64617, "hold promise": 41890, "promise performing": 76129, "mixed success": 60328, "data constructed": 21109, "examples investigate": 31239, "common words": 16183, "words ask": 103947, "models distinguish": 62247, "word frequency": 103905, "contextual factors": 18941, "factors impact": 33593, "fall far": 33778, "backpack language": 9276, "new neural": 66464, "strong modeling": 91050, "modeling performance": 61667, "sense vectors": 86444, "linear combination": 54523, "encoding different": 28745, "linear projection": 54534, "change models": 13273, "embeddings finally": 28079, "present simple": 74057, "works investigated": 104363, "prompting mechanisms": 76569, "better scores": 10787, "metrics demonstrate": 59903, "especially pronounced": 29906, "sentences contain": 86549, "promising translation": 76208, "making potential": 58126, "training llama": 98178, "model largescale": 61053, "instructions leading": 46530, "model preliminary": 61264, "experiments multilingual": 32251, "hope advance": 41945, "small datasets": 88673, "datasets address": 22135, "issue researchers": 47958, "proposed various": 77264, "adaptation approaches": 3066, "arguably common": 7455, "way especially": 103354, "shows adding": 87561, "generate embeddings": 37439, "important components": 43497, "paraphrasing using": 70315, "multiple text": 65273, "models prompted": 63916, "researchers examine": 82854, "variety linguistic": 102306, "meaning words": 58706, "created novel": 20199, "unique linguistic": 100085, "prompt varying": 76451, "lexical level": 53919, "context overall": 18821, "lms potentially": 57152, "potentially serve": 73348, "useful tools": 100957, "prediction head": 73694, "direct impact": 25421, "models reveal": 64107, "reveal biases": 84133, "prediction heads": 73695, "ability reflect": 1762, "adjustment method": 3590, "scenarios particular": 85468, "setting diverse": 86986, "comparing language": 16680, "challenging current": 13160, "topics demonstrate": 97528, "distilroberta gpt2": 25852, "tasks technical": 95187, "largescale korean": 52527, "korean language": 48869, "despite availability": 24027, "availability various": 9005, "mbert devlin": 58664, "devlin et": 24772, "models respective": 64083, "capabilities addressing": 11822, "develop advanced": 24433, "offer improved": 67746, "multilingual nature": 64989, "data meticulously": 21405, "meticulously curated": 59854, "deliberate decision": 22927, "gap multilingual": 36949, "examples paper": 31261, "improving factuality": 44120, "settings given": 87059, "generates multiple": 37839, "multiple variants": 65281, "verification datasets": 102742, "large plms": 52302, "probabilistic programs": 74952, "llms difficult": 55803, "prompts propose": 76801, "inferencetime approach": 45327, "semantic constraints": 86302, "specify language": 89914, "inference problems": 45283, "class discrete": 14693, "standard decoding": 90166, "inference computational": 45226, "syntactic constraints": 93167, "constraints prompt": 18406, "truthful answers": 98958, "technique designed": 95442, "truthfulness large": 98964, "model activations": 60509, "technique data": 95439, "like rlhf": 54217, "internal representation": 47234, "shown surprising": 87556, "understanding instructions": 99773, "propose iterative": 77009, "involving large": 47867, "extensive test": 33133, "test scenarios": 95934, "effectively reduces": 27468, "compared initial": 16576, "studies underscore": 91456, "reasonable initial": 79738, "exploring state": 32869, "explore recent": 32740, "instructiontuning language": 46615, "datasets despite": 22216, "models par": 63764, "utility various": 101903, "resources provide": 83027, "provide large": 77514, "parameters size": 70288, "datasets ranging": 22384, "coding openended": 15706, "openended instruction": 68259, "model suite": 61469, "finetuned combination": 34876, "evaluations interestingly": 30859, "performed work": 71771, "building better": 11620, "including fully": 44349, "success deep": 92188, "particularly considering": 70443, "annotations existing": 5933, "cost paper": 19872, "pairs input": 69502, "alternative way": 5279, "task auxiliary": 93950, "informative training": 45687, "preferences provide": 73828, "provide different": 77452, "preference signals": 73809, "given existing": 38887, "benchmark llm": 10207, "hyperparameter selection": 42721, "robust reliable": 84686, "establishing benchmark": 29998, "associated evaluation": 8082, "accuracy privacy": 2334, "response challenges": 83126, "main focus": 57825, "traditional evaluation": 97664, "addresses vital": 3524, "humanannotated test": 42442, "terms f1score": 95818, "evidenced significant": 31003, "counterparts trained": 20011, "does depend": 26287, "explore question": 32737, "collect human": 15865, "passive voice": 70557, "positively correlated": 72841, "relative frequency": 81294, "distributional properties": 25957, "rules time": 84941, "time hypothesis": 96972, "certain individual": 12762, "design features": 23779, "features language": 34008, "shown exist": 87458, "llm exhibit": 55067, "designs aimed": 23982, "uniquely human": 100093, "transformers high": 98615, "explanations natural": 32506, "information principle": 45576, "guides model": 40772, "model reasoning": 61313, "reasoning recent": 80006, "2022 shown": 548, "effectively learn": 27449, "present flame": 73986, "generates explanations": 37831, "explanations experiments": 32489, "gpt3 babbage": 39409, "majority generated": 57949, "ability train": 1784, "models access": 61744, "variants shown": 102256, "performance just": 71326, "vanilla finetuning": 102229, "facilitate investigation": 33499, "just labeled": 48220, "examples achieve": 31184, "performance near": 71424, "step evaluate": 90636, "experimentation varying": 32091, "varying model": 102654, "sizes prompts": 88563, "languages leveraging": 51309, "elicit llms": 27987, "llms translate": 56968, "language english": 49204, "method performs": 59386, "languages finetuning": 51279, "finetuning 7b": 35003, "generated method": 37739, "175b model": 408, "outperforms supervised": 69129, "supervised prompting": 92735, "gpt4 investigating": 39942, "investigating pretrained": 47776, "finetuning variety": 35287, "generalize different": 37292, "domains computer": 26504, "vision reasoning": 103001, "hierarchical data": 41361, "bart bert": 9383, "gpt2 achieve": 39252, "results similar": 83851, "performance outperform": 71450, "dataset average": 21835, "compared transformers": 16655, "datasets suggests": 22428, "helps models": 41315, "bringing step": 11467, "reducing number": 80889, "great impact": 40472, "using t5small": 101807, "using parameters": 101676, "great improvement": 40474, "unlike classical": 100163, "based blackbox": 9454, "judgments recent": 48199, "classical metrics": 14717, "potential reasons": 73233, "reasons decision": 80097, "decision processes": 22584, "novel highquality": 67180, "paper identify": 69751, "translation metrics": 98720, "comprehensive synthesis": 17304, "properties context": 76895, "explainable metrics": 32452, "research explainable": 82588, "llms express": 55942, "llms empowering": 55852, "methods primarily": 59758, "internal model": 47233, "need explore": 65944, "approaches llm": 7169, "framework components": 36071, "multiple responses": 65251, "benchmark methods": 10213, "analysis uncovers": 5710, "human patterns": 42317, "help mitigate": 41267, "techniques consistently": 95492, "improvement believe": 43888, "serve strong": 86777, "baseline provide": 9803, "finetuning final": 35068, "metalearning algorithms": 59152, "model agnostic": 60528, "comparison using": 16731, "using architecture": 101297, "determine practical": 24414, "previously proposed": 74756, "diversity data": 26140, "average difference": 9146, "metalearning model": 59153, "experiments consider": 32146, "applications reducing": 6558, "important source": 43538, "available low": 9068, "coverage paper": 20061, "framework leverage": 36194, "align llm": 5000, "sources model": 89418, "model assigns": 60569, "assigns higher": 8009, "correction experiments": 19699, "extraction classification": 33285, "tasks biomedical": 94412, "general domains": 37122, "rate using": 79402, "significant accuracy": 87659, "gpt35 results": 39661, "aspect natural": 7757, "comprehension study": 17185, "zeroshot prediction": 104848, "prediction approach": 73681, "considerable performance": 18164, "marked performance": 58383, "reduction overall": 80907, "highlight constraints": 41582, "despite huge": 24064, "lms capture": 57106, "furthermore lms": 36636, "vicuna using": 102871, "recently release": 80543, "decoderonly architecture": 22641, "interestingly despite": 47162, "attributed key": 8446, "dataset technical": 22100, "various coderelated": 102383, "skills experimental": 88594, "enhanced problemsolving": 29247, "instruct tuning": 46277, "metric used": 59872, "used early": 100784, "13b llama": 293, "showing models": 87421, "early training": 26989, "interfaces querying": 47189, "alternative manual": 5269, "data leverage": 21379, "create data": 20152, "corpora experiments": 19576, "experiments highlight": 32215, "despite lack": 24077, "diversity output": 26152, "output hallucinated": 69158, "generate following": 37463, "nature language": 65804, "english limiting": 29083, "limiting applicability": 54485, "13b enhance": 292, "learning strategy": 53426, "diverse multilingual": 26052, "instructions model": 46536, "finetuning assess": 35016, "collect existing": 15862, "including multilingual": 44425, "surpasses opensource": 92938, "based statistical": 9725, "features propose": 34021, "shows comparable": 87568, "unsupervised nlp": 100311, "compared openai": 16598, "specifically evaluated": 89816, "margin despite": 58362, "despite trained": 24134, "half training": 40806, "tool benchmark": 97271, "tests performed": 96051, "highlight chatgpt": 41580, "llms explain": 55929, "different inputs": 25078, "infer models": 45202, "outputs diverse": 69218, "humans infer": 42609, "answer yes": 6069, "penguins fly": 70728, "match humans": 58489, "based counterfactual": 9488, "automatically using": 8902, "used metrics": 100851, "factual reasoning": 33644, "reasoning reward": 80015, "reward modeling": 84375, "increasing interests": 44833, "certain words": 12783, "diverse generation": 26028, "understanding logical": 99806, "reasoning counting": 79847, "semantic planning": 86332, "tools automatic": 97362, "corpus using": 19656, "stateoftheart instructiontuned": 90353, "develop complex": 24439, "training better": 97952, "fewer data": 34189, "ift datasets": 42957, "data surprisingly": 21672, "instances incorrect": 46226, "incorrect irrelevant": 44734, "strategy automatically": 90862, "automatically identifies": 8884, "multiple test": 65271, "training reducing": 98257, "experiments prove": 32270, "efficacy method": 27645, "generally applied": 37321, "models project": 63908, "linguistically diverse": 54608, "diverse fields": 26024, "fields general": 34425, "fluency scores": 35471, "subsequently converted": 92021, "higher score": 41523, "evaluators rated": 30907, "comprehensive perspective": 17286, "perspective language": 71952, "format consistency": 35823, "tuning instruction": 99050, "models following": 62500, "shown increasing": 87490, "number instructions": 67351, "consistently enhance": 18288, "performance facilitates": 71206, "integrate existing": 46657, "variations different": 102266, "transfer different": 98405, "framework demonstrate": 36088, "tuning improve": 99047, "provide novel": 77529, "method reduce": 59403, "offline model": 67877, "based gptj": 9560, "transfer capability": 98400, "paid api": 69463, "api services": 6280, "effort democratize": 27873, "users prompts": 101163, "specifically finetuned": 89820, "instruction prompts": 46354, "artifacts code": 7584, "released community": 81399, "translation using": 98755, "instead collecting": 46243, "new ones": 66466, "ones explore": 67929, "augmentation approaches": 8524, "approaches leverage": 7163, "leverage largescale": 53744, "prompts employ": 76697, "finetuning openai": 35161, "openai llms": 68169, "quality reference": 78345, "estimate quality": 30010, "quality translation": 78379, "automatically open": 8889, "gains process": 36869, "english italian": 29077, "chinese experimental": 14547, "gpt35 demonstrate": 39588, "simply increasing": 88294, "davinci gpt35": 22485, "translation dataset": 98697, "sources forming": 89410, "model perspective": 61248, "results ernie": 83587, "subsequent finetuning": 92012, "finetuning shows": 35246, "shows superior": 87623, "prompts quality": 76805, "conventional machine": 19280, "mt research": 64837, "specific conditions": 89675, "use openais": 100645, "standards study": 90233, "particularly context": 70444, "multilingual proficiency": 65000, "insufficiently explored": 46645, "average better": 9141, "existing commercial": 31685, "recent model": 80297, "collectively findings": 15919, "remain far": 81620, "linguistic cultural": 54570, "tv shows": 99146, "automation paper": 8921, "manually create": 58296, "create dataset": 20153, "elements scene": 27971, "datasets generate": 22275, "release annotated": 81345, "benchmark automatic": 10079, "automatic movie": 8811, "movie plot": 64804, "recognition large": 80601, "remarkable generalizability": 81774, "distilling llms": 25848, "original llms": 68789, "train student": 97782, "distilled smaller": 25842, "ner evaluation": 66111, "benchmark date": 10134, "domains biomedicine": 26491, "accuracy 79": 2184, "uses supervised": 101256, "supervised ner": 92733, "thorough ablation": 96817, "sentence used": 86529, "used stateoftheart": 100901, "embedding methods": 28062, "text sentence": 96410, "observed correlations": 67604, "different embedding": 25057, "performance sequence": 71557, "capability scale": 12206, "method transfer": 59454, "relatively lightweight": 81314, "based proposed": 9681, "chatgpt employ": 13748, "models reinforcement": 64036, "reranking approaches": 82456, "learned evaluation": 52981, "better generated": 10720, "significant capabilities": 87700, "correction gec": 19700, "gec tasks": 37049, "remains significantly": 81700, "abilities instruction": 1518, "task complex": 93983, "methods coupled": 59582, "approximately points": 7276, "higher established": 41503, "established baseline": 29982, "settings offering": 87078, "generating useful": 37994, "positive results": 72835, "results instruction": 83693, "smaller sizes": 88794, "highlights substantial": 41672, "llms inspired": 56228, "develop method": 24461, "benchmarks work": 10433, "capability different": 12156, "imbalance training": 43148, "building semantic": 11650, "semantic alignment": 86290, "advantages using": 3949, "build multilingual": 11601, "optimize data": 68629, "languages evaluation": 51268, "response content": 83128, "present scalable": 74051, "scalable method": 85242, "automatically labelling": 8887, "humanwritten text": 42678, "corresponding instructions": 19797, "construct training": 18439, "web documents": 103490, "iterations approach": 48046, "yields model": 104668, "distillation data": 25811, "process information": 75335, "enable data": 28541, "inference present": 45281, "utilizes generative": 101983, "noteworthy compression": 67059, "allows direct": 5194, "zero oneshot": 104705, "classification zeroshot": 14813, "models finegrained": 62473, "considerable progress": 18167, "current metrics": 20732, "identify categorize": 42849, "categorize errors": 12626, "interpretability error": 47275, "accurately classify": 2445, "utilize expert": 101930, "chatgpts strengths": 14450, "methods competitive": 59570, "underscores efficacy": 99561, "leveraging transfer": 53906, "range prompt": 79195, "prompt types": 76444, "fully evaluated": 36447, "prompts scenarios": 76818, "task outperformed": 94170, "texts based": 96543, "criteria correctness": 20287, "correctness readability": 19742, "syntactic complexity": 93166, "complexity results": 17052, "boosting llm": 11295, "selection instruction": 86159, "realm large": 79612, "models balance": 61892, "methodology llms": 59497, "vast opensource": 102688, "datasets effectively": 22226, "potential cost": 73063, "tuning llm": 99063, "key innovation": 48313, "emerges pivotal": 28210, "models expected": 62397, "generation prowess": 38364, "renowned datasets": 81878, "like alpaca": 54050, "findings mere": 34701, "optimization llms": 68600, "exploring instruction": 32851, "using closedsource": 101363, "instrumental enabling": 46637, "instructions complete": 46479, "various opendomain": 102511, "annotation recent": 5906, "utilization powerful": 101923, "powerful closedsource": 73427, "develop machine": 24458, "models deal": 62159, "includes investigation": 44251, "efficient variant": 27837, "effectiveness generated": 27523, "progress achieved": 75966, "mllms instruction": 60390, "evaluation makes": 30663, "current mllms": 20734, "results relatively": 83808, "weakness model": 103453, "generate proper": 37561, "benchmarking data": 10284, "quality correctness": 78243, "sampling module": 85162, "types data": 99227, "data type": 21709, "prompt propose": 76402, "propose interactive": 77008, "prompt multiround": 76381, "improve correctness": 43682, "role optimizing": 84796, "scale context": 85256, "context awareness": 18734, "ensures efficient": 29470, "lms address": 57099, "facilitates better": 33520, "alpaca 7b": 5224, "evaluations validate": 30891, "potential method": 73192, "llms reaching": 56634, "realworld relation": 79688, "evaluation instructionfollowing": 30640, "discussion performance": 25724, "model instructions": 61018, "certain parameter": 12769, "size threshold": 88531, "performance flant5": 71225, "increases robustness": 44814, "architecture pretrained": 7365, "including source": 44480, "code various": 15562, "demonstrate better": 23033, "sizable margin": 88451, "based extensive": 9527, "english compared": 29056, "training tuning": 98342, "jais model": 48109, "promoting research": 76224, "quantifying uncertainty": 78397, "model enhancing": 60808, "method detecting": 59262, "detecting bad": 24236, "model estimating": 60821, "estimating numeric": 30018, "works llm": 104366, "llm accessible": 54932, "users llm": 101136, "response experiments": 83130, "accurately identifies": 2454, "responses llm": 83254, "extra training": 33219, "scores leads": 85773, "35 enhancing": 823, "performance multimodal": 71411, "model multimodal": 61141, "tasks multiple": 94874, "multiple subtasks": 65264, "subtasks employing": 92163, "llms integrate": 56237, "results subtasks": 83867, "obtain results": 67659, "task realworld": 94212, "large projects": 52328, "solutions results": 89156, "results project": 83781, "solution result": 89114, "result use": 83414, "inspired study": 46188, "study considers": 91546, "combining results": 16023, "models optimal": 63722, "mllm specifically": 60380, "based distinct": 9503, "finally results": 34563, "llm best": 54988, "best result": 10645, "gpt4 annotated": 39761, "question format": 78670, "mask token": 58423, "embeddings reduce": 28094, "reduce labor": 80786, "process existing": 75308, "tuning process": 99081, "parameter tuning": 70132, "models vietnamese": 64510, "bring llms": 11463, "instructions producing": 46547, "producing humanlike": 75713, "challenges academic": 12949, "vietnamese language": 102906, "instructional dataset": 46422, "utilize parameterefficient": 101951, "effectiveness methodology": 27554, "utilization gpt4": 101909, "gpt4 automated": 39772, "method demonstrates": 59256, "level fkgl": 53657, "open closedsource": 68055, "text readability": 96382, "globally recognized": 39021, "chatgpt considered": 13650, "considered effective": 18193, "prompts generative": 76728, "emergence novel": 28178, "focus performance": 35545, "comprises components": 17384, "phenomena including": 72023, "including syntax": 44487, "preliminary effort": 73857, "work progress": 104215, "systems face": 93452, "related robustness": 81216, "robustness noisy": 84734, "input processing": 45938, "demand models": 22968, "possibility applying": 72872, "results llm": 83713, "metrics analysis": 59878, "advantages terms": 3948, "significant obstacle": 87802, "code weights": 15569, "paper serves": 69948, "foundational step": 35984, "community firstly": 16317, "secondly demonstrate": 85967, "method obtain": 59369, "structured format": 91161, "challenging nature": 13200, "nature tasks": 65817, "tasks highlight": 94698, "progress order": 76006, "modelbased evaluators": 61608, "solution scaling": 89116, "tasks evaluation": 94598, "evaluation particularly": 30709, "remains inadequate": 81664, "score models": 85728, "solution addressing": 89076, "established benchmarks": 29985, "gpt4 enhancing": 39856, "20k human": 585, "higher scores": 41524, "underscoring necessity": 99583, "lowresource nonlatin": 57631, "nonlatin script": 66918, "languages ensure": 51267, "accurate evaluation": 2409, "objectives transformers": 67529, "using unsupervised": 101834, "applications introduce": 6505, "introduce alternative": 47393, "random token": 79113, "time maintaining": 96992, "maintaining performance": 57900, "using computational": 101373, "text spans": 96428, "t5 demonstrate": 93622, "improvements especially": 43969, "dev set": 24429, "quality summaries": 78367, "easily integrated": 27019, "models making": 63578, "versatile various": 102795, "foundational large": 35975, "scenarios study": 85485, "tune llms": 98996, "language furthermore": 49231, "data powerful": 21489, "powerful robust": 73468, "findings serve": 34746, "serve guide": 86765, "store information": 90737, "information evaluating": 45456, "evaluating faithfulness": 30423, "address develop": 3390, "modes evaluation": 64626, "evaluation natural": 30695, "apply framework": 6659, "explanations high": 32497, "high error": 41413, "error rates": 29793, "paper critically": 69662, "llms billions": 55534, "tasks report": 95041, "report presents": 81988, "solution achieve": 89073, "ceval hard": 12792, "hard benchmark": 40974, "benchmark report": 10241, "empirical observations": 28337, "observations inspire": 67568, "techniques additionally": 95470, "huggingface transformers": 42059, "details project": 24201, "project available": 76045, "creation numerous": 20246, "language variants": 51201, "particular emphasis": 70403, "encoderonly decoderonly": 28734, "sequences generate": 86681, "breaks new": 11391, "new ground": 66416, "models subject": 64281, "assessment various": 7981, "various sequencetosequence": 102568, "models emerging": 62299, "community foster": 16318, "central challenge": 12733, "limitations conventional": 54311, "demonstrating comparable": 23424, "new paradigms": 66479, "target outputs": 93883, "outputs paper": 69247, "study capabilities": 91515, "polysemous words": 72584, "ways improve": 103414, "capabilities incontext": 11942, "directions research": 25477, "translation release": 98739, "release curated": 81362, "advancements various": 3859, "conventional supervised": 19296, "limited study": 54470, "approach consists": 6787, "based llama2": 9606, "parameters method": 70253, "establishes foundation": 29993, "cultural characteristics": 20592, "current mainstream": 20726, "cultural sensitivity": 20600, "values address": 102204, "address paper": 3462, "proposes comprehensive": 77268, "texts supervised": 96604, "native arabic": 65536, "sets stateoftheart": 86974, "cultural value": 20602, "benchmark evaluated": 10152, "problem utilize": 75101, "exhaustive set": 31496, "apply language": 6660, "known complex": 48841, "complex finally": 16934, "sentences compared": 86546, "sentences usually": 86574, "breakthrough field": 11395, "potential make": 73189, "generation especially": 38141, "prospects domain": 77333, "financial texts": 34616, "demonstrated poor": 23300, "adaptation methods": 3087, "domain adaption": 26350, "literature current": 54643, "effectiveness domainspecific": 27511, "domainspecific adaptation": 26612, "domain financial": 26386, "financial news": 34610, "financial domain": 34601, "including chatgpt35": 44297, "showed finetuning": 87391, "chatgpt financial": 13821, "research domain": 82564, "datasets finetuned": 22266, "paradigm efficient": 70028, "efficient domainspecific": 27753, "domainspecific text": 26653, "faces challenge": 33465, "gained prominence": 36834, "1b parameters": 467, "offer significant": 67770, "potential slms": 73262, "220m parameters": 612, "approximately 75": 7273, "75 accuracy": 1245, "shows great": 87581, "sampling ensemble": 85155, "ensemble strategy": 29427, "fixed model": 35357, "pivotal observation": 72203, "accuracy exceeding": 2260, "optimized prompt": 68642, "underscore promise": 99551, "emphasizing benefits": 28299, "ensemble strategies": 29426, "models clms": 62008, "open challenge": 68048, "flexibility control": 35425, "steps proposed": 90694, "control conditions": 19196, "flexible general": 35432, "range stateoftheart": 79209, "approaches proving": 7192, "proving effectiveness": 77818, "translation engines": 98700, "engines paper": 29047, "introduce scale": 47482, "collaborative framework": 15840, "bias llm": 10861, "llm parallel": 55187, "expensive llm": 31915, "finetuning comprehensive": 35034, "gpt4 specialized": 40096, "challenging lowresource": 13190, "english translation": 29110, "compact model": 16348, "parameters scale": 70279, "costs providing": 19935, "studies exploring": 91390, "synergy llms": 93159, "explainable metric": 32451, "evaluation wide": 30829, "different automatic": 25007, "analysis pinpoint": 5602, "analysis collected": 5459, "variety models": 102308, "types errors": 99231, "quantitatively assess": 78425, "surpass best": 92907, "best existing": 10595, "metric conduct": 59860, "explanations explanations": 32490, "demonstrates possibility": 23390, "possibility building": 72873, "consistency language": 18235, "september 2023": 86635, "generating validating": 37996, "framework measuring": 36205, "generation validation": 38504, "improve consistency": 43680, "consistency consistency": 18230, "data evaluated": 21194, "math questions": 58553, "accuracy 63": 2181, "content poses": 18670, "challenges developers": 12994, "users models": 101142, "original authors": 68759, "evaluate technique": 30295, "model generative": 60939, "gpu hour": 40258, "hour finetuning": 41999, "performance common": 71069, "common benchmarks": 16131, "community evaluation": 16314, "consists main": 18336, "identify tokens": 42906, "second replace": 85951, "nexttoken predictions": 66661, "predictions model": 73747, "model alternative": 60540, "recent advancement": 80171, "tuning human": 99046, "bottleneck scaling": 11328, "method inspired": 59335, "encompasses main": 28757, "main steps": 57840, "llm learns": 55152, "learns follow": 53500, "baselines datasets": 9827, "strong improvement": 91033, "improvement terms": 43949, "winning rate": 103837, "learning personalized": 53330, "results objective": 83747, "objective tasks": 67513, "propose model": 77026, "kendall correlation": 48259, "pairwise preference": 69537, "joint entity": 48150, "pairs relations": 69517, "relations using": 81275, "corresponding entity": 19791, "presence noisy": 73924, "effectiveness supervised": 27581, "limiting effectiveness": 54486, "noise reduction": 66862, "gpt2 sequence": 39346, "tagging scheme": 93765, "simultaneous entity": 88340, "certain degree": 12755, "llms transfer": 56957, "transfer new": 98432, "tasks outofthebox": 94908, "outofthebox simply": 68905, "simply given": 88290, "extracting relations": 33273, "tuning work": 99110, "study exploring": 91630, "existing prompts": 31800, "techniques chainofthought": 95484, "inputs effective": 45989, "investigate capabilities": 47623, "specifically following": 89826, "ii zeroshot": 42979, "deliver promising": 22939, "performance extracting": 71203, "explore idea": 32686, "details evaluation": 24195, "liu et": 54692, "cot used": 19970, "correlation chatgpt": 19768, "pushes stateoftheart": 78075, "improve instruction": 43716, "finetuning improved": 35089, "embedding vectors": 28069, "llama27b using": 54871, "using alpaca": 101294, "improves strong": 44079, "models refined": 64032, "build previous": 11606, "showing large": 87417, "gpt4 useful": 40143, "analyze effect": 5756, "effect prompt": 27250, "prompt natural": 76382, "way significantly": 103399, "greatly reduce": 40531, "demonstrate effects": 23067, "prompts different": 76688, "following approach": 35668, "approach studies": 7039, "plans construct": 72293, "corpus propose": 19649, "answer qa": 6038, "automatically evaluate": 8859, "generate detailed": 37426, "instructions guide": 46510, "iterative improvement": 48060, "learning examples": 53138, "corpus finally": 19620, "finegrained evaluation": 34789, "capability language": 12176, "using powerful": 101683, "powerful proprietary": 73467, "facto standard": 33573, "using proprietary": 101704, "reference answer": 80928, "finegrained score": 34802, "responses language": 83248, "llm assess": 54973, "longform text": 57386, "provided user": 77634, "evaluators evaluating": 30901, "greatly outperforms": 40530, "correlation gpt4": 19770, "shows similar": 87619, "similar trends": 88120, "preference datasets": 73796, "datasets highlighting": 22287, "contain tens": 18523, "thousands words": 96871, "problem automatic": 74993, "generate single": 37595, "yang et": 104579, "hundreds thousands": 42691, "propose models": 77027, "train endtoend": 97737, "sft using": 87160, "using approximately": 101296, "comparable quality": 16399, "average finally": 9156, "finally obtain": 34548, "different reward": 25183, "llm garnered": 55094, "pilot studies": 72116, "process llm": 75352, "llm incontext": 55122, "tasks offering": 94899, "generation study": 38432, "signals enhance": 87644, "incontext retrieval": 44658, "retrieval database": 83977, "database enabling": 21769, "setting evaluate": 86989, "effectiveness pipeline": 27561, "translation additionally": 98685, "discuss results": 25687, "results following": 83616, "importance instruction": 43461, "integrating structured": 46747, "learning methodology": 53264, "synthetic instruction": 93282, "pipeline designed": 72149, "instruction specifically": 46358, "taxonomy classic": 95318, "utilizing information": 102025, "produced data": 75674, "learning yields": 53479, "performance enhancements": 71180, "enhancements compared": 29272, "approach consistently": 6784, "consistently observed": 18300, "study pretrained": 91784, "generation zeroshot": 38511, "task languages": 94119, "propose approaches": 76935, "approaches address": 7101, "compare various": 16500, "proposed literature": 77215, "tuning learning": 99059, "simple finetuning": 88195, "model acts": 60510, "competitive approaches": 16788, "languages finally": 51277, "zeroshot ner": 104829, "capability various": 12216, "exploring llm": 32858, "focus chatgpt": 35506, "ner task": 66120, "task inspired": 94101, "llm symbolic": 55279, "simpler subproblems": 88254, "labels second": 48950, "intermediate thinking": 47223, "encourages model": 28802, "tool augmentation": 97267, "provides model": 77685, "including chinese": 44298, "datasets domainspecific": 22223, "analysis error": 5503, "learning rank": 53369, "rank context": 79246, "dataset recent": 22051, "perform named": 70899, "great accuracy": 40464, "document level": 26213, "synthetic context": 93251, "context retrieval": 18843, "retrieval training": 84035, "generation essential": 38142, "tasks light": 94816, "increasingly larger": 44893, "including tuning": 44507, "english experimental": 29067, "chatgpt makes": 14003, "summarization furthermore": 92535, "furthermore models": 36641, "conversations produce": 19428, "produce helpful": 75633, "analyzing sentiment": 5821, "review model": 84267, "question task": 78712, "task sentiment": 94236, "analysis feature": 5516, "traditional ones": 97691, "addition identified": 3192, "text specific": 96429, "produced llms": 75684, "study multiple": 91751, "decoding results": 22675, "reliably evaluating": 81537, "sequence tasks": 86667, "pace development": 69447, "improve understanding": 43822, "performance providing": 71505, "llms nlp": 56431, "summarisation text": 92510, "outperforms popular": 69096, "according human": 2150, "using classic": 101360, "finally gpt4": 34533, "despite taskspecific": 24133, "quality estimation": 78262, "setting need": 87007, "threeshot prompting": 96893, "querying gpt4": 78555, "avoiding need": 9207, "advise caution": 4030, "demonstrate improvements": 23106, "augmentation widely": 8559, "used technique": 100913, "problem text": 75091, "work tackles": 104290, "tackles problem": 93745, "examples given": 31223, "abilities follow": 1507, "instructions perform": 46544, "generate challenging": 37389, "augmentations using": 8561, "method challenging": 59227, "classifiers like": 14834, "outperforms multiple": 69088, "hallucinate resulting": 40814, "chatgpt delving": 13680, "reliance llms": 81546, "developing trustworthy": 24600, "models expert": 62405, "limits llms": 54502, "does mean": 26311, "language extent": 49214, "extent serve": 33172, "parsing formalism": 70337, "provides rich": 77701, "analysis semantic": 5665, "identify primary": 42894, "language responses": 51093, "errors overall": 29830, "inference enabling": 45238, "makes inference": 58060, "instruction tune": 46364, "llms additional": 55444, "early exiting": 26974, "token level": 97141, "compromising quality": 17411, "experiments instruction": 32225, "tuning llama2": 99061, "holistically evaluate": 41925, "consistent considerable": 18254, "cost improvements": 19852, "maintaining generation": 57890, "tokens generated": 97200, "contributes improving": 19145, "efficiency llm": 27698, "inference maintaining": 45266, "step en": 90630, "en route": 28530, "route enabling": 84879, "method elicit": 59275, "data largely": 21368, "research advocates": 82478, "data construction": 21110, "influence development": 45346, "parameters study": 70291, "despite models": 24085, "practical performance": 73519, "model bloomz": 60617, "augmented prompts": 8582, "prompts bring": 76659, "benchmarking neural": 10299, "representative benchmark": 82137, "study encompasses": 91598, "encompasses various": 28761, "various training": 102613, "training approaches": 97946, "reveal specific": 84175, "languages offering": 51333, "guidance researchers": 40725, "stateoftheart oneshot": 90425, "oneshot ner": 67948, "similar example": 88066, "instead utilizing": 46261, "entity span": 29590, "representations language": 82101, "ner datasets": 66109, "ner performance": 66115, "chatgpt annotations": 13522, "metrics paper": 59952, "large summarization": 52348, "metrics especially": 59907, "quality scores": 78358, "scores assessing": 85749, "evaluation furthermore": 30616, "strategy generates": 90887, "llms suggest": 56886, "llm work": 55320, "tends focus": 95749, "unlimited data": 100195, "challenges creating": 12984, "language spoken": 51109, "continue pretraining": 19009, "pretraining multilingual": 74577, "model mix": 61133, "tasks assess": 94384, "models tools": 64372, "witnessed remarkable": 103865, "advancements recent": 3855, "cuttingedge models": 20875, "leading suboptimal": 52883, "aiming achieve": 4758, "dataset subset": 22093, "finetuning results": 35228, "llms indian": 56216, "estimation language": 30025, "groundbreaking applications": 40562, "challenge arises": 12857, "focused primarily": 35590, "contributions work": 19189, "issue introducing": 47938, "program interfaces": 75838, "compatible recent": 16748, "designed support": 23953, "support future": 92809, "models adapting": 61785, "explores linguistic": 32811, "linguistic alignment": 54556, "traits additionally": 98373, "achieving accurate": 2822, "responses large": 83249, "seminal work": 86413, "multiagent setting": 64865, "llms certain": 55567, "maximize reward": 58642, "posterior probability": 72945, "significantly example": 87925, "creativity large": 20269, "human labeling": 42273, "recent innovations": 80267, "models confidence": 62089, "algorithm enables": 4913, "preference ranking": 73807, "possible model": 72908, "responses learning": 83252, "preference rankings": 73808, "generated existing": 37698, "existing retrieval": 31815, "systems novel": 93518, "strategies targeted": 90852, "7b scale": 1303, "answering medical": 6129, "medical questions": 58911, "ner essential": 66110, "applications traditional": 6584, "traditional ner": 97687, "set predefined": 86916, "llms extract": 55955, "greater flexibility": 40509, "size cost": 88458, "introduce compact": 47410, "encoder model": 28702, "comprehensive testing": 17308, "outperforming chatgpt": 68993, "great strides": 40493, "strides natural": 90982, "models nonautoregressive": 63680, "nonautoregressive nar": 66880, "research aiming": 82484, "typically involves": 99292, "obtain comprehensive": 67645, "challenging require": 13221, "tuning stage": 99102, "stage improves": 90117, "better assess": 10686, "support training": 92838, "65 tasks": 1158, "enhance task": 29214, "task diversity": 94029, "diverse forms": 26027, "including scoring": 44469, "boolean question": 11261, "summarization datatotext": 92530, "enables lightweight": 28597, "widely observed": 103726, "consistently leads": 18298, "model error": 60816, "contamination training": 18570, "data distributions": 21159, "implying models": 43436, "models degenerate": 62170, "propose apply": 76932, "decoding models": 22670, "model notably": 61158, "finding approach": 34621, "confidence estimation": 18013, "llm confidence": 55017, "performs reasonably": 71818, "datasets random": 22383, "leaves room": 53509, "question surprisingly": 78711, "model method": 61129, "method leads": 59348, "models involving": 62818, "explore multilingual": 32707, "models finetune": 62474, "methods lora": 59717, "finetuning study": 35267, "llama results": 54793, "english achieved": 29050, "languages currently": 51254, "al 2023b": 4876, "models advancing": 61801, "advancing understanding": 3919, "understanding best": 99677, "tulu llama2": 98991, "70b code": 1221, "instructiontuned variant": 46609, "models matches": 63584, "exceeds performance": 31327, "benchmarks release": 10404, "efforts adapting": 27890, "strategy gpt4": 90888, "learning specifically": 53420, "effective incontext": 27310, "learning selecting": 53405, "selecting examples": 86142, "achieve remarkably": 2570, "accurate machine": 2416, "finetuning technique": 35275, "linguistic structures": 54599, "leveraging inherent": 53855, "accurate contextually": 2405, "sophisticated method": 89286, "potential incontext": 73137, "language barriers": 49143, "tuning evaluation": 99034, "paradigms large": 70061, "traditionally finetuned": 97718, "small highquality": 88681, "finetuning best": 35025, "study ask": 91495, "small diverse": 88674, "diverse finetuning": 26025, "finetune opensource": 34841, "traditional nlp": 97689, "model inversion": 61031, "prompt tokens": 76436, "problem language": 75032, "surprising information": 92991, "code reproducing": 15483, "reproducing experiments": 82204, "native language": 65538, "outofvocabulary words": 68912, "shared vocabulary": 87200, "approaches finetuning": 7143, "develop multilingual": 24464, "advanced translation": 3758, "performs poorly": 71816, "furthermore experiment": 36611, "experiment using": 31982, "llm fewshot": 55083, "observe gpt35": 67582, "approaches lowresource": 7173, "external models": 33199, "questions possible": 78913, "given accuracy": 38854, "test bert": 95869, "bert llama": 10534, "extractive qa": 33348, "uncertainty estimates": 99388, "questions leads": 78884, "leads significantly": 52907, "effective explainable": 27297, "make large": 58006, "texts train": 96608, "scaling properties": 85356, "gpt4 especially": 39857, "analysis promising": 5617, "scalable feedback": 85239, "directly improve": 25502, "puzzle generation": 78084, "generator employs": 38735, "reshaping landscape": 82912, "current method": 20727, "techniques yield": 95613, "67 improvement": 1181, "improvement stateoftheart": 43946, "underscored importance": 99556, "step direction": 90627, "showing notable": 87422, "notable improvement": 67005, "step data": 90624, "recent initiatives": 80266, "approaches consider": 7119, "local llms": 57203, "llms 13b": 55391, "datasets representative": 22396, "users manually": 101141, "tuning experiments": 99037, "effectively enhances": 27422, "models deliver": 62171, "performance rivals": 71545, "capabilities compared": 11862, "gpt35 7b": 39571, "models decoding": 62165, "decoding large": 22667, "generation achieving": 38010, "optimal results": 68570, "prompt instruction": 76349, "undesired behaviors": 99940, "hallucinations manifest": 40875, "propose formalizing": 76979, "process extensive": 75314, "empowering multimodal": 28510, "essential training": 29961, "training multimodal": 98209, "creation highquality": 20240, "issues developed": 47985, "generate various": 37644, "provides unified": 77715, "unified solution": 100040, "difficulty data": 25319, "ii instruction": 42975, "instruction template": 46360, "superior qualitative": 92663, "improvements various": 44007, "vqa tasks": 103235, "tasks multimodal": 94873, "multimodal benchmarks": 65033, "context matters": 18811, "scientific applications": 85625, "challenges inherent": 13044, "inherent large": 45730, "tasked answering": 94309, "erroneous answers": 29761, "factual inaccuracies": 33633, "require specialized": 82290, "improvement llm": 43922, "automate grading": 8661, "quality performance": 78332, "experimental platform": 32008, "research crucial": 82530, "kind knowledge": 48387, "types evaluators": 99233, "annotators gpt4": 5965, "leading generation": 52846, "results perform": 83762, "perform comparisons": 70839, "analyses different": 5395, "results publicly": 83797, "correction large": 19703, "recently exhibited": 80490, "benchmarks best": 10314, "deployment large": 23601, "metrics perplexity": 59955, "level particularly": 53670, "particularly comes": 70439, "choosing correct": 14610, "llms superior": 56890, "instruct llm": 46274, "answers employing": 6178, "models uncertainty": 64445, "benchmark range": 10235, "scores improve": 85769, "excel wide": 31341, "vicuna shown": 102870, "meaningful responses": 58714, "model utilizes": 61568, "vector embedding": 102698, "embedding based": 28053, "based retrieval": 9704, "retrieval mechanism": 83992, "inference validate": 45321, "chatgptbased evaluation": 14396, "furthermore human": 36625, "expert evaluation": 32358, "opensource demos": 68329, "linguistic statistical": 54598, "understanding crucial": 99705, "achieve objectives": 2555, "multidimensional analysis": 64891, "features supervised": 34026, "unsupervised clustering": 100302, "exhibit greater": 31520, "language built": 49147, "trained tokens": 97921, "profound understanding": 75822, "key benchmarks": 48275, "ai landscape": 4442, "landscape offering": 49115, "applications building": 6418, "building llms": 11636, "instruction sets": 46357, "need llms": 65972, "provide generative": 77486, "ai llmbased": 4456, "presents approach": 74112, "generating large": 37936, "set including": 86888, "suitable llm": 92460, "model tailored": 61487, "set llm": 86894, "models adaptive": 61786, "llm adaptive": 54944, "involves utilising": 47860, "prompts medical": 76779, "objective enhance": 67495, "realtime adaptive": 79622, "efficacy finetuned": 27634, "model demonstrating": 60751, "mistral 7bs": 60218, "finetuned mistral": 34935, "gpt35turbo zeroshot": 39714, "additionally adaptive": 3271, "small dataset": 88672, "dataset 20000": 21803, "oneshot prompts": 67951, "prompts finetuning": 76721, "finetuning significantly": 35248, "rapid expansion": 79327, "types large": 99245, "data benchmarks": 21024, "datasets datasets": 22205, "track performance": 97620, "number stateoftheart": 67376, "provide critical": 77441, "conclusion believe": 17751, "continuous latent": 19029, "offer opportunity": 67757, "opportunity better": 68518, "latent spaces": 52641, "generation control": 38099, "control llms": 19217, "llms addition": 55443, "analysis interpolation": 5560, "degree semantic": 22912, "preparation pretraining": 73891, "evaluation challenges": 30535, "training transfer": 98333, "knowledge strong": 48772, "instructions evaluate": 46495, "datasets translation": 22447, "par gpt35": 70010, "having billion": 41117, "conducted quantitative": 17979, "vs machinegenerated": 103251, "methods vanilla": 59839, "cost effective": 19843, "chinese chat": 14538, "empowers models": 28515, "enhancing chinese": 29312, "finetuning sparse": 35255, "significant breakthrough": 87698, "architecture code": 7334, "explores chatgpts": 32798, "satisfactory level": 85199, "level chatgpt": 53648, "initial pretraining": 45777, "performance lack": 71329, "automatically effectively": 8858, "work delve": 104042, "measure data": 58733, "examine existing": 31108, "methods introduce": 59693, "novel techniques": 67266, "techniques enhanced": 95510, "enhanced data": 29231, "simple strategy": 88238, "mistral models": 60222, "better par": 10756, "alignment models": 5097, "sft training": 87158, "samples achieve": 85099, "anticipate work": 6241, "work provide": 104231, "provide tools": 77588, "dataefficient alignment": 21786, "alignment release": 5109, "models selected": 64155, "selected datasets": 86133, "future researches": 36779, "effectively align": 27398, "domainspecific instructions": 26629, "domainspecific understanding": 26655, "understanding limited": 99800, "core characteristics": 19538, "study benchmark": 91509, "benchmark fundamental": 10177, "different llm": 25098, "flant5 llama": 35396, "3b 7b": 880, "tasks improvement": 94717, "intricate interplay": 47365, "probing task": 74985, "explore behavior": 32643, "offer impressive": 67745, "various zeroshot": 102633, "potential limitation": 73168, "examined paper": 31135, "llms changed": 55573, "time utilizing": 97039, "recent opensourced": 80304, "released llm": 81406, "date llms": 22476, "strongly indicates": 91111, "membership inference": 58988, "inference attack": 45214, "capabilities unclear": 12107, "formulate specialized": 35867, "systematically comprehensively": 93364, "instructions various": 46577, "various constraints": 102390, "entire evaluation": 29517, "different existing": 25060, "revealing limitations": 84197, "gap opensource": 36953, "opensource commercial": 68321, "believe benchmark": 10033, "benchmark facilitate": 10168, "research improving": 82629, "controllability llms": 19233, "instructions data": 46486, "language capability": 49149, "chatgpt showcasing": 14216, "showcasing remarkable": 87381, "range complex": 79145, "generation following": 38170, "accurately assess": 2439, "instruction tasks": 46359, "knowledge alignment": 48418, "quality furthermore": 78275, "experimental outcomes": 32006, "community developing": 16309, "languagebased tasks": 51214, "models article": 61856, "science artificial": 85563, "knowledge argue": 48429, "success language": 92206, "empirical methods": 28335, "text involves": 96313, "comprehension paper": 17179, "novel twophase": 67275, "finetuning phase": 35183, "task pretrained": 94197, "dataset achieves": 21813, "results including": 83664, "including 20": 44263, "word error": 103901, "rate wer": 79403, "measured automated": 58753, "automated metrics": 8716, "scores chatgpt": 85752, "dimensions human": 25392, "methods translation": 59828, "influence prompt": 45358, "engineering performance": 29002, "statements involving": 90294, "generation verification": 38507, "experts validated": 32424, "7b 70b": 1283, "apis models": 6296, "perform close": 70831, "close chance": 14973, "control data": 19198, "data steady": 21651, "toolkit available": 97346, "llms contrastive": 55684, "contrastive alignment": 19097, "unseen lowresource": 100271, "article introduces": 7546, "challenges machine": 13067, "previously unseen": 74767, "data lowresource": 21390, "straightforward approach": 90764, "showed llms": 87396, "performance 30": 70957, "30 zeroshot": 754, "learning neural": 53301, "demonstrate prompt": 23161, "adopted finetuning": 3616, "finetuning crucial": 35040, "gap different": 36925, "implementations available": 43342, "capable learning": 12247, "designed systematically": 23954, "grammar rules": 40328, "capacity gpt2": 12291, "architectures tested": 7404, "learn llms": 52951, "domains perform": 26569, "english ability": 29049, "contrast opensource": 19079, "datasets resulting": 22402, "bilingual large": 11009, "demonstrates comparable": 23368, "firstly explore": 35323, "explore prompt": 32732, "strategies affect": 90791, "downstream translation": 26754, "performance conduct": 71106, "surpass gpt4": 92909, "additional evaluation": 3237, "sets zeroshot": 86975, "transfer findings": 98408, "light strengths": 54022, "llms relying": 56694, "relying manual": 81606, "algorithm based": 4904, "million chinese": 60029, "process refine": 75393, "instructionoutput pairs": 46467, "yi model": 104628, "methods core": 59580, "core contributions": 19541, "costly timeconsuming": 19917, "annotations methodology": 5943, "implications application": 43366, "application diverse": 6348, "sentences given": 86555, "method utilizing": 59463, "correlates human": 19763, "candidate pool": 11805, "model combining": 60675, "search recent": 85889, "bleurt scores": 11183, "diverse outputs": 26065, "outputs demonstrate": 69214, "cases consistently": 12518, "varying numbers": 102656, "furthermore empirically": 36605, "enhancing llmbased": 29344, "llmbased translation": 55364, "costly retraining": 19915, "retraining llms": 83952, "performance suite": 71606, "suite stateoftheart": 92481, "performance leading": 71349, "performance surpassing": 71612, "important measure": 43520, "reflect models": 81007, "measure called": 58732, "example llm": 31167, "prediction words": 73731, "applied llm": 6620, "typically finetuned": 99288, "achieve satisfactory": 2573, "level applied": 53647, "face significant": 33452, "particularly dealing": 70446, "documents containing": 26245, "sentences document": 86553, "instructions significantly": 46564, "primary cause": 74799, "performance absence": 70966, "ability address": 1589, "instructions varying": 46578, "varying lengths": 102651, "llms llama27b": 56350, "llama27b 13b": 54865, "llms 10": 55387, "effectively mitigating": 27458, "boundaries llm": 11336, "moderatesized large": 64582, "parameters exhibit": 70208, "performance topperforming": 71635, "conventional encoderdecoder": 19277, "present reference": 74046, "reference data": 80930, "contrast sft": 19088, "translations introduce": 98758, "perfect translations": 70810, "datasets improving": 22296, "data unstructured": 21717, "substantial amounts": 92058, "train supervised": 97783, "fewshot active": 34208, "goal improve": 39058, "focuses understanding": 35620, "refine models": 80977, "aim analyze": 4687, "efficacy using": 27656, "number labeled": 67352, "benchmark approach": 10074, "amazon reviews": 5305, "able surpass": 1887, "surpass accuracy": 92906, "accuracy zero": 2385, "provide enhanced": 77461, "manually label": 58311, "data just": 21349, "effectively predict": 27463, "shown significant": 87548, "significant promise": 87833, "performance hampered": 71283, "aim minimize": 4722, "approach capitalizes": 6767, "gold labels": 39095, "evaluations spanning": 30885, "remarkably approach": 81842, "unique perspective": 100088, "enhanced model": 29236, "text instruction": 96309, "information explicit": 45460, "facilitating construction": 33532, "tailored various": 93792, "illustrate effectiveness": 42995, "method simple": 59429, "llama trained": 54800, "generation languages": 38225, "linguistic units": 54604, "tailored target": 93788, "steps required": 90695, "lexical substitution": 53930, "word context": 103890, "understanding utilization": 99903, "regarding transparency": 81073, "transparency ethical": 98769, "underscores imperative": 99565, "llms delving": 55726, "focus primarily": 35547, "primarily pretrained": 74789, "challenges scale": 13124, "methods concentrate": 59571, "exciting avenues": 31412, "research problems": 82726, "problem semantic": 75073, "chatgpt gpt": 13882, "currently stand": 20820, "modeling semantic": 61677, "achieves slightly": 2791, "llms select": 56757, "solution selectively": 89117, "instructions especially": 46494, "given relative": 38948, "relative ease": 81293, "especially context": 29867, "prediction uncertainty": 73729, "quality introduce": 78301, "crossdataset generalization": 20403, "set trained": 86946, "prompt decomposition": 76271, "tasks considered": 94488, "propose tokenlevel": 77139, "tokenlevel sequence": 97174, "method attains": 59209, "attains stateoftheart": 8251, "novel simple": 67250, "writing work": 104507, "llms dedicated": 55721, "pretrained carefully": 74236, "alignment making": 5093, "follow diverse": 35645, "llm various": 55314, "various writing": 102632, "writing scenarios": 104490, "scenarios demonstrating": 85417, "advantage training": 3929, "training specialized": 98303, "including integration": 44392, "integration external": 46764, "discuss summarize": 25693, "domainspecific llms": 26638, "generative foundation": 38619, "novel language": 67192, "gpu 10": 40250, "pretrained context": 74245, "performed human": 71760, "coherence creativity": 15771, "models outperformed": 63742, "gpt35turbo chatgpt": 39697, "bloom 7b": 11212, "gptneo 13b": 40231, "66 20": 1172, "inference pretrained": 45282, "instructiontuned pretrained": 46608, "languages pretrained": 51341, "pretrained instructiontuned": 74277, "models possible": 63841, "high compute": 41392, "compute power": 17512, "plan release": 72243, "time critical": 96945, "capability gap": 12165, "specifically generative": 89827, "networks recently": 66201, "revolutionized fields": 84347, "fields artificial": 34420, "gptbased model": 40208, "model entity": 60812, "series datasets": 86728, "datasets demonstrating": 22213, "proficiency generating": 75788, "present benchmarks": 73939, "minimal data": 60088, "data features": 21227, "achieving similar": 2879, "potential applying": 73013, "gpt architectures": 39184, "task entity": 94038, "capabilities solve": 12081, "solve wide": 89204, "address significant": 3492, "associated utilizing": 8106, "fail outperform": 33683, "notable exception": 67002, "parameters performs": 70261, "selfsupervised contrastive": 86266, "suite foundation": 92472, "processes using": 75450, "using transformer": 101826, "design novel": 23818, "pretext tasks": 74219, "model subsequently": 61462, "subsequently finetuned": 92029, "real applications": 79537, "relative performance": 81300, "derived llms": 23653, "discuss pros": 25684, "problems area": 75112, "point future": 72479, "longcontext large": 57351, "llms oneshot": 56448, "produce cohesive": 75609, "content introduce": 18650, "introduce storytelling": 47487, "approach reduces": 7002, "story writing": 90758, "loop llm": 57433, "direction results": 25452, "models surpasses": 64307, "decoderonly large": 22647, "reasoning nonetheless": 79959, "demonstrates finetuning": 23376, "pretrained opensource": 74440, "control input": 19209, "directly generating": 25500, "obviates need": 67693, "gpt4 displayed": 39840, "prior training": 74865, "indicating promising": 45043, "avenue enhancing": 9106, "enhancing future": 29329, "framework analysis": 36036, "explanations predictions": 32511, "networks decision": 66178, "framework example": 36129, "requires highquality": 82386, "extremely simple": 33400, "standard datasets": 90164, "benchmarks test": 10422, "mistral7b datasets": 60226, "long instructions": 57315, "improve abilities": 43660, "llms allows": 55468, "llama27bbased model": 54873, "alpacaeval 20": 5239, "20 training": 501, "1000 examples": 138, "analysis models": 5583, "baseline research": 9804, "susceptible generating": 93070, "generating hallucinated": 37916, "hallucinated answers": 40817, "predicted scores": 73669, "scores given": 85761, "mistral llama": 60219, "loss llms": 57467, "llms claiming": 55621, "contrast average": 19065, "potential knowledge": 73150, "qa multihop": 78141, "design advantages": 23746, "challenging test": 13244, "test instances": 95904, "leakage objective": 52918, "evaluations evaluate": 30847, "performance surpassed": 71610, "llms longer": 56360, "longcontext llms": 57355, "performances significantly": 71743, "significantly degrade": 87906, "needle haystack": 66029, "codes released": 15640, "events using": 30940, "narrative prompt": 65496, "validation study": 102130, "role generating": 84776, "generating vast": 37997, "systematic exploration": 93337, "employ zeroshot": 28417, "prompt generate": 76327, "narratives using": 65507, "gpt4 dataset": 39819, "train validate": 97786, "datasets leveraging": 22323, "models extend": 62421, "extend analysis": 32926, "offer practical": 67761, "research outcomes": 82693, "investigate language": 47660, "multiple linguistic": 65214, "gpt4 does": 39843, "does provide": 26318, "provide satisfactory": 77567, "labels method": 48947, "method addresses": 59195, "models initial": 62783, "based proprietary": 9682, "method tested": 59450, "llms datasets": 55716, "better comprehend": 10703, "incorporating explanations": 44695, "explanations consistently": 32485, "consistently enhances": 18289, "llm size": 55262, "method proves": 59396, "opensourced code": 68417, "longform generations": 57378, "enhance large": 29170, "generation answer": 38027, "introduce unified": 47496, "scores framework": 85759, "precisely evaluate": 73604, "based selfconsistency": 9712, "experiments include": 32221, "longform qa": 57379, "guarantee better": 40696, "calibration performance": 11769, "source documents": 89371, "combining selfconsistency": 16024, "correctness given": 19739, "improving trustworthiness": 44166, "spider dataset": 90003, "effectiveness translating": 27587, "generate sql": 37601, "demonstrated highquality": 23267, "texttosql tasks": 96635, "research empower": 82575, "evaluates machine": 30383, "quality stateoftheart": 78364, "evaluation professional": 30727, "generally outperforms": 37334, "evaluators rate": 30906, "especially gpt4": 29882, "slightly better": 88636, "suggests llms": 92442, "specialized legal": 89632, "legal terminology": 53568, "quality study": 78365, "underscores evolving": 99562, "evolving capabilities": 31048, "capture nuances": 12362, "llms centered": 55565, "follows instructions": 35707, "mt0 bloomz": 64841, "majority tasks": 57955, "introduce extensive": 47425, "win rates": 103829, "data pruning": 21524, "embeddings output": 28091, "llms possible": 56538, "transparency privacy": 98773, "lightweight adapter": 54031, "noise contrastive": 66856, "contrastive estimation": 19099, "estimation nce": 30031, "loss promote": 57471, "domain furthermore": 26392, "mechanism incorporates": 58802, "negative data": 66057, "id data": 42777, "data struggle": 21658, "techniques improving": 95533, "settings model": 87075, "model leveraged": 61063, "constraints aggregating": 18392, "predictions multiple": 73748, "seen limited": 86086, "challenge generating": 12878, "effective natural": 27337, "sentiment toxicity": 86610, "tasks bert": 94405, "improving average": 44099, "performance explore": 71199, "based prediction": 9656, "average number": 9166, "share data": 87183, "increasingly humanlike": 44883, "humanlike abilities": 42519, "struggle factual": 91213, "address hallucinations": 3409, "annotations work": 5961, "knowledge additionally": 48414, "additionally design": 3289, "accuracy llama": 2304, "instructions despite": 46490, "despite tremendous": 24136, "tremendous potential": 98839, "question input": 78679, "texts implicit": 96577, "similar embeddings": 88065, "models abstractive": 61742, "improved instructionfollowing": 43840, "according proposed": 2153, "robustness tests": 84745, "tests applied": 96035, "additionally qualitative": 3343, "analysis clustering": 5456, "different instructions": 25080, "degree interpretability": 22907, "adaptation capabilities": 3067, "success heavily": 92204, "achieve stronger": 2598, "llms codes": 55633, "codes models": 15634, "coherence recent": 15774, "user intentions": 100999, "perspective existing": 71947, "rouge bertscore": 84857, "effectively capture": 27409, "exploration paper": 32598, "articles extensive": 7562, "data larger": 21369, "general use": 37200, "high training": 41469, "selection based": 86151, "training entire": 98091, "dataset experiments": 21935, "experiments span": 32302, "ranging 1b": 79231, "small 13b": 88665, "350m model": 839, "data hard": 21286, "samples larger": 85130, "dataset utilizing": 22122, "models 13b": 61708, "humans paper": 42625, "comes expense": 16037, "direct implications": 25422, "exhibit satisfactory": 31549, "limited finetuning": 54421, "difficult address": 25281, "strategy called": 90865, "models complement": 62061, "media datasets": 58833, "quantitatively analyze": 78424, "framework inspired": 36170, "estimates plausibility": 30016, "features including": 34006, "answering cqa": 6090, "35 llama": 829, "llmgenerated explanations": 55374, "used automatic": 100748, "automatic methods": 8802, "llm judgments": 55139, "contrast previous": 19082, "observe considerable": 67576, "considerable variability": 18172, "strongly correlates": 91109, "reference answers": 80929, "overly strict": 69413, "tasks summary": 95161, "highly contextdependent": 41688, "llms reported": 56701, "existing efforts": 31704, "generates semantically": 37850, "data proposed": 21519, "outperforms various": 69136, "equivalent original": 29709, "exhibit limited": 31531, "instructions generating": 46507, "inconsistent outputs": 44551, "forms language": 35852, "language styles": 51117, "lack robustness": 49047, "instructions potentially": 46545, "different ones": 25132, "existing flan": 31714, "instructions experiments": 46499, "llms robustness": 56742, "character word": 13323, "subjects ranging": 91966, "ranging humanities": 79240, "publically available": 77954, "llms identifying": 56156, "best publicly": 10640, "model primarily": 61275, "far worse": 33878, "suggests work": 92446, "right tool": 84437, "track progress": 97621, "face hub": 33445, "evaluation harness": 30630, "prone factual": 76860, "llm hallucinations": 55116, "hallucinations paper": 40879, "introducing simple": 47550, "data format": 21244, "annotation hallucination": 5899, "existing alignment": 31652, "interpretability llms": 47276, "key ingredients": 48312, "effective zeroshot": 27389, "approaches bring": 7112, "reach performance": 79467, "baseline zeroshot": 9813, "texts evaluating": 96560, "relevant datasets": 81455, "educational levels": 27207, "levels different": 53693, "different countries": 25032, "comprises 40": 17382, "35 models": 831, "struggle achieve": 91207, "achieves score": 2781, "task small": 94243, "small llms": 88696, "paper mainly": 69806, "hallucination llms": 40843, "data utilize": 21739, "llms validation": 57015, "performance generate": 71256, "optimal llm": 68563, "furthermore finetune": 36617, "using constructed": 101381, "llm achieve": 54934, "performance hallucination": 71280, "promptbased approaches": 76456, "generally benefit": 37322, "benefit individuals": 10452, "individuals various": 45117, "various cultural": 102395, "verified human": 102761, "different cultural": 25033, "specifically current": 89800, "automatically score": 8895, "community understand": 16338, "language modelsllm": 50929, "modelsllm chatgpt": 64569, "effectively engaging": 27420, "llm additionally": 54945, "enable automatic": 28536, "automatic feature": 8786, "human curated": 42143, "average increase": 9163, "clickthrough rate": 14898, "rate ctr": 79379, "important llm": 43519, "quality interestingly": 78300, "specific circumstances": 89671, "having significantly": 41127, "significantly training": 88031, "raising possibility": 79091, "possibility llms": 72881, "model efficient": 60791, "vocabulary expansion": 103195, "present efficient": 73972, "method encompasses": 59282, "hugging faces": 42056, "models huggingface": 62681, "study novel": 91755, "techniques create": 95495, "small data": 88671, "paper challenge": 69627, "time finetuning": 96965, "data close": 21052, "fewshot data": 34225, "chatgpt llama2": 13995, "does work": 26335, "classical methods": 14716, "learn novel": 52956, "old ones": 67903, "challenges catastrophic": 12973, "extractors specifically": 33357, "contrastive prompt": 19111, "framework designs": 36093, "old new": 67902, "overfitting issues": 69379, "scenarios introduce": 85444, "introduce effective": 47420, "diverse samples": 26094, "samples extensive": 85113, "mitigates catastrophic": 60290, "common approaches": 16129, "data need": 21438, "need extra": 65948, "substantial model": 92095, "various foundation": 102436, "models domainspecific": 62258, "considering high": 18216, "power overhead": 73388, "tuning proposed": 99084, "instructiontuning methods": 46621, "quality original": 78326, "llms common": 55646, "samples selected": 85141, "knowledge relevant": 48740, "relevant examples": 81459, "sampling single": 85167, "single pipeline": 88388, "pipeline extensive": 72152, "llm existing": 55069, "perform unseen": 70936, "trainingfree approach": 98360, "llm process": 55209, "knowledge unseen": 48799, "prompt including": 76341, "gpt4 mixtral": 39977, "elevates translation": 27978, "age llms": 4107, "contributions opensource": 19183, "significant resource": 87840, "diversity selected": 26156, "selection method": 86165, "steps step": 90696, "step involves": 90647, "instruction pairs": 46349, "scoring model": 85795, "355m parameters": 844, "parameters requires": 70277, "making easily": 58098, "datasets zeroshot": 22467, "task converting": 93996, "text taskspecific": 96460, "enable zeroshot": 28565, "consists instruction": 18332, "synthetic tasks": 93297, "answering extractive": 6097, "reduces average": 80825, "conduct additional": 17823, "understand effects": 99606, "effects domain": 27604, "domain size": 26448, "synthetic task": 93296, "overall learning": 69301, "summarization work": 92575, "focuses task": 35618, "response specific": 83162, "specific query": 89742, "query using": 78548, "impractical realworld": 43565, "context single": 18851, "various popular": 102522, "settings observe": 87077, "observe llms": 67591, "required output": 82317, "summarization capability": 92520, "limited certain": 54404, "quality potential": 78333, "potential incorporating": 73139, "discusses effectiveness": 25706, "effectiveness incorporating": 27533, "suggest certain": 92351, "human human": 42241, "accentuates need": 2037, "models taskspecific": 64339, "classifiers recently": 14835, "closesource models": 15048, "writing formulas": 104474, "usually include": 101873, "corpus annotated": 19596, "ecommerce domain": 27048, "model specialized": 61442, "quality robustness": 78352, "informative metrics": 45683, "capabilities provided": 12060, "propose complexitybased": 76947, "selection approach": 86150, "tagging tasks": 93767, "approach avoids": 6751, "certain metrics": 12767, "use sentence": 100686, "sentence wordlevel": 86530, "examples test": 31292, "test sentence": 95937, "greater performance": 40514, "performance plms": 71471, "fewshot ner": 34279, "gains upto": 36875, "annotation cost": 5887, "scale evaluate": 85264, "gemini llama2": 37060, "using newly": 101641, "collected corpus": 15873, "struggle follow": 91215, "sequence instructions": 86650, "problems solution": 75204, "solution requires": 89113, "multiple intermediate": 65203, "caption answer": 12319, "automatically augment": 8845, "augment instruction": 8515, "ability execute": 1639, "multiple sequential": 65256, "conventional instructiontuned": 19279, "baselines downstream": 9829, "reasoning multilingual": 79947, "multimodal abilities": 65026, "texts unseen": 96610, "language time": 51141, "framework pretrained": 36234, "fixed vocabulary": 35361, "existing transformerbased": 31843, "family ranging": 33856, "datasets complemented": 22180, "local models": 57205, "datasets relative": 22389, "trained specifically": 97912, "models viable": 64506, "greatly simplify": 40534, "present generative": 73993, "limitations previous": 54361, "training consists": 97972, "modeling loss": 61653, "loss additional": 57459, "parse trees": 70328, "optimizing language": 68660, "korean large": 48870, "predict subsequent": 73659, "resources numerous": 83022, "based publicly": 9684, "constructed instructiontuning": 18448, "experiments employed": 32182, "furthermore qualitative": 36654, "consisting stages": 18325, "using extensive": 101436, "text format": 96215, "documents leveraging": 26254, "finetuning previous": 35201, "translation approaches": 98688, "importance using": 43482, "augmenting llms": 8601, "abilities pretraining": 1556, "results conducted": 83517, "augmentation demonstrate": 8530, "demonstrate improved": 23105, "process experimental": 75310, "count 7b": 19979, "method text": 59451, "machinegenerated texts": 57775, "hold significant": 41891, "methods tend": 59820, "mitigate limitation": 60270, "offer detailed": 67740, "error analyses": 29767, "remains constrained": 81652, "contexts comprehensive": 18896, "comprehensive error": 17235, "initial stage": 45786, "assembled dataset": 7807, "systems dataset": 93421, "newly emerged": 66596, "criteria experimental": 20289, "methods achieving": 59513, "achieving significant": 2876, "english employ": 29064, "employ pretrained": 28410, "corpus improve": 19630, "empirically investigates": 28380, "fewshot classification": 34221, "motivated study": 64782, "model adaptation": 60511, "generate additional": 37372, "chatgptgenerated data": 14404, "experiments seven": 32296, "previous blackbox": 74669, "suggesting effectiveness": 92409, "transformer decoding": 98501, "gpt4 introduce": 39941, "multiple outputs": 65233, "boosting training": 11298, "input encoding": 45891, "models dialogue": 62220, "dialogue state": 24896, "aware instruction": 9213, "remains unsolved": 81725, "unsolved problem": 100288, "problem especially": 75018, "especially language": 29890, "work design": 104049, "design twostage": 23862, "twostage finetuning": 99178, "llms maximum": 56383, "capabilities second": 12073, "samples randomly": 85140, "randomly replacing": 79127, "benchmarks llama": 10373, "llama method": 54776, "effectively reduce": 27467, "method preserve": 59390, "19 tasks": 443, "essential process": 29954, "available case": 9017, "rely using": 81596, "using output": 101672, "english paper": 29093, "dataset development": 21910, "development llm": 24671, "instruction format": 46342, "effectiveness experimental": 27515, "existing korean": 31732, "based quality": 9687, "future improvement": 36730, "performance continual": 71113, "commonly encountered": 16189, "challenging involves": 13180, "framework hierarchical": 36156, "types limited": 99247, "augmentation module": 8546, "comparisons chatgpt": 16736, "methods multiple": 59733, "right wrong": 84439, "make contribution": 57980, "possibility models": 72882, "models discerning": 62236, "distinctions gpt4": 25887, "strong bias": 91012, "various ways": 102631, "lexical properties": 53923, "evaluation english": 30586, "different speech": 25204, "large english": 51426, "work establish": 104070, "degree language": 22908, "reports study": 82017, "design task": 23855, "inference paradigm": 45274, "test abilities": 95860, "models proprietary": 63929, "7b falcon": 1287, "best task": 10654, "followed gpt35": 35663, "inference task": 45303, "rag emerged": 79037, "documents paper": 26260, "hallucinations content": 40861, "llms instance": 56229, "ukraine war": 99333, "unable accurately": 99353, "text segment": 96407, "incorporating stateoftheart": 44719, "40 improvement": 906, "rank llms": 79249, "underexplored research": 99451, "constructed specifically": 18451, "comprising approximately": 17399, "gpt35turbo stateoftheart": 39711, "results best": 83479, "achieved finetuning": 2625, "large neural models": 52282, "mainly natural language": 57855, "efficacy pretrained checkpoints": 27648, "pretrained bert gpt2": 74233, "bert gpt2 roberta": 10523, "pretrained masked language": 74380, "language models mlms": 50586, "nlp tasks instead": 66794, "models like gpt2": 62918, "largescale pretrained models": 52564, "pretrained models bert": 74400, "stateoftheart models identify": 90403, "automatic manual evaluation": 8798, "data augmentation using": 21011, "using pretrained transformer": 101691, "pretrained transformer models": 74479, "models language model": 62845, "model based pretrained": 60593, "transformer based pretrained": 98494, "models autoregressive models": 61885, "autoencoder models bert": 8644, "simple effective way": 88189, "models data augmentation": 62148, "tokens text generation": 97236, "quality text generation": 78375, "text generation specifically": 96269, "model gpt2 generate": 60951, "stateoftheart text generators": 90500, "achieving impressive performance": 2860, "topk nucleus sampling": 97539, "use recently introduced": 100674, "variational autoencoder vae": 102261, "powerful generative model": 73439, "language generation understanding": 49265, "generation understanding tasks": 38489, "results wide range": 83922, "language modeling benchmarks": 49579, "language model results": 49533, "models era largescale": 62346, "emerged powerful technique": 28146, "generative question answering": 38712, "given context work": 38871, "large unlabeled corpus": 52363, "language generation gpt2": 49239, "quality generated text": 78283, "story generation given": 90755, "task generate coherent": 94077, "language representation learning": 51087, "freeform text generation": 36351, "address challenge present": 3364, "text generation proposed": 96264, "models source code": 64229, "learners recent work": 53004, "work demonstrated substantial": 104046, "demonstrated substantial gains": 23347, "text followed finetuning": 96213, "model 175 billion": 60460, "language model test": 49556, "text pretrained language": 96361, "models lms pretrained": 63533, "lms pretrained massive": 57154, "challenging models generate": 13196, "models generate coherent": 62546, "generate coherent long": 37400, "text various domains": 96480, "overcome limitations propose": 69358, "simple effective method": 88184, "method generating text": 59317, "model based gpt2": 60590, "coherence generated text": 15773, "require manual effort": 82272, "glancing language model": 38995, "able generate highquality": 1852, "work investigate use": 104151, "investigate use pretrained": 47710, "use pretrained models": 100659, "pretrained models t5": 74420, "competitive performance stateoftheart": 16813, "stateoftheart models trained": 90408, "human machinegenerated text": 42301, "low quality content": 57526, "extensive qualitative quantitative": 33121, "synthetic text generation": 93299, "performance tasks text": 71621, "gpt2 pretrained model": 39335, "layer pretrained model": 52731, "models lms able": 63521, "natural language generate": 65580, "using smaller lms": 101776, "controllable generation methods": 19236, "pretrained gpt2 model": 74272, "gpt2 model generate": 39312, "sophisticated language model": 89279, "models learn structural": 62889, "questions language models": 78879, "data augmentation finetuning": 20998, "text generation language": 96247, "generation language modeling": 38223, "benchmark dataset containing": 10120, "capture human preferences": 12357, "results larger models": 83703, "datasets compare performance": 22176, "bert model achieves": 10536, "language model like": 49443, "model like gpt2": 61069, "response generation neural": 83137, "correlate human judgments": 19755, "gpt2 largescale language": 39305, "language model achieved": 49323, "previous works mainly": 74738, "works mainly focus": 104369, "large margin achieves": 52246, "achieves comparable results": 2729, "comparable results stateoftheart": 16403, "neural language modelling": 66229, "transformer architectures models": 98487, "pretraining objectives masked": 74583, "language model calm": 49354, "relying external knowledge": 81602, "language models question": 50706, "models question answering": 63950, "shown language models": 87493, "generative models t5": 38674, "models t5 bart": 64326, "diverse range datasets": 26081, "demonstrate effectiveness methods": 23062, "neural network architectures": 66249, "existing pretrained models": 31795, "generation large pretrained": 38233, "models capable generating": 61960, "models generated text": 62558, "challenge work propose": 12944, "beam search dbs": 9923, "way leverage large": 103384, "leverage large pretrained": 53741, "perform downstream tasks": 70861, "language model parameters": 49504, "finetuning natural language": 35153, "transferring knowledge large": 98453, "latent variable models": 52644, "gpt2 specifically paper": 39351, "experiments demonstrate stateoftheart": 32164, "data work propose": 21761, "resulting model generate": 83438, "improving language understanding": 44131, "automatically constructing largescale": 8852, "framework jointly train": 36183, "models proposed framework": 63928, "training data used": 98060, "problem proposing novel": 75064, "based transformer architecture": 9741, "experiments various datasets": 32336, "datasets natural language": 22347, "achieve consistent improvement": 2505, "models including bert": 62722, "including bert roberta": 44282, "bert roberta t5": 10556, "including autoencoding models": 44275, "encoderdecoder models t5": 28728, "tasks main categories": 94844, "best performance single": 10623, "ability perform zeroshot": 1741, "increasing parameter count": 44845, "language models outofthebox": 50625, "leveraging largescale language": 53870, "models text augmentation": 64355, "excellent fewshot learners": 31347, "eliminates need finetuning": 28008, "novel data augmentation": 67139, "data augmentation technique": 21009, "perform data augmentation": 70852, "create synthetic data": 20178, "synthetic data improve": 93266, "improve prediction performance": 43774, "large datasets training": 51419, "training common practice": 97963, "data boost performance": 21031, "machine learning practitioners": 57721, "data improve performance": 21312, "transfer learning finetune": 98417, "pretrained gpt2 transformer": 74273, "gpt2 transformer model": 39361, "scaling model parameters": 85345, "key idea approach": 48306, "demonstrate proposed method": 23169, "standard nlp tasks": 90197, "models gpt3 model": 62600, "zeroshot learning tasks": 104816, "controlled text generation": 19252, "generation remains challenging": 38397, "language model expert": 49391, "methods automatic human": 59541, "models represent reason": 64066, "contextual word representations": 18956, "generation results indicate": 38403, "text training data": 96466, "stateoftheart results wide": 90473, "results wide variety": 83924, "language modeling objectives": 49590, "way improve performance": 103369, "limited labelled data": 54440, "english natural language": 29089, "largescale knowledge enhanced": 52525, "knowledge enhanced pretraining": 48544, "enhanced pretraining language": 29244, "pretraining language understanding": 74554, "understanding generation pretrained": 99754, "generation pretrained models": 38330, "pretrained models achieved": 74399, "stateoftheart results various": 90470, "tasks recent works": 95017, "t5 gpt3 shown": 93634, "gpt3 shown scaling": 39531, "shown scaling pretrained": 87545, "scaling pretrained language": 85354, "gpt3 model 175": 39495, "traditional finetuning approach": 97668, "propose unified framework": 77153, "unified framework named": 100020, "framework named ernie": 36212, "named ernie 30": 65482, "pretraining largescale knowledge": 74564, "knowledge enhanced models": 48543, "tailored natural language": 93783, "generation tasks zeroshot": 38460, "tasks zeroshot learning": 95272, "zeroshot learning fewshot": 104809, "learning fewshot learning": 53157, "trained model 10": 97876, "model 10 billion": 60451, "10 billion parameters": 101, "results model outperforms": 83730, "outperforms stateoftheart models": 69121, "nlp tasks english": 66780, "finetuning zeroshot fewshot": 35295, "evaluation benchmark chinese": 30521, "evaluate stateoftheart sota": 30291, "stateoftheart sota fewshot": 90479, "best overall performance": 10621, "used fewshot learning": 100802, "text generation methods": 96255, "new framework named": 66410, "obtain better performance": 67643, "human evaluation multilingual": 42183, "transfer learning large": 98418, "processing nlp recently": 75537, "finetuning widely used": 35291, "widely used datasets": 103735, "quality generated texts": 78284, "abilities language models": 1521, "instruction tuning finetuning": 46383, "tuning finetuning language": 99040, "improves zeroshot performance": 44093, "unseen task types": 100277, "nlp recent work": 66765, "models ability large": 61732, "biomedical nlp tasks": 11102, "experimental results showed": 32068, "finetuned training data": 34986, "training data gpt3": 98018, "achieved near stateoftheart": 2645, "magnitude smaller gpt3": 57808, "pretrained transformerbased models": 74483, "evaluate performance language": 30251, "discover new insights": 25600, "generation results demonstrate": 38402, "performance human evaluation": 71291, "models dont learn": 62261, "impressive capabilities performing": 43589, "results language models": 83700, "language models significantly": 50806, "better random prediction": 10777, "models lms exhibit": 63527, "achieving high performance": 2855, "task aims generate": 93934, "publicly traded companies": 77999, "language model achieving": 49325, "dataset evaluate models": 21926, "achieve sota results": 2587, "encourage research direction": 28796, "sophisticated language models": 89280, "language models financial": 49881, "widelyused pretrained language": 103759, "learning paper explores": 53318, "training models trained": 98206, "models trained purely": 64404, "framework novel approach": 36216, "powerful pretrained language": 73464, "inspired recent success": 46184, "synthetic data achieve": 93258, "data approach serves": 20989, "effective data augmentation": 27282, "text generation large": 96249, "controlled language generation": 19249, "outperforms competing methods": 69030, "fluency generated text": 35469, "new problem called": 66495, "annotated data instead": 5865, "finegrained human annotations": 34794, "pretrained generative language": 74267, "language models iterative": 50005, "realworld datasets demonstrate": 79662, "superior performance sota": 92658, "fewshot learning recent": 34267, "recent work like": 80404, "performance zeroshot fewshot": 71726, "model size dataset": 61411, "size dataset size": 88461, "model like gpt3": 61070, "work propose method": 104220, "accuracy various tasks": 2383, "present new method": 74017, "performance fewshot learning": 71215, "reduction number trainable": 80905, "number trainable parameters": 67390, "gpt3 incontext learning": 39477, "tasks scaling laws": 95079, "neural scaling laws": 66288, "pretrained models gpt3": 74408, "comprehensive evaluation different": 17241, "training data distribution": 98003, "pretraining data affects": 74516, "recent years pretrained": 80434, "years pretrained language": 104609, "test set compared": 95943, "guide generation process": 40735, "improving generation quality": 44126, "model size demonstrate": 61413, "ample room improvement": 5364, "learning models tackling": 53283, "class imbalance issues": 14695, "domains paper leverage": 26566, "improve classification performance": 43676, "outperform competitive baselines": 68927, "competitive baselines finally": 16791, "improving language models": 44130, "downstream knowledgeintensive tasks": 26695, "language models explicit": 49855, "systems use large": 93591, "neural networks require": 66274, "computational resources training": 17482, "extensive experiments different": 33067, "models increasingly capable": 62753, "cuttingedge large language": 20872, "patterns crafting examples": 70626, "leveraging natural language": 53883, "texttotext language models": 96643, "language models structured": 50832, "series controlled experiments": 86726, "language models built": 49688, "machine learning large": 57702, "common sense tasks": 16172, "prompt tuning methods": 76439, "issue propose new": 47955, "different data sets": 25037, "better performance finetuning": 10762, "given zeroshot task": 38986, "text generation evaluation": 96242, "text classification question": 96118, "previous work focused": 74731, "language model utilizing": 49569, "language models vast": 50906, "better previous best": 10769, "structures neural language": 91198, "previous works relied": 74741, "recurrent neural network": 80725, "neural network rnn": 66258, "language models novel": 50610, "extensive experiments human": 33074, "generation various tasks": 38506, "various tasks language": 102599, "tasks language modeling": 94797, "generate highquality short": 37484, "text generation propose": 96263, "limits natural language": 54504, "considering language models": 18218, "input text prompt": 45964, "new language learners": 66436, "deep learning approach": 22758, "translation language modeling": 98710, "ability pretrained language": 1745, "solve new tasks": 89182, "training data directly": 98002, "approach outperforms stateoftheart": 6968, "absolute points terms": 1920, "llm like gpt3": 55156, "incontext learning study": 44648, "transformerbased models gpt2": 98582, "model 20b parameters": 60465, "achieve sota performance": 2586, "recent years growing": 80428, "language generation need": 49251, "generation need training": 38294, "guiding language model": 40779, "results demonstrate gamma": 83548, "overall quality generated": 69313, "growing body work": 40647, "pretraining data size": 74519, "data size model": 21631, "performance existing stateoftheart": 71193, "existing stateoftheart models": 31824, "code reproduce results": 15481, "reproduce results available": 82191, "models including t5": 62739, "data using gpt3": 21735, "largescale natural language": 52551, "natural language model": 65621, "address issue study": 3433, "human evaluation human": 42178, "like story generation": 54228, "results human evaluation": 83647, "models increasingly popular": 62759, "language understanding recently": 51186, "recognizing textual entailment": 80638, "complex linguistic phenomena": 16951, "significant performance boosts": 87805, "answers natural language": 6201, "natural language use": 65761, "given question model": 38940, "knowledge time model": 48783, "lead suboptimal performance": 52825, "language models encoder": 49826, "tokens capture highlevel": 97183, "understanding evaluation glue": 99730, "case study legal": 12489, "task recent work": 94215, "work shown language": 104269, "language models scaled": 50783, "scaling number parameters": 85350, "number parameters language": 67367, "parameters language model": 70235, "language model improves": 49427, "improves f1 score": 44025, "model outperforms models": 61186, "outperforms models including": 69086, "models gpt2 bart": 62589, "various text generation": 102608, "motivated findings propose": 64775, "models achieved great": 61766, "achieved great success": 2629, "achieved new stateoftheart": 2648, "remarkable success natural": 81827, "showcase superior performance": 87363, "text generation model": 96256, "extensive experiments demonstrated": 33066, "methods pretrained language": 59757, "learning new paradigm": 53303, "prompt learning methods": 76365, "stateoftheart zeroshot performance": 90514, "accuracy training data": 2378, "detection model performs": 24328, "performs better zeroshot": 71806, "language model naturally": 49492, "tasks machine translation": 94842, "paper proposes new": 69911, "previous methods terms": 74685, "fewshot learning using": 34273, "causal language modeling": 12659, "appropriately assessing quality": 7252, "data scarcity problem": 21593, "pretrained models clip": 74402, "models clip gpt2": 62007, "2022 shared task": 547, "shared task data": 87197, "learning demonstrated impressive": 53105, "demonstrated impressive zeroshot": 23287, "zeroshot generalization capabilities": 104788, "wide spectrum tasks": 103700, "tasks work present": 95264, "knowledge various domains": 48809, "training resulting model": 98268, "promising directions future": 76162, "future research models": 36774, "models multiple tasks": 63652, "achieved impressive zeroshot": 2640, "huge model size": 42042, "incurs high cost": 44932, "language models augment": 49658, "smaller language model": 88754, "language modeling capabilities": 49580, "capabilities remains unclear": 12068, "model best knowledge": 60606, "demonstrate strong zeroshot": 23197, "strong zeroshot performance": 91084, "models llms displayed": 63104, "perform complex tasks": 70843, "sentiment classification datasets": 86601, "finetunes language model": 34997, "translation nmt systems": 98728, "paper make attempt": 69808, "case study shows": 12496, "developed recent years": 24527, "experimental result shows": 32013, "spoken language text": 90018, "overcome limitation propose": 69355, "facilitating future research": 33539, "need large volume": 65969, "settings large language": 87068, "simple method improve": 88215, "models generate synthetic": 62554, "model 40x smaller": 60469, "data available english": 21017, "significant improvements strong": 87780, "maps natural language": 58349, "challenging bigbench tasks": 13156, "tasks fewshot prompting": 94634, "prompting tasks language": 76626, "language model evaluations": 49389, "require multistep reasoning": 82280, "instructionfinetuned language models": 46434, "unseen tasks paper": 100279, "data instruction finetuning": 21333, "method improving performance": 59332, "usability pretrained language": 100421, "data multiple sources": 21430, "using single nvidia": 101771, "knowledge transfer method": 48791, "prompt tuning prompt": 76441, "tuning prompt tuning": 99083, "language models sufficient": 50842, "data prompt tuning": 21513, "limited training samples": 54478, "performance fullmodel finetuning": 71231, "diverse set nlp": 26100, "task conduct experiments": 93989, "text autoregressive language": 96094, "importance natural language": 43467, "space language model": 89448, "languages experimental results": 51272, "significantly outperforms strong": 88006, "pretraining language model": 74552, "improving model robustness": 44141, "grammatical error detection": 40341, "models bert xlnet": 61925, "diffusion language model": 25339, "success diffusion models": 92190, "models work present": 64550, "leveraging pretrained models": 53895, "models recently gained": 64019, "recently gained traction": 80499, "models long short": 63551, "long short term": 57327, "short term memory": 87307, "model downstream task": 60780, "human judgment existing": 42264, "judgment existing metrics": 48190, "language models generalize": 49907, "generalize new tasks": 37301, "prompts improves performance": 76747, "languages intentionally seen": 51294, "code datasets models": 15215, "models freely available": 62513, "improve generalization performance": 43709, "amounts data pretraining": 5341, "classic nlp tasks": 14712, "language use large": 51191, "large transformerbased language": 52358, "model using dataset": 61563, "using dataset evaluate": 101400, "updating language model": 100363, "models recently achieved": 64017, "recently achieved great": 80446, "model gpt2 language": 60952, "human evaluation performance": 42185, "mbert xlmr mt5": 58670, "better understand models": 10803, "study investigates extent": 91707, "able produce sensible": 1876, "large publicly available": 52331, "pretraining large models": 74561, "training data language": 98026, "model size large": 61420, "pretrained sequencetosequence models": 74452, "improvements previously published": 43990, "generation evaluation metrics": 38145, "tests synthetic data": 96056, "wide range potential": 103677, "proposed evaluation metrics": 77201, "evaluation metrics based": 30676, "generation translation summarization": 38485, "experiments reveal interesting": 32291, "increasing scale large": 44854, "strong zeroshot ability": 91083, "language modeling present": 49591, "task text generation": 94267, "unlike prior work": 100182, "generation method called": 38264, "queries language model": 78496, "tackle diverse natural": 93723, "natural language constraints": 65560, "target language paper": 93875, "leverages large pretrained": 53801, "pretrained texttotext language": 74460, "lack highquality training": 49016, "instructiontuned language models": 46587, "human annotations evaluation": 42085, "datasets large margin": 22318, "facilitate future studies": 33496, "studies instruction tuning": 91403, "instruction tuning code": 46371, "language models considered": 49746, "code language models": 15373, "language models measuring": 50565, "relatively small language": 81325, "room improvement especially": 84836, "novel approach called": 67090, "model pretrained massive": 61270, "pretrained massive text": 74387, "massive text data": 58471, "language models palm2": 50628, "various benchmark datasets": 102369, "text propose novel": 96373, "generation model generate": 38272, "effectiveness proposed method": 27573, "automatic quantitative evaluation": 8819, "qualitative analysis reveals": 78189, "poor quality generated": 72599, "chatgpt performs competitively": 14078, "performance chatgpt significantly": 71050, "enhance quality generated": 29204, "remarkable performance diverse": 81784, "results demonstrate llms": 83551, "designing data methods": 23974, "data methods effective": 21404, "effective instruction tuning": 27314, "instruction tuning methods": 46402, "outperform prior work": 68962, "settings zeroshot fewshot": 87105, "instruction tuning make": 46400, "valuable realworld applications": 102169, "175 billion parameter": 401, "overall work suggests": 69343, "creating large language": 20225, "training data explore": 98010, "improve zeroshot generalization": 43828, "zeroshot generalization ability": 104787, "ability language models": 1693, "increased model parameters": 44795, "open source code": 68112, "language model plm": 49508, "prompt tuning mpt": 76440, "tasks extensive experiments": 94622, "analysis demonstrate effectiveness": 5482, "improves text generation": 44082, "open text generation": 68130, "generative models present": 38669, "create diverse set": 20157, "language generation performance": 49258, "evaluation gpt models": 30623, "results gpt models": 83627, "high resource languages": 41451, "perform comprehensive analysis": 70847, "analysis human evaluation": 5541, "paper provides valuable": 69928, "insights researchers practitioners": 46132, "better understand potential": 10804, "foundation models pfms": 35959, "trained largescale data": 97861, "zero shot shot": 104710, "comprehensive review recent": 17297, "logical reasoning ability": 57268, "chatgpt finetuned bert": 13825, "chatgpt attracted great": 13549, "generation ability compared": 38001, "ability compared existing": 1615, "understanding ability chatgpt": 99665, "zeroshot information extraction": 104802, "llms gpt3 chatgpt": 56082, "directly prompting llms": 25519, "models limited resources": 62939, "language models formal": 49896, "models lms increasingly": 63529, "language models end": 49827, "leveraging chatgpt text": 53830, "results fewshot learning": 83608, "superior performance proposed": 92657, "sequence generation models": 86647, "work natural language": 104183, "achieves stateoftheart accuracy": 2798, "english russian chinese": 29100, "prompt templates used": 76433, "language model case": 49360, "language model bloom": 49351, "parameterefficient transfer learning": 70154, "emerged promising approach": 28152, "models multiple downstream": 63650, "outperforms stateoftheart methods": 69120, "methods including finetuning": 59679, "preliminary study recently": 73878, "recently emergence chatgpt": 80484, "wide attention computational": 103647, "chatgpt achieves remarkable": 13493, "achieves remarkable performance": 2776, "terms automatic evaluation": 95792, "automatic evaluation metrics": 8778, "quality natural language": 78325, "generation nlg models": 38299, "chatgpt achieves stateoftheart": 13494, "optimization large language": 68597, "relation extraction given": 81244, "relations directly extracted": 81267, "gpt3 capable generating": 39422, "responses wide variety": 83331, "approaches require access": 7199, "output probability distribution": 69180, "chatgpt paper aim": 14061, "improve chatgpts performance": 43674, "nlp tasks machine": 66801, "propose new prompting": 77052, "new prompting method": 66502, "level experimental results": 53656, "propose novel twostep": 77083, "models largescale multilingual": 62879, "models generate hallucinated": 62548, "leaving gap understanding": 53512, "gap conducting comprehensive": 36922, "conducting comprehensive analysis": 17996, "conventional neural machine": 19288, "lack statistical power": 49055, "evaluation using gpt4": 30821, "generation nlg systems": 38300, "especially tasks require": 29920, "framework using large": 36315, "gpt4 backbone model": 39781, "large margin propose": 52247, "labeled data train": 48906, "learning models achieve": 53273, "performance data annotation": 71121, "tasks paper claim": 94921, "make llms better": 58010, "fewshot chainofthought prompt": 34218, "data conduct experiments": 21102, "achieves results comparable": 2779, "results comparable obtained": 83506, "exploring use large": 32874, "empirical study evaluating": 28357, "evaluating quality generated": 30482, "inherent complexity diversity": 45724, "attention impressive performance": 8321, "effectiveness llms especially": 27551, "llms especially chatgpt": 55874, "machine translation existing": 57744, "existing methods based": 31756, "highresource language pairs": 41803, "multilingual sequencetosequence model": 65006, "approaches used training": 7220, "zero fewshot scenarios": 104702, "empirical study recently": 28365, "chatgpt demonstrated surprising": 13699, "surprising abilities natural": 92984, "abilities language understanding": 1522, "provides empirical evidence": 77662, "impact different prompts": 43202, "llms shed light": 56765, "capabilities gpt35 gpt4": 11930, "gpt35 gpt4 outperform": 39620, "release data annotations": 81364, "rigorous human evaluation": 84450, "llms using machinegenerated": 57006, "using machinegenerated instructionfollowing": 101601, "machinegenerated instructionfollowing data": 57771, "zeroshot capabilities new": 104736, "capabilities new tasks": 12022, "paper present attempt": 69826, "present attempt use": 73935, "generate instructionfollowing data": 37508, "instructiontuned llama models": 46599, "generated gpt4 leads": 37713, "data generated previous": 21257, "enable comprehensive evaluation": 28539, "data generated using": 21258, "codebase publicly available": 15577, "paper systematically investigate": 69973, "gpt4 empirical results": 39849, "comprehensive evaluation large": 17243, "language models multilingual": 50591, "multilingual training data": 65018, "answer question requires": 6047, "research work aims": 82826, "work aims gap": 103985, "chatgpt similar llms": 14244, "provide comprehensive information": 77428, "research develop better": 82544, "autoregressive text generation": 8977, "stateoftheart performance challenging": 90432, "various strong baselines": 102587, "strong baselines large": 91009, "baselines large margin": 9841, "controlling large language": 19258, "single model multiple": 88379, "gptj llama models": 40224, "better follow user": 10716, "generation models outperform": 38284, "outperform 10x larger": 68917, "instruction tuning tasks": 46415, "instructions training large": 46570, "instruction following data": 46336, "varying levels complexity": 102653, "instruction data finetune": 46312, "findings suggest finetuning": 34758, "promising direction enhancing": 76160, "code data public": 15197, "data public httpsgithubcomnlpxucanwizardlm": 21526, "finetuned pretrained language": 34952, "instruction finetuned language": 46325, "meaning representation amr": 58702, "role labeling srl": 84786, "extensive experiments various": 33093, "outperform previous stateoftheart": 68960, "explanations chainofthought prompting": 32481, "transformers language models": 98619, "shown stateoftheart performance": 87551, "single consumergrade gpu": 88353, "training data chatgpt": 97994, "paper investigate use": 69790, "chatgpt generate synthetic": 13857, "approaches data augmentation": 7121, "data generated chatgpt": 21255, "human evaluation compared": 42171, "analyses large language": 5401, "recognition ner models": 80607, "problems paper propose": 75179, "additionally conduct comprehensive": 3282, "models robust spurious": 64127, "answer given input": 6011, "containing different types": 18534, "compared standard finetuning": 16638, "gains larger models": 36863, "tasks varying levels": 95248, "fewshot prompting gpt3": 34292, "gpt3 achieves near": 39395, "achieves near sota": 2757, "present novel method": 74025, "llms prior knowledge": 56573, "llms extensive experiments": 55948, "extensive experiments indicate": 33076, "case study introduce": 12483, "zeroshot prompts used": 104854, "instruction tuning reinforcement": 46408, "tuning reinforcement learning": 99089, "llama language model": 54764, "model finetuned standard": 60898, "training data including": 98022, "generalize unseen tasks": 37304, "limited instruction tuning": 54433, "challenging paper propose": 13205, "languages using multilingual": 51373, "latest versions chatgpt": 52685, "different tasks different": 25221, "approach does require": 6813, "language model alignment": 49330, "introduce innovative framework": 47435, "language models acquire": 49625, "paper investigate ability": 69780, "domain source domain": 26450, "task misinformation detection": 94143, "address data scarcity": 3388, "data scarcity issue": 21592, "stateoftheart baselines large": 90315, "baselines large language": 9839, "grammatical error correction": 40336, "language modeling capture": 49581, "test sets respectively": 95947, "significant attention exceptional": 87684, "handling diverse range": 40947, "tasks recent studies": 95014, "instruction tuning experimental": 46381, "tuning experimental results": 99036, "data significantly improves": 21627, "significantly improves ability": 87949, "tasks conduct experiments": 94478, "using roberta t5": 101745, "inform future research": 45382, "curated pretraining corpus": 20638, "finetuning largescale language": 35121, "adaptation downstream tasks": 3073, "model extensive experiments": 60851, "extensive experiments text": 33090, "experiments text classification": 32317, "evaluation metric text": 30673, "score generated text": 85717, "generation tasks including": 38452, "7b model surpasses": 1295, "achieves performance levels": 2771, "datasets paper propose": 22362, "annotated dataset available": 5867, "models llms machine": 63299, "machine translation tasks": 57760, "prompting strategies llms": 76618, "llms incorporate external": 56200, "process results demonstrate": 75399, "models transformerbased pretrained": 64428, "pretrained models like": 74416, "like bert gpt2": 54054, "nlp tasks shown": 66814, "pretrained finetuned language": 74257, "robustness language models": 84725, "generation tasks like": 38454, "ner sentiment analysis": 66119, "introduce novel text": 47475, "generation task called": 38443, "observed finetuned models": 67607, "models address issue": 61791, "results proposed approaches": 83787, "different data sources": 25038, "showcasing superior performance": 87384, "traditional readability metrics": 97695, "make data code": 57984, "methods effectively detect": 59609, "factual inconsistency detection": 33636, "analysis reveals llms": 5653, "reveals llms fail": 84218, "existing evaluation benchmarks": 31707, "performance close random": 71057, "close random chance": 14981, "models llms driven": 63109, "human preference judgments": 42331, "paper conduct indepth": 69645, "bradleyterryluce btl model": 11355, "paper sheds light": 69953, "make correct inferences": 57982, "despite remarkable advancements": 24114, "set fewshot examples": 86876, "broad range tasks": 11495, "methods incontext learning": 59685, "incontext learning finetuning": 44596, "chatgpt incontext learning": 13950, "incontext learning performs": 44636, "models finetuned english": 62477, "models llms explore": 63153, "results demonstrate gpt4": 83550, "stateoftheart llm notably": 90373, "efficient incontext learning": 27776, "performance pretrained large": 71486, "leveraging incontext learning": 53853, "learning capability llms": 53055, "confidence scores language": 18020, "scores language models": 85771, "chatgpt gpt4 claude": 13895, "bridge knowledge gap": 11434, "focus assessing chatgpts": 35503, "despite remarkable performance": 24116, "models undergone finetuning": 64449, "alternative human evaluation": 5268, "work adds growing": 103979, "speech processing tasks": 89961, "processing tasks including": 75579, "models gpt35turbo gpt4": 62610, "sota models llms": 89319, "llms zeroshot learning": 57061, "models fewshot learning": 62462, "valuable insights applicability": 102152, "insights applicability llms": 46054, "chatgpt gpt4 shown": 13910, "gpt4 shown strong": 40083, "data used pretraining": 21728, "instruction tuning phase": 46405, "llms significantly improved": 56808, "training set containing": 98285, "finetune llama7b model": 34835, "model needs learn": 61155, "question answering fact": 78593, "fundamental questions persist": 36553, "performance varies different": 71663, "modern pretrained language": 64618, "impact model performance": 43233, "backpack language model": 9277, "finally present simple": 34556, "fewshot prompting mechanisms": 34297, "datasets address issue": 22136, "address issue researchers": 3432, "researchers proposed various": 82882, "challenging paper proposes": 13206, "using generative language": 101470, "method outperforms methods": 59379, "language models prompted": 50692, "novel evaluation dataset": 67155, "language models handle": 49956, "models reveal biases": 64108, "models ability reflect": 61736, "comparing language models": 16681, "despite availability various": 24028, "mbert devlin et": 58665, "devlin et al": 24773, "offer improved performance": 67747, "labeled training examples": 48918, "examples paper propose": 31262, "outperforms stateoftheart fewshot": 69119, "models llms difficult": 63102, "inference computational cost": 45227, "solve diverse tasks": 89175, "diverse tasks including": 26119, "new generation tasks": 66414, "technique designed enhance": 95443, "truthfulness large language": 98965, "language tasks paper": 51130, "paper propose iterative": 69884, "involving large language": 47868, "human evaluations demonstrate": 42196, "evaluations demonstrate method": 30843, "instructiontuning language models": 46616, "building better base": 11621, "better base models": 10689, "code data evaluation": 15183, "enables model learn": 28604, "multitask learning framework": 65361, "learning framework called": 53167, "benchmarks demonstrate proposed": 10327, "models llms remains": 63395, "accuracy privacy protection": 2335, "language model named": 49491, "aligned human preferences": 5019, "significant improvements achieved": 87774, "potential data leakage": 73066, "explore question using": 32738, "explanations natural language": 32507, "performance numerous tasks": 71434, "empirical analysis results": 28312, "fewshot learning approach": 34255, "just labeled examples": 48221, "models llms studied": 63465, "fundamental linguistic phenomenon": 36546, "experimentation varying model": 32092, "generative capabilities llms": 38605, "fewshot learning llms": 34260, "tasks method outperforms": 94863, "investigating pretrained language": 47777, "models recently emerged": 64018, "investigate ability pretrained": 47615, "tasks different domains": 94546, "domains computer vision": 26505, "transformers trained scratch": 98638, "acquire general knowledge": 2904, "bringing step closer": 11468, "reducing number parameters": 80890, "prior work using": 74872, "models achieve strong": 61761, "machine translation metrics": 57749, "widelyused llms including": 103756, "serve strong baseline": 86778, "pretrained model better": 74391, "remarkable capabilities wide": 81757, "significant accuracy improvement": 87660, "aspect natural language": 7758, "gpt models handling": 39224, "tasks pretrained language": 94956, "valuable insights performance": 102160, "models llms utilize": 63507, "llms llama vicuna": 56343, "attributed key factors": 8447, "dataset technical report": 22101, "curriculum learning strategy": 20828, "method automatically generates": 59215, "assess models performance": 7863, "comparable superior performance": 16410, "nlp tasks compared": 66774, "openai gpt2 model": 68158, "various prompt templates": 102536, "considerable margin despite": 18163, "models llms process": 63361, "reasoning reward modeling": 80016, "language models existing": 49851, "understanding logical reasoning": 99807, "simple effective data": 88181, "multiple test sets": 65272, "models project page": 63909, "research investigates effectiveness": 82645, "chatgpt ai language": 13506, "human evaluators rated": 42203, "offering comprehensive perspective": 67784, "instruction tuning instruction": 46391, "tuning instruction tuning": 99051, "language models following": 49895, "models following human": 62501, "enhance generalization performance": 29162, "instruction tuning improve": 46388, "paid api services": 69464, "language paper introduce": 50949, "results indicate models": 83681, "zeroshot performance various": 104845, "models specifically finetuned": 64243, "code dataset model": 15209, "language model despite": 49375, "compare methods using": 16472, "data approach requires": 20988, "requires model training": 82398, "proposed method improves": 77224, "chinese experimental results": 14548, "remarkable zeroshot performance": 81838, "models better human": 61929, "prompts used generate": 76845, "generation aims generate": 38022, "manually create dataset": 58297, "downstream applications paper": 26686, "case study chatgpt": 12478, "f1 points average": 33418, "conduct thorough ablation": 17926, "thorough ablation studies": 96818, "methods including gpt3": 59680, "lightweight language models": 54042, "models reinforcement learning": 64037, "commonly used metrics": 16202, "significant capabilities various": 87701, "error correction gec": 29774, "correction gec tasks": 19701, "various prompting methods": 102538, "sets new sota": 86967, "imbalance training data": 43149, "language model automatically": 49341, "data used finetune": 21726, "model finetuning llama": 60900, "iterations approach yields": 48047, "approach yields model": 7094, "yields model outperforms": 104669, "utilizes generative pretrained": 101984, "direct application gpt": 25412, "application gpt models": 6358, "automatic evaluation machine": 8775, "evaluation machine translation": 30662, "prompting technique leverages": 76630, "models improves performance": 62716, "improves performance compared": 44051, "annotations study investigates": 5954, "zeroshot learning methods": 104811, "experiments reveal chatgpts": 32290, "reveal chatgpts strengths": 84137, "leveraging transfer learning": 53907, "range prompt types": 79196, "feasibility using chatgpt": 33948, "using chatgpt translate": 101357, "data selection instruction": 21605, "selection instruction tuning": 86160, "language models balance": 49666, "instruction data quality": 46314, "data generation using": 21271, "enabling large language": 28642, "various opendomain tasks": 102512, "generate instruction data": 37505, "develop machine learning": 24459, "generate highquality instruction": 37481, "gpt4 model demonstrate": 39979, "instruction data using": 46316, "cost paper propose": 19873, "data generation model": 21267, "different types data": 25239, "gpt4 generate highquality": 39902, "translation language models": 98711, "zeroshot capabilities large": 104733, "realworld relation extraction": 79689, "including source code": 44481, "code various programming": 15563, "knowledge reasoning capabilities": 48733, "gpt 35 enhancing": 39175, "performance multimodal large": 71412, "language model multimodal": 49487, "model multimodal large": 61142, "solutions results project": 89157, "study using gpt4": 91883, "various evaluation metrics": 102424, "language models vietnamese": 50909, "llms gpt4 palm": 56108, "producing humanlike responses": 75714, "capabilities llms context": 11987, "conducted experiments using": 17961, "computational cost llm": 17447, "code weights data": 15570, "study explore potential": 91622, "lowresource nonlatin script": 57632, "nonlatin script languages": 66919, "downstream applications reducing": 26687, "foundational large language": 35976, "used tune llms": 100927, "evaluation natural language": 30696, "high error rates": 41414, "model pretrained scratch": 61271, "models llms billions": 63002, "llms billions parameters": 55535, "threestage training strategy": 96896, "breaks new ground": 11392, "comprehensive assessment various": 17204, "emerged promising alternative": 28151, "comparable performance traditional": 16397, "outputs paper study": 69248, "capabilities incontext learning": 11943, "research provides valuable": 82741, "achieved remarkable advancements": 2655, "sizes 7b 13b": 88545, "7b 13b parameters": 1281, "performance significantly better": 71566, "model llm specifically": 61104, "paper proposes comprehensive": 69904, "various benchmarks including": 102372, "paper introduces new": 69775, "introduces new approach": 47527, "apply language model": 6661, "text generation especially": 96241, "domain adaptation methods": 26348, "financial news articles": 34611, "models including chatgpt35": 62725, "llms gained prominence": 56024, "remarkable performance gain": 81786, "parameters achieves accuracy": 70170, "achieves accuracy exceeding": 2705, "language models clms": 49717, "human evaluations results": 42199, "significantly outperforms fewshot": 87996, "challenging lowresource settings": 13191, "solid foundation future": 89066, "different types errors": 25240, "consistency language models": 18236, "llms trained massive": 56948, "legal ethical challenges": 53559, "training data llm": 98030, "best knowledge paper": 10604, "knowledge paper present": 48690, "consists main components": 18337, "recent advancement large": 80172, "instruction tuning human": 46387, "teacher llm create": 95341, "shown impressive results": 87485, "joint entity relation": 48151, "entity relation extraction": 29587, "using single model": 101770, "corresponding entity relation": 19792, "applications existing research": 6474, "existing research primarily": 31814, "existing stateoftheart methods": 31823, "data zeroshot setting": 21765, "studies shown large": 91444, "models llms transfer": 63486, "llms transfer new": 56958, "transfer new tasks": 98434, "new tasks outofthebox": 66548, "tasks outofthebox simply": 94909, "outofthebox simply given": 68906, "simply given natural": 88291, "techniques chainofthought cot": 95485, "comprehensive experiments various": 17262, "experiments various benchmarks": 32335, "investigate capabilities llms": 47624, "consistently significantly improves": 18311, "performance different model": 71146, "competitive superior results": 16825, "superior results compared": 92668, "models llms effective": 63111, "liu et al": 54693, "pushes stateoftheart sota": 78076, "aim understand llms": 4743, "build previous work": 11607, "showing large language": 87418, "way significantly improve": 103400, "automated human evaluations": 8703, "language models planning": 50646, "question answer qa": 78570, "incontext learning examples": 44594, "capability language models": 12177, "model llm gpt4": 61096, "fully opensource llm": 36462, "feedback generated gpt4": 34086, "human preference datasets": 42330, "tens thousands words": 95758, "yang et al": 104580, "finetuning sft using": 35245, "model llm garnered": 61089, "llm garnered significant": 55095, "llm incontext learning": 55123, "cases code data": 12516, "synthetic instruction data": 93283, "blooms taxonomy classic": 11226, "benchmarks hope work": 10350, "learning process llms": 53350, "empirical study pretrained": 28362, "pretrained multilingual language": 74428, "approaches proposed literature": 7190, "processing tasks work": 75582, "recognition ner task": 80610, "including chinese english": 44299, "verify effectiveness proposed": 102770, "using synthetic dataset": 101804, "models perform named": 63790, "perform named entity": 70900, "training dataset using": 98068, "model llm using": 61106, "using dataset train": 101401, "based bert model": 9452, "english experimental results": 29068, "incontext learning large": 44621, "chatgpt demonstrated superior": 13697, "tasks including sentiment": 94736, "study different ways": 91582, "using small number": 101773, "models llms evaluation": 63127, "development generative models": 24650, "understanding current models": 99707, "evaluation metrics human": 30679, "finally gpt4 capable": 34534, "compared previous works": 16616, "advise caution using": 4031, "data augmentation widely": 21012, "widely used technique": 103748, "work tackles problem": 104291, "gpt3 generate new": 39466, "evaluate proposed method": 30268, "language models hallucinate": 49955, "like gpt35 chatgpt": 54145, "linguistic knowledge language": 54587, "chatgpt gpt4 models": 13904, "zero fewshot prompts": 104701, "natural language responses": 65726, "language tasks large": 51128, "instruction tuning llama2": 46398, "inference computation cost": 45225, "maintaining generation quality": 57891, "thorough analysis results": 96821, "summary work contributes": 92605, "work contributes improving": 104033, "crucial step en": 20534, "step en route": 90631, "en route enabling": 28531, "route enabling widespread": 84880, "enabling widespread adoption": 28667, "general intelligence large": 37137, "creative writing code": 20262, "writing code generation": 104471, "meticulously curated dataset": 59855, "models overall performance": 63746, "practical performance improvements": 73520, "models llms natural": 63311, "lowresource languages bangla": 57619, "limited data availability": 54414, "preliminary study using": 73879, "achieve competitive performances": 2500, "representations language models": 82102, "extensive experiments analyses": 33047, "outperforming stateoftheart fewshot": 69010, "underlying language models": 99499, "generation tasks address": 38447, "tasks address issue": 94355, "prompts prompting techniques": 76800, "effective prompting strategies": 27351, "original training data": 68819, "witnessed remarkable advancements": 103866, "remarkable advancements recent": 81738, "advancements recent years": 3856, "leading suboptimal performance": 52884, "instruction finetuning results": 46331, "finetuning results showcase": 35229, "text generation potential": 96260, "models datasets code": 62156, "datasets code publicly": 22168, "estimation language models": 30026, "recent advancements capabilities": 80177, "effective use llms": 27384, "generation tasks unified": 38459, "llama2 chatgpt gpt4": 54823, "chatgpt gpt4 designed": 13898, "study explores linguistic": 91627, "high similarity scores": 41463, "responses large language": 83250, "llms led widespread": 56290, "language models prone": 50694, "works proposed methods": 104381, "external knowledge base": 33188, "models confidence scores": 62090, "preference optimization algorithm": 73804, "model named entity": 61148, "recognition ner essential": 80606, "models llms extract": 63157, "like chatgpt make": 54087, "transformer encoder model": 98503, "finetuned llms zeroshot": 34932, "advances transformerbased large": 3898, "great strides natural": 40494, "strides natural language": 90983, "instruction tuning framework": 46386, "instruction tuning stage": 46413, "evaluation tasks including": 30808, "training data specifically": 98056, "tasks work aim": 95260, "et al 2023b": 30054, "language models downstream": 49800, "stateoftheart performance open": 90439, "performance open models": 71442, "matches exceeds performance": 58506, "incontext learning specifically": 44646, "effective incontext learning": 27311, "represents significant step": 82184, "leveraging inherent capabilities": 53856, "potential incontext learning": 73138, "instruction tuning evaluation": 46380, "paradigms large language": 70062, "improve performance traditional": 43767, "reproducing experiments available": 82205, "data work explore": 21759, "explore various methods": 32763, "approaches finetuning large": 7144, "pretrained models using": 74423, "work provides insights": 104234, "make large language": 58007, "generation model called": 38271, "gpt4 tasks challenging": 40123, "educational applications paper": 27194, "applications paper presents": 6539, "superior performance current": 92651, "finetuning llama27b model": 35131, "language model data": 49369, "ensuring data security": 29480, "enhanced reasoning capabilities": 29249, "capabilities compared gpt35": 11863, "language models decoding": 49765, "ability text generation": 1783, "achieving optimal results": 2870, "larger models chatgpt": 52456, "text generation process": 96261, "generation process extensive": 38340, "process extensive experiments": 75315, "data essential training": 21191, "training multimodal large": 98210, "highquality instruction tuning": 41768, "presents significant challenges": 74173, "performance complex tasks": 71101, "tasks address issues": 94356, "address issues developed": 3436, "tuning data including": 99023, "consistent improvements various": 18264, "paper explore challenges": 69712, "inherent large language": 45731, "propose new dataset": 77041, "results publicly available": 83798, "error correction large": 29776, "correction large language": 19704, "model achieves new": 60499, "deployment large language": 23602, "recent research demonstrated": 80337, "quality generated content": 78278, "nlp tasks models": 66803, "generate meaningful responses": 37528, "llm specifically finetuned": 55271, "quantitative qualitative evaluations": 78420, "model surpasses baseline": 61480, "human expert evaluation": 42210, "popular opensource models": 72665, "study aims gap": 91486, "aims gap investigating": 4809, "demonstrate high accuracy": 23099, "stateoftheart sota large": 90480, "achieves sota results": 2794, "marking significant advancement": 58402, "inference time results": 45313, "language models remains": 50747, "models specifically designed": 64242, "13b model finetuned": 295, "datasets model weights": 22341, "generation tasks include": 38451, "generative neural networks": 38677, "opportunity better understand": 68519, "stateoftheart performance recent": 90442, "models llms developed": 63099, "including data preparation": 44318, "data preparation pretraining": 21492, "evaluate instructiontuned models": 30207, "having billion parameters": 41118, "compare results finetuned": 16493, "finetuned bert model": 34869, "human vs machinegenerated": 42418, "novel tasks requiring": 67261, "model instruction finetuning": 61017, "architecture code data": 7335, "data model publicly": 21420, "paper explores chatgpts": 69722, "chatgpt performs best": 14077, "initial pretraining phase": 45778, "propose simple strategy": 77118, "data samples based": 21586, "models finetuned llama": 62481, "llama mistral models": 54778, "performs better par": 71803, "better par stateoftheart": 10757, "sft training data": 87159, "anticipate work provide": 6242, "models finetuning large": 62485, "models llms domainspecific": 63106, "effective method enhance": 27328, "explore different llm": 32666, "different llm architectures": 25099, "syntactic semantic information": 93181, "various zeroshot fewshot": 102634, "fewshot tasks success": 34319, "membership inference attack": 58989, "statistically significant improvements": 90565, "entire evaluation process": 29518, "representative llms chatgpt": 82145, "llms chatgpt vicuna": 55617, "chatgpt showcasing remarkable": 14217, "range complex tasks": 79146, "mainstream llms llama": 57865, "question conduct extensive": 78653, "extensive empirical investigation": 33019, "pretraining instruction tuning": 74548, "results demonstrate comparable": 83539, "lowresource languages exhibit": 57620, "gpt4 achieved remarkable": 39747, "science artificial intelligence": 85564, "success language models": 92207, "word error rate": 103902, "error rate wer": 29792, "compared existing benchmarks": 16540, "language models translation": 50890, "automated metrics human": 8717, "prompt engineering performance": 76310, "opensource llms 7b": 68360, "llms 7b 70b": 55396, "7b 70b parameters": 1284, "perform close chance": 70832, "unseen lowresource languages": 100272, "data lowresource languages": 21391, "approach consistently improves": 6785, "evidence support claim": 30993, "models demonstrate remarkable": 62178, "various linguistic tasks": 102475, "contrast opensource models": 19080, "language model demonstrates": 49373, "llms significant strides": 56803, "llms outperform larger": 56478, "zeroshot crosslingual transfer": 104759, "light strengths limitations": 54023, "model various benchmarks": 61573, "various benchmarks demonstrate": 102371, "data generation approach": 21263, "align human preferences": 4992, "correlates human judgments": 19764, "method consistently improves": 59242, "applied large language": 6616, "generate diverse outputs": 37435, "outputs demonstrate approach": 69215, "arabic language models": 7305, "tasks paper conduct": 94922, "achieve satisfactory performance": 2574, "llms llama27b 13b": 56351, "results proposed approach": 83786, "terms bleu score": 95797, "moderatesized large language": 64583, "present reference data": 74047, "substantial amounts labeled": 92059, "fewshot active learning": 34209, "paper focuses understanding": 69742, "accuracy recall precision": 2345, "limited number labeled": 54448, "number labeled examples": 67353, "fewshot learning large": 34259, "llms shown significant": 56792, "promise various applications": 76136, "including zeroshot fewshot": 44521, "domain text classification": 26460, "model based largescale": 60591, "text generation recent": 96268, "generation recent advancements": 38387, "language models facilitated": 49870, "complex language tasks": 16949, "text generation address": 96235, "address study introduces": 3494, "introduces novel framework": 47533, "novel framework designed": 67166, "given target word": 38967, "target word context": 93896, "comparable results gpt4": 16402, "models llms critical": 63050, "language processing llms": 50991, "significant concerns regarding": 87722, "open research problems": 68105, "paper specifically focus": 69957, "chatgpt gpt 35": 13883, "models currently stand": 62144, "indicate chatgpt performs": 44981, "chatgpt performs significantly": 14079, "datasets generated large": 22277, "leverages capabilities llms": 53778, "capabilities llms effectively": 11989, "consists key steps": 18335, "stateoftheart methods instruction": 90396, "previous studies primarily": 74717, "studies primarily focused": 91429, "method attains stateoftheart": 59210, "attains stateoftheart performance": 8252, "performs better current": 71802, "language models finetune": 49884, "carefully curated benchmark": 12413, "models pretrained context": 63867, "evaluation pretrained models": 30723, "pretrained models open": 74418, "models llms large": 63264, "language models possible": 50662, "fields artificial intelligence": 34421, "research paper introduce": 82698, "achieving similar performance": 2880, "solve wide range": 89205, "summarization task realworld": 92568, "llms llama2 gpt35": 56345, "llama2 gpt35 palm2": 54835, "performs par better": 71815, "learning increasingly popular": 53215, "suite foundation models": 92473, "models including large": 62735, "improve downstream tasks": 43691, "downstream tasks introduce": 26733, "models demonstrate effectiveness": 62174, "traditional evaluation metrics": 97666, "discuss pros cons": 25685, "point future research": 72480, "longcontext large language": 57352, "feedback loop llm": 34107, "gpt4 human evaluation": 39929, "decoderonly large language": 22648, "impressive capabilities text": 43590, "capabilities text generation": 12099, "text generation reasoning": 96267, "pretrained opensource llm": 74441, "closedsource models gpt4": 15011, "models gpt4 displayed": 62617, "promising avenue enhancing": 76152, "models exhibit strong": 62387, "finetuning llms requires": 35134, "susceptible generating hallucinated": 93071, "construct new evaluation": 18432, "models llms claiming": 63043, "evaluation paper introduces": 30704, "llms longer context": 56361, "longer context lengths": 57362, "evaluation codes released": 30546, "models llms play": 63347, "processing applications large": 75456, "work investigate language": 104145, "investigate language models": 47661, "llm size increases": 55263, "models enhance large": 62330, "enhance large language": 29171, "approach does apply": 6812, "methods based selfconsistency": 59552, "ability generate sql": 1665, "generate sql queries": 37602, "text results showed": 96401, "tasks study underscores": 95149, "models llms traditional": 63481, "human evaluation methods": 42180, "underscores evolving capabilities": 99563, "capabilities llms specialized": 11993, "llms specialized domains": 56843, "models llms centered": 63007, "model follows instructions": 60909, "like gpt4 gemini": 54156, "noise contrastive estimation": 66857, "contrastive estimation nce": 19100, "improves model performance": 44044, "effective natural language": 27338, "reducing average number": 80859, "mitigating hallucinations llms": 60300, "increasingly humanlike abilities": 44884, "models llms struggle": 63464, "struggle factual inaccuracies": 91214, "language models abstractive": 49612, "demonstrates significantly improved": 23405, "additionally qualitative analysis": 3344, "success heavily relies": 92205, "improving data quality": 44111, "llms superior performance": 56891, "codes models data": 15635, "longform text generation": 57387, "articles extensive experiments": 7563, "extensive experiments datasets": 33054, "models crucial step": 62139, "high training costs": 41470, "training costs paper": 97984, "language models possess": 50661, "improved performance compared": 43852, "models ranging 1b": 63961, "studies shown llms": 91447, "benchmarks demonstrate superiority": 10328, "models exhibit satisfactory": 62386, "achieving better performance": 2835, "social media datasets": 88883, "task performance notably": 94182, "incontext learning diverse": 44590, "question answering cqa": 78583, "gpt 35 llama": 39178, "analyses suggest despite": 5411, "opening opportunities future": 68279, "contrast previous findings": 19083, "observe considerable variability": 67577, "models llms reported": 63399, "significantly outperforms various": 88008, "approach improve performance": 6891, "llms lack robustness": 56270, "existing flan collection": 31715, "character word sentence": 13324, "room improvement best": 84832, "best publicly available": 10641, "publicly available model": 77985, "proprietary llms gpt4": 77309, "work needed improve": 104185, "hugging face hub": 42055, "quality finetuning data": 78274, "improve data quality": 43688, "human annotation hallucination": 42081, "advanced training techniques": 3757, "mathematical reasoning ability": 58587, "work highlights need": 104120, "bridge gap present": 11424, "room improvement particularly": 84838, "different llms using": 25105, "constructed training data": 18453, "relatively small llm": 81327, "small llm achieve": 88693, "llm achieve competitive": 54935, "competitive level performance": 16805, "level performance hallucination": 53672, "performance hallucination detection": 71281, "hallucination detection compared": 40831, "promptbased approaches using": 76457, "language models modern": 50589, "models modern large": 63639, "models llms generally": 63183, "llms generally benefit": 56040, "individuals various cultural": 45118, "questions covering wide": 78812, "large language modelsllm": 52227, "language modelsllm chatgpt": 50930, "challenge work introduce": 12943, "designed enhance efficiency": 23902, "achieves average increase": 2713, "clickthrough rate ctr": 14899, "multiple tasks including": 65267, "despite having significantly": 24063, "significantly training data": 88032, "language models report": 50750, "textual data augmentation": 96664, "tasks paper challenge": 94920, "challenges catastrophic forgetting": 12974, "prompt learning framework": 76360, "prompts guide chatgpt": 76735, "samples extensive experiments": 85114, "experiments demonstrate method": 32158, "demonstrate method outperforms": 23128, "mitigates catastrophic forgetting": 60291, "data significantly enhance": 21626, "significantly enhance performance": 87915, "novel approach termed": 67104, "select highquality data": 86125, "furthermore introduce novel": 36632, "various foundation models": 102437, "models domainspecific tasks": 62259, "training data size": 98054, "pipeline extensive experiments": 72153, "data selection method": 21609, "steps step involves": 90697, "cost compared existing": 19839, "question answering extractive": 78589, "answering extractive question": 6098, "adapt language models": 3044, "improves average performance": 44013, "size training set": 88534, "llms prompting chatgpt": 56598, "prompts prompt engineering": 76798, "llms shown potential": 56782, "potential improving translation": 73135, "improving translation quality": 44164, "paper discusses effectiveness": 69684, "models especially gpt4": 62348, "plms shown remarkable": 72435, "remarkable fewshot learning": 81771, "reduce annotation cost": 80760, "llama2 mistral models": 54841, "models struggle understanding": 64272, "problems solution requires": 75205, "tuning simple effective": 99099, "simple effective strategy": 88187, "outperform conventional instructiontuned": 68929, "baselines downstream tasks": 9830, "downstream tasks involving": 26734, "multilingual multimodal abilities": 64986, "significantly outperform methods": 87981, "methods trained specifically": 59826, "language modeling loss": 49587, "korean large language": 48871, "tech companies research": 95395, "based publicly available": 9685, "based human evaluation": 9564, "models llms context": 63049, "proposes novel paradigm": 77280, "machine translation approaches": 57741, "highlights importance using": 41657, "experimental results conducted": 32020, "results conducted using": 83518, "process experimental results": 75311, "performance compared models": 71089, "parameter count 7b": 70095, "criteria experimental results": 20290, "methods achieving significant": 59514, "models llms requires": 63405, "downstream tasks approach": 26716, "language model adaptation": 49326, "approach outperforms previous": 6966, "suggesting effectiveness approach": 92410, "models dialogue state": 62221, "dialogue state tracking": 24897, "tasks comparable better": 94458, "aware instruction tuning": 9214, "remains unsolved problem": 81726, "learning ability llms": 53010, "compared competitive baseline": 16518, "general task performance": 37195, "code models released": 15415, "publicly available case": 77967, "publicly available models": 77986, "number labeled samples": 67354, "previous stateoftheart methods": 74708, "stateoftheart methods conduct": 90394, "demonstrate method significantly": 23130, "significantly outperforms methods": 88000, "degree language models": 22909, "gpt35 gpt4 opensource": 39618, "gpt4 opensource models": 39996, "performs best task": 71799, "language inference task": 49279, "generation rag emerged": 38379, "introduces new type": 47529, "hallucination detection benchmark": 40830, "detection benchmark dataset": 24270, "underexplored research area": 99452, "conducted extensive empirical study": 17965, "pretrained masked language models": 74381, "largescale pretrained models bert": 52565, "pretrained models bert gpt2": 74401, "language model gpt2 generate": 49415, "natural language paper propose": 65627, "achieves new stateoftheart results": 2765, "recent work demonstrated substantial": 80397, "work demonstrated substantial gains": 104047, "model 175 billion parameters": 60461, "text pretrained language models": 96362, "language models largescale language": 50034, "models largescale language models": 62878, "language models lms pretrained": 50534, "models lms pretrained massive": 63534, "challenging models generate coherent": 13197, "glancing language model glm": 38996, "generative language models gpt2": 38630, "language models lms able": 50522, "successful natural language understanding": 92266, "language models data augmentation": 49763, "language model like gpt2": 49445, "previous works mainly focus": 74739, "achieves comparable results stateoftheart": 2730, "comparable results stateoftheart methods": 16404, "range natural language understanding": 79184, "language models question answering": 50707, "pretrained language models capable": 74301, "language models capable generating": 49693, "leverage large pretrained language": 53742, "work propose new method": 104222, "based natural language inference": 9630, "largescale language models generate": 52533, "methods automatic human evaluations": 59542, "knowledge enhanced pretraining language": 48545, "enhanced pretraining language understanding": 29245, "pretraining language understanding generation": 74555, "language understanding generation pretrained": 51166, "understanding generation pretrained models": 99755, "achieved stateoftheart results various": 2677, "stateoftheart results various natural": 90471, "gpt3 shown scaling pretrained": 39532, "shown scaling pretrained language": 87546, "scaling pretrained language models": 85355, "gpt3 model 175 billion": 39496, "unified framework named ernie": 100021, "framework named ernie 30": 36213, "pretraining largescale knowledge enhanced": 74565, "largescale knowledge enhanced models": 52526, "zeroshot learning fewshot learning": 104810, "trained model 10 billion": 97877, "model 10 billion parameters": 60452, "propose new framework named": 77047, "models generative pretrained transformers": 62571, "language processing nlp recently": 51021, "finetuned language models zeroshot": 34912, "instruction tuning finetuning language": 46384, "tuning finetuning language models": 99041, "models ability large language": 61733, "orders magnitude smaller gpt3": 68726, "transformerbased models bert gpt2": 98580, "evaluate performance language models": 30252, "models demonstrated impressive capabilities": 62187, "language models lms exhibit": 50528, "learning natural language processing": 53299, "powerful pretrained language models": 73466, "pretrained language models specifically": 74351, "text generation large pretrained": 96252, "pretrained generative language models": 74268, "datasets demonstrate superior performance": 22211, "largescale pretrained language model": 52558, "model size dataset size": 61412, "parameterefficient finetuning large pretrained": 70142, "reduction number trainable parameters": 80906, "recent years pretrained language": 80435, "years pretrained language models": 104610, "machine learning models tackling": 57714, "cuttingedge large language model": 20873, "natural language generation understanding": 65598, "tasks text classification question": 95195, "text classification question answering": 96119, "pretrained language models lm": 74326, "structures neural language models": 91199, "recurrent neural network rnn": 80726, "extensive experiments human evaluations": 33075, "text generation various tasks": 96280, "text generation large language": 96250, "models llms shown promising": 63432, "ability pretrained language models": 1746, "model llm like gpt3": 61099, "propose novel method called": 77073, "language generation need training": 49252, "experimental results demonstrate gamma": 32029, "code reproduce results available": 15482, "machine learning models like": 57713, "retrievalaugmented language models lms": 84050, "language understanding evaluation glue": 51161, "recent work shown language": 80408, "work shown language models": 104270, "scaling number parameters language": 85351, "pretrained language models achieved": 74296, "language models achieved great": 49619, "models achieved great success": 61767, "remarkable success natural language": 81828, "pretrained language model t5": 74292, "autoregressive language models gpt2": 8965, "pretrained language models recently": 74349, "pretrained models clip gpt2": 74403, "language models machine translation": 50555, "covering wide range topics": 20088, "promising directions future research": 76163, "language models multiple tasks": 50595, "downstream tasks work introduce": 26751, "language models llms displayed": 50171, "machine translation nmt systems": 57754, "settings large language models": 87069, "models generate synthetic data": 62555, "prompting tasks language models": 76627, "generalization unseen tasks paper": 37288, "usability pretrained language models": 100422, "prompt tuning prompt tuning": 76442, "diverse set nlp tasks": 26101, "language models bert xlnet": 49677, "language models work present": 50924, "models long short term": 63552, "long short term memory": 57328, "short term memory lstm": 87308, "human judgment existing metrics": 42265, "natural language understanding models": 65753, "use large transformerbased language": 100601, "large transformerbased language models": 52359, "transformerbased language models bert": 98561, "recently achieved great success": 80447, "model gpt2 language model": 60953, "text generation evaluation metrics": 96243, "increasing scale large language": 44855, "text generation language models": 96248, "stateoftheart language models like": 90360, "tackle diverse natural language": 93724, "pretrained texttotext language models": 74461, "lack highquality training data": 49017, "relatively small language models": 81326, "propose novel approach called": 77060, "pretrained language model specifically": 74291, "designing data methods effective": 23975, "billion parameter language models": 11022, "creating large language model": 20226, "pretrained language model plm": 74288, "shown remarkable capabilities natural": 87532, "natural language generation performance": 65592, "paper provides valuable insights": 69929, "valuable insights researchers practitioners": 102166, "pretrained foundation models pfms": 74260, "recently chatgpt attracted great": 80462, "chatgpt attracted great attention": 13550, "generation ability compared existing": 38002, "models llms gpt3 chatgpt": 63198, "language models lms increasingly": 50530, "inspired recent success large": 46185, "large language models stateoftheart": 52178, "large multilingual language model": 52272, "models multiple downstream tasks": 63651, "approach outperforms stateoftheart methods": 6969, "attracted wide attention computational": 8427, "wide attention computational linguistics": 103648, "terms automatic evaluation metrics": 95793, "language generation nlg models": 49254, "tasks experimental results compared": 94609, "optimization large language model": 68598, "nlp tasks machine translation": 66802, "large language model prompt": 51527, "conventional neural machine translation": 19289, "neural machine translation models": 66237, "language generation nlg systems": 49255, "framework using large language": 36316, "machine learning models achieve": 57709, "exploring use large language": 32875, "significant attention impressive performance": 87687, "surprising abilities natural language": 92985, "abilities language understanding generation": 1523, "investigate impact different prompts": 47656, "llms demonstrated superior performance": 55774, "large language models effectively": 51649, "models llms using machinegenerated": 63504, "llms using machinegenerated instructionfollowing": 57007, "using machinegenerated instructionfollowing data": 101602, "zeroshot capabilities new tasks": 104737, "paper present attempt use": 69827, "comprehensive evaluation large language": 17244, "strong baselines large margin": 91010, "controlling large language models": 19259, "instructions training large language": 46571, "finetuned pretrained language models": 34953, "instruction finetuned language models": 46326, "abstract meaning representation amr": 1932, "semantic role labeling srl": 86344, "large generative language model": 51440, "chatgpt generate synthetic training": 13858, "analyses large language models": 5402, "entity recognition ner models": 29577, "gpt3 achieves near sota": 39396, "llms extensive experiments indicate": 55949, "instruction tuning reinforcement learning": 46409, "address data scarcity issue": 3389, "baselines large language models": 9840, "chatgpt garnered significant attention": 13845, "garnered significant attention exceptional": 37015, "instruction tuning experimental results": 46382, "finetuning largescale language models": 35122, "language models llms machine": 50331, "models like bert gpt2": 62904, "overall study provides valuable": 69328, "experimental results proposed approaches": 32060, "make data code publicly": 57985, "analysis reveals llms fail": 5654, "performance close random chance": 71058, "gpt3 large language models": 39486, "language models llms driven": 50176, "contribute growing body research": 19126, "large language models different": 51637, "language models llms explore": 50213, "performance pretrained large language": 71487, "incontext learning capability llms": 44584, "valuable insights applicability llms": 102153, "llms chatgpt gpt4 shown": 55599, "modern pretrained language models": 64619, "task machine translation mt": 94137, "using generative language models": 101472, "mbert devlin et al": 58666, "devlin et al 2019": 24774, "paper propose novel method": 69897, "language models llms difficult": 50169, "truthfulness large language models": 98966, "natural language tasks paper": 65741, "building better base models": 11622, "language models llms remains": 50417, "large language model named": 51522, "language models llms studied": 50472, "investigating pretrained language models": 47778, "language models recently emerged": 50736, "investigate ability pretrained language": 47616, "large language models accurately": 51555, "demonstrated remarkable capabilities wide": 23318, "remarkable capabilities wide range": 81758, "capabilities wide range applications": 12138, "tasks pretrained language models": 94957, "language models llms utilize": 50509, "adopt curriculum learning strategy": 3608, "causal language model trained": 12658, "large language models existing": 51675, "stateoftheart models like gpt4": 90407, "propose simple effective data": 77114, "models project page available": 63910, "chatgpt ai language model": 13507, "instruction tuning instruction tuning": 46392, "large language models following": 51693, "models following human instructions": 62502, "using generative language model": 101471, "conduct thorough ablation studies": 17927, "grammatical error correction gec": 40337, "error correction gec tasks": 29775, "iterations approach yields model": 48048, "approach yields model outperforms": 7095, "utilizes generative pretrained transformer": 101985, "direct application gpt models": 25413, "automatic evaluation machine translation": 8776, "investigate feasibility using chatgpt": 47649, "data selection instruction tuning": 21606, "develop machine learning models": 24460, "generate highquality instruction data": 37482, "zeroshot capabilities large language": 104734, "performance multimodal large language": 71413, "large language model multimodal": 51520, "language model multimodal large": 49488, "model multimodal large language": 61143, "models llms gpt4 palm": 63210, "llms gpt4 palm llama": 56109, "llms excel various natural": 55895, "lowresource nonlatin script languages": 57633, "foundational large language models": 35977, "large language models process": 52114, "language models llms billions": 50098, "models llms billions parameters": 63003, "demonstrated outstanding performance various": 23297, "research provides valuable insights": 82742, "language model llm specifically": 49475, "language models including chatgpt35": 49979, "models llms gained prominence": 63175, "automatic human evaluations results": 8795, "generalpurpose large language models": 37355, "models llms trained massive": 63483, "large language models create": 51622, "recent advancement large language": 80173, "joint entity relation extraction": 48152, "outperforms existing stateoftheart methods": 69051, "studies shown large language": 91445, "language models llms transfer": 50491, "models llms transfer new": 63487, "llms transfer new tasks": 56959, "transfer new tasks outofthebox": 98435, "new tasks outofthebox simply": 66549, "tasks outofthebox simply given": 94910, "outofthebox simply given natural": 68907, "simply given natural language": 88292, "given natural language prompt": 38919, "conduct comprehensive experiments various": 17848, "language models llms effective": 50178, "showing large language models": 87419, "large language models planning": 52102, "paper propose new framework": 69890, "language model llm gpt4": 49467, "supervised finetuning sft using": 92715, "language model llm garnered": 49461, "model llm garnered significant": 61090, "llm garnered significant attention": 55096, "incontext learning prompt engineering": 44640, "pretrained multilingual language models": 74429, "language processing tasks work": 51053, "entity recognition ner task": 29580, "models perform named entity": 63791, "perform named entity recognition": 70901, "language model llm using": 49477, "chatgpt demonstrated superior performance": 13698, "tasks including sentiment analysis": 94737, "language models llms evaluation": 50193, "llms achieved remarkable performance": 55431, "summary work contributes improving": 92606, "crucial step en route": 20535, "step en route enabling": 90632, "en route enabling widespread": 28532, "route enabling widespread adoption": 84881, "general intelligence large language": 37138, "creative writing code generation": 20263, "language models llms natural": 50342, "models llms natural language": 63312, "preliminary study using large": 73880, "large language models synthetic": 52188, "witnessed remarkable advancements recent": 103867, "remarkable advancements recent years": 81739, "llms text generation tasks": 56931, "responses large language models": 83251, "models llms led widespread": 63269, "recent works proposed methods": 80417, "model named entity recognition": 61149, "entity recognition ner essential": 29576, "language models llms extract": 50217, "recent advances transformerbased large": 80213, "advances transformerbased large language": 3899, "great strides natural language": 40495, "twostage instruction tuning framework": 99184, "nlp tasks work aim": 66819, "large language models machine": 52049, "language models downstream tasks": 49801, "stateoftheart performance open models": 90440, "paradigms large language models": 70063, "approaches finetuning large pretrained": 7145, "work provides insights potential": 104235, "evaluation large language model": 30648, "language models including gpt4": 49982, "large language models decoding": 51627, "generation process extensive experiments": 38341, "process extensive experiments demonstrate": 75316, "experiments demonstrate effectiveness proposed": 32155, "training multimodal large language": 98211, "highquality instruction tuning data": 41769, "instruction tuning data including": 46373, "inherent large language models": 45732, "large language models emerged": 51651, "grammatical error correction large": 40339, "error correction large language": 29777, "correction large language models": 19705, "deployment large language models": 23603, "study aims gap investigating": 91487, "stateoftheart sota large language": 90481, "generalpurpose large language model": 37353, "language models llms developed": 50166, "including data preparation pretraining": 44319, "code data model publicly": 15188, "data model publicly available": 21421, "performs better par stateoftheart": 71804, "large language models finetuning": 51688, "language models finetuning large": 49888, "models finetuning large language": 62486, "language models llms domainspecific": 50173, "emerged effective method enhance": 28131, "explore different llm architectures": 32667, "question conduct extensive empirical": 78654, "results demonstrate comparable performance": 83540, "word error rate wer": 103903, "large language models translation": 52209, "automated metrics human evaluation": 8718, "valuable insights potential chatgpt": 102163, "opensource llms 7b 70b": 68361, "llms 7b 70b parameters": 55397, "language models demonstrate remarkable": 49768, "models llms significant strides": 63447, "model various benchmarks demonstrate": 61574, "applied large language models": 6617, "experimental results proposed approach": 32059, "moderatesized large language models": 64584, "substantial amounts labeled data": 92060, "supervised machine learning models": 92725, "models llms shown significant": 63438, "promise various applications including": 76137, "language model based largescale": 49345, "generation recent advancements large": 38388, "large language models facilitated": 51681, "study introduces novel framework": 91688, "given target word context": 38968, "language models llms critical": 50136, "aspect natural language processing": 7759, "natural language processing llms": 65657, "transformerbased language models like": 98562, "results indicate chatgpt performs": 83671, "datasets generated large language": 22278, "method attains stateoftheart performance": 59211, "large language models finetune": 51687, "language models llms large": 50312, "llm like openais chatgpt": 55159, "llms llama2 gpt35 palm2": 56346, "models including large language": 62736, "pretrained language models demonstrate": 74305, "longcontext large language models": 57353, "decoderonly large language models": 22649, "llms recently demonstrated impressive": 56657, "impressive capabilities text generation": 43591, "models llms including chatgpt": 63234, "language models llms claiming": 50129, "language models llms play": 50373, "language processing applications large": 50966, "work investigate language models": 104146, "large language models enhance": 51659, "models enhance large language": 62331, "enhance large language models": 29172, "ability generate sql queries": 1666, "language models llms traditional": 50486, "capabilities llms specialized domains": 11994, "language models llms centered": 50103, "noise contrastive estimation nce": 66858, "language models llms struggle": 50471, "codes models data released": 15636, "language models crucial step": 49760, "high training costs paper": 41471, "recent studies shown llms": 80367, "language models llms reported": 50420, "improve performance large language": 43754, "available hugging face hub": 9051, "better align human values": 10680, "relatively small llm achieve": 81328, "small llm achieve competitive": 88694, "llm achieve competitive level": 54936, "achieve competitive level performance": 2497, "competitive level performance hallucination": 16806, "level performance hallucination detection": 53673, "performance hallucination detection compared": 71282, "large language models modern": 52070, "models modern large language": 63640, "language models llms generally": 50239, "questions covering wide range": 78813, "large language modelsllm chatgpt": 52228, "large language models report": 52143, "language models exhibit remarkable": 49849, "extensive experiments demonstrate method": 33061, "experiments demonstrate method outperforms": 32161, "demonstrate method outperforms stateoftheart": 23129, "offering valuable insights future": 67818, "language models llms process": 50386, "question answering extractive question": 78590, "answering extractive question answering": 6099, "potential improving translation quality": 73136, "utilizing large language model": 102031, "models plms shown remarkable": 63826, "remarkable fewshot learning capabilities": 81772, "korean large language models": 48872, "gpt4 experimental results showed": 39877, "language models llms context": 50135, "paper proposes novel paradigm": 69915, "experimental results conducted using": 32021, "process experimental results demonstrate": 75312, "superior performance compared models": 92649, "language models llms requires": 50426, "approach outperforms previous stateoftheart": 6967, "models dialogue state tracking": 62222, "incontext learning ability llms": 44576, "results demonstrate method significantly": 83553, "demonstrate method significantly outperforms": 23131, "natural language inference task": 65604, "largescale pretrained language models bert": 52561, "pretrained language models bert gpt2": 74298, "recent work demonstrated substantial gains": 80398, "language models largescale language models": 50035, "language models lms pretrained massive": 50535, "achieves comparable results stateoftheart methods": 2731, "large pretrained language models capable": 52311, "leverage large pretrained language models": 53743, "knowledge enhanced pretraining language understanding": 48546, "enhanced pretraining language understanding generation": 29246, "pretraining language understanding generation pretrained": 74556, "language understanding generation pretrained models": 51167, "models achieved stateoftheart results various": 61773, "achieved stateoftheart results various natural": 2678, "stateoftheart results various natural language": 90472, "results various natural language processing": 83914, "gpt3 shown scaling pretrained language": 39533, "shown scaling pretrained language models": 87547, "gpt3 model 175 billion parameters": 39497, "unified framework named ernie 30": 100022, "pretraining largescale knowledge enhanced models": 74566, "trained model 10 billion parameters": 97878, "language models generative pretrained transformers": 49924, "applications natural language processing nlp": 6532, "natural language processing nlp recently": 65682, "instruction tuning finetuning language models": 46385, "models ability large language models": 61734, "learning natural language processing nlp": 53300, "recent years pretrained language models": 80436, "tasks text classification question answering": 95196, "text generation large language models": 96251, "language models llms shown promising": 50446, "prompting large language model llm": 76558, "language model llm like gpt3": 49470, "general language understanding evaluation glue": 37151, "recent work shown language models": 80409, "largescale pretrained language models achieved": 52560, "language models achieved great success": 49620, "large language models llms displayed": 51829, "neural machine translation nmt systems": 66239, "settings large language models llms": 87070, "models long short term memory": 63553, "long short term memory lstm": 57329, "use large transformerbased language models": 100602, "increasing scale large language models": 44856, "paper propose novel approach called": 69895, "diverse natural language processing nlp": 26056, "shown remarkable capabilities natural language": 87533, "recently chatgpt attracted great attention": 80463, "language models llms gpt3 chatgpt": 50252, "inspired recent success large language": 46186, "attracted wide attention computational linguistics": 8428, "wide attention computational linguistics community": 103649, "natural language generation nlg models": 65589, "natural language generation nlg systems": 65590, "making large language models better": 58117, "exploring use large language models": 32876, "surprising abilities natural language understanding": 92986, "language models llms using machinegenerated": 50507, "models llms using machinegenerated instructionfollowing": 63505, "llms using machinegenerated instructionfollowing data": 57008, "comprehensive evaluation large language models": 17245, "instructions training large language models": 46572, "chatgpt generate synthetic training data": 13859, "named entity recognition ner models": 65474, "proprietary large language models llms": 77304, "largescale language models llms gpt3": 52539, "large language models llms machine": 51925, "overall study provides valuable insights": 69329, "make data code publicly available": 57986, "large language models llms driven": 51834, "large language models llms explore": 51857, "various natural language processing applications": 102498, "models llms chatgpt gpt4 shown": 63026, "pretrained language models bert roberta": 74299, "mbert devlin et al 2019": 58667, "large language models llms difficult": 51827, "models large language models shown": 62860, "power large language models natural": 73379, "large language models llms remains": 51983, "investigate ability pretrained language models": 47617, "demonstrated remarkable capabilities wide range": 23319, "large language models llms utilize": 52039, "grammatical error correction gec tasks": 40338, "iterations approach yields model outperforms": 48049, "utilizes generative pretrained transformer gpt": 101986, "zeroshot capabilities large language models": 104735, "multimodal large language model multimodal": 65071, "large language model multimodal large": 51521, "language model multimodal large language": 49489, "language models llms gpt4 palm": 50264, "models llms gpt4 palm llama": 63211, "models llms excel various natural": 63132, "llms excel various natural language": 55896, "large language models llms billions": 51797, "language models llms billions parameters": 50099, "cases large language models llms": 12538, "large language model llm specifically": 51512, "language models llms gained prominence": 50234, "generalpurpose large language models llms": 37356, "language models llms trained massive": 50488, "recent advancement large language models": 80174, "studies shown large language models": 91446, "shown large language models llms": 87497, "large language models llms transfer": 52025, "language models llms transfer new": 50492, "models llms transfer new tasks": 63488, "llms transfer new tasks outofthebox": 56960, "transfer new tasks outofthebox simply": 98436, "new tasks outofthebox simply given": 66550, "tasks outofthebox simply given natural": 94911, "outofthebox simply given natural language": 68908, "simply given natural language prompt": 88293, "proprietary large language model llm": 77302, "large language model llm gpt4": 51505, "large language model llm garnered": 51500, "language model llm garnered significant": 49462, "model llm garnered significant attention": 61091, "natural language processing tasks work": 65706, "named entity recognition ner task": 65476, "models perform named entity recognition": 63792, "perform named entity recognition ner": 70902, "instructiontuned large language model llm": 46591, "large language model llm using": 51513, "performance variety natural language processing": 71672, "large language models llms evaluation": 51847, "power large language models llm": 73377, "models llms achieved remarkable performance": 62976, "crucial step en route enabling": 20536, "step en route enabling widespread": 90633, "en route enabling widespread adoption": 28533, "general intelligence large language models": 37139, "large language models llms natural": 51934, "language models llms natural language": 50343, "models llms natural language processing": 63313, "preliminary study using large language": 73881, "language large language models llms": 49306, "witnessed remarkable advancements recent years": 103868, "language models llms led widespread": 50316, "named entity recognition ner essential": 65473, "large language models llms extract": 51861, "recent advances transformerbased large language": 80214, "large language models machine translation": 52050, "large language models including gpt4": 51733, "extensive experiments demonstrate effectiveness proposed": 33060, "inherent large language models llms": 45733, "grammatical error correction large language": 40340, "error correction large language models": 29778, "correction large language models llms": 19706, "deployment large language models llms": 23604, "large language models llms developed": 51824, "code data model publicly available": 15189, "large language models finetuning large": 51689, "language models finetuning large language": 49889, "models finetuning large language models": 62487, "large language models llms domainspecific": 51831, "opensource llms 7b 70b parameters": 68362, "large language models demonstrate remarkable": 51629, "language models llms significant strides": 50454, "applied large language models llms": 6618, "moderatesized large language models llms": 64585, "employing large language models llms": 28456, "language models llms shown significant": 50448, "generation recent advancements large language": 38389, "advancements large language models facilitated": 3832, "large language models llms critical": 51813, "datasets generated large language models": 22279, "large language models llms large": 51916, "models llm like openais chatgpt": 62960, "models including large language models": 62737, "longcontext large language models llms": 57354, "decoderonly large language models llms": 22650, "models llms recently demonstrated impressive": 63384, "llms recently demonstrated impressive capabilities": 56658, "language models llms including chatgpt": 50284, "large language models llms claiming": 51806, "large language models llms play": 51953, "natural language processing applications large": 65636, "models enhance large language models": 62332, "enhance large language models llms": 29173, "large language models llms traditional": 52022, "large language models llms centered": 51801, "large language models llms struggle": 52012, "large language models llms reported": 51985, "improve performance large language models": 43755, "relatively small llm achieve competitive": 81329, "small llm achieve competitive level": 88695, "llm achieve competitive level performance": 54937, "achieve competitive level performance hallucination": 2498, "competitive level performance hallucination detection": 16807, "level performance hallucination detection compared": 53674, "models modern large language models": 63641, "large language models llms generally": 51874, "large language models exhibit remarkable": 51674, "extensive experiments demonstrate method outperforms": 33063, "experiments demonstrate method outperforms stateoftheart": 32162, "offering valuable insights future research": 67819, "large language models llms process": 51963, "question answering extractive question answering": 78591, "pretrained language models plms shown": 74343, "language models plms shown remarkable": 50658, "large language models llms context": 51812, "results demonstrate method significantly outperforms": 83554, "dstc7": 26886, "aesthetic": 4045, "kline": 48396, "artworks": 7693, "visionandlanguage": 103016, "integers": 46653, "fivefold": 35343, "vl": 103174, "430k": 947, "mrr": 64830, "mia": 59984, "cross": 20394, "juxtaposing": 48235, "twopronged": 99174, "okvqa": 67900, "inspirational": 46157, "straight": 90762, "145": 313, "fid": 34338, "mscoco": 64832, "disclose": 25565, "privacypreserving": 74918, "coco": 15107, "cider": 14626, "magnifies": 57801, "intralayer": 47358, "consequence": 18113, "textprompted": 96534, "regularizes": 81115, "photorealistic": 72052, "727": 1235, "sidebyside": 87630, "heritage": 41324, "hinge": 41847, "obviating": 67694, "arrangements": 7504, "textualonly": 96705, "scienceqa": 85618, "lectures": 53515, "399": 876, "unifiedqa": 100045, "unet": 99952, "photos": 72054, "commons": 16206, "promptguided": 76494, "underspecified": 99590, "596": 1103, "instructpix2pix": 46630, "userwritten": 101209, "bottle": 11319, "saturated": 85210, "crepe": 20277, "seenunseen": 86100, "17k": 421, "recall1": 80118, "514": 1044, "520": 1047, "audioset": 8501, "540bparameter": 1072, "consume": 18493, "quantizing": 78456, "multimodalcot": 65111, "separates": 86630, "proceeds": 75261, "subclass": 91925, "interactivity": 47124, "313": 774, "sharedtask": 87201, "resorted": 82950, "clipbased": 14962, "manpower": 58252, "dino": 25403, "computationefficient": 17498, "inputsoutputs": 46015, "pictured": 72101, "supervisory": 92767, "vlm": 103179, "contentrelated": 18715, "blip2": 11191, "humansubject": 42658, "takers": 93813, "coordinates": 19504, "chatgptassisted": 14391, "400k": 914, "weaklysupervised": 103450, "videotext": 102901, "controller": 19254, "slam": 88619, "visuallanguage": 103147, "descriptor": 23741, "indoor": 45133, "surgical": 92901, "motions": 64766, "spatially": 89581, "reserve": 82905, "25000": 655, "minigpt4": 60072, "fragmentation": 36005, "fms": 35495, "openset": 68307, "founded": 35987, "satellite": 85190, "shortcoming": 87319, "crawl": 20136, "smalltolarge": 88812, "knowledgebase": 48820, "imu": 44175, "accepting": 2052, "ppl": 73484, "428": 941, "qformer": 78164, "transmitting": 98765, "interleaved": 47196, "instrctgpt": 46270, "openflamingo": 68271, "openflamingos": 68272, "4times": 1004, "multimodalities": 65112, "845": 1363, "nonverbal": 66963, "watch": 103333, "submodules": 91986, "evoke": 31009, "artists": 7690, "heuristically": 41340, "adjacent": 3582, "researched": 82831, "utilised": 101882, "questionanswers": 78752, "914": 1414, "134x": 274, "actorcritic": 3010, "1225": 234, "902": 1409, "persuade": 71976, "elaboration": 27938, "illustrators": 43012, "divideandconquer": 26166, "subanswers": 91923, "cheap": 14464, "languageguided": 51218, "volumetric": 103220, "artist": 7688, "pandagpt": 69570, "auditory": 8508, "wu": 104541, "controlnet": 19261, "arrangement": 7503, "doubling": 26674, "gpt4tools": 40183, "selfinstruction": 86243, "877": 1381, "upsurge": 100387, "photographs": 72050, "outofcontext": 68875, "cosmos": 19827, "docker": 26193, "correspondences": 19786, "interclass": 47131, "coarse": 15097, "videobased": 102892, "100000": 146, "segmenting": 86112, "thriving": 96902, "synergizing": 93155, "textconditioned": 96509, "pointe": 72485, "valley": 102140, "multishot": 65320, "visuals": 103156, "waffle": 103288, "scrapes": 85801, "selfdriving": 86222, "cars": 12447, "lmms": 57092, "commonsensebased": 16246, "textrich": 96538, "posters": 72947, "pyramid": 78090, "lynx": 57676, "unity": 100108, "n15": 65447, "16m": 389, "10m": 175, "0327": 25, "nonvisual": 66965, "nonrobust": 66943, "cut": 20862, "texture": 96707, "danger": 20921, "clicks": 14896, "draganddrop": 26779, "dtd": 26887, "boon": 11265, "fineturned": 35298, "django": 26178, "underwater": 99930, "propelled": 76884, "2585": 664, "residential": 82915, "codelike": 15607, "overt": 69425, "surrogates": 93010, "particle": 70390, "symmetries": 93139, "irregular": 47897, "6400": 1153, "reciprocal": 80581, "imparting": 43296, "tricks": 98870, "rgbd": 84400, "scans": 85365, "rgb": 84398, "humanverified": 42661, "dancing": 20920, "avatars": 9104, "t2i": 93611, "surmount": 92903, "upholding": 100371, "appearances": 6308, "assimilates": 8011, "amalgamating": 5296, "objectcentric": 67485, "756": 1251, "lemmas": 53577, "transcribing": 98386, "cer": 12743, "mme": 60409, "internlm": 47256, "dms": 26186, "promisingly": 76211, "dm": 26185, "941": 1433, "pixellevel": 72211, "953": 1443, "multiimage": 64923, "gptassisted": 40202, "856": 1369, "391": 871, "660k": 1173, "70k": 1225, "attentionfree": 8395, "superb": 92617, "coop": 19489, "hopefully": 41976, "metaanalysis": 59142, "intra": 47355, "918": 1418, "cr": 20120, "randomaccess": 79115, "audiotext": 8502, "clotho": 15055, "audiocaps": 8492, "instructtuned": 46633, "kinetics": 48390, "contextrich": 18890, "director": 25529, "ldm": 52789, "stepaware": 90665, "dualpath": 26891, "vivid": 103172, "mmhalbench": 60411, "llavabench": 54921, "llmguided": 55379, "layouts": 52777, "groupings": 40618, "modalityspecific": 60446, "aligner": 5034, "stump": 91902, "tac": 93709, "grids": 40551, "educated": 27123, "guesses": 40710, "graphics": 40431, "primitives": 74821, "omit": 67908, "mmd": 60408, "lift": 53990, "1d": 471, "interdependence": 47136, "499": 991, "151": 336, "openvocabulary": 68436, "pulling": 78024, "cls": 15074, "dualsystem": 26893, "informationdense": 45675, "system1": 93310, "system2": 93311, "substeps": 92146, "dataintensive": 21790, "preconstructed": 73625, "multitransformer": 65376, "documentbased": 26230, "prolonged": 76083, "fortified": 35878, "testify": 95990, "unprecedentedly": 100231, "dalle3": 20916, "endeavoring": 28850, "95k": 1447, "alleviation": 5146, "datatypes": 22473, "rotations": 84854, "humanly": 42550, "lyrics": 57677, "expresses": 32913, "synthesising": 93227, "disaster": 25548, "imagecaption": 43073, "aerial": 4043, "wordvectors": 103967, "2d3d": 725, "clueweb22": 15079, "rouge2": 84864, "machinemade": 57779, "undergraduates": 99477, "overrely": 69417, "vq": 103227, "gpt4vision": 40198, "refusal": 81032, "typography": 99311, "font": 35712, "aesthetics": 4046, "inventive": 47604, "animation": 5847, "ann": 5850, "cogvlm": 15760, "55b": 1080, "parsons": 70342, "advocated": 4038, "967": 1453, "struggling": 91239, "panacea": 69568, "commence": 16058, "oftentimes": 67898, "354": 842, "hinting": 41852, "perceivers": 70767, "612": 1129, "flickr8k": 35439, "pinnacle": 72119, "crossed": 20407, "advertising": 4024, "betterperforming": 10817, "brand": 11365, "scopes": 85682, "chatgpta": 14389, "restore": 83368, "inputted": 46016, "collision": 15927, "liquid": 54623, "horizon": 41981, "powerpoint": 73481, "14times": 319, "03": 23, "pioneers": 72136, "superresolution": 92688, "abstractly": 1953, "sd": 85834, "aligners": 5035, "970": 1457, "975": 1458, "322": 785, "egocentric": 27926, "questionandanswer": 78721, "multidiscipline": 64897, "115k": 205, "sheets": 87247, "encapsulates": 28670, "narrating": 65492, "cospeech": 19828, "scorebased": 85741, "marginalize": 58369, "digest": 25350, "signed": 87652, "disentangled": 25743, "stratified": 90931, "flickr30k": 35438, "troubling": 98906, "slide": 88624, "compounding": 17122, "985": 1463, "resnets": 82930, "cifar10": 14628, "cifar100": 14630, "cube": 20572, "approximations": 7285, "centred": 12740, "markdown": 58381, "782": 1269, "362": 855, "honeybee": 41940, "projector": 76066, "unfreezing": 99993, "bells": 10052, "whistles": 103627, "purposedesigned": 78053, "selfconstructed": 86208, "1786": 418, "l1": 48885, "1158": 204, "493": 989, "straightforwardly": 90774, "pope": 72611, "usersupplied": 101208, "rooms": 84840, "conceptbased": 17614, "170k": 396, "steerability": 90588, "preview": 74658, "stepwise": 90699, "constructively": 18485, "sharply": 87210, "trails": 97727, "observes": 67630, "earth": 26994, "eo": 29666, "land": 49099, "dlbased": 26184, "686": 1191, "933": 1428, "522": 1052, "367": 859, "045": 36, "accomplishments": 2140, "28b": 707, "statespace": 90526, "181": 429, "realms": 79620, "undertakes": 99924, "streamlined": 90938, "shorttext": 87341, "palme": 69566, "572": 1091, "combiner": 15986, "babi": 9236, "cortex": 19818, "composers": 17106, "cities": 14651, "multilingualism": 65021, "svamp": 93085, "singleround": 88421, "vr": 103236, "visiolinguistic": 102953, "discouraging": 25581, "591": 1102, "meme": 58991, "zones": 104896, "talent": 93836, "textures": 96708, "textlevel": 96530, "fused": 36674, "665": 1177, "633": 1147, "serial": 86716, "telephone": 95675, "131": 269, "v15": 102064, "prescribe": 73913, "deny": 23518, "llava7b": 54920, "llava13b": 54916, "diagrammatic": 24813, "chair": 12848, "mesh": 59117, "textto3d": 96615, "steerlm": 90593, "llavas": 54923, "agencys": 4112, "esa": 29847, "modulates": 64655, "humanpreferred": 42559, "net": 66124, "geminipro": 37072, "llavarlhf": 54922, "physically": 72071, "onpar": 68018, "derives": 23656, "481": 980, "qwenvlplus": 79000, "geminiprovision": 37073, "street": 90944, "mysterious": 65444, "dermatology": 23658, "imagelanguage": 43076, "reinterpretation": 81171, "gradelevel": 40286, "song": 89269, "john": 48143, "visuallygrounded": 103155, "idefics": 42801, "apprehend": 6703, "5204": 1050, "3times": 900, "frontend": 36392, "easiest": 27005, "reasoningintensive": 80092, "environmentspecific": 29660, "beauty": 9933, "puzzlesolving": 78088, "lesion": 53628, "affordance": 4078, "aqua": 7295, "foremost": 35741, "nearperfect": 65860, "longdocument": 57358, "overhaul": 69385, "vllms": 103178, "smoothness": 88829, "enhancer": 29273, "mismatching": 60196, "tasklevel": 94314, "fulldata": 36426, "condensation": 17780, "miscellaneous": 60162, "nuscenes": 67447, "selfquestioning": 86251, "clue": 15075, "expenses": 31904, "91k": 1420, "reconciling": 80680, "260": 672, "condenses": 17783, "metaprompting": 59164, "categoryspecific": 12636, "handcrafting": 40909, "215": 596, "programofthought": 75939, "cos": 19820, "mapper": 58340, "038": 29, "longsequence": 57397, "mfcc": 59980, "spectrogram": 89919, "multisubject": 65345, "feedbackgeneration": 34160, "sid": 87629, "optimizationbased": 68624, "clustered": 15082, "imagespecific": 43129, "brio": 11475, "classificationbased": 14814, "outdoor": 68861, "lidar": 53970, "panoramic": 69579, "23m": 630, "generating rationales": 37963, "answering despite": 6094, "sound reasoning": 89333, "data visual": 21748, "visual questions": 103110, "investigate commonsense": 47631, "weights using": 103572, "predicting answer": 73671, "vqa generating": 103232, "ability capture": 1602, "natural responses": 65776, "power pretrained": 73389, "features different": 33995, "dialogue features": 24864, "semantic dependencies": 86306, "dialogue turns": 24918, "task combining": 93976, "visual textual": 103127, "network framework": 66141, "multiple modalities": 65222, "level dialogue": 53653, "achieve promising": 2562, "potential direction": 73070, "given personality": 38927, "personality trait": 71897, "novel formulation": 67162, "language captions": 49150, "traits addition": 98372, "caption generation": 12321, "language encoding": 49202, "advancement deep": 3774, "learning artificial": 53036, "ai breakthroughs": 4317, "breakthroughs recent": 11411, "years achieved": 104586, "tasks object": 94895, "object detection": 67470, "video games": 102884, "music research": 65414, "release pretrained": 81390, "exciting ai": 31408, "ai significantly": 4548, "visual art": 103050, "based conditional": 9479, "value different": 102186, "generation texts": 38470, "descriptions images": 23711, "released chinese": 81397, "image dataset": 43033, "space search": 89467, "novel zeroshot": 67287, "based clip": 9469, "given image": 38896, "results shown": 83847, "taskspecific architectures": 95278, "comprehension language": 17170, "language decoder": 49181, "framework learns": 36193, "conditional text": 17795, "single unified": 88402, "inspired humans": 46175, "capability learning": 12186, "set evaluate": 86869, "learned concepts": 52979, "levels design": 53692, "syntactic dependency": 93169, "concepts fewshot": 17623, "setting discover": 86985, "finally zeroshot": 34578, "zeroshot gpt3": 104792, "prompting exhibits": 76529, "visionlanguage tasks": 103043, "recently increasing": 80505, "methods lack": 59700, "evaluation frameworks": 30615, "datasets automatic": 22149, "largest existing": 52589, "generation surpasses": 38438, "margin datasets": 58361, "traffic management": 97723, "apply new": 6667, "potential task": 73283, "realworld scenario": 79690, "finegrained understanding": 34809, "stateoftheart vision": 90510, "model endtoend": 60804, "endtoend manner": 28877, "structure design": 91128, "experiments verify": 32340, "future study": 36784, "efficiently realworld": 27859, "read reason": 79496, "modality text": 60445, "reason answer": 79723, "relative position": 81301, "object text": 67484, "text labels": 96315, "visual features": 103064, "cross entropy": 20396, "text dataset": 96164, "robust ai": 84641, "poorly tasks": 72607, "using form": 101455, "implicitly inferred": 43429, "models preserve": 63863, "relationships input": 81286, "task mining": 94141, "mining causal": 60126, "textual modality": 96684, "modalities images": 60435, "offer rich": 67768, "offers details": 67828, "videos propose": 102897, "knowledge using": 48804, "architecture integrates": 7350, "process interpretability": 75337, "stateoftheart multimodal": 90412, "model openended": 61169, "recently received": 80542, "usually form": 101872, "answer candidates": 5987, "existing multiplechoice": 31779, "video inputs": 102888, "shows performance": 87604, "relevant sentences": 81477, "contributions paper": 19184, "paper discussion": 69685, "discussion challenges": 25717, "answering vqa": 6166, "knowledge present": 48703, "input image": 45905, "approach lead": 6926, "noisy irrelevant": 66872, "image captions": 43024, "answering instead": 6111, "process relevant": 75395, "vqa task": 103234, "task fewshot": 94059, "vqa examples": 103231, "image content": 43030, "content ii": 18642, "using 16": 101274, "16 examples": 364, "clip model": 14960, "model contains": 60707, "textual context": 96659, "perception key": 70786, "captioning model": 12329, "conversational interactions": 19373, "representations generate": 82099, "modeling gpt3": 61643, "developed help": 24504, "process goal": 75323, "sequential image": 86707, "process conversation": 75284, "representation allows": 82049, "gpt3 compared": 39430, "unified generative": 100023, "visionlanguage pretraining": 103042, "based image": 9567, "method jointly": 59342, "jointly learn": 48160, "language transformers": 51145, "people different": 70732, "attributes paper": 8457, "paper presented": 69847, "text finetuned": 96210, "model frozen": 60914, "shows high": 87583, "accuracy raw": 2342, "theory experiments": 96760, "way avoid": 103343, "bias machine": 10863, "text uses": 96474, "models image": 62699, "introduce lightweight": 47441, "captioning framework": 12326, "vision encoder": 102972, "updated training": 100356, "performance largescale": 71345, "parameters require": 70276, "textual modalities": 96683, "modalities paper": 60440, "transformerbased architecture": 98554, "comparing existing": 16675, "provides stateoftheart": 77705, "visual semantic": 103122, "semantics natural": 86390, "embeddings outperform": 28090, "wordlevel semantic": 103941, "benchmark finetuning": 10170, "finetuning compared": 35032, "eos token": 29668, "generation generative": 38180, "prompted generate": 76477, "text remarkable": 96392, "lms perform": 57150, "lm gpt2": 57072, "related given": 81195, "generated context": 37684, "zeroshot image": 104796, "decoding speedup": 22677, "visually grounded": 103151, "understanding present": 99842, "understanding text": 99892, "key discovery": 48292, "t5 pretrained": 93648, "score 727": 85699, "greater depth": 40506, "sample quality": 85089, "generation transformers": 38483, "transformers largescale": 98624, "text gpt3": 96287, "video generation": 102885, "challenges potential": 13099, "huge computation": 42034, "align text": 5013, "text video": 96481, "zeroshot video": 104886, "networks gpt2": 66190, "matching score": 58525, "steer language": 90584, "high average": 41378, "video frames": 102882, "work considers": 104029, "entire sentence": 29522, "representation tokens": 82077, "tokens prompt": 97222, "lots applications": 57489, "augmented reality": 8583, "data annotated": 20974, "process particular": 75371, "order perform": 68711, "answering allows": 6076, "descriptions captioning": 23695, "metrics finally": 59921, "answering captioning": 6083, "captioning tasks": 12331, "efficient framework": 27768, "efficient deployment": 27749, "necessitates large": 65886, "large labeled": 51452, "framework training": 36304, "training highquality": 98127, "obviating need": 67695, "volume data": 103213, "good representation": 39123, "underlying data": 99492, "gradientbased methods": 40302, "data longtail": 21388, "benefit proposed": 10456, "retrieval tasks": 84030, "using commonsense": 101370, "3d models": 892, "2d image": 724, "task given": 94083, "extracts highlevel": 33362, "interaction dataset": 47001, "qualitatively evaluate": 78213, "types object": 99253, "multimodal reasoning": 65100, "answering answering": 6078, "question humans": 78677, "cot process": 19954, "provide annotations": 77404, "limited domain": 54417, "domain diversity": 26373, "design language": 23799, "cot improves": 19952, "answering performance": 6134, "learn fewer": 52941, "substantially increasing": 92130, "model lightweight": 61066, "layers pretrained": 52757, "gpt2 decoder": 39266, "exploit largescale": 32566, "data proves": 21521, "designed test": 23957, "test generalization": 95892, "models vlms": 64518, "vlms clip": 103182, "clip shown": 14961, "computing similarity": 17577, "use rich": 100680, "rich context": 84407, "context additional": 18723, "provides mechanism": 77684, "framework classification": 36063, "additional cues": 3234, "features model": 34015, "query large": 78533, "numerous advantages": 67413, "adapt vlms": 3055, "effectively mitigate": 27456, "bias compared": 10834, "number studies": 67377, "uses t5": 101257, "processing ensure": 75478, "information text": 45651, "scene graph": 85497, "entities relationships": 29549, "images introduce": 43099, "operations extensive": 68460, "exhibit distinct": 31511, "distinct complementary": 25861, "complementary capabilities": 16857, "understand visual": 99657, "visual information": 103068, "fail understand": 33693, "descriptions work": 23737, "various multimodal": 102493, "problems zeroshot": 75224, "feedback refine": 34129, "models correct": 62128, "significantly boosting": 87895, "requiring model": 82439, "leveraging strengths": 53904, "framework wide": 36319, "answering mathematical": 6125, "robotic manipulation": 84625, "manipulation project": 58225, "set multimodal": 86901, "modeling image": 61645, "captioning visual": 12332, "storytelling speech": 90761, "datasets represent": 22395, "initial release": 45780, "train downstream": 97735, "data showing": 21622, "tasks certain": 94422, "crosslingual crossmodal": 20418, "framework understanding": 36308, "inputs achieve": 45984, "tasks utilizing": 95240, "integrates multiple": 46702, "modeling based": 61627, "based encoderdecoder": 9514, "attempts learn": 8269, "learn better": 52933, "seamlessly finetuned": 85843, "multimodal machine": 65082, "task strong": 94255, "retrieval reasoning": 84015, "text summarizing": 96451, "visual details": 103058, "control visual": 19231, "entities generated": 29539, "generated caption": 37668, "avoid extra": 9199, "gpt3 existing": 39449, "outperforms generic": 69058, "image editing": 43037, "example finetuning": 31159, "editing results": 27107, "instructions language": 46524, "model guided": 60968, "easily understand": 27023, "understand model": 99626, "model failing": 60860, "similar accuracy": 88049, "box models": 11348, "given problem": 38931, "recognition evaluation": 80594, "excel fewshot": 31330, "groups data": 40622, "common semantic": 16168, "helps users": 41319, "identify fix": 42869, "retrieves relevant": 84102, "relevant images": 81462, "classification object": 14767, "captioning models": 12330, "failure rates": 33716, "outofdistribution datasets": 68879, "visionlanguage foundation": 103020, "language pretraining": 50957, "architectures trained": 7405, "massive datasets": 58450, "science literature": 85598, "different seenunseen": 25191, "hard negative": 40985, "pairs test": 69522, "scene graphs": 85498, "results hold": 83644, "performance textonly": 71631, "training lack": 98155, "rely explicit": 81571, "images visual": 43128, "specific inputs": 89709, "inputs tasks": 46011, "consistently improve": 18292, "roberta bart": 84596, "tasks codes": 94450, "witnessed increasing": 103863, "number applications": 67328, "solving tasks": 89253, "task associated": 93943, "dataset evaluating": 21928, "specifically children": 89789, "including arithmetic": 44270, "training deep": 98070, "entirely new": 29527, "benchmark performances": 10224, "propose vision": 77165, "reveal powerful": 84169, "powerful deep": 73432, "models subset": 64286, "answers incorrect": 6191, "matching visual": 58530, "visual content": 103054, "textual queries": 96690, "motivated propose": 64780, "videos using": 102899, "retrieval answer": 83960, "data ii": 21301, "interaction perform": 47029, "produce enhanced": 75620, "comprehensive ablation": 17192, "retrieval benchmarks": 83973, "representation power": 82071, "llms stateoftheart": 56859, "llms ignore": 56157, "benchmark quantitatively": 10233, "evaluate multimodal": 30235, "new multimodal": 66462, "music videos": 65417, "evaluating multimodal": 30462, "previously learned": 74753, "approach multimodal": 6949, "irrespective model": 47908, "size experiments": 88466, "augmenting original": 8603, "gains compared": 36860, "compared templatebased": 16647, "synthesis models": 93215, "accurate representation": 2423, "improves wellbeing": 44091, "lead harmful": 52802, "synthesis using": 93220, "bias prevalent": 10875, "context finetuning": 18775, "synthesis model": 93214, "adding semantic": 3171, "semantic context": 86304, "context automated": 18731, "key limitation": 48318, "visual perception": 103095, "world solve": 104414, "process order": 75367, "learns align": 53496, "image sequences": 43065, "model decoder": 60736, "original image": 68781, "text token": 96462, "linear classification": 54521, "tasks leveraging": 94815, "leveraging chainofthought": 53826, "existing cot": 31690, "framework separates": 36266, "rationale generation": 79434, "answer inference": 6021, "way answer": 103342, "generated rationales": 37766, "based multimodal": 9625, "multimodal information": 65057, "model billion": 60612, "accuracy scienceqa": 2357, "scienceqa benchmark": 85619, "open vocabulary": 68132, "class based": 14690, "focused improving": 35586, "engineering incorporating": 28982, "small labeled": 88683, "finetuning little": 35124, "pose issues": 72744, "implicit semantic": 43423, "proceeds steps": 75262, "produce set": 75655, "hierarchical information": 41363, "simple implement": 88207, "existing zeroshot": 31858, "requires additional": 82361, "multitask multilingual": 65364, "reasoning hallucination": 79902, "quantitatively evaluating": 78430, "evaluating interactive": 30439, "carry extensive": 12443, "technical evaluation": 95405, "common nlp": 16156, "nlp application": 66706, "newly designed": 66594, "multimodal dataset": 65041, "multimodal content": 65037, "prompts intermediate": 76756, "intermediate code": 47205, "accurate average": 2396, "reasoning nontextual": 79960, "deductive inductive": 22735, "chatgpt suffers": 14284, "like llms": 54190, "feature chatgpt": 33960, "realtime visual": 79630, "exploit artifacts": 32560, "artifacts benchmarks": 7583, "feedback recommendations": 34128, "domain model": 26417, "expert review": 32373, "user groups": 100992, "created samples": 20201, "adversarial models": 3985, "challenge multilingual": 12909, "attracting significant": 8431, "resourcerich language": 82997, "images taken": 43117, "evaluating multilingual": 30461, "9th workshop": 1471, "systems proposed": 93539, "vit pretrained": 103162, "pretrained vision": 74490, "systems visual": 93601, "methods argue": 59536, "llm answer": 54961, "vqa dataset": 103230, "extract types": 33244, "facilitate llms": 33502, "approach instantiate": 6905, "combinations different": 15963, "learn generalized": 52944, "generalized representations": 37309, "methods shown": 59798, "firstly leverage": 35324, "produce textual": 75663, "synthetic images": 93281, "fully unleash": 36473, "unleash potential": 100156, "potential different": 73069, "pretrained multimodal": 74430, "tasks adaptation": 94344, "tasks drawn": 94564, "prior arts": 74842, "textonly data": 96533, "generate captions": 37388, "visual inputs": 103071, "information visual": 45672, "visual input": 103069, "visual chatgpt": 103052, "domains chatgpt": 26493, "processing generating": 75481, "showing great": 87415, "outputs end": 69219, "collaboration multiple": 15829, "multiple ai": 65135, "series prompts": 86751, "feedback experiments": 34078, "chatgpt opens": 14049, "instructions image": 46515, "drawn widespread": 26828, "multimodal dialogue": 65046, "effectively evaluate": 27425, "multimodal generation": 65054, "human requests": 42353, "introduce specific": 47486, "specific rules": 89749, "supervisory signals": 92768, "reasoning accompanied": 79772, "given human": 38895, "training image": 98132, "autoregressive transformer": 8978, "stage employs": 90113, "employs discrete": 28472, "tokens combined": 97185, "tokens single": 97231, "textual feedback": 96674, "answer accuracy": 5985, "findings aim": 34640, "contribute valuable": 19132, "guidance given": 40721, "control signals": 19225, "various kinds": 102454, "control format": 19203, "different control": 25029, "architectures focus": 7391, "novel promptbased": 67232, "directly utilize": 25527, "utilize pretrained": 101953, "signals different": 87643, "prompts extensive": 76717, "experiments prevalent": 32263, "verified effectiveness": 102759, "chatgpt asks": 13539, "acquiring knowledge": 2924, "importance questioning": 43473, "chatgpt discover": 13721, "highquality questions": 41785, "new opportunity": 66473, "opportunity develop": 68520, "develop automatic": 24436, "informative questions": 45685, "questionanswering model": 78740, "image descriptions": 43036, "datasets coco": 22163, "image information": 43048, "matching code": 58515, "main modules": 57831, "adopted large": 3617, "datasets terms": 22436, "potential conducted": 73059, "learn unseen": 52971, "unseen knowledge": 100268, "knowledge training": 48787, "report development": 81965, "multimodal model": 65085, "humans realworld": 42633, "10 test": 118, "test takers": 95955, "gpt4 transformerbased": 40135, "alignment process": 5107, "results improved": 83660, "desired behavior": 23999, "core component": 19539, "semantic graph": 86313, "graph generation": 40384, "semantic structural": 86353, "core challenge": 19536, "modeling complex": 61634, "complex global": 16937, "based graph": 9561, "convolutional networks": 19470, "task specifically": 94248, "introduce graph": 47430, "graph embedding": 40378, "information graph": 45499, "graph edges": 40377, "objects visual": 67545, "based preceding": 9655, "information game": 45489, "participants language": 70371, "selfreported confidence": 86262, "confidence accuracy": 18010, "accuracy humans": 2285, "additional modality": 3249, "potential multimodal": 73202, "chatgpt multimodal": 14024, "reasoning action": 79775, "integrates chatgpt": 46695, "textual prompt": 96687, "process multimodal": 75363, "information facilitating": 45479, "combination chatgpt": 15948, "wide application": 103642, "application different": 6347, "require advanced": 82229, "understanding furthermore": 99740, "attention present": 8364, "method efficiently": 59274, "efficiently finetune": 27850, "using 52k": 101277, "tokens higher": 97204, "higher transformer": 41531, "preserves pretrained": 74189, "finetuned 7b": 34862, "commands approach": 16055, "approach simply": 7027, "extended multimodal": 32955, "multimodal instructions": 65062, "superior reasoning": 92665, "furthermore evaluate": 36608, "mechanism finetuning": 58798, "models vit": 64514, "audio captioning": 8477, "multimodal research": 65101, "researchers face": 82859, "raw descriptions": 79450, "web sources": 103496, "sound event": 89331, "descriptions highly": 23708, "use tasks": 100701, "automated audio": 8676, "noisy data": 66868, "analysis characteristics": 5452, "evaluate multiple": 30236, "dataset codes": 21856, "multimodal neural": 65093, "networks existing": 66184, "aligned data": 5015, "data difficulty": 21156, "data currently": 21136, "approach automatic": 6749, "asr used": 7803, "approaches provide": 7191, "provide proper": 77547, "opt language": 68538, "captioning datasets": 12325, "used variety": 100929, "challenge diverse": 12872, "framework seamlessly": 36264, "pretrained visionlanguage": 74495, "learning rules": 53397, "input position": 45936, "position embeddings": 72801, "reduce manual": 80789, "effort involved": 27878, "analysis providing": 5627, "llms t5": 56903, "extending capability": 32962, "information environment": 45451, "generating detailed": 37890, "substantial challenge": 92064, "creating comprehensive": 20216, "employs chatgpt": 28471, "questions subsequently": 78959, "framework effectively": 36104, "promise method": 76126, "multiple conversational": 65165, "chatgpt summarize": 14288, "previous conversations": 74671, "videos code": 102895, "visual prompt": 103100, "gpt3 explore": 39453, "draw attention": 26797, "using foundation": 101456, "visual instruction": 103072, "tasks idea": 94705, "idea explored": 42783, "llava large": 54911, "vision assistant": 102960, "endtoend trained": 28889, "large multimodal": 52274, "encoder llm": 28701, "llm generalpurpose": 55097, "demonstrates impressive": 23380, "relative score": 81304, "score compared": 85710, "multimodal instructionfollowing": 65061, "llava gpt4": 54908, "gptbased large": 40205, "revolutionizing natural": 84359, "exponentially increasing": 32888, "domains incorporating": 26534, "unidirectional attention": 100001, "generate long": 37524, "long coherent": 57299, "coherent paragraphs": 15783, "bidirectional attention": 10969, "attention models": 8343, "endtoend trainable": 28888, "model expands": 60837, "model include": 60995, "long paragraphs": 57317, "human thought": 42396, "process understanding": 75414, "newly annotated": 66587, "datasets include": 22297, "extract knowledge": 33236, "automated method": 8713, "actions training": 2966, "approach use": 7069, "generation baselines": 38049, "encoder models": 28703, "universal representation": 100115, "models learns": 62892, "autoregressive causal": 8952, "youtube videos": 104690, "fully connected": 36445, "heads task": 41148, "knowledge use": 48801, "trained joint": 97848, "graph information": 40387, "performance initial": 71317, "work build": 104005, "observed previous": 67624, "models technical": 64341, "sophisticated large": 89281, "frozen visual": 36411, "visual encoder": 103060, "projection layer": 76059, "work time": 104293, "model possess": 61253, "gpt4 detailed": 39835, "detailed image": 24173, "emerging capabilities": 28219, "including writing": 44519, "experiment model": 31971, "pairs produce": 69514, "unnatural language": 100212, "language outputs": 50945, "generation reliability": 38394, "image semantic": 43064, "semantic segmentation": 86347, "models fms": 62493, "fms gpt4": 35496, "attracted significant": 8423, "grounding dino": 40587, "segment model": 86103, "model sam": 61368, "segmentation tasks": 86109, "profoundly impact": 75824, "impact wide": 43270, "present preliminary": 74038, "specific contexts": 89676, "contexts minimal": 18915, "techniques shown": 95589, "model visual": 61578, "enable effective": 28544, "image analysis": 43015, "fields application": 34419, "architecture tackle": 7375, "processing related": 75563, "domain current": 26368, "detection conduct": 24278, "image segmentation": 43063, "highlighting challenges": 41624, "future prospects": 36752, "llms visual": 57038, "component recent": 17080, "address shortcoming": 3489, "new candidate": 66356, "common crawl": 16136, "benchmark design": 10138, "sources evaluate": 89408, "code testing": 15541, "model 38": 60467, "multiple compute": 65162, "scaling trends": 85359, "baseline experiments": 9775, "enables training": 28618, "outperforming openais": 69005, "points using": 72514, "popular research": 72682, "explored recent": 32785, "handle visual": 40940, "inputs llms": 46002, "secondly propose": 85969, "fusion strategy": 36686, "knowledge incorporation": 48625, "strategy effectively": 90875, "effectively alleviates": 27400, "alleviates interference": 5142, "imagetext instruction": 43132, "dataset inference": 21977, "enhance image": 29166, "costs compared": 19925, "llm mllm": 55169, "alternative solution": 5274, "efficiency based": 27668, "simple highly": 88203, "significantly speed": 88026, "series intriguing": 86741, "intriguing findings": 47378, "discussed finally": 25697, "approach customizing": 6793, "mllms including": 60389, "released llama": 81405, "llms vision": 57034, "information external": 45465, "approach addition": 6719, "ood examples": 68031, "examples exhibiting": 31214, "trained annotated": 97796, "limits usability": 54507, "systems leveraging": 93504, "sources data": 89406, "framework supporting": 36288, "supporting wide": 92862, "trajectories language": 98376, "flexible combination": 35429, "extensive case": 32999, "capabilities framework": 11913, "effective user": 27385, "descriptions human": 23709, "human activity": 42067, "activity recognition": 3007, "recognition har": 80596, "scarcity largescale": 85380, "imu data": 44176, "using computer": 101376, "techniques lead": 95548, "lead substantial": 52826, "models combined": 62039, "automated pipeline": 8724, "uses chatgpt": 101212, "descriptions used": 23730, "datasets realworld": 22385, "approach contributes": 6789, "data require": 21567, "specific objects": 89729, "chatbot using": 13426, "multimodal deep": 65044, "images response": 43112, "generates appropriate": 37828, "evaluation proposed": 30736, "showing significant": 87426, "scale 15": 85251, "network large": 66146, "regarding large": 81058, "network designed": 66136, "dynamic interaction": 26922, "llms external": 55953, "llms simple": 56812, "human intention": 42251, "aligned various": 5033, "dynamic visual": 26937, "interaction specifically": 47036, "network provide": 66156, "contains additional": 18547, "requests llms": 82221, "llms performing": 56517, "llms respectively": 56716, "interaction module": 47024, "information evaluate": 45455, "incontext instruction": 44569, "universal capabilities": 100113, "similar approach": 88052, "construct multimodal": 18429, "showcasing improved": 87378, "models customized": 62145, "customized training": 20858, "inference pipelines": 45280, "abilities gpt4": 1515, "based advanced": 9431, "multimodal capabilities": 65034, "use advanced": 100461, "unfortunately model": 99986, "capabilities propose": 12057, "frozen llm": 36406, "consists stages": 18345, "information languages": 45523, "aligned llm": 5026, "integrate multimodal": 46668, "conduct quantitative": 17909, "llm asr": 54972, "instructions humans": 46514, "questions users": 78969, "lowrank adapter": 57603, "data containing": 21111, "lead model": 52809, "model respond": 61346, "humans code": 42582, "present interactive": 73999, "instructions like": 46533, "systems rely": 93553, "instructions proposed": 46550, "communication users": 16287, "chatbots accuracy": 13428, "control mechanism": 19218, "llm large": 55144, "current progress": 20763, "human thinking": 42395, "scant existing": 85367, "primarily focuses": 74786, "understanding objects": 99832, "recognizing objects": 80636, "image makes": 43052, "textual understanding": 96701, "specifically review": 89873, "models mainstream": 63572, "including image": 44386, "classification semantic": 14789, "segmentation object": 86107, "task background": 93951, "possible directions": 72896, "nlp field": 66731, "solving text": 89255, "work discusses": 104057, "presents outlook": 74155, "knowledge plms": 48701, "plms existing": 72416, "image encoder": 43039, "encoder visionlanguage": 28711, "plugandplay module": 72448, "pretrained vlms": 74502, "parameters updated": 70298, "fully exploit": 36448, "exploit potential": 32570, "potential vlms": 73319, "vlms image": 103186, "remarkable models": 81782, "demonstrating exceptional": 23428, "poses formidable": 72771, "innovative strategies": 45866, "methods finetune": 59650, "parameters set": 70281, "minigpt4 llava": 60073, "remain limited": 81624, "manner akin": 58231, "pairs utilizing": 69528, "additionally work": 3352, "benchmarks introduced": 10362, "media aims": 58826, "information incorporating": 45510, "methods neglect": 59737, "high redundancy": 41446, "aims leverage": 4818, "leverage chatgpt": 53714, "prediction specifically": 73720, "contains multimodal": 18557, "suitable examples": 92458, "examples small": 31284, "samples examples": 85111, "integrated original": 46692, "model processing": 61281, "stronger robustness": 91096, "present endtoend": 73976, "architecture generate": 7348, "collecting data": 15885, "generated videos": 37823, "input guide": 45904, "input video": 45970, "perform diverse": 70858, "highlight versatility": 41617, "versatility effectiveness": 102797, "actively researched": 3002, "input argue": 45877, "require strong": 82292, "strong reasoning": 91064, "effective solving": 27369, "samples approach": 85101, "interpretability models": 47279, "diagnostic benchmark": 24803, "benchmark multimodal": 10216, "perception reasoning": 70792, "models flamingo": 62490, "computational tasks": 17487, "audio text": 8489, "text modalities": 96335, "efficient evaluation": 27757, "models transfer": 64417, "finetuning regime": 35215, "densely annotated": 23514, "labels multiplechoice": 48948, "enabling language": 28640, "heldout test": 41229, "understanding dataset": 99708, "lets think": 53637, "prediction dataset": 73686, "recent results": 80346, "capacity reason": 12311, "sequential understanding": 86712, "power robustness": 73397, "scene descriptions": 85496, "propose tasks": 77132, "abilities generate": 1512, "complex video": 17028, "understand physical": 99639, "concepts language": 17628, "understanding physical": 99839, "concepts essential": 17621, "clear lms": 14885, "concepts human": 17627, "investigate design": 47635, "design benchmark": 23755, "tasks visual": 95250, "objects ii": 67540, "scaling lms": 85342, "like random": 54215, "clip blip": 14953, "visual representation": 103116, "valuable source": 102171, "knowledge inspired": 48632, "propose distillation": 76962, "reverse engineering": 84234, "broad applications": 11484, "development design": 24631, "design paper": 23821, "decoder generate": 22630, "initialized pretrained": 45796, "developed predict": 24522, "code train": 15544, "datasets varying": 22462, "combination automated": 15946, "larger decoder": 52437, "rhetorical devices": 84403, "creative ideas": 20255, "similar linguistic": 88084, "model implicit": 60986, "text represents": 96395, "represents visual": 82186, "objects used": 67544, "used input": 100830, "collaboration task": 15832, "dataset perform": 22028, "visionandlanguage vl": 103017, "progress endtoend": 75978, "vl models": 103175, "zeroshot reasoning": 104857, "pipeline paper": 72169, "predict final": 73651, "answer subquestions": 6063, "subquestions subanswers": 92003, "information address": 45396, "framework iteratively": 36180, "iteratively decomposes": 48073, "generate subquestions": 37605, "modules perform": 64684, "answer main": 6027, "setting particular": 87016, "multimodal capability": 65035, "intelligence existing": 46845, "novel affordable": 67083, "adaption llms": 3141, "lightweight modules": 54046, "image language": 43051, "routing algorithm": 84892, "algorithm help": 4920, "single multimodal": 88381, "ability natural": 1725, "performance superior": 71607, "existing multimodal": 31778, "training hours": 98128, "parameters greatly": 70229, "project released": 76050, "space recent": 89463, "light propose": 54017, "generation dubbed": 38127, "bounding boxes": 11343, "assistant provide": 8041, "multiround interactions": 65317, "editing various": 27112, "applications metaverse": 6524, "llms neural": 56429, "tasks revealing": 95072, "models vicuna": 64507, "pairs required": 69519, "emergent zeroshot": 28206, "data image": 21304, "serves initial": 86796, "information composition": 45421, "humans propose": 42631, "model synthesize": 61483, "determine text": 24415, "fusion layer": 36683, "wu et": 104542, "responses natural": 83263, "language visual": 51207, "including dataset": 44320, "prompts models": 76782, "accurately locate": 2458, "framework termed": 36299, "editing based": 27094, "model goal": 60944, "second component": 85921, "prompt provided": 76403, "employ stateoftheart": 28412, "editing methods": 27103, "editing applications": 27092, "contains complex": 18549, "multiple objects": 65231, "textual instructions": 96681, "hand large": 40899, "text instructions": 96310, "photorealistic images": 72053, "lack dataset": 48994, "nearly doubling": 65853, "potential employing": 73081, "performance computer": 71103, "use multimodal": 100631, "tools advanced": 97353, "advanced proprietary": 3737, "prompting advanced": 76497, "multimodal contexts": 65039, "solve range": 89191, "problems including": 75154, "generation provide": 38362, "provide benchmark": 77411, "unseen tools": 100282, "generate select": 37588, "models jointly": 62826, "visual natural": 103091, "language inputs": 49282, "inputs using": 46014, "applied task": 6632, "shown powerful": 87513, "plm bias": 72400, "bias tendency": 10892, "changes high": 13290, "gpt3 achieve": 39392, "additional computation": 3228, "tasks dynamic": 94565, "excessive memory": 31397, "memory overhead": 59053, "overhead paper": 69390, "search algorithm": 85852, "plms different": 72411, "tasks apply": 94375, "models vl": 64516, "modules existing": 64672, "bounding box": 11342, "directly utilizing": 25528, "language foundation": 49228, "formatting requirements": 35841, "performance small": 71572, "alpaca experimental": 5228, "enhances zeroshot": 29300, "models perception": 63784, "upsurge pretrained": 100388, "stateoftheart performances": 90450, "performances variety": 71744, "llm usually": 55312, "conduct various": 17933, "conventional models": 19284, "representation ability": 82047, "advantage large": 3923, "utilized help": 101970, "detailed descriptions": 24160, "descriptions pretrained": 23722, "encoder extract": 28693, "images training": 43121, "image representations": 43060, "algorithm consistently": 4907, "capability foundation": 12163, "vision foundation": 102974, "tasks explored": 94618, "open dataset": 68059, "presents opportunity": 74154, "order detect": 68693, "approach detecting": 6802, "grand challenge": 40350, "challenge detecting": 12871, "utilizing prompt": 102041, "method captures": 59226, "effectively integrates": 27448, "methodology holds": 59491, "promising implications": 76167, "implications various": 43407, "submission available": 91972, "capability understanding": 12213, "pretrained visual": 74499, "audio encoders": 8480, "frozen llms": 36407, "complement llms": 16854, "audio signals": 8486, "audio encoder": 8479, "query embeddings": 78523, "align output": 5006, "tune model": 98997, "shows ability": 87560, "content generate": 18630, "auditory information": 8509, "approaches mainly": 7174, "pairs human": 69500, "human attention": 42095, "fully automatic": 36442, "exceptional reasoning": 31387, "comprises multiple": 17389, "generate list": 37522, "second attempt": 85918, "set semantic": 86932, "propose exploit": 76973, "exploit incontext": 32564, "different sets": 25193, "structure finally": 91132, "finally employ": 34524, "generated semantic": 37777, "highly plausible": 41704, "benchmarks promote": 10398, "wellknown chinese": 103594, "enable researchers": 28562, "researchers conduct": 82842, "decoderonly model": 22653, "cider score": 14627, "finally scale": 34564, "chinese multimodal": 14565, "llm demonstrate": 55033, "opendomain knowledge": 68237, "dataset multimodal": 22010, "tasks progress": 94973, "progress open": 76002, "limited scarcity": 54464, "scarcity highquality": 85377, "introduce multimodal": 47450, "instances 400": 46222, "tasks comprehend": 94466, "conversation agents": 19316, "initial attempts": 45765, "dataset 100000": 21798, "pairs used": 69525, "pipeline easily": 72150, "scalable robust": 85244, "label noise": 48895, "model meets": 61125, "research recently": 82758, "performance sam": 71551, "recently numerous": 80530, "works attempted": 104346, "sam various": 85080, "combining models": 16018, "work conducts": 104026, "new works": 66580, "dialogue interaction": 24872, "interaction natural": 47025, "processing human": 75485, "visual modalities": 103087, "support academic": 92786, "present opensource": 74030, "evaluating mllms": 30457, "execution enabling": 31454, "detailed methodology": 24179, "mllm research": 60378, "supports training": 92870, "point clouds": 72476, "highlevel textual": 41569, "constructed integrating": 18449, "instructions generated": 46506, "chatgpt proposed": 14122, "assistant large": 8037, "enhanced ability": 29224, "applications emerged": 6462, "applications recently": 6557, "recently multimodal": 80528, "developed purpose": 24525, "encoder language": 28695, "model followed": 60907, "aim develop": 4702, "video image": 102886, "framework achieve": 36014, "goal introduce": 39060, "module designed": 64660, "designed bridge": 23884, "capabilities construct": 11868, "tuning procedure": 99080, "procedure train": 75256, "descriptions action": 23692, "qualitative experiments": 78198, "creation text": 20249, "language images": 49271, "knowledge approach": 48427, "approach empowers": 6830, "subsequently introduce": 92030, "offering users": 67815, "performance visionlanguage": 71704, "shown benefit": 87442, "framework zeroshot": 36322, "tasks allows": 94366, "future llmbased": 36741, "querying llms": 78559, "llms highlevel": 56130, "deployed multimodal": 23568, "relevant specific": 81479, "selfdriving cars": 86223, "step evaluation": 90638, "consists parts": 18342, "background recent": 9272, "models lmms": 63519, "challenge 2023": 12850, "able infer": 1860, "based structure": 9726, "action prediction": 2949, "enhanced visual": 29259, "superior capability": 92635, "interact humans": 46977, "furthermore recent": 36655, "models comprehend": 62067, "use publicly": 100666, "tools collect": 97375, "demonstrates improvement": 23383, "natural images": 65551, "based latest": 9602, "realworld online": 79686, "online content": 67979, "converts raw": 19454, "capture semantic": 12365, "translating visual": 98678, "perform wide": 70941, "finetuning popular": 35187, "popular paradigm": 72667, "improve ability": 43661, "finetuned machine": 34934, "inputs recent": 46008, "network structures": 66161, "presents systematic": 74176, "systematic comprehensive": 93321, "models implement": 62704, "explore influence": 32690, "benchmarks contribute": 10320, "cost propose": 19878, "training instead": 98149, "resulting captions": 83425, "baselines outperforms": 9844, "shows greater": 87582, "methods evaluated": 59626, "scenarios research": 85481, "potential aligning": 72997, "widelyused models": 103757, "technology artificial": 95644, "opportunities various": 68515, "substantial progress": 92104, "employed diverse": 28423, "sequences challenging": 86676, "virtual objects": 102940, "optical character": 68556, "character recognition": 13321, "optimize user": 68638, "performance offering": 71439, "interactive virtual": 47120, "unity game": 100109, "game engine": 36887, "facilitating seamless": 33546, "operations using": 68468, "answering existing": 6096, "reasoning qa": 79997, "descriptions volume": 23736, "rich diversity": 84415, "data recipe": 21546, "select subset": 86128, "diversity balance": 26137, "capabilities extensive": 11897, "dataset outperforms": 22025, "study new": 91754, "automatic question": 8820, "images texts": 43119, "texts significantly": 96597, "significantly expanding": 87927, "expanding scope": 31877, "textual sources": 96698, "sources propose": 89421, "addition textual": 3216, "input specifically": 45960, "imagetotext model": 43138, "recognition model": 80603, "obtain textual": 67664, "extract texts": 33243, "prompting despite": 76517, "parameters additional": 70173, "empirically confirm": 28373, "various modeling": 102489, "scene representation": 85500, "architecture proven": 7368, "proven successful": 77385, "objects scene": 67542, "stateoftheart bleu": 90318, "score 0327": 85688, "dialog state": 24834, "approach extracting": 6856, "architectural changes": 7327, "information effectively": 45446, "future model": 36745, "quantitative performance": 78416, "surpasses existing": 92932, "variety evaluation": 102297, "abilities second": 1566, "strategy incorporates": 90895, "chatgpt implementation": 13942, "convert freeform": 19441, "various abilities": 102341, "better evaluating": 10709, "models encourage": 62324, "grounding multimodal": 40592, "interacting humans": 46990, "effectiveness generating": 27524, "ability ground": 1673, "expand application": 31867, "application scenario": 6385, "audio language": 8483, "contributions twofold": 19188, "module based": 64659, "training scheme": 98277, "understanding experiments": 99733, "aligned unaligned": 5031, "vision transformers": 103014, "information intermediate": 45514, "relevant features": 81461, "features additionally": 33985, "account factors": 2160, "method extensive": 59303, "dataset furthermore": 21952, "conduct large": 17898, "designed automatic": 23879, "improvement previous": 43935, "contributions module": 19182, "overall effectiveness": 69288, "efficiency study": 27723, "enables mllms": 28602, "interaction based": 46996, "furthermore design": 36598, "framework explain": 36134, "like clip": 54107, "features features": 33999, "simple linear": 88212, "linear transformation": 54539, "gpt4 harnessing": 39924, "contrastive pretrained": 19110, "vlms like": 103187, "providing good": 77752, "downstream dataset": 26689, "makes use": 58079, "use domain": 100529, "information structure": 45639, "work gpt4": 104113, "tasks considerable": 94487, "considerable improvements": 18161, "simple fewshot": 88194, "adapter learns": 3112, "understand meaning": 99625, "learning enhance": 53130, "extracting reasoning": 33272, "engine enables": 28930, "component enables": 17074, "wide audience": 103650, "visual impairments": 103067, "study open": 91762, "ai notably": 4488, "bard recently": 9371, "understanding interpreting": 99782, "interpreting visual": 47308, "conditioned text": 17807, "especially addressing": 29854, "accurate visual": 2434, "task scenarios": 94232, "scenarios encompassing": 85422, "data comprehensively": 21090, "performance primary": 71492, "primary finding": 74804, "finding indicates": 34626, "understanding needs": 99824, "data project": 21511, "significantly propelled": 88010, "revolution artificial": 84319, "developing large": 24585, "analysis domain": 5492, "large vlms": 52389, "challenges effectively": 13001, "models smallscale": 64218, "yield impressive": 104640, "idea work": 42789, "facilitates development": 33523, "datasets employ": 22230, "highquality information": 41764, "rs provide": 84905, "gap exploring": 36929, "architectures based": 7388, "llms project": 56586, "embeddings text": 28097, "text space": 96426, "use autoregressive": 100480, "capacity solve": 12312, "recipe training": 80578, "cross attention": 20395, "attention capabilities": 8288, "extend traditional": 32946, "finegrained object": 34800, "reasoning analysis": 79780, "pretraining multimodal": 74578, "results recently": 83805, "shot setting": 87347, "crossmodal tasks": 20437, "months release": 64736, "information fed": 45481, "examine gpt35s": 31112, "visual tasks": 103126, "summary conduct": 92595, "image recognition": 43059, "lvlms demonstrated": 57667, "tackling complex": 93751, "reasoning various": 80082, "evaluation lvlms": 30660, "abilities particular": 1549, "provides systematic": 77708, "reasoning visual": 80083, "predictions using": 73753, "robust accurate": 84639, "exhibits improved": 31617, "matching approach": 58514, "baseline evaluation": 9774, "strategies aimed": 90792, "multimodal techniques": 65104, "denoising diffusion": 23495, "models geometry": 62574, "generative machine": 38646, "act surrogates": 2935, "emerged state": 28155, "data representation": 21565, "forward reverse": 35892, "nearly indistinguishable": 65857, "different metrics": 25112, "unified data": 100010, "advancements multiple": 3843, "data correction": 21124, "video input": 102887, "making easier": 58097, "potential augmenting": 73025, "generation complex": 38089, "complex realworld": 16986, "text alignment": 96077, "achieving embodied": 2844, "auxiliary losses": 8987, "simple unified": 88248, "selfattention layers": 86199, "multimodal fusion": 65053, "taskspecific design": 95284, "pairs dataset": 69488, "indoor scenes": 45134, "ranging visual": 79243, "limited annotations": 54393, "general pretrained": 37173, "gpt shown": 39240, "cognitive tasks": 15757, "response patterns": 83150, "correlation humans": 19774, "alignment method": 5094, "lesser extent": 53630, "methods reveal": 59790, "rank adaptation": 79245, "googles palm2": 39157, "domain address": 26353, "approach adaptively": 6718, "lowrank structure": 57609, "inherent deep": 45726, "comprehensive qualitative": 17288, "introduced innovative": 47503, "analysis information": 5556, "generated audio": 37659, "novel twostage": 67276, "talking head": 93840, "stage paper": 90119, "methods identifying": 59670, "identifying promising": 42931, "range basic": 79139, "game playing": 36890, "caption describes": 12320, "generations using": 38521, "quantify quality": 78394, "references using": 80959, "model wins": 61595, "project website": 76051, "textual cues": 96662, "innovation lies": 45845, "diverse human": 26032, "synthesized human": 93237, "insights chatgpt": 46061, "chatgpt preserving": 14102, "generate human": 37487, "superior quality": 92664, "reasoning conversation": 79843, "conversation capabilities": 19317, "specifically align": 89777, "space llms": 89453, "better alignment": 10682, "endtoend pipeline": 28882, "pipeline tailored": 72174, "segmentation models": 86106, "conduct set": 17915, "vision encoders": 102973, "character error": 13316, "rate cer": 79375, "extend large": 32938, "llm incorporating": 55124, "advancements addressing": 3796, "text common": 96132, "embeddings designed": 28077, "prompt inputs": 76348, "assists model": 8072, "capture intricate": 12358, "vqa benchmarks": 103229, "overall improvement": 69298, "improvement comprehensive": 43894, "comprehensive multimodal": 17280, "comparing baseline": 16670, "significant capability": 87702, "applications enabled": 6464, "categories code": 12604, "freely accessible": 36354, "significant development": 87733, "methodologies rely": 59478, "datasets construct": 22188, "dialogues visual": 24943, "tuning approach": 99017, "approach harnesses": 6879, "texttoimage generative": 96624, "research includes": 82631, "includes comprehensive": 44246, "results emphasize": 83578, "assessed capabilities": 7887, "opensource data": 68326, "response paper": 83149, "multidimensional evaluations": 64895, "data accessed": 20936, "visual encoders": 103062, "progress multimodal": 75995, "challenge current": 12867, "current leading": 20711, "leading paradigm": 52874, "available multimodal": 9072, "framework enables": 36113, "enables multimodal": 28606, "risk hallucination": 84497, "hallucination leveraging": 40842, "models validate": 64488, "evaluations experimental": 30849, "inputoutput interface": 45978, "benchmarks instructiontuned": 10361, "demonstrates superiority": 23417, "existing visionlanguage": 31845, "numerous language": 67426, "observed image": 67616, "dalle stable": 20912, "unresolved challenges": 100249, "underlying mathematical": 99508, "mathematical principles": 58579, "make improvements": 57998, "aims examine": 4801, "existing issues": 31727, "visuallanguage models": 103148, "dynamic facial": 26916, "facial expression": 33476, "expression recognition": 32916, "encoder temporal": 28709, "inputs textual": 46012, "facial expressions": 33478, "works use": 104391, "compared current": 16528, "attention community": 8290, "models dms": 62254, "performance past": 71465, "generation largely": 38234, "design innovative": 23795, "text key": 96314, "advantage existing": 3921, "existing powerful": 31791, "demonstrated capability": 23236, "despite strong": 24126, "hinders effectiveness": 41842, "normal abnormal": 66970, "explore utilization": 32759, "lvlm generate": 57664, "image employ": 43038, "provide finegrained": 77478, "design prompt": 23832, "multiple images": 65198, "finetuned instructionfollowing": 34908, "data multimodal": 21428, "images existing": 43089, "challenges maintaining": 13068, "involving multiple": 47872, "reason lack": 79728, "lack specialized": 49050, "training introduce": 98152, "furthermore construct": 36594, "conversational competence": 19364, "selection task": 86178, "substantially exceeding": 92121, "handling realworld": 40954, "robot perception": 84621, "representations abstract": 82087, "skill set": 88586, "learn pretraining": 52960, "pretraining vision": 74621, "interaction scenarios": 47034, "requires accurate": 82360, "lvlms recently": 57670, "witnessed rapid": 103864, "conversational skills": 19401, "abilities paper": 1548, "abilities lvlms": 1534, "integrating detailed": 46717, "image annotations": 43016, "effectively transform": 27475, "llms enables": 55855, "effectively score": 27472, "dialogue quality": 24886, "profound impact": 75819, "impact natural": 43237, "offering new": 67794, "new avenue": 66336, "pairs enable": 69492, "aligning latent": 5046, "object classification": 67469, "metrics experimental": 59915, "audio video": 8491, "promising applications": 76146, "data exhibits": 21204, "visual prompts": 103101, "example providing": 31172, "prompt lets": 76367, "achieve 80": 2475, "learning visual": 53472, "prompt specifically": 76419, "existing visual": 31846, "methods generalization": 59658, "explores key": 32809, "achieve propose": 2564, "results 16": 83452, "16 datasets": 361, "zeroshot audio": 104727, "text ii": 96292, "sentences present": 86562, "dataset demonstrating": 21901, "tuning present": 99078, "audio 3d": 8476, "training training": 98331, "image features": 43040, "layers llama": 52750, "capabilities inference": 11946, "multimodality inputs": 65115, "effectively mitigates": 27457, "notably approach": 67027, "modalities demonstrate": 60432, "ability prompt": 1751, "proposed efficiently": 77195, "improve prompt": 43780, "prompts like": 76773, "context endtoend": 18758, "relying llms": 81605, "results opendomain": 83752, "manipulation tasks": 58226, "mixtureofexpert moe": 60359, "chatgpt conditional": 13644, "dataset addition": 21815, "moe technique": 64692, "tasks dealing": 94513, "semantic queries": 86335, "maps using": 58350, "applications text": 6582, "mapping brain": 58342, "images hand": 43096, "tasks context": 94492, "combines llms": 15994, "llms basic": 55517, "queries demonstrate": 78479, "patterns complex": 70624, "decade witnessed": 22555, "huge success": 42049, "applications face": 6478, "range neural": 79185, "coding tools": 15721, "networks paper": 66200, "techniques compared": 95490, "leading inability": 52851, "integrates textual": 46705, "method evaluated": 59294, "datasets obtain": 22354, "text multimodal": 96340, "multimodal training": 65105, "enhanced capability": 29227, "unveil intriguing": 100333, "prevailing strategy": 74627, "models attain": 61868, "improved truthfulness": 43864, "ethical alignment": 30058, "llama2chat 7b": 54878, "data releasing": 21559, "foster exploration": 35899, "domain need": 26423, "finetuning generate": 35077, "indomain settings": 45127, "unique capabilities": 100074, "audio events": 8481, "shown encouraging": 87450, "encouraging progress": 28807, "llava minigpt4": 54913, "parameters smaller": 70290, "image resolution": 43061, "data mixing": 21409, "parameterefficient training": 70151, "multimodal language": 65063, "capabilities performance": 12041, "finetuning additionally": 35007, "makes stateoftheart": 58075, "forgetting multimodal": 35758, "models catastrophic": 61969, "forgetting mllms": 35756, "evaluate opensource": 30241, "interestingly results": 47166, "dataset improves": 21971, "enhancing alignment": 29307, "mllms demonstrate": 60382, "current mllm": 20733, "text despite": 96172, "exciting new": 31413, "struggle interpret": 91222, "going existing": 39091, "activities objects": 3004, "detailed textual": 24190, "evaluations popular": 30874, "points promising": 72507, "classification demonstrating": 14738, "area aims": 7416, "prompt study": 76423, "considering data": 18210, "propose series": 77107, "highquality videos": 41799, "generating complex": 37879, "grounded multimodal": 40575, "information context": 45426, "domain task": 26457, "trained maximize": 97871, "algorithm called": 4905, "multichoice options": 64879, "rlhf improves": 84568, "vision instruction": 102979, "trained rlhf": 97901, "94 performance": 1432, "best methods": 10609, "model transformer": 61536, "transformer present": 98542, "images hidden": 43097, "version specifically": 102814, "specifically increase": 89835, "noise level": 66860, "video use": 102891, "test approach": 95866, "planning recent": 72277, "short video": 87314, "capability generating": 12167, "modules image": 64674, "models raises": 63955, "embedded llms": 28047, "generation uses": 38493, "uses knowledge": 101232, "gpt4 expand": 39873, "explicit control": 32525, "annotations experiments": 5935, "framework substantially": 36284, "framework dynamically": 36101, "layout guidance": 52774, "better integrating": 10737, "integrating planning": 46742, "augmented language": 8576, "model reasons": 61314, "including llama2": 44407, "analysis comprising": 5464, "comprising human": 17400, "multimodal analysis": 65030, "llms designed": 55786, "tasks spanning": 95131, "categories like": 12613, "experimental insights": 32005, "current capacities": 20671, "encoded using": 28685, "using lowlevel": 101594, "conditional language": 17790, "captions finetune": 12337, "llama outperform": 54789, "commercial gpt4": 16074, "weights datasets": 103550, "datasets publicly": 22381, "comprehension multimodal": 17176, "cost leveraging": 19862, "method introduced": 59338, "mitigate gap": 60262, "surpasses accuracy": 92922, "achieved training": 2681, "datasets codes": 22170, "follow openended": 35653, "crucial factors": 20491, "feature alignment": 33958, "work discover": 104055, "models inherently": 62782, "highquality diverse": 41752, "significantly surpassing": 88030, "dataset accessible": 21811, "study use": 91878, "framework test": 36300, "test feasibility": 95891, "tasks additional": 94348, "dialogue benchmark": 24847, "handle multimodal": 40929, "compared transformerbased": 16654, "studies method": 91418, "making llama": 58118, "llms expanded": 55918, "capability perform": 12197, "identify crucial": 42858, "highlevel semantics": 41565, "perform scalable": 70917, "tasks importantly": 94715, "evaluating mathematical": 30454, "reasoning foundation": 79887, "skills tasks": 88610, "systematically studied": 93374, "comprehensive quantitative": 17289, "mainly attributed": 57844, "rigorous reasoning": 84455, "underscores critical": 99559, "development generalpurpose": 24648, "research project": 82730, "zeroshot semantic": 104865, "tasks directly": 94549, "applied zeroshot": 6646, "tasks testing": 95192, "key modules": 48324, "ability discriminate": 1633, "generation designed": 38112, "tokens proposed": 97224, "reasoning requires": 80012, "text numbers": 96343, "perform logical": 70892, "logical arithmetic": 57251, "twostage pipeline": 99185, "model converts": 60716, "complex question": 16982, "distracting information": 25913, "converted text": 19447, "deliberate reasoning": 22928, "required reasoning": 82319, "reasoning image": 79905, "method pretrained": 59391, "competitively compared": 16829, "data multistep": 21431, "accuracy method": 2311, "endtoend approach": 28870, "pipeline approach": 72140, "questions multimodal": 78897, "information unstructured": 45662, "limits generalization": 54498, "scenarios diverse": 85420, "requirements limited": 82346, "span extraction": 89481, "qa pipeline": 78146, "various offtheshelf": 102510, "offtheshelf large": 67889, "vanilla prompting": 102234, "prompting zeroshot": 76637, "framework successfully": 36285, "successfully transfer": 92287, "scale 10b": 85249, "better solve": 10788, "tasks automatically": 94392, "steps described": 90683, "subsequent steps": 92017, "text andor": 96083, "images limited": 43102, "domain resulting": 26442, "user scenarios": 101039, "benchmark challenge": 10086, "learning multimodal": 53293, "subsequent step": 92016, "expected output": 31895, "output sequence": 69190, "based demonstration": 9498, "19 diverse": 442, "prompted large": 76481, "2023 paper": 558, "present solution": 74059, "divideandconquer approach": 26167, "types utilized": 99275, "llama2chat model": 54879, "method recognize": 59402, "objects text": 67543, "images model": 43103, "model level": 61060, "extract visual": 33248, "different question": 25175, "finegrained multimodal": 34799, "model consider": 60696, "capability leveraging": 12187, "models feature": 62453, "approach potential": 6976, "dataset user": 22119, "uncovering hidden": 99428, "tracking reasoning": 97627, "understanding dialog": 99713, "dialog history": 24828, "accurate response": 2424, "understanding intricate": 99783, "reasoning strategy": 80037, "emphasize critical": 28283, "texttoimage t2i": 96627, "models just": 62827, "just years": 48226, "t2i models": 93613, "diffusion using": 25345, "hard obtain": 40987, "engineering complex": 28953, "revisit existing": 84311, "existing t2i": 31832, "language addressing": 49130, "problem present": 75059, "approach augments": 6747, "techniques offtheshelf": 95567, "scenarios different": 85419, "ability existing": 1640, "degradation llms": 22887, "llms inherent": 56224, "attention provide": 8367, "interactions alongside": 47045, "grounding llm": 40590, "novel powerful": 67226, "integrates discrete": 46697, "sparsity different": 89557, "dataset including": 21975, "hierarchical spatial": 41365, "spatial knowledge": 89570, "grounding tasks": 40594, "tasks greatly": 94686, "reveal significantly": 84174, "improved capability": 43831, "model multitask": 61146, "understanding integrating": 99774, "success typically": 92243, "typically limited": 99293, "difficult establish": 25291, "competitive counterparts": 16797, "models adopt": 61795, "multistage training": 65324, "training lowrank": 98186, "demonstrate compared": 23045, "indicates models": 45034, "extensive zeroshot": 33144, "reasonably good": 79743, "performance largest": 71346, "like openflamingo": 54205, "significant enhancement": 87745, "set stage": 86938, "works primarily": 104377, "datasets small": 22417, "proves highly": 77393, "offers series": 67860, "provide compelling": 77423, "compelling evidence": 16754, "providing powerful": 77785, "backbone downstream": 9243, "music video": 65416, "promising technique": 76205, "environmental monitoring": 29634, "management disaster": 58184, "disaster management": 25549, "domain lack": 26409, "tasks nonetheless": 94891, "produce detailed": 75616, "detailed accurate": 24151, "accurate captions": 2397, "class semantics": 14700, "annotation costly": 5888, "relatively noisy": 81321, "problem explore": 75020, "texts chatgpt": 96546, "class description": 14692, "encoder layers": 28700, "layers paper": 52755, "paper reveals": 69938, "reveals large": 84215, "trained solely": 97907, "previously overlooked": 74755, "encoder layer": 28699, "directly process": 25514, "tokens work": 97242, "work pushes": 104242, "associated language": 8087, "opt different": 68533, "propose information": 77004, "hypothesis explain": 42735, "effectiveness pretrained": 27564, "visual encoding": 103063, "focus relevant": 35551, "work inspires": 104135, "reproducible pipeline": 82202, "approaches method": 7176, "finally perform": 34553, "perform ablation": 70813, "studies understand": 91457, "proposes multimodal": 77274, "helps alleviate": 41304, "features input": 34007, "llms predict": 56549, "additionally uncover": 3350, "lightweight models": 54045, "generate engaging": 37440, "specifically represent": 89871, "information surrounding": 45642, "questions aim": 78772, "lightweight model": 54044, "baselines regarding": 9847, "coherence automatic": 15767, "metrics bertscore": 59887, "extensive ablation": 32990, "generating dataset": 37886, "dataset solving": 22083, "systems generate": 93461, "systems output": 93521, "output poses": 69177, "evaluation requires": 30749, "captions paper": 12338, "score 16": 85695, "potential aid": 72995, "given relevant": 38949, "models surpassed": 64306, "leading model": 52868, "hallucinations address": 40857, "problem leveraging": 75040, "encouraging model": 28804, "respectively paper": 83085, "question code": 78648, "puzzle solving": 78085, "manually construct": 58291, "carefully evaluate": 12422, "gpt4v exhibits": 40189, "gpt4v shows": 40196, "refusal behavior": 81033, "worse results": 104443, "knowledge evaluation": 48553, "nontrivial performance": 66961, "tasks similar": 95114, "modalities image": 60434, "reveal ability": 84132, "insights application": 46055, "models posit": 63834, "potentially benefit": 73328, "vector quantization": 102702, "model versatile": 61576, "results unconditional": 83897, "information compared": 45419, "furthermore integration": 36630, "relying large": 81603, "incorporates key": 44682, "llm engine": 55057, "inputs generates": 45996, "designs using": 23987, "using semantic": 101753, "enabling generation": 28637, "benefit incorporating": 10451, "llms recursively": 56672, "explainable approach": 32447, "capability adapt": 12148, "adapt new": 3049, "capability particularly": 12196, "plays essential": 72381, "conduct qualitative": 17906, "framework contains": 36081, "achieve certain": 2489, "respectively performance": 83086, "performance certain": 71036, "gap compared": 36915, "provides baseline": 77642, "different popular": 25147, "enables deep": 28579, "deep fusion": 22749, "fusion vision": 36687, "language features": 49217, "surpassing matching": 92965, "codes checkpoints": 15624, "parsons problems": 70343, "demonstrated models": 23293, "explanations students": 32517, "code pass": 15434, "rapidly adapt": 79339, "changes learning": 13293, "potential academic": 72979, "presented diverse": 74092, "diverse visual": 26128, "representations results": 82120, "panacea issues": 69569, "led substantial": 53535, "alignment strategies": 5114, "leveraging efficient": 53837, "video datasets": 102879, "understanding diverse": 99716, "method taskspecific": 59444, "furthermore work": 36670, "finegrained perception": 34801, "generalpurpose multimodal": 37361, "activate relevant": 2969, "relevant tools": 81485, "users inputs": 101121, "data acquire": 20944, "existing capabilities": 31680, "query directly": 78522, "enabling new": 28652, "new scenarios": 66521, "derived image": 23651, "model wide": 61593, "versatile multimodal": 102791, "trained realworld": 97897, "realworld synthetic": 79705, "directly integrating": 25503, "domains mixed": 26552, "efficiently incorporate": 27854, "tasks joint": 94783, "taskspecific instructions": 95288, "pose estimation": 72742, "mutual enhancement": 65430, "providing language": 77769, "robust image": 84661, "representations based": 82088, "aiming better": 4762, "exceptional visual": 31390, "resolve ambiguities": 82938, "attributes using": 8460, "current zeroshot": 20802, "target classes": 93855, "providing useful": 77811, "new class": 66363, "correct label": 19671, "performance high": 71287, "modalities comprehensive": 60430, "mllms integrate": 60391, "capabilities like": 11974, "humancomputer interactions": 42461, "intelligence mllms": 46875, "mllms face": 60384, "processing semantic": 75566, "semantic gap": 86311, "lead erroneous": 52801, "enhance accessibility": 29132, "study surveys": 91858, "change data": 13269, "understand multimodal": 99628, "data tools": 21696, "data common": 21082, "dataset field": 21942, "information alignment": 45401, "million people": 60038, "lack labeled": 49027, "presenting novel": 74109, "novel visionlanguage": 67281, "model dedicated": 60738, "based vision": 9759, "text decoder": 96167, "generation fluency": 38169, "language components": 49161, "acquiring data": 2921, "better baselines": 10692, "datasets example": 22243, "13 points": 261, "human brain": 42115, "reasoning current": 79850, "gpt4v llava": 40192, "pattern recognition": 70618, "intermediate representations": 47216, "representations furthermore": 82098, "distinct domains": 25863, "aim construct": 4698, "construct benchmark": 18413, "reasoning introduce": 79912, "tasks sourced": 95129, "thoughts cot": 96863, "representation alignment": 82048, "tasks visuallanguage": 95251, "understanding existing": 99732, "feature spaces": 33979, "llm learn": 55150, "projection layers": 76060, "representation language": 82059, "foundational llm": 35979, "llm unified": 55301, "simple robust": 88234, "inputs llm": 46001, "framework current": 36083, "landscape artificial": 49103, "intelligence foundation": 46848, "advancements language": 3827, "vision domains": 102965, "models metas": 63609, "computational burdens": 17438, "significant barrier": 87693, "models facilitating": 62438, "facilitating development": 33533, "key features": 48300, "models seamlessly": 64148, "create comprehensive": 20147, "components model": 17091, "llms introduces": 56249, "field computer": 34360, "unified multimodal": 100034, "perform key": 70888, "content user": 18702, "lack information": 49023, "images train": 43120, "tweets total": 99154, "capability existing": 12160, "existing image": 31723, "difficult handle": 25295, "settings provide": 87090, "automatically detect": 8854, "select appropriate": 86119, "iteratively generate": 48076, "generate satisfactory": 37582, "chatgpt marks": 14007, "general evaluation": 37126, "evaluation encompasses": 30585, "retrieval action": 83959, "aspects propose": 7785, "existing video": 31844, "pairs finetuning": 69497, "available soon": 9089, "planning capability": 72256, "physical simulation": 72066, "script based": 85820, "aligned textual": 5030, "prompt experimental": 76320, "largescale api": 52488, "platform evaluation": 72307, "toolaugmented llms": 97339, "indepth error": 44951, "way new": 103389, "challenges suggesting": 13129, "finetuning multimodal": 35147, "enhancing mllms": 29351, "ability discern": 1631, "textual content": 96657, "images specifically": 43115, "encoder large": 28696, "data instructions": 21335, "discerning text": 25558, "validating effectiveness": 102117, "grounding large": 40589, "models extending": 62423, "challenging inherent": 13177, "addressing gaps": 3540, "text enrich": 96194, "uses offtheshelf": 101248, "generative questionanswering": 38713, "benchmarks specifically": 10413, "object grounding": 67475, "llava model": 54914, "model extends": 60848, "conversation grounding": 19324, "tasks project": 94974, "using gpt4v": 101496, "integration vision": 46782, "mllms like": 60392, "poses substantial": 72786, "addressing nuances": 3553, "perception understanding": 70795, "reflect user": 81012, "accurately provide": 2463, "assessment model": 7964, "performance comparative": 71079, "gap existing": 36927, "applications online": 6535, "models deployment": 62198, "gpt3 question": 39517, "pretrained text": 74458, "text encoder": 96190, "classification layer": 14758, "various architectures": 102355, "minimal accuracy": 60078, "pytorch models": 78116, "bolster robustness": 11248, "models hardware": 62648, "studies domain": 91380, "domain code": 26361, "evaluating gpt4s": 30434, "vision capabilities": 102961, "models showcased": 64173, "studies overlook": 91423, "inherent realworld": 45740, "handling complex": 40945, "realistic assessment": 79562, "content outperform": 18665, "despite improvements": 24075, "mathematical questions": 58585, "remain challenge": 81612, "challenge stateoftheart": 12934, "diffusion image": 25337, "accuracy complex": 2227, "images challenging": 43088, "inspired advancements": 46167, "prompt image": 76339, "introduce text": 47493, "integrate text": 46670, "manner based": 58232, "utilizes pretrained": 101996, "clip enhance": 14955, "excellent results": 31356, "results synthetic": 83886, "unable generate": 99356, "generate images": 37495, "llama v2": 54803, "pair dataset": 69468, "largescale synthetic": 52574, "dataset long": 21998, "using visionlanguage": 101848, "achieving 15": 2815, "human voting": 42416, "reached new": 79475, "executing intricate": 31448, "datasets measure": 22332, "taskspecific performance": 95297, "generate vast": 37645, "symbolic representations": 93132, "curated data": 20629, "closely matches": 15029, "automated assessments": 8675, "flexible scalable": 35433, "answering propose": 6135, "novel challenging": 67127, "capabilities perception": 12038, "cover 40": 20046, "responses openended": 83269, "questions employ": 78836, "approach instead": 6906, "novel adversarial": 67082, "automatic evaluator": 8783, "stable evaluation": 90096, "furthermore assess": 36581, "study uncover": 91869, "limited temporal": 54472, "thinking capability": 96802, "studies emerged": 91381, "unexplored bridge": 99963, "bridge research": 11440, "novel visual": 67283, "benchmark encompasses": 10149, "core capabilities": 19535, "dimensions benchmark": 25389, "using selected": 101751, "vlms evaluate": 103184, "answers use": 6227, "resource future": 82963, "research realm": 82754, "paper does": 69686, "understanding study": 99883, "linguistic visual": 54605, "visual capabilities": 103051, "rich textual": 84426, "descriptions various": 23734, "recognition performance": 80613, "evaluate gpt4s": 30197, "experiments systematically": 32310, "accuracy findings": 2268, "22 respectively": 607, "hope research": 41958, "knowledge storage": 48769, "knowledge powerful": 48702, "powerful text": 73471, "instructionfollowing responses": 46464, "enhance overall": 29190, "memory component": 59018, "models feasibility": 62451, "feasibility method": 33945, "using vision": 101846, "input textual": 45966, "recognition textbased": 80619, "integrated architecture": 46675, "processes input": 75436, "enhancing overall": 29358, "overall user": 69338, "humanai interactions": 42433, "demonstrate capability": 23036, "paradigm creating": 70026, "creating efficient": 20221, "involving visual": 47879, "versatility proposed": 102800, "data particularly": 21473, "dataset leveraging": 21994, "multistep data": 65327, "wider variety": 103772, "improves baseline": 44015, "humanities social": 42502, "30 subjects": 751, "chemical structures": 14501, "structures unlike": 91202, "reasoning domainspecific": 79865, "knowledge challenging": 48467, "experts evaluation": 32408, "gpt4v gemini": 40190, "tokens large": 97210, "method tackle": 59440, "answering face": 6100, "context token": 18863, "visual cues": 103056, "strategy significantly": 90917, "critical information": 20332, "existing frameworks": 31718, "learning generation": 53177, "autoregressive manner": 8970, "possible proposed": 72911, "effectively utilizes": 27482, "memory efficient": 59034, "ensuring accurate": 29472, "accurate tracking": 2430, "existing finetuningbased": 31713, "approaches llmbased": 7170, "llmbased approaches": 55337, "measured standard": 58754, "metrics additionally": 59876, "cospeech gesture": 19829, "limits addressing": 54491, "wrt different": 104537, "representation different": 82053, "supervision based": 92752, "enabling generate": 28636, "defined emotion": 22867, "3d objects": 893, "objects present": 67541, "object semantics": 67482, "physical properties": 72064, "scores sampled": 85779, "gpt4 summarization": 40111, "responses secondly": 83306, "auxiliary inputs": 8986, "alignment makes": 5092, "makes efficient": 58056, "challenging llm": 13188, "address existing": 3395, "transformer vit": 98552, "llm generative": 55104, "alignment objectives": 5100, "different image": 25075, "produces strong": 75702, "alignment efficient": 5066, "example using": 31180, "using 10": 101271, "data reach": 21535, "95 performance": 1440, "increasing demand": 44829, "combines capabilities": 15989, "comprehension creativity": 17161, "diffusion xl": 25346, "approach showcasing": 7017, "control dialogue": 19199, "enables robots": 28612, "robots acquire": 84637, "skills human": 88599, "sequences actions": 86675, "containing tasks": 18540, "short context": 87278, "task recognition": 94218, "incorporating information": 44702, "experiments underscore": 32323, "new approaches": 66331, "graphs pretrained": 40448, "distill knowledge": 25807, "3d model": 890, "methods generate": 59659, "multiple entities": 65184, "3d modeling": 891, "represented nodes": 82166, "node edge": 66850, "different objects": 25131, "graph creation": 40370, "design text": 23859, "object entities": 67473, "task aiming": 93932, "using detection": 101407, "comprehensively explore": 17328, "including improper": 44387, "issue detection": 47927, "models impact": 62702, "impact local": 43229, "simple methods": 88216, "methods demonstrating": 59591, "models advancement": 61798, "cot approach": 19943, "tasks significance": 95110, "cot approaches": 19944, "tasks selection": 95087, "examples multimodal": 31256, "using retrieval": 101741, "automatically select": 8896, "select demonstration": 86122, "furthermore employ": 36606, "groups based": 40621, "popular benchmark": 72617, "generation diverse": 38124, "descriptions remains": 23726, "divideandconquer strategy": 26168, "strategy propose": 90911, "gpt35 use": 39681, "descriptions guide": 23707, "methods especially": 59624, "reasoning common": 79831, "crucial practical": 20513, "model common": 60677, "common style": 16178, "hope benchmark": 41947, "benchmark analysis": 10072, "analysis shed": 5670, "light developing": 54000, "recent significant": 80348, "increasingly recognized": 44904, "lmms support": 57093, "chat performance": 13389, "contain short": 18519, "captions address": 12336, "issue created": 47925, "capabilities better": 11847, "parsers fail": 70333, "issues make": 48001, "hard model": 40983, "narratives generated": 65504, "data taskspecific": 21686, "data believe": 21021, "pioneering work": 72135, "spatial localization": 89571, "reasoning gpt4": 79900, "diagnostic reasoning": 24807, "sota 10": 89301, "gpt4 score": 40067, "closed set": 14989, "paper contributes": 69659, "employing generative": 28445, "create varied": 20186, "multiple metrics": 65221, "language automatically": 49142, "memory networks": 59052, "networks transformers": 66207, "additionally framework": 3313, "frozen large": 36403, "domains specifically": 26591, "clip extract": 14956, "effectively model": 27459, "existing baseline": 31668, "rich dataset": 84413, "using lora": 101592, "lora method": 57445, "commercial gpu": 16075, "involves training": 47856, "augmented chatgpt": 8563, "chatgpt addresses": 13500, "addresses question": 3523, "smallerscale models": 88802, "models comparative": 62052, "gpt4 google": 39909, "bard demonstrate": 9354, "approach highlights": 6882, "identifying mitigating": 42927, "analysis improvement": 5547, "class data": 14691, "promising progress": 76191, "progress comprehending": 75973, "cifar10 cifar100": 14629, "chatgpt response": 14180, "response prompts": 83153, "different values": 25250, "values given": 102217, "vision task": 103008, "task needs": 94158, "low efficiency": 57512, "suffer outofvocabulary": 92316, "outofvocabulary problem": 68911, "generation integration": 38212, "integration new": 46778, "new vision": 66572, "original clip": 68762, "new document": 66380, "understanding key": 99785, "training involves": 98153, "modalities including": 60436, "respectively additionally": 83054, "audio tasks": 8488, "role bridging": 84760, "relatively explored": 81309, "explored study": 32786, "properties flexibility": 76898, "overall efficiency": 69289, "preservation local": 74182, "context visual": 18875, "understanding based": 99673, "desirable properties": 23994, "strategies effectively": 90803, "impact individual": 43216, "achieving significantly": 2877, "user friendly": 100989, "ai using": 4609, "significant using": 87865, "compared generative": 16552, "tools gpt4": 97415, "gpt4 stable": 40097, "model inputs": 61012, "workflow develop": 104314, "architecture enables": 7344, "tools easily": 97389, "deployed models": 23567, "models desired": 62202, "sparked research": 89515, "research generative": 82613, "reasoning potential": 79978, "primarily limited": 74788, "information contains": 45424, "certain reasoning": 12775, "especially compared": 29863, "establish dataset": 29971, "additionally develop": 3290, "challenges task": 13130, "limitations code": 54306, "learns perform": 53503, "joint modeling": 48155, "achieve decent": 2508, "decent zeroshot": 22564, "capability requires": 12204, "imagetext data": 43131, "accuracy enhanced": 2254, "multimodal pretraining": 65096, "reasoning enhanced": 79870, "taking inspiration": 93833, "present innovative": 73997, "enhances capabilities": 29277, "models stepbystep": 64258, "particular context": 70399, "context face": 18769, "improve precision": 43772, "step conduct": 90620, "quality degradation": 78250, "various challenging": 102379, "challenging cases": 13158, "significant boost": 87697, "rgb images": 84399, "specifically build": 89786, "transformerbased network": 98587, "designed explicitly": 23911, "comparisons ablation": 16734, "object identifiers": 67478, "handling challenging": 40944, "tasks questionanswer": 94998, "questionanswer pair": 78724, "focuses solely": 35616, "users pose": 101157, "introduce use": 47497, "establish reliable": 29975, "object identifier": 67477, "complex spatial": 17009, "spatial relationships": 89577, "space llm": 89452, "involves learning": 47848, "objects attributes": 67537, "showcase effectiveness": 87356, "method additionally": 59193, "additionally create": 3287, "dataset aims": 21820, "promising outcomes": 76176, "approaches straightforwardly": 7206, "irrelevant content": 47900, "length text": 53612, "position encoding": 72802, "proposed attention": 77186, "mechanism significantly": 58809, "approach captures": 6768, "challenging openended": 13202, "answering benchmarks": 6081, "potential increase": 73140, "model vlm": 61579, "generalist visual": 37225, "achieves state": 2795, "outperforms llmbased": 69078, "tasks mind2web": 94864, "art model": 7523, "model codes": 60666, "embodied ai": 28105, "simulated environments": 88315, "play critical": 72333, "ai creation": 4356, "requires expertise": 82377, "look like": 57421, "3d assets": 888, "diverse objects": 26063, "objects address": 67536, "largescale human": 52522, "ai training": 4603, "agents navigate": 4212, "benchmark advance": 10071, "synthesis capabilities": 93206, "features images": 34004, "threefold provide": 96890, "features based": 33987, "reveals limitations": 84216, "excitement potential": 31405, "true capabilities": 98908, "dataset sourced": 22084, "finegrained analysis": 34782, "identification user": 42819, "sheet music": 87245, "music image": 65412, "learning modern": 53287, "label information": 48894, "highdimensional nature": 41479, "semantically relevant": 86369, "relevant concepts": 81449, "instance method": 46213, "method exhibits": 59296, "exhibits stateoftheart": 31631, "offers fresh": 67836, "label generation": 48893, "captioning large": 12327, "capabilities modern": 12005, "running model": 84955, "model quite": 61307, "datasets object": 22352, "extensive public": 33119, "present difficult": 73970, "challenge language": 12894, "instances work": 46231, "grammatical mistakes": 40344, "information communication": 45418, "provide precise": 77543, "grammar correction": 40326, "way increase": 103370, "making data": 58092, "data captions": 21036, "extensive research": 33124, "mathematical problem": 58580, "work largely": 104161, "focused textbased": 35595, "problems limited": 75165, "problems involving": 75157, "information addressing": 45397, "geometric problems": 38790, "analyze limitations": 5772, "current multimodal": 20741, "advantage unique": 3930, "textual llms": 96682, "structured reasoning": 91180, "enhanced vision": 29257, "prompting evaluation": 76528, "tasks mathematical": 94856, "graphic design": 40425, "using deep": 101404, "struggle generating": 91219, "adapter module": 3114, "starcoder model": 90247, "code tokens": 15543, "relevant metrics": 81468, "metrics benchmark": 59886, "benchmark introduce": 10196, "novel datasets": 67143, "significant enhancements": 87746, "generation technology": 38464, "postprocessing approach": 72957, "plugged existing": 72451, "adverse effect": 4014, "results inconsistent": 83665, "qa generation": 78134, "llm llama": 55162, "llama generate": 54752, "lvlm llava": 57665, "capabilities multimodal": 12007, "understanding problem": 99844, "synthesizing visual": 93246, "instructions sequential": 46561, "limits current": 54496, "previously proved": 74757, "proved difficult": 77372, "extensive memory": 33116, "notable disparities": 66998, "processing complex": 75468, "showed high": 87394, "multiple steps": 65262, "importance developing": 43448, "processes complex": 75429, "endow large": 28859, "understanding enabling": 99727, "enabling tackle": 28661, "comprehensively covers": 17323, "perception advanced": 70781, "stateoftheart gpt4v": 90352, "upper limits": 100380, "detailed explanations": 24168, "mme benchmark": 60410, "benchmark demonstrates": 10137, "potential gemini": 73101, "intelligence project": 46883, "hierarchical multimodal": 41364, "unlike current": 100167, "tasks theoretical": 95201, "theoretical grounding": 96741, "classic framework": 14710, "framework learning": 36192, "novel hierarchical": 67177, "decreased performance": 22719, "comparison earlier": 16708, "demonstrates improved": 23381, "higherlevel tasks": 41535, "models consistency": 62096, "human comprehension": 42137, "demonstrating need": 23436, "improvement based": 43885, "driven rapid": 26847, "emerged mainstream": 28140, "breakthroughs field": 11401, "existing dlbased": 31702, "focus unimodal": 35565, "world usually": 104419, "structure uses": 91151, "image metadata": 43053, "encoder crossmodal": 28688, "benefiting design": 10464, "generalization achieves": 37247, "accuracy stateoftheart": 2367, "stateoftheart semantic": 90474, "methods largescale": 59707, "informative answers": 45680, "contains long": 18555, "freeform answers": 36345, "round dialogue": 84874, "description appropriate": 23677, "readily generate": 79516, "annotators rate": 5968, "rate generated": 79385, "diverse dialogue": 26011, "dialogue topics": 24917, "89 compared": 1388, "task finetune": 94063, "applications 3d": 6398, "models 3d": 61716, "recognition abilities": 80586, "recognition ability": 80587, "ability leverage": 1701, "multiple foundation": 65193, "advancing field": 3907, "challenges limited": 13062, "tasks gemini": 94660, "gemini vs": 37071, "preliminary comparison": 73856, "models qualitative": 63945, "visual processing": 103096, "intelligence paper": 46881, "presents indepth": 74141, "study pioneering": 91772, "gpt4vision study": 40199, "intelligence emotional": 46843, "series structured": 86752, "various industrial": 102448, "industrial application": 45151, "ensure balanced": 29442, "providing detailed": 77741, "results combining": 83503, "extensive collection": 33004, "reasoning framework": 79889, "framework recent": 36252, "particularly enhancing": 70460, "enhancing reasoning": 29368, "impact combining": 43194, "combining chainofthought": 16006, "experiments aimed": 32104, "combined impact": 15981, "approaches enhancing": 7135, "lms reasoning": 57162, "capabilities providing": 12061, "insights research": 46130, "accurate reliable": 2422, "attribute descriptions": 8437, "possible automatically": 72893, "descriptions make": 23717, "results end": 83582, "sentences describing": 86552, "used person": 100868, "prompts obtained": 76786, "experiments existing": 32192, "efficient multimodal": 27804, "mllms gpt4v": 60387, "bridging language": 11449, "considerable computational": 18153, "present notable": 74019, "cpu inference": 20115, "local deployment": 57196, "devices work": 24765, "scenarios furthermore": 85436, "stages use": 90139, "long input": 57312, "longrange temporal": 57396, "reasoning needed": 79958, "specialized prompt": 89639, "benchmark method": 10212, "accuracy outperforming": 2323, "absolute gain": 1914, "reasoning unveiling": 80078, "impacted academic": 43274, "capabilities facilitating": 11903, "specifically multimodal": 89854, "limited dataset": 54415, "does fully": 26292, "analysis 12": 5416, "general domainspecific": 37123, "identify common": 42854, "commonsense problems": 16224, "need advancements": 65907, "advancements enhancing": 3810, "taking step": 93834, "transformative role": 98480, "education integration": 27158, "systems education": 93431, "enhancing teaching": 29371, "vision gpt4v": 102978, "processing multimodal": 75509, "learning landscapes": 53232, "explores transformative": 32821, "range content": 79147, "assessment feedback": 7947, "potential learning": 73165, "calling robust": 11780, "responsible integration": 83351, "underscores necessity": 99569, "approach implementing": 6889, "education disciplines": 27145, "implications aim": 43365, "textual contexts": 96660, "longcontext capability": 57350, "alignment tasks": 5116, "models presenting": 63861, "strategically partitioning": 90787, "unimodal text": 100058, "unimodal multimodal": 100057, "notably reducing": 67045, "imagetext tasks": 43134, "significant superiority": 87859, "14 diverse": 306, "videotext tasks": 102902, "web agent": 103475, "capability boundaries": 12149, "answering work": 6168, "potential lmms": 73186, "agent follow": 4131, "follow natural": 35650, "understanding acting": 99667, "benchmark addition": 10068, "offline evaluation": 67876, "new online": 66467, "evaluation setting": 30773, "developing tool": 24599, "presents great": 74140, "agents successfully": 4238, "websites manually": 103514, "develop paper": 24473, "different stateoftheart": 25207, "stateoftheart algorithms": 90306, "create rich": 20174, "rich text": 84425, "ensuring comprehensive": 29475, "evaluation strategy": 30793, "insights strengths": 46136, "experiments aim": 32103, "aim stimulate": 4738, "step creating": 90622, "future assessments": 36700, "recently advanced": 80449, "advancement realm": 3794, "compact multimodal": 16350, "demonstrates smaller": 23406, "27b parameters": 694, "parameters effectively": 70202, "corpora model": 19583, "model delivers": 60740, "reasoning knowledgebased": 79917, "perception remarkable": 70793, "understanding interaction": 99777, "inputs exploring": 45993, "processing information": 75487, "information multiple": 45547, "dealing multiple": 22514, "accurately capture": 2442, "range opensource": 79189, "closedsource large": 15001, "including gpt4v": 44374, "performance develop": 71135, "based identified": 9566, "work showed": 104264, "models implemented": 62705, "similar bert": 88054, "text used": 96473, "used generative": 100814, "tasks freeform": 94655, "challenges generating": 13029, "likelihood objective": 54249, "gpt2 text": 39356, "tasks paves": 94937, "way build": 103345, "llms operate": 56470, "llm new": 55175, "recently surge": 80563, "surge popularity": 92894, "benchmarks llm": 10375, "guidance enhancing": 40717, "encoding models": 28747, "paradigm aligning": 70021, "aligning llm": 5047, "fmri data": 35494, "specifically utilize": 89892, "utilize llm": 101947, "minimize distance": 60112, "resulting higher": 83429, "benchmark understanding": 10272, "puzzles dataset": 78087, "original examples": 68773, "13 categories": 259, "models combine": 62038, "string manipulation": 90992, "reasoning understanding": 80077, "cognition making": 15730, "making complex": 58090, "accuracy just": 2298, "understand parts": 99635, "identify major": 42880, "reasoning multimodal": 79948, "tasks representative": 95042, "works like": 104364, "challenges employing": 13002, "application gpt4v": 6360, "process complex": 75280, "complex 3d": 16909, "enabling achieve": 28624, "recognition capabilities": 80590, "domain gap": 26393, "diverse scenarios": 26095, "problems particularly": 75181, "humans ability": 42567, "mathematics tasks": 58608, "performance gemini": 71247, "analyses using": 5412, "scoring accuracy": 85788, "performance adapting": 70972, "capability handling": 12173, "educational tasks": 27220, "suitable tool": 92464, "involving multimodal": 47871, "theory mind": 96766, "mind tom": 60062, "tom ability": 97245, "essential ingredient": 29949, "social intelligence": 88869, "models aspects": 61861, "existing tom": 31839, "use unimodal": 100717, "human tom": 42397, "mind based": 60060, "comprehensively evaluates": 17326, "tom capacity": 97248, "bayesian inverse": 9912, "inverse planning": 47608, "utilizes language": 101989, "conducted systematic": 17986, "lack robust": 49046, "robust tom": 84689, "results leveraging": 83708, "highquality diversified": 41753, "studies propose": 91430, "multifaceted approach": 64907, "rulebased templates": 84933, "gpt4v visual": 40197, "finetuned dataset": 34879, "noticed models": 67067, "evaluation structure": 30795, "establish new": 29973, "chatgpt visual": 14351, "reasoning interaction": 79911, "fields domains": 34424, "perform humanlike": 70882, "natural image": 65550, "interpretation techniques": 47296, "llmpowered agent": 55381, "chatgpt connect": 13648, "connect various": 18091, "solve complicated": 89170, "given user": 38983, "user request": 101033, "execute subtask": 31440, "response according": 83118, "trained natural": 97882, "capable directly": 12230, "interpretation results": 47294, "experiments examples": 32191, "tackle wide": 93740, "extended tasks": 32958, "years integration": 104598, "intelligence particularly": 46882, "patterns human": 70630, "proxy human": 77837, "applications collect": 6432, "utilizing gpt4": 102020, "device experimental": 24758, "gaze patterns": 37043, "interaction wide": 47040, "aligned embeddings": 5016, "enabling retrieval": 28658, "data shared": 21620, "limitation stems": 54292, "embeddingbased methods": 28072, "perform compositional": 70844, "reasoning method": 79939, "dataset obtains": 22019, "improvement 10": 43870, "parameters 7b": 70163, "researchers limited": 82873, "current lvlms": 20723, "allowing model": 5180, "negative samples": 66068, "sample data": 85084, "information corresponding": 45428, "corresponding natural": 19799, "extending llms": 32969, "cost requires": 19880, "hardware resources": 41012, "integrates cot": 46696, "adopts twostage": 3654, "knowledge kgs": 48639, "hallucinations enhancing": 40862, "empowers model": 28514, "external context": 33177, "providing informed": 77762, "induced generate": 45138, "inaccurate content": 44187, "content specific": 18692, "scenarios especially": 85423, "remains question": 81692, "encompasses 10": 28754, "terms different": 95810, "prominent opensourced": 76106, "gpt4v additionally": 40186, "alignment data": 5060, "reveals current": 84206, "indicating substantial": 45046, "humans addition": 42569, "addition human": 3191, "metrics using": 59976, "trends performance": 98855, "largescale collection": 52499, "led new": 53526, "development autonomous": 24615, "agents existing": 4187, "existing web": 31847, "innovative large": 45856, "agent complete": 4123, "interacting realworld": 46992, "popular websites": 72692, "leveraging multimodal": 53881, "task success": 94259, "exceptional capability": 31370, "agreement human": 4280, "providing reliable": 77792, "innovatively combines": 45871, "addresses limitations": 3519, "offering accurate": 67781, "accurate versatile": 2433, "vit models": 103161, "processing significantly": 75568, "diverse environments": 26017, "environments including": 29646, "satellite imagery": 85191, "inputs like": 46000, "reference images": 80931, "approach applies": 6740, "lora parameters": 57447, "vision understanding": 103015, "producing highquality": 75712, "benchmarks significantly": 10410, "highlights remarkable": 41668, "vision detection": 102964, "accurately interpreting": 2457, "elements paper": 27969, "study enhancing": 91600, "understanding reduce": 99862, "mllms performance": 60394, "maintains original": 57909, "resulting enhanced": 83428, "outperform sota": 68967, "10 benchmarks": 99, "benchmarks achieving": 10306, "codes facilitate": 15633, "daily activities": 20898, "lms furthermore": 57126, "tackle challenging": 93717, "limitations stateoftheart": 54372, "capabilities results": 12071, "gpt4s responses": 40180, "graph reasoning": 40405, "tasks graph": 94684, "graph structures": 40410, "robotic planning": 84627, "comprehend graph": 17130, "textual format": 96675, "overlook rich": 69402, "rich visual": 84427, "structures visual": 91203, "paper step": 69959, "model gpt4v": 60963, "novel fusion": 67173, "information different": 45436, "prompts fed": 76720, "fed chatgpt": 34046, "chatgpt obtain": 14041, "textual semantic": 96696, "paradigm achieves": 70020, "achieves satisfactory": 2780, "results image": 83654, "requires world": 82421, "answer recently": 6051, "bases large": 9867, "llm superior": 55276, "like instructblip": 54175, "question relevant": 78701, "language information": 49280, "information generate": 45491, "manual prompts": 58277, "prompts encoded": 76698, "generate knowledge": 37514, "learn joint": 52949, "extract useful": 33245, "useful abstractions": 100940, "allows study": 5210, "typically employ": 99286, "effect human": 27242, "considerable efforts": 18156, "progress designing": 75975, "parameters challenging": 70182, "model owners": 61195, "safeguard model": 84996, "model ownership": 61196, "comprises modules": 17388, "modules modules": 64677, "modules optimized": 64682, "assess improve": 7857, "imagecaption pairs": 43074, "generation humans": 38197, "score 72": 85698, "2000 examples": 504, "parameters family": 70212, "covering publicly": 20081, "correlation multimodal": 19776, "model support": 61474, "emotional intelligence": 28260, "hindered limited": 41833, "technological advancements": 95617, "innovative solutions": 45865, "focusing developing": 35622, "approach involved": 6912, "framework utilizing": 36318, "leveraged gpt4": 53774, "researchers conducted": 82843, "contribution field": 19168, "zeroshot abilities": 104721, "abilities multimodal": 1539, "heavily quality": 41213, "quality instructions": 78299, "visual multimodal": 103090, "notably achieves": 67024, "requires integrating": 82390, "integrating advanced": 46708, "advanced data": 3687, "challenge efficiently": 12873, "large video": 52369, "audio textual": 8490, "growing adoption": 40640, "robotic task": 84629, "models llava": 62948, "understand factors": 99608, "compile suite": 16840, "spanning visual": 89505, "axes including": 9228, "including pretrained": 44448, "training checkpoints": 97956, "opensource vlms": 68413, "ai improve": 4431, "current example": 20688, "tool analyze": 97263, "analyze images": 5765, "makes clear": 58052, "recommendation large": 80646, "offers potential": 67854, "faced traditional": 33463, "understanding static": 99878, "dynamics application": 26949, "datasets second": 22409, "lvlms suffer": 57671, "addressing multiple": 3550, "novel reasoning": 67239, "reasoning scheme": 80018, "lvlms generate": 57668, "generate item": 37513, "image comprehension": 43029, "item titles": 48035, "candidate items": 11804, "refines prompts": 80993, "task specification": 94249, "specification generate": 89895, "completion work": 16906, "image generated": 43041, "images realistic": 43109, "physical spatial": 72068, "language agent": 49131, "models agents": 61809, "simulation environment": 88323, "surpasses standard": 92943, "gpt4 language": 39947, "react reflexion": 79486, "textto3d models": 96616, "preference alignment": 73793, "minimal alignment": 60080, "knowledge benchmarks": 48451, "alignment model": 5096, "model finegrained": 60883, "boosting language": 11290, "multitude applications": 65378, "technology advanced": 95640, "understand natural": 99629, "users specifically": 101182, "european space": 30113, "semantic analysis": 86292, "detailed prompts": 24181, "descriptions chatgpt": 23696, "finally offer": 34549, "generated chatgpt35": 37674, "potential training": 73289, "training visionlanguage": 98351, "mllms demonstrated": 60383, "demonstrated notable": 23294, "notable capabilities": 66995, "deployment hindered": 23599, "smaller pretrained": 88788, "models inevitably": 62770, "smaller better": 88742, "backbones efficient": 9256, "tuning despite": 99028, "data challenges": 21042, "challenges lead": 13057, "issues poor": 48006, "forgetting address": 35752, "available visual": 9098, "dataset date": 21896, "tuned gpt4": 99000, "incorporate llms": 44670, "tasks fall": 94629, "feeding llm": 34166, "multimodal context": 65038, "features llms": 34011, "essential insights": 29950, "guided insights": 40757, "insights achieve": 46052, "3b 11b": 879, "acquiring highquality": 2922, "instructionfollowing large": 46456, "approaches llms": 7171, "potential overfitting": 73214, "inspired observation": 46177, "challenging instructions": 13179, "operates stages": 68444, "stages stage": 90137, "stage use": 90124, "encourage diversity": 28784, "reach better": 79465, "compared data": 16530, "merely 15": 59107, "hallucinated responses": 40822, "assess vulnerability": 7882, "nonexistent objects": 66900, "popular mllms": 72654, "gpt4v geminipro": 40191, "empirically observe": 28382, "adds additional": 3560, "prompts encourage": 76699, "accuracy absolute": 2195, "valuable benchmark": 102144, "models resilience": 64081, "examples propose": 31274, "particular identify": 70409, "identify critical": 42857, "physically grounded": 72072, "grounded reasoning": 40578, "capable text": 12267, "clip llava": 14959, "exploit capabilities": 32562, "highperforming text": 41732, "challenging semantic": 13228, "visual properties": 103102, "states humans": 90517, "knowledge primarily": 48712, "performance comes": 71066, "counterparts model": 20008, "showed better": 87386, "consistently achieve": 18281, "serve baselines": 86756, "training setups": 98291, "weights codes": 103546, "surged popularity": 92898, "overlook essential": 69399, "incorporating uncertainty": 44721, "analysis spans": 5682, "various visionlanguage": 102628, "estimation approach": 30022, "approach demonstrate": 6796, "importance measuring": 43465, "correlation model": 19775, "humanlevel benchmark": 42512, "great abilities": 40463, "perception language": 70787, "perception abilities": 70779, "insufficient reflect": 46642, "capabilities lvlms": 11997, "lvlms propose": 57669, "based chinese": 9465, "graphs maps": 40443, "native chinese": 65537, "chinese context": 14539, "lower 50": 57550, "development multilingual": 24681, "concept recognition": 17608, "largely attributed": 52403, "work reveals": 104255, "benchmark settings": 10248, "stateoftheart lvlms": 90387, "terms classification": 95799, "instructiontuned lvlms": 46605, "parametric knowledge": 70303, "propose multiple": 77032, "aims establish": 4798, "estimation using": 30032, "timeconsuming resourceintensive": 97056, "provide consistent": 77434, "essential effective": 29942, "modeling domainspecific": 61636, "design future": 23783, "models streamline": 64259, "extracting relevant": 33274, "relevant domainspecific": 81457, "combining knowledge": 16012, "comprehensive datasets": 17228, "expertlevel ability": 32398, "compared average": 16505, "students solve": 91336, "problems need": 75175, "work computer": 104018, "virtual agents": 102937, "step automating": 90616, "tasks virtual": 95249, "technical proficiency": 95412, "applications dataset": 6442, "capable fully": 12235, "agents benchmark": 4170, "strongest baseline": 91099, "15 human": 326, "generating executable": 37900, "completing task": 16892, "task conventional": 93995, "benchmark provides": 10230, "motivates future": 64785, "work building": 104006, "models bridge": 61947, "bridge large": 11435, "challenge study": 12936, "stateoftheart mllms": 90398, "pro opensource": 74940, "truth value": 98956, "require compositional": 82234, "automated text": 8747, "realtime information": 79628, "users content": 101084, "uses fewshot": 101225, "formative study": 35834, "study included": 91672, "included seven": 44242, "generate simplified": 37594, "study showed": 91841, "constitutes step": 18368, "performance augmented": 71000, "images order": 43105, "low volume": 57538, "volume training": 103216, "manipulated images": 58219, "editing framework": 27098, "summaries produced": 92506, "produced gpt3": 75676, "produces stateoftheart": 75701, "diverse image": 26034, "edit types": 27087, "world present": 104412, "relation graph": 81248, "relation hallucination": 81249, "mllms facilitate": 60385, "created highquality": 20196, "benchmark termed": 10265, "probing evaluation": 74980, "extensive information": 33104, "challenge interpreting": 12889, "access specialized": 2085, "specialized hardware": 89628, "hardware result": 41013, "limited relatively": 54455, "small group": 88680, "science community": 85569, "potentially change": 73331, "gemini highly": 37059, "analysis political": 5605, "fast run": 33898, "free use": 36342, "use does": 100528, "including face": 44343, "built transformerbased": 11679, "architecture process": 7367, "process textual": 75409, "opensource implementations": 68339, "framework solving": 36277, "using typical": 101832, "exhibited substantial": 31589, "gains previous": 36867, "model vision": 61577, "obtain best": 67641, "task open": 94168, "make task": 58035, "propose targeted": 77130, "break complex": 11380, "captioning address": 12324, "data intensive": 21338, "work required": 104250, "collect annotate": 15858, "synthetic highquality": 93280, "scripts corresponding": 85825, "visuals approach": 103157, "methods extensive": 59635, "mllms recently": 60395, "immense popularity": 43169, "proven capable": 77377, "powerful mllms": 73456, "stateoftheart specialized": 90488, "progress existing": 75980, "works study": 104389, "problem perspective": 75058, "combination low": 15955, "features effectively": 33996, "information embedded": 45447, "term new": 95778, "importantly training": 43553, "code implementations": 15354, "assess current": 7840, "methods effectiveness": 59610, "gpt4v performs": 40195, "generating correct": 37882, "like text": 54234, "detection misinformation": 24325, "high risks": 41452, "false text": 33820, "effective ways": 27388, "explanations judgments": 32501, "debunking misinformation": 22550, "reasoning explanation": 79880, "lack sophistication": 49048, "sophistication understanding": 89295, "specifically engineered": 89813, "detection explanation": 24301, "employs twostage": 28485, "stage refines": 90122, "tools retrieval": 97467, "utilizes external": 101981, "provides accurate": 77640, "explanations validated": 32522, "high research": 41448, "observed scenes": 67625, "infer plausible": 45203, "logical constraints": 57255, "leveraged generate": 53773, "reasoningintensive tasks": 80093, "available crucial": 9024, "integrates llm": 46700, "recognized large": 80628, "alignment humans": 5079, "investigates performance": 47751, "tasks prediction": 94950, "developing ai": 24569, "based scientific": 9710, "challenges multimodal": 13074, "designed challenge": 23887, "graph theory": 40413, "aiming evaluate": 4765, "generated automatically": 37660, "reasoning complexity": 79837, "near random": 65841, "multichoice questionanswering": 64880, "challenges integrating": 13046, "assessment recent": 7972, "warrants investigation": 103329, "comprehensive testbed": 17307, "detection alongside": 24263, "detection examine": 24298, "aforementioned models": 4088, "attribute recognition": 8439, "limited proficiency": 54451, "proficiency specialized": 75802, "building scalable": 11649, "quality resulting": 78349, "efforts pretraining": 27916, "data deduplication": 21142, "quality filtering": 78271, "dataset multiple": 22011, "representations semantic": 82122, "retrieval performance": 84005, "current results": 20768, "source learning": 89385, "present automated": 73936, "types observed": 99254, "observed users": 67629, "asked participants": 7736, "useful answers": 100941, "gpt4 augmented": 39771, "designed realworld": 23942, "understanding applications": 99671, "including web": 44517, "create use": 20184, "demands realworld": 22980, "design choice": 23759, "superior user": 92671, "benchmarks model": 10383, "context including": 18786, "hours video": 42007, "achieves nearperfect": 2759, "continued improvement": 19014, "models frontier": 62515, "inference phases": 45278, "restricting use": 83375, "communities paper": 16296, "assistant named": 8040, "optimization strategies": 68618, "increasing volume": 44863, "discussion provide": 25726, "insights guidelines": 46100, "llama llava": 54773, "shown incredible": 87491, "struggle perform": 91223, "explore training": 32750, "50 million": 1016, "previously used": 74768, "encoder training": 28710, "resulting multimodal": 83440, "human speakers": 42370, "variety different": 102290, "giving rise": 38991, "models vllms": 64517, "capabilities synthesizing": 12094, "employs capabilities": 28470, "second employ": 85928, "compatible existing": 16745, "enhanced temporal": 29252, "confirm method": 18041, "method strong": 59435, "features utilizing": 34039, "multimodal agent": 65027, "desired elements": 24002, "detection classification": 24275, "classification based": 14724, "problem lead": 75037, "lead undesired": 52828, "models identifies": 62693, "agent data": 4124, "value estimation": 102189, "improves reasoning": 44066, "scenario existing": 85389, "instructions introduce": 46523, "series empirical": 86731, "using 75": 101281, "performance fulldata": 71229, "benchmarks surpassing": 10418, "architecture components": 7337, "careful comprehensive": 12400, "example demonstrate": 31157, "30b parameters": 768, "benchmarks thanks": 10423, "prompting knowledge": 76552, "leverage external": 53723, "questions grounded": 78866, "contain irrelevant": 18516, "multimodal perception": 65094, "models distill": 62243, "knowledge concepts": 48479, "question second": 78706, "answer extensive": 6004, "validate superiority": 102105, "method compared": 59235, "methods method": 59728, "knowledge produced": 48717, "exam benchmark": 31077, "new challenging": 66362, "multimodal features": 65048, "images tables": 43116, "school exam": 85546, "distinctive approach": 25889, "intricate reasoning": 47369, "reasoning diverse": 79862, "requires advanced": 82363, "data production": 21510, "tools extract": 97402, "longterm temporal": 57415, "reasoning key": 79913, "deep network": 22789, "reasoning essential": 79874, "understanding individual": 99770, "using state": 101786, "temporal logic": 95715, "logic tl": 57248, "assistant recent": 8042, "covering broader": 20074, "costly obtain": 19913, "paper attempts": 69619, "model selfsupervised": 61389, "understanding finetuning": 99738, "methods improvement": 59675, "various contexts": 102391, "llms tale": 56913, "images large": 43100, "domain llm": 26415, "majority recent": 57953, "recent fewshot": 80258, "design controlled": 23766, "flant5 xl": 35401, "3b parameter": 883, "parameter llm": 70113, "llm embedding": 55051, "using image": 101516, "impressive development": 43597, "llms expanding": 55919, "models leads": 62885, "significant expenses": 87748, "presents set": 74168, "methods constructed": 59577, "additionally developed": 3291, "particular proposed": 70417, "including video": 44516, "tooluse ability": 97487, "models private": 63893, "basis large": 9893, "recent explorations": 80256, "gpt4v llava15": 40193, "ratio high": 79428, "includes key": 44252, "components image": 17088, "tokens llms": 97213, "outperforms established": 69040, "efficiently trained": 27864, "vs 26": 103242, "prompts emerged": 76695, "enhance zeroshot": 29222, "present methods": 74011, "prompts cover": 76678, "categories effectively": 12606, "effectively humans": 27437, "process zeroshot": 75421, "minimal information": 60095, "form short": 35784, "automatically produces": 8891, "tested multiple": 95982, "20 datasets": 487, "detection ability": 24254, "zeroshot object": 104830, "prompts specifically": 76824, "designed guide": 23916, "tools new": 97451, "automatically decompose": 8853, "decompose task": 22687, "task simple": 94242, "framework demonstrated": 36089, "especially hard": 29883, "cases compared": 12517, "object detectors": 67472, "novel class": 67129, "set zeroshot": 86953, "tasks reasoning": 95011, "method obtains": 59370, "enabling better": 28626, "improved version": 43867, "20x larger": 588, "general reasoning": 37189, "reasoning traces": 80072, "using multitask": 101627, "constant compared": 18358, "rationales refined": 79440, "interactive reasoning": 47114, "models interpreting": 62807, "applications challenging": 6423, "aid language": 4638, "instructions technique": 46567, "process image": 75330, "image reasoning": 43058, "reasoning consistently": 79840, "results empirical": 83579, "icl ability": 42754, "ability rapidly": 1756, "vision large": 102987, "test limitations": 95911, "broader capabilities": 11513, "limitations multimodal": 54352, "learning encompassing": 53129, "outputs different": 69216, "range new": 79186, "applications leverage": 6518, "llms develop": 55792, "mllm benchmarks": 60377, "available link": 9063, "explores diverse": 32801, "human body": 42114, "barely explored": 9375, "motion primitives": 64765, "learning implicit": 53207, "descriptions corresponding": 23701, "transformer structure": 98546, "overhead work": 69391, "fast inference": 33897, "linear scaling": 54537, "backbone language": 9245, "mamba language": 58174, "performance effectiveness": 71169, "action unit": 2955, "contexts leveraging": 18913, "facial action": 33474, "detection overcome": 24335, "approach utilizing": 7084, "extraction leveraging": 33313, "features modalities": 34014, "comprehension intricate": 17169, "scenarios findings": 85434, "contextual interpretation": 18944, "wellknown transformer": 103601, "computation complexity": 17414, "basic models": 9880, "linear computational": 54525, "explore study": 32746, "parameters make": 70251, "hope proposed": 41955, "queries recent": 78506, "work step": 104279, "enabling learn": 28644, "personal experiences": 71882, "relationships effectively": 81283, "effectively recognize": 27466, "model enabling": 60802, "identify presence": 42893, "presence specific": 73926, "response apply": 83119, "preserving model": 74194, "attention superior": 8379, "remain insufficiently": 81621, "understood investigate": 99913, "math benchmark": 58543, "meticulously collect": 59852, "available sources": 9090, "distinct versions": 25884, "assess mllms": 7860, "output answers": 69140, "extract crucial": 33225, "crucial reasoning": 20520, "score step": 85738, "benchmark provide": 10229, "reasoning modules": 79945, "manageable subtasks": 58181, "utility llms": 101897, "context video": 18874, "minimal input": 60096, "framework presenting": 36231, "pairs instructions": 69503, "instructions corresponding": 46483, "implement important": 43318, "powered gpt35": 73408, "gpt35 rectify": 39660, "errors programs": 29837, "programs utilizing": 75963, "refinement llm": 80985, "outputs introduce": 69231, "outputs outputs": 69244, "illustrate efficacy": 42996, "programming approaches": 75877, "trainingfree manner": 98362, "manner recently": 58245, "attention existing": 8308, "training separate": 98280, "supervised way": 92748, "scale different": 85260, "handle task": 40936, "manner paper": 58243, "sequences generated": 86682, "existing motion": 31776, "crucial challenge": 20477, "initiate study": 45806, "images given": 43095, "prevalent approach": 74635, "generated utilizing": 37821, "utilizing multimodal": 102037, "results analyses": 83462, "token reduction": 97151, "significant reasoning": 87834, "use fixed": 100554, "tokens tackle": 97234, "similar prior": 88102, "novel adaptive": 67081, "approach largely": 6924, "based key": 9583, "approach compress": 6779, "chatgpt computing": 13642, "blackbox settings": 11152, "ratio method": 79429, "method estimate": 59290, "utilize saliency": 101955, "techniques enhance": 95509, "estimation accuracy": 30021, "experiments blackbox": 32118, "methods era": 59622, "approach summarizing": 7046, "paper generate": 69747, "querying textual": 78563, "extraneous information": 33365, "information additionally": 45395, "use maximum": 100624, "alignment generation": 5074, "final test": 34502, "generative framework": 38620, "understanding core": 99703, "temporal evolution": 95713, "sharing common": 87205, "annotation formats": 5896, "training powerful": 98236, "generation enables": 38135, "address various": 3499, "simple straightforward": 88237, "novel perspective": 67224, "framework enhancing": 36123, "gap persists": 36958, "demonstrated achieve": 23229, "benchmarks surpasses": 10417, "private models": 74928, "collect highquality": 15864, "recently largescale": 80525, "new solutions": 66528, "data unpaired": 21716, "unpaired data": 100216, "model current": 60726, "accurately estimating": 2448, "datacentric approach": 21781, "generating captions": 37870, "grid cells": 40550, "yield precise": 104644, "precise predictions": 73599, "systems usually": 93598, "usually suffer": 101878, "quality inadequate": 78293, "multimodality models": 65116, "query results": 78543, "tested benchmark": 95971, "stands cornerstone": 90237, "language recently": 51085, "data comprehensive": 21089, "lidar point": 53971, "output set": 69192, "generate rich": 37580, "methods significant": 59799, "question answering despite": 78587, "generate natural responses": 37535, "power pretrained language": 73390, "natural language captions": 65557, "model achieves stateoftheart": 60501, "advancement deep learning": 3775, "learning artificial intelligence": 53037, "breakthroughs recent years": 11412, "recent years achieved": 80421, "models applied generate": 61842, "recently released gpt3": 80546, "exciting ai applications": 31409, "different existing work": 25061, "conditional text generation": 17796, "models learn generate": 62888, "current models struggle": 20738, "models exhibit considerable": 62379, "prompting exhibits impressive": 76530, "dataset experimental findings": 21933, "recently increasing number": 80506, "unified evaluation framework": 100012, "evaluation framework provides": 30614, "gpt2 pretrained language": 39333, "language model endtoend": 49384, "qualitative quantitative experiments": 78206, "experiments verify effectiveness": 32341, "proposed method achieved": 77219, "perform poorly tasks": 70909, "commonsense knowledge using": 16221, "learning models bert": 53274, "language model openended": 49495, "gpt2 model model": 39314, "end propose method": 28835, "retrieve relevant sentences": 84072, "question answering vqa": 78636, "question answering instead": 78600, "ii incontext examples": 42974, "using 16 examples": 101275, "paper present simple": 69841, "present simple approach": 74058, "demonstrate model achieves": 23134, "model achieves comparable": 60497, "language modeling gpt3": 49583, "images using natural": 43125, "generation transformer model": 38482, "transformer model based": 98527, "shows high accuracy": 87584, "recent studies focus": 80359, "size number training": 88500, "training data significantly": 98053, "achieves comparable better": 2725, "visual textual modalities": 103129, "modalities paper present": 60441, "proposed approach leverages": 77177, "assess effectiveness proposed": 7845, "significantly reduced number": 88015, "source code trained": 89364, "semantics natural language": 86391, "models deep language": 62167, "models large margin": 62864, "steer language model": 90585, "language model generating": 49407, "question answering captioning": 78578, "models efficient deployment": 62282, "pretrained generative models": 74269, "obviating need large": 67696, "question answering answering": 78575, "multihop reasoning ability": 64921, "design language models": 23800, "question answering performance": 78617, "fewshot performance gpt3": 34283, "language models similar": 50807, "data achieve performance": 20942, "conditioned input image": 17805, "transfer new domains": 98433, "visionlanguage models vlms": 103038, "models vlms clip": 64519, "vlms clip shown": 103183, "promising performance variety": 76182, "use rich context": 100681, "rich context additional": 84408, "context additional information": 18724, "query large language": 78534, "operations extensive experiments": 68461, "experiments conducted evaluate": 32137, "conducted evaluate performance": 17953, "exhibit distinct complementary": 31512, "trained language models": 97853, "models gpt3 capable": 62597, "language descriptions work": 49185, "downstream tasks improving": 26731, "school math problems": 85553, "results proposed method": 83788, "used general purpose": 100807, "framework wide range": 36320, "question answering mathematical": 78611, "answering mathematical reasoning": 6126, "robotic manipulation project": 84626, "diverse set multimodal": 26099, "image captioning visual": 43021, "knowledge retrieval reasoning": 48751, "pretrained models language": 74411, "language model guided": 49421, "concept bottleneck models": 17600, "black box models": 11121, "classification object detection": 14768, "visionlanguage foundation models": 103021, "large vision language": 52371, "cognitive science literature": 15755, "issues propose novel": 48013, "consistently improve performance": 18293, "bert roberta bart": 10550, "codes data publicly": 15628, "solving tasks require": 89254, "answer question propose": 6046, "training deep neural": 98071, "augment training data": 8521, "training data ii": 98021, "conduct comprehensive ablation": 17837, "comprehensive ablation studies": 17193, "stateoftheart performance standard": 90443, "power pretrained large": 73392, "study present new": 91780, "standard finetuning approach": 90176, "irrespective model size": 47909, "prompt engineering using": 76318, "using finetuned large": 101449, "text token embeddings": 96463, "impressive performance complex": 43614, "leveraging chainofthought cot": 53827, "generate intermediate reasoning": 37512, "twostage framework separates": 99180, "based multimodal information": 9626, "model billion parameters": 60613, "zeroshot image classification": 104797, "strong performance zeroshot": 91059, "prompt engineering incorporating": 76301, "requires additional training": 82362, "framework quantitatively evaluating": 36248, "quantitatively evaluating interactive": 78431, "chatgpt based data": 13562, "learning tasks outperforms": 53441, "outperforms finetuned models": 69056, "access external knowledge": 2061, "recent research shown": 80341, "models exploit artifacts": 62409, "exploit artifacts benchmarks": 32561, "processing nlp computer": 75516, "nlp computer vision": 66720, "language model powerful": 49511, "answer question paper": 6045, "question paper present": 78693, "learning paper propose": 53319, "fewshot training data": 34324, "fully unleash potential": 36474, "different pretraining methods": 25155, "pretrained multimodal models": 74431, "propose simple framework": 77117, "text embedding space": 96186, "visual input experiments": 103070, "collaboration multiple ai": 15830, "multiple ai models": 65136, "human instructions image": 42247, "drawn widespread attention": 26829, "multimodal dialogue systems": 65047, "visual language models": 103079, "language models vlms": 50912, "paper address gap": 69583, "address gap introducing": 3400, "proposed method involves": 77225, "twostage training procedure": 99190, "contribute valuable insights": 19133, "propose novel promptbased": 77076, "language model help": 49424, "bridge gap different": 11418, "prompts extensive experiments": 76718, "extensive experiments prevalent": 33082, "based user requirements": 9756, "knowledge training dataset": 48789, "humans realworld scenarios": 42634, "graph convolutional networks": 40367, "allows language models": 5198, "efficient finetuning language": 27761, "llama 7b model": 54717, "higher transformer layers": 41532, "language commands approach": 49159, "attention mechanism finetuning": 8338, "vision language tasks": 102985, "tasks demonstrating superior": 94521, "datasets limited size": 22326, "sound event detection": 89332, "automated audio captioning": 8677, "overcome issue propose": 69352, "previous stateoftheart sota": 74711, "chatgpt enhance academic": 13756, "dataset codes available": 21857, "neural networks existing": 66268, "recognition asr used": 80589, "opt language model": 68539, "pretrained visionlanguage model": 74496, "proposed framework significantly": 77206, "achieving stateoftheart zeroshot": 2887, "potential ethical concerns": 73089, "using foundation models": 101457, "visual instruction tuning": 103075, "tasks idea explored": 94706, "llava large language": 54912, "large language vision": 52234, "language vision assistant": 51204, "large multimodal model": 52275, "gptbased large language": 40206, "revolutionizing natural language": 84360, "newly annotated dataset": 66588, "language models extract": 49869, "models prior work": 63891, "code model checkpoints": 15401, "models technical details": 64342, "sophisticated large language": 89282, "frozen visual encoder": 36412, "foundation models fms": 35940, "models fms gpt4": 62494, "attracted significant attention": 8424, "attention exceptional performance": 8307, "exceptional performance zeroshot": 31383, "segment model sam": 86104, "impact wide range": 43271, "aim provide insights": 4730, "images based textual": 43085, "remains unexplored paper": 81721, "generate textual descriptions": 37626, "demonstrate current models": 23052, "llms visual models": 57039, "training costs compared": 97983, "new multimodal llm": 66463, "multimodal llm mllm": 65080, "efficiency based observation": 27669, "simple highly effective": 88204, "training data compared": 97997, "better performance existing": 10760, "interactive ai systems": 47089, "data paper present": 21465, "supporting wide range": 92863, "extensive case studies": 33000, "human activity recognition": 42068, "activity recognition har": 3008, "using computer vision": 101377, "lead substantial performance": 52827, "substantial performance improvements": 92102, "data inspired recent": 21329, "various ai models": 102346, "ai models introduce": 4471, "chatgpt generate diverse": 13854, "multimodal deep learning": 65045, "given dialogue history": 38878, "automatic evaluation proposed": 8779, "outperforms existing baselines": 69044, "likert scale 15": 54267, "network large language": 66147, "regarding large language": 81059, "information paper introduces": 45566, "significantly improves zeroshot": 87960, "performance various multimodal": 71686, "various multimodal tasks": 102494, "tasks compared previous": 94461, "compared previous methods": 16610, "llms demonstrated significant": 55765, "llms compared previous": 55649, "integrating multiple modalities": 46738, "vision language model": 102981, "language model construct": 49365, "quality training data": 78377, "reasoning capabilities chatgpt": 79797, "large visionlanguage model": 52376, "research primarily focuses": 82723, "classification semantic segmentation": 14790, "semantic segmentation object": 86348, "segmentation object detection": 86108, "existing pretrained language": 31793, "encoder visionlanguage models": 28712, "models remain limited": 64056, "social media aims": 88878, "retrieved knowledge paper": 84087, "demonstrated robust performance": 23336, "performance various language": 71683, "various language tasks": 102461, "approach enhances interpretability": 6840, "models propose novel": 63925, "capabilities zeroshot fewshot": 12144, "suggesting significant room": 92418, "models reasoning capabilities": 63992, "demonstrate performance gap": 23145, "zero fewshot prompting": 104700, "important challenging problem": 43495, "zeroshot reasoning tasks": 104860, "reasoning tasks require": 80063, "tasks require multistep": 95048, "framework iteratively decomposes": 36181, "reasoning tasks zeroshot": 80066, "ability natural language": 1726, "demonstrate competitive performance": 23047, "demonstrated impressive reasoning": 23285, "abilities various domains": 1577, "models great potential": 62632, "light propose novel": 54018, "demonstrate potential benefits": 23149, "ai applications metaverse": 4306, "reasoning performance llms": 79974, "language models visual": 50911, "language models vicuna": 50908, "data image text": 21305, "text video audio": 96482, "serves initial step": 86797, "human evaluation demonstrate": 42173, "release code model": 81356, "wu et al": 104543, "responses natural language": 83264, "natural language visual": 65766, "introduces new benchmark": 47528, "evaluation dataset task": 30566, "automated evaluation metrics": 8695, "evaluation code available": 30543, "images based text": 43084, "editing based user": 27095, "based user instructions": 9754, "language model goal": 49411, "experiments method outperforms": 32248, "hand large language": 40900, "gpt4 shown remarkable": 40082, "generating code snippets": 37876, "llms enhance performance": 55864, "model use tools": 61554, "enable large language": 28553, "advanced proprietary llms": 3738, "proprietary llms chatgpt": 77307, "gpt4 shown great": 40079, "llms llama opt": 56342, "llms use tools": 56995, "effectiveness method various": 27553, "models significantly improves": 64199, "answering vqa task": 6167, "visual natural language": 103092, "natural language inputs": 65606, "address aforementioned challenges": 3358, "reasoning tasks inspired": 80053, "based observations propose": 9643, "language foundation models": 49229, "foundation models recently": 35963, "models recently shown": 64024, "recently shown promising": 80559, "shown promising potential": 87525, "alpaca experimental results": 5229, "pretrained models help": 74409, "upsurge pretrained large": 100389, "large models gpt4": 52259, "multimodal understanding capability": 65107, "high memory computational": 41431, "taking advantage large": 93832, "advantage large pretrained": 3925, "models utilized help": 64485, "generate descriptive text": 37424, "extensive experiments verify": 33098, "capability foundation models": 12164, "vision foundation model": 102975, "foundation model image": 35927, "vision foundation models": 102976, "tasks code released": 94447, "llm using prompt": 55311, "model llm gpt35": 61095, "propose innovative approach": 77006, "model proposed method": 61295, "implications various applications": 43408, "approaches mainly focus": 7175, "vs human attention": 103248, "exceptional reasoning capabilities": 31388, "models language vision": 62850, "chatgpt second attempt": 14203, "exploit incontext learning": 32565, "complex questions requiring": 16985, "dataset encourage research": 21922, "models llms providing": 63371, "visual encoder llm": 103061, "pairs used train": 69526, "recently attracted significant": 80458, "work conducts comprehensive": 104027, "interaction natural language": 47026, "language processing human": 50983, "experiments validate effectiveness": 32332, "enhancing ai systems": 29306, "ai systems perform": 4570, "language models enabling": 49824, "trained limited data": 97864, "assistant large language": 8038, "harness power llms": 41076, "multimodal ai assistants": 65029, "explored paper aim": 32778, "paper aim develop": 69591, "multimodal foundation model": 65050, "foundation model capable": 35926, "achieve goal introduce": 2523, "specifically employ chatgpt": 89812, "surpassing existing methods": 92958, "existing methods produce": 31764, "performance visionlanguage models": 71705, "conduct extensive experimental": 17879, "large multimodal models": 52276, "multimodal models lmms": 65089, "perform wide array": 70942, "ability llms follow": 1705, "paper presents systematic": 69872, "systematic comprehensive study": 93322, "training data investigate": 98023, "investigate impact data": 47654, "generation model gpt2": 38273, "technology artificial intelligence": 95645, "employed diverse fields": 28424, "optical character recognition": 68557, "unity game engine": 100110, "facilitating seamless interaction": 33547, "challenging tasks time": 13243, "language vision models": 51206, "question answering existing": 78588, "visual understanding reasoning": 103133, "detailed image descriptions": 24174, "capabilities extensive experiments": 11898, "stateoftheart multimodal large": 90413, "automatic question generation": 8821, "significantly expanding scope": 87928, "simple language model": 88211, "transfer learning pretrained": 98422, "dialog state tracking": 24835, "recently achieved remarkable": 80448, "achieved remarkable progress": 2659, "future model development": 36746, "response challenges propose": 83127, "vision tasks multimodal": 103010, "models gpt4 paper": 62620, "presents novel method": 74151, "models method aims": 63611, "method aims improve": 59199, "model downstream tasks": 60781, "demonstrate significant improvement": 23185, "dataset based existing": 21837, "simple linear transformation": 88213, "models vlms like": 64521, "good performance downstream": 39120, "use domain expertise": 100530, "gpt4 used generate": 40142, "used generate text": 100812, "datasets code prompts": 22167, "openais chatgpt field": 68189, "interpreting visual data": 47309, "new insights challenges": 66430, "data comprehensively evaluate": 21091, "language model benchmark": 49348, "rapid advancement artificial": 79291, "advancement artificial general": 3765, "revolution artificial intelligence": 84320, "current research predominantly": 20767, "language models smallscale": 50815, "results comparable stateoftheart": 83507, "visual reasoning tasks": 103112, "reasoning tasks recent": 80062, "language models leverage": 50040, "zero shot setting": 104709, "framework training large": 36305, "visionlanguage models introduce": 103026, "technical report describes": 95415, "models lvlms demonstrated": 63563, "demonstrated significant progress": 23339, "various domains work": 102413, "provides systematic assessment": 77709, "visual reasoning visual": 103113, "extensive experimental analysis": 33038, "generative machine learning": 38647, "diffusion models recently": 25344, "emerged state art": 28156, "crucial achieving embodied": 20469, "achieving embodied intelligence": 2845, "general pretrained transformer": 37174, "remains unclear models": 81709, "gpt models gpt35": 39222, "low rank adaptation": 57528, "openais gpt3 gpt4": 68204, "structure inherent deep": 91138, "benchmark datasets demonstrate": 10126, "superior performance approach": 92646, "comparative analysis different": 16419, "future research development": 36762, "models realworld use": 63988, "code leaderboard available": 15378, "diffusion model generate": 25341, "existing stateoftheart approaches": 31822, "applications existing methods": 6473, "conduct set experiments": 17916, "character error rate": 13317, "error rate cer": 29791, "extend large language": 32939, "significant advancements addressing": 87669, "new dataset comprising": 66372, "limitations propose novel": 54364, "propose novel data": 77064, "instruction tuning approach": 46370, "significantly enhances model": 87920, "comprehensive experiments conducted": 17257, "experiments conducted various": 32142, "conducted various datasets": 17993, "stateoftheart results multiple": 90466, "chinese english data": 14545, "models similar scale": 64203, "evaluations experimental results": 30850, "data generation methods": 21266, "image generation models": 43043, "recently significant progress": 80561, "numerous language models": 67427, "dalle stable diffusion": 20913, "underlying mathematical principles": 99509, "facial expression recognition": 33477, "training extensive experiments": 98111, "gained increasing attention": 36831, "increasing attention community": 44820, "diffusion models dms": 25343, "visionlanguage models large": 103027, "models large visionlanguage": 62869, "various visual tasks": 102630, "models exhibit enhanced": 62381, "face challenges maintaining": 33438, "scenarios involving multiple": 85447, "bridge gaps present": 11432, "qualitative evaluations demonstrate": 78197, "shown powerful capabilities": 87514, "answering reasoning tasks": 6149, "visual representations abstract": 103118, "experiments involving human": 32231, "models lvlms recently": 63564, "models llms current": 63051, "impact natural language": 43238, "understanding paper introduces": 99835, "contextually appropriate responses": 18975, "different methods including": 25111, "including human evaluation": 44384, "metrics experimental results": 59916, "data exhibits superior": 21205, "applications code available": 6429, "enhance performance pretrained": 29197, "performance pretrained models": 71488, "pretrained models downstream": 74406, "downstream tasks example": 26722, "lets think step": 53638, "16 datasets demonstrate": 362, "datasets demonstrate method": 22209, "demonstrate method consistently": 23127, "consistently outperforms stateoftheart": 18308, "inference process involves": 45285, "instruction tuning present": 46406, "existing works mainly": 31855, "generation quality code": 38372, "novel method improve": 67208, "generated llms like": 37737, "models different kinds": 62226, "natural language llms": 65620, "past decade witnessed": 70565, "neural networks paper": 66273, "evaluate effectiveness proposed": 30174, "problem paper propose": 75057, "performs better chatgpt": 71801, "models llm enhanced": 62953, "model surpasses performance": 61481, "additionally proposed method": 3339, "shown encouraging progress": 87451, "progress opensource large": 76004, "models 13b parameters": 61709, "parameterefficient training methods": 70152, "catastrophic forgetting multimodal": 12591, "forgetting multimodal large": 35759, "models catastrophic forgetting": 61970, "compared pretrained model": 16607, "catastrophic forgetting mllms": 12590, "image classification tasks": 43027, "tasks current mllm": 94506, "multimodal machine learning": 65083, "models current approaches": 62142, "detailed textual descriptions": 24191, "models gpt35 llama2": 62606, "textual descriptions visual": 96669, "new research direction": 66515, "learning models enable": 53276, "evaluate proposed approach": 30267, "previous best methods": 74667, "opensource code model": 68319, "decoder generate text": 22631, "seen significant advancements": 86092, "leverage knowledge embedded": 53734, "knowledge embedded llms": 48532, "inspire future work": 46162, "planning ability llms": 72252, "llms including llama2": 56187, "including llama2 70b": 44408, "models llms designed": 63096, "insights current capacities": 46070, "conditional language modeling": 17791, "language modeling large": 49584, "detailed analysis shows": 24154, "model weights datasets": 61588, "datasets publicly available": 22382, "limited address issue": 54389, "specifically present new": 89859, "annotations existing datasets": 5934, "superior performance method": 92656, "factors model architecture": 33603, "pretrained vision language": 74492, "pretrained visionlanguage models": 74497, "stateoftheart performance wide": 90447, "using models trained": 101619, "applications existing systems": 6475, "models llms expanded": 63149, "textual visual data": 96703, "evaluating mathematical reasoning": 30455, "reasoning foundation models": 79888, "llms large multimodal": 56277, "comprehensive quantitative evaluation": 17290, "indepth analysis reveals": 44947, "promising potential future": 76189, "training framework enables": 98120, "performance gains compared": 71237, "compared sota methods": 16635, "logical arithmetic reasoning": 57252, "model trained large": 61523, "trained large data": 97856, "performs competitively compared": 71811, "compared prior work": 16618, "data multistep reasoning": 21432, "multistep reasoning accuracy": 65337, "structured information unstructured": 91163, "realworld scenarios diverse": 79694, "diverse task requirements": 26116, "improves performances various": 44057, "tasks compared vanilla": 94462, "framework successfully transfer": 36286, "scale 10b parameters": 85250, "outperform larger language": 68949, "present new benchmark": 74014, "establish baseline performance": 29966, "prompted large language": 76482, "text images model": 96296, "poses challenging task": 72769, "overcome challenges propose": 69348, "information diverse sources": 45441, "demonstrate proposed model": 23171, "model achieves competitive": 60498, "response generation despite": 83134, "models stable diffusion": 64251, "stable diffusion using": 90094, "prompt engineering complex": 76291, "people interact llm": 70736, "prompting techniques offtheshelf": 76633, "hope work draw": 41965, "resulting model achieves": 83437, "tuning recent advancements": 99086, "results demonstrate compared": 83541, "captioning visual question": 12333, "recent advances development": 80198, "models like clip": 62914, "models trained largescale": 64398, "provide compelling evidence": 77424, "comparable human experts": 16376, "generation using large": 38497, "produce detailed accurate": 75617, "novel approach automatic": 67089, "evaluation demonstrates effectiveness": 30571, "address problem explore": 3470, "chatgpt specifically leverage": 14262, "specifically leverage chatgpt": 89845, "evaluate approach various": 30142, "performance work contributes": 71723, "work pushes boundaries": 104243, "effectiveness pretrained llms": 27565, "hope work inspires": 41970, "incontext learning prompting": 44641, "perform ablation studies": 70814, "paper proposes multimodal": 69910, "language model ability": 49321, "framework allows llms": 36034, "images generated stable": 43093, "code dataset released": 15212, "method outperforms baselines": 59377, "coherence automatic evaluation": 15768, "conduct extensive ablation": 17874, "extensive ablation studies": 32991, "challenge human evaluation": 12883, "human evaluation dataset": 42172, "given relevant context": 38950, "question code available": 78649, "answering questions related": 6146, "understanding tasks including": 99889, "various types including": 102618, "models encoderdecoder models": 62319, "compared models like": 16593, "synthesis using large": 93221, "relying large language": 81604, "visionlanguage models like": 103030, "image classification framework": 43026, "adapt new tasks": 3050, "language models extend": 49865, "zeroshot reasoning abilities": 104858, "plays essential role": 72382, "outperforms stateoftheart supervised": 69122, "supervised models large": 92732, "conduct qualitative quantitative": 17908, "quantitative evaluation different": 78407, "possible future works": 72905, "potential academic integrity": 72980, "multimodal language models": 65065, "evaluate performance large": 30253, "visual representations results": 103119, "model recent advancements": 61316, "led substantial improvements": 53536, "stateoftheart performance multiple": 90435, "performance multiple benchmarks": 71415, "despite promising performance": 24102, "versatile multimodal large": 102792, "model llm pretraining": 61102, "providing language models": 77770, "language models robust": 50777, "mllm research code": 60379, "approach improving performance": 6896, "models mllms integrate": 63629, "lack labeled data": 49028, "novel visionlanguage model": 67282, "manually annotated dataset": 58290, "language reasoning problems": 51083, "based language instructions": 9590, "chain thoughts cot": 12810, "language models lack": 50019, "landscape artificial intelligence": 49104, "artificial intelligence foundation": 7633, "intelligence foundation models": 46849, "language vision domains": 51205, "response challenge introduce": 83123, "field computer vision": 34361, "based user feedback": 9752, "llms comprehensive evaluation": 55659, "code available soon": 15134, "prompt experimental results": 76321, "like chatgpt significantly": 54101, "chatgpt significantly advanced": 14236, "significantly advanced language": 87878, "advanced language understanding": 3705, "broad spectrum applications": 11500, "information study introduces": 45641, "tasks comprehensive experiments": 94468, "indepth error analysis": 44952, "future llm research": 36740, "finetuning multimodal large": 35148, "tasks including text": 94738, "encoder large language": 28697, "challenging inherent complexity": 13178, "existing automatic evaluation": 31665, "tasks address introduce": 94354, "future studies domain": 36783, "recent advancements language": 80181, "advancements language models": 3828, "existing studies overlook": 31827, "inherent realworld scenarios": 45741, "challenge stateoftheart models": 12935, "dataset extensive experiments": 21938, "texttoimage t2i models": 96628, "comprehension capabilities large": 17156, "language model llama": 49446, "reasoning tasks existing": 80047, "automatic data curation": 8769, "world knowledge embedded": 104403, "comprehensive benchmark evaluating": 17211, "language models openended": 50620, "question answering propose": 78618, "gpt4 automatic evaluator": 39775, "compared human accuracy": 16567, "extensive case study": 33002, "largely unexplored bridge": 52421, "bridge research gap": 11441, "research gap introduce": 82610, "significant impact model": 87763, "resource future research": 82964, "latest advancements generative": 52652, "advancements generative artificial": 3821, "extensive experiments systematically": 33088, "evaluate gpt4s performance": 30198, "benchmark datasets measure": 10131, "research contributes valuable": 82528, "leveraging vast knowledge": 53909, "vast knowledge powerful": 102684, "powerful text generation": 73472, "text generation abilities": 96233, "paper propose approach": 69878, "propose approach called": 76934, "using vision transformer": 101847, "enhancing overall user": 29359, "overall user experience": 69339, "results demonstrate capability": 83537, "model results underscore": 61354, "performance providing valuable": 71506, "significantly improves baseline": 87951, "multimodal understanding reasoning": 65110, "reasoning domainspecific knowledge": 79866, "tokens large language": 97211, "question answering face": 78592, "based user input": 9753, "strategy significantly reduces": 90918, "incontext learning present": 44637, "ensuring accurate tracking": 29473, "multistep reasoning capability": 65338, "outperforms existing finetuningbased": 69046, "cospeech gesture generation": 19830, "scores sampled responses": 85780, "vision transformer vit": 103013, "stable diffusion xl": 90095, "multimodal language model": 65064, "emerging research area": 28230, "enables robots acquire": 28613, "develop new approaches": 24466, "tasks data model": 94509, "prompt chatgpt generate": 76246, "detection models impact": 24330, "task experimental results": 94051, "select demonstration examples": 86123, "popular benchmark datasets": 72618, "demonstrate approach significantly": 23020, "improves performance gpt4": 44054, "performance advanced llms": 70979, "reasoning tasks generating": 80051, "textual descriptions remains": 96668, "training data experimental": 98007, "results demonstrate superiority": 83568, "crucial practical applications": 20514, "datasets contain short": 22191, "capabilities better evaluate": 11848, "models experimental results": 62402, "hard model generate": 40984, "gap propose simple": 36967, "visual instruction datasets": 103074, "language models focus": 49891, "propose comprehensive evaluation": 76949, "finetuned model using": 34941, "generated chatgpt paper": 37673, "employing generative models": 28446, "automatically generating natural": 8879, "challenge propose novel": 12923, "frozen large language": 36404, "prior knowledge generate": 74847, "language model small": 49545, "small number parameters": 88716, "existing baseline models": 31669, "using lora method": 101593, "approach involves training": 6915, "performance smaller models": 71574, "synthetic data using": 93270, "efficient effective method": 27755, "reasoning tasks extensive": 80049, "achieves strong zeroshot": 2805, "crucial role bridging": 20525, "pretrained vision encoders": 74491, "extensive experiments examine": 33071, "stateoftheart methods various": 90397, "achieving significantly higher": 2878, "gpt4 stable diffusion": 40098, "ai tools easily": 4591, "research generative artificial": 82614, "text propose new": 96372, "finally perform extensive": 34554, "code dataset publicly": 15210, "language models growing": 49953, "visual language model": 103078, "models encounter challenges": 62322, "chainofthought prompting technique": 12839, "experimental results various": 32074, "images using language": 43124, "build largescale dataset": 11596, "comparisons ablation studies": 16735, "dataset code publicly": 21854, "embedding space llm": 28067, "commonly known hallucination": 16192, "relative position encoding": 81302, "question answering benchmarks": 78577, "generalist visual language": 37226, "achieves state art": 2796, "state art model": 90268, "model codes available": 60667, "play critical role": 72334, "establish benchmark evaluating": 29968, "sheet music image": 87246, "learning modern machine": 53288, "challenges introduce novel": 13048, "captioning large language": 12328, "shown remarkable proficiency": 87542, "mathematical problem solving": 58581, "work largely focused": 104162, "current multimodal large": 20742, "questionanswer pairs utilizing": 78728, "demonstrates exceptional performance": 23374, "enhanced vision capabilities": 29258, "tasks mathematical reasoning": 94857, "analysis code generation": 5458, "using deep learning": 101405, "model effectively integrates": 60789, "vision models approach": 102994, "study explores capabilities": 91626, "capabilities multimodal large": 12008, "visual textual information": 103128, "previously proved difficult": 74758, "importance developing llms": 43449, "thought processes complex": 96858, "superior reasoning capabilities": 92666, "demonstrates improved accuracy": 23382, "achieves competitive accuracy": 2734, "dialogue dataset named": 24858, "pretrained visual language": 74500, "discriminative models like": 25641, "experimental results popular": 32056, "results popular benchmarks": 83768, "multiple foundation models": 65194, "object detection tasks": 67471, "rapidly advancing field": 79342, "does require training": 26327, "paper presents indepth": 69862, "way future advancements": 103360, "tasks despite achievements": 94532, "reasoning visual question": 80084, "improve reasoning capabilities": 43792, "like gpt4 results": 54161, "results experiments demonstrated": 83602, "research development field": 82550, "handle complex reasoning": 40920, "explores potential using": 32820, "end present new": 28831, "present new framework": 74016, "based prompt learning": 9675, "learning multimodal large": 53294, "realworld scenarios furthermore": 79695, "visual understanding capabilities": 103132, "address gap study": 3405, "commonsense reasoning capabilities": 16233, "reasoning capabilities additionally": 79796, "commonsense reasoning abilities": 16230, "ai particularly large": 4497, "enhancing teaching learning": 29372, "teaching learning experiences": 95370, "like gpt4 vision": 54164, "gpt4 vision gpt4v": 40152, "paper explores transformative": 69731, "opportunities challenges data": 68491, "science education disciplines": 85578, "language model dedicated": 49371, "bridge gap work": 11429, "gap work introduces": 36987, "development large multimodal": 24668, "question answering work": 78638, "follow natural language": 35651, "room improvement code": 84834, "limitations existing benchmarks": 54320, "text prompts used": 96370, "insights strengths weaknesses": 46138, "aim stimulate research": 4739, "stimulate research development": 90710, "chainofthought prompting large": 12836, "including gpt4v gemini": 44375, "autoregressive language modeling": 8962, "space recent work": 89464, "recent work showed": 80406, "maximum likelihood objective": 58652, "gpt2 text generation": 39357, "models paper proposes": 63762, "features text embedding": 34031, "robust evaluation benchmark": 84654, "multistep reasoning understanding": 65342, "human cognition making": 42127, "reasoning multimodal large": 79949, "generative models recently": 38671, "address inherent limitations": 3416, "ability solve complex": 1772, "visionlanguage model vlm": 103023, "does require additional": 26323, "require additional training": 82227, "reasoning tasks using": 80065, "theory mind tom": 96768, "mind tom ability": 60063, "tom ability understand": 97246, "bayesian inverse planning": 9913, "performance language understanding": 71335, "understanding reasoning interaction": 99858, "natural language natural": 65624, "chatgpt connect various": 13649, "models solve complicated": 64226, "generate final response": 37460, "trained natural language": 97883, "tackle wide range": 93741, "artificial intelligence particularly": 7656, "device experimental results": 24759, "face challenges effectively": 33436, "methods address issue": 59520, "perform compositional reasoning": 70845, "language model meets": 49483, "language models lvlms": 50552, "computational cost requires": 17449, "twostage training process": 99191, "achieve average accuracy": 2480, "extend capabilities llms": 32932, "code datasets opensource": 15216, "recent advancements ai": 80176, "advancements ai led": 3798, "capable processing complex": 12258, "reveal significant performance": 84173, "using human evaluation": 101512, "outperforms existing multimodal": 69049, "web agents existing": 103477, "automatic evaluation protocol": 8780, "task success rate": 94260, "automatic evaluation metric": 8777, "providing reliable accurate": 77793, "learning models large": 53278, "addresses limitations current": 3520, "impressive capabilities multimodal": 43585, "present extensive study": 73985, "increasingly used various": 44914, "commonsense reasoning llms": 16238, "graph reasoning tasks": 40406, "textual visual information": 96704, "performs better using": 71805, "requires world knowledge": 82422, "knowledge bases large": 48447, "bases large language": 9868, "llm superior capability": 55277, "require access models": 82224, "datasets demonstrate superiority": 22212, "dataset designed assess": 21905, "covering publicly available": 20082, "model fewshot setting": 60877, "study makes significant": 91738, "proposing novel methodology": 77288, "optimization paper presents": 68607, "robotic task planning": 84630, "challenges faced traditional": 13019, "visionlanguage models multimodal": 103035, "comprehensive experiments datasets": 17258, "foundation models llms": 35956, "work explore possibility": 104081, "outperform baseline zeroshot": 68921, "generation models dalle": 38279, "demonstrate remarkable capabilities": 23179, "remarkable capabilities generating": 81745, "language models agents": 49635, "image text modalities": 43067, "minimal alignment tax": 60081, "understand natural language": 99630, "manual verification process": 58284, "models mllms demonstrated": 63627, "tasks deployment hindered": 94525, "substantial computational costs": 92068, "significant performance drop": 87808, "multiple benchmarks code": 65147, "code models data": 15410, "catastrophic forgetting address": 12587, "framework significantly outperforms": 36270, "framework achieves stateoftheart": 36017, "models llms understand": 63496, "pretrained vision models": 74494, "tasks fall short": 94630, "acquiring highquality data": 2923, "instructionfollowing large language": 46457, "approach inspired observation": 6904, "operates stages stage": 68445, "second stage use": 85954, "text image generation": 96294, "multimodal models like": 65088, "like clip llava": 54108, "reasoning abilities language": 79753, "solve task experimental": 89197, "extensive experiments showed": 33084, "better quality data": 10774, "achieves better overall": 2719, "tasks current evaluation": 94505, "perception language understanding": 70788, "instructiontuned large visionlanguage": 46595, "models llms work": 63516, "model gpt4 vision": 60962, "inform design future": 45379, "task goal generate": 94085, "multimodal models bridge": 65087, "bridge large language": 11436, "gemini pro opensource": 37067, "automatic text simplification": 8835, "study included seven": 91673, "volume training data": 103217, "design new benchmark": 23817, "new benchmark termed": 66351, "political science social": 72569, "evaluate effectiveness using": 30177, "gains previous stateoftheart": 36868, "stateoftheart vision transformers": 90511, "proprietary systems like": 77321, "task zeroshot setting": 94297, "collect annotate data": 15859, "framework leverages power": 36197, "methods extensive experiments": 59636, "models mllms recently": 63630, "gained immense popularity": 36829, "including computer vision": 44310, "general knowledge reasoning": 37142, "knowledge reasoning abilities": 48731, "models despite remarkable": 62207, "novel efficient method": 67152, "capabilities multimodal understanding": 12011, "task conduct comprehensive": 93988, "evaluation metrics assess": 30675, "human evaluation automatic": 42169, "misinformation detection misinformation": 60173, "current methods focus": 20730, "lack sophistication understanding": 49049, "novel benchmark called": 67118, "recognized large language": 80629, "models demonstrate high": 62175, "high performance various": 41437, "study investigates performance": 91712, "solving complex reasoning": 89221, "complex reasoning problems": 16993, "recent large visionlanguage": 80285, "tasks tasks include": 95182, "conduct empirical investigations": 17857, "reveal models demonstrate": 84161, "factors including limited": 33596, "hope study provide": 41961, "open foundation models": 68066, "chat language model": 13379, "language model vision": 49570, "extend context length": 32934, "scale model parameters": 85281, "model parameters using": 61214, "substantially improves models": 92127, "low computational overhead": 57506, "models ability capture": 61728, "training inference phases": 98142, "representation language models": 82060, "discussion provide insights": 25727, "llms struggle perform": 56870, "orders magnitude data": 68722, "use open source": 100642, "models perform data": 63788, "paper present innovative": 69833, "based textual prompts": 9736, "experimental results confirm": 32022, "open question paper": 68099, "models llms introduces": 63258, "improves reasoning capabilities": 44067, "visual instruction data": 103073, "comparable performance fulldata": 16391, "results multiple benchmarks": 83737, "models mixtureofexperts moe": 63624, "fewshot chainofthought prompting": 34219, "model leverage external": 61062, "leverage external knowledge": 53724, "multimodal perception reasoning": 65095, "comprehension ability large": 17150, "answer extensive experiments": 6005, "superiority proposed method": 92682, "proposed method compared": 77221, "longterm temporal reasoning": 57416, "temporal logic tl": 95716, "model selfsupervised learning": 61390, "shows consistent performance": 87575, "llms findings indicate": 55983, "models llms expanding": 63150, "multiple types data": 65280, "presents set challenges": 74169, "training dataset additionally": 98067, "includes key components": 44253, "llms comprehensive experiments": 55660, "model efficiently trained": 60794, "model llm generated": 61093, "cover diverse set": 20049, "tested multiple llms": 95983, "extract useful features": 33246, "aid language models": 4639, "novel approach enhances": 67097, "ability understand reason": 1790, "applications code models": 6430, "learning icl ability": 53199, "using fewshot examples": 101442, "examples provided prompt": 31276, "vision large language": 102988, "introduce comprehensive benchmark": 47412, "diverse strengths weaknesses": 26111, "advanced models gpt4": 3723, "effectively enhances performance": 27423, "performance different downstream": 71141, "training experiments demonstrate": 98108, "quantitative evaluation shows": 78408, "state space models": 90281, "attention mechanism transformer": 8339, "computational overhead work": 17474, "backbone language model": 9246, "mamba language model": 58175, "demonstrate great potential": 23097, "facial action unit": 33475, "novel approach utilizing": 67109, "model efficient inference": 60792, "inference recent years": 45291, "linear computational complexity": 54526, "language model visual": 49571, "hope proposed method": 41956, "ability generalize unseen": 1655, "publicly available sources": 77991, "studies demonstrated effectiveness": 91375, "models llms reasoning": 63378, "reasoning power llms": 79980, "llm outputs introduce": 55184, "manner paper propose": 58244, "experiments demonstrate efficacy": 32156, "alignment generated images": 5073, "present comprehensive experimental": 73959, "comprehensive experimental results": 17254, "experimental results analyses": 32016, "computational costs associated": 17452, "number input tokens": 67350, "methods era large": 59623, "evaluation metrics rouge": 30685, "assess quality generated": 7870, "advanced models like": 3724, "language models clip": 49716, "performances various tasks": 71747, "methods face challenges": 59640, "inference stage paper": 45299, "end introduce new": 28827, "data models publicly": 21426, "language models shown remarkable": 50804, "power pretrained language models": 73391, "model achieves stateoftheart performance": 60502, "gpt2 pretrained language model": 39334, "visual question answering vqa": 103108, "images using natural language": 43126, "model size number training": 61423, "achieves comparable better performance": 2726, "large language models t5": 52191, "steer language model generating": 90586, "visual question answering captioning": 103105, "large pretrained models gpt3": 52322, "visionlanguage models vlms clip": 103039, "models vlms clip shown": 64520, "use rich context additional": 100682, "rich context additional information": 84409, "query large language models": 78535, "experiments conducted evaluate performance": 32138, "performance downstream tasks improving": 71163, "grade school math problems": 40284, "question answering mathematical reasoning": 78612, "answer large language models": 6025, "large pretrained models language": 52323, "given natural language description": 38918, "codes data publicly available": 15629, "training deep neural networks": 98072, "ablation studies demonstrate effectiveness": 1808, "power pretrained large language": 73393, "using finetuned large language": 101450, "shown impressive performance complex": 87480, "impressive performance complex reasoning": 43615, "framework quantitatively evaluating interactive": 36249, "language models exploit artifacts": 49858, "models exploit artifacts benchmarks": 62410, "language processing nlp computer": 51003, "processing nlp computer vision": 75517, "nlp computer vision cv": 66721, "powerful pretrained language model": 73465, "pretrained language model based": 74283, "powerful large language model": 73450, "visual language models vlms": 103081, "efficient finetuning language models": 27762, "speech recognition asr used": 89964, "uses large language model": 101237, "large language vision assistant": 52235, "gptbased large language models": 40207, "revolutionizing natural language processing": 84361, "sophisticated large language models": 89283, "foundation models fms gpt4": 35941, "significant attention exceptional performance": 87685, "extensive case studies demonstrate": 33001, "human activity recognition har": 42069, "data inspired recent advances": 21330, "network large language models": 66148, "regarding large language models": 81060, "significantly improves zeroshot performance": 87961, "performance various multimodal tasks": 71687, "models llms demonstrated significant": 63087, "paper provides comprehensive review": 69922, "classification semantic segmentation object": 14791, "semantic segmentation object detection": 86349, "existing pretrained language models": 31794, "encoder visionlanguage models vlms": 28713, "method significantly improve performance": 59423, "large language models remarkable": 52141, "retrieved knowledge paper present": 84088, "performance various language tasks": 71684, "suggesting significant room improvement": 92419, "llms demonstrated impressive reasoning": 55745, "generative ai applications metaverse": 38532, "large language models visual": 52219, "results human evaluation demonstrate": 83648, "demonstrate effectiveness proposed method": 23066, "hand large language models": 40901, "llms gpt4 shown remarkable": 56111, "large language model use": 51545, "enable large language models": 28554, "chatgpt gpt4 shown great": 13911, "gpt4 shown great potential": 40080, "question answering vqa task": 78637, "visual natural language inputs": 103093, "incorporating large language model": 44709, "language model llm gpt35": 49466, "answer complex questions requiring": 5994, "large vision language models": 52372, "language models llms providing": 50396, "recently attracted significant attention": 80459, "natural language processing human": 65651, "generated large language model": 37729, "assistant large language model": 8039, "large multimodal models lmms": 52277, "stateoftheart multimodal large language": 90414, "llms demonstrated remarkable abilities": 55754, "paper presents novel method": 69867, "results demonstrate significant improvement": 83563, "large visionlanguage models vlms": 52384, "visionlanguage models vlms like": 103041, "generative pretrained models like": 38688, "advancement artificial general intelligence": 3766, "large language models leverage": 51757, "visionlanguage models lvlms demonstrated": 103033, "generative machine learning models": 38648, "crucial achieving embodied intelligence": 20470, "general pretrained transformer gpt": 37175, "tasks remains unclear models": 95039, "gpt models gpt35 gpt4": 39223, "benchmark datasets demonstrate superior": 10127, "character error rate cer": 13318, "extend large language models": 32940, "experiments conducted various datasets": 32143, "model achieves stateoftheart results": 60503, "large visionlanguage models large": 52378, "visionlanguage models large visionlanguage": 103028, "models large visionlanguage models": 62870, "achieved remarkable performance various": 2658, "question answering reasoning tasks": 78626, "models language models large": 62847, "visionlanguage models lvlms recently": 103034, "language models llms current": 50137, "impact natural language processing": 43239, "lets think step step": 53639, "large language model case": 51464, "existing works mainly focus": 31856, "chatgpt shown great potential": 14222, "human natural language llms": 42307, "driving large language model": 26860, "large language model like": 51488, "language model like chatgpt": 49444, "language models llm enhanced": 50060, "catastrophic forgetting multimodal large": 12592, "forgetting multimodal large language": 35760, "multimodal machine learning models": 65084, "opensource code model data": 68320, "llms including llama2 70b": 56188, "language models llms designed": 50163, "shown remarkable capabilities various": 87534, "demonstrate superior performance method": 23204, "data experimental results demonstrate": 21213, "stateoftheart performance wide range": 90448, "language models llms expanded": 50209, "models llms large multimodal": 63265, "llms large multimodal models": 56278, "extract structured information unstructured": 33241, "outperform larger language models": 68950, "language models chatgpt gpt4": 49708, "prompted large language models": 76483, "demonstrate proposed model achieves": 23172, "model achieves superior performance": 60505, "image captioning visual question": 43022, "captioning visual question answering": 12334, "language models trained largescale": 50875, "generation using large language": 38498, "chatgpt specifically leverage chatgpt": 14263, "images generated stable diffusion": 43094, "conduct extensive ablation studies": 17875, "synthesis using large language": 93222, "visionlanguage models like clip": 103031, "large language model recent": 51530, "language model recent advancements": 49528, "prompt large language models": 76356, "versatile multimodal large language": 102793, "language model llm pretraining": 49473, "performance visionlanguage models like": 71706, "language models mllms integrate": 50582, "artificial intelligence foundation models": 7634, "like chatgpt significantly advanced": 54102, "finetuning multimodal large language": 35149, "encoder large language model": 28698, "experiments demonstrate method achieves": 32159, "demonstrate method achieves stateoftheart": 23125, "recent advancements language models": 80182, "models code data used": 62014, "comprehension capabilities large language": 17157, "large language models task": 52193, "extensive world knowledge embedded": 33142, "world knowledge embedded llms": 104404, "remains largely unexplored bridge": 81671, "bridge research gap introduce": 11442, "significant impact model performance": 87764, "latest advancements generative artificial": 52653, "advancements generative artificial intelligence": 3822, "paper propose approach called": 69879, "enhancing overall user experience": 29360, "performance providing valuable insights": 71507, "tokens large language models": 97212, "extensive experiments demonstrate proposed": 33064, "paper introduce novel approach": 69765, "demonstrate approach significantly improves": 23021, "approach significantly improves performance": 7023, "large language model gpt35": 51481, "training data experimental results": 98008, "experimental results demonstrate superiority": 32038, "models experimental results demonstrate": 62403, "experimental results demonstrate model": 32031, "large language models focus": 51690, "automatically generating natural language": 8880, "address challenge propose novel": 3366, "large language model small": 51537, "generate synthetic data using": 37611, "reasoning tasks extensive experiments": 80050, "tasks extensive experiments demonstrate": 94623, "plays crucial role bridging": 72380, "outperforms previous stateoftheart methods": 69100, "using generative ai tools": 101466, "similar generative ai tools": 88072, "research generative artificial intelligence": 82615, "visual question answering image": 103106, "code dataset publicly available": 15211, "visual language models visual": 103080, "large language models growing": 51720, "consistently outperforms stateoftheart models": 18309, "method significantly outperforms baselines": 59427, "dataset code publicly available": 21855, "learning modern machine learning": 53289, "address challenges introduce novel": 3369, "llms shown remarkable proficiency": 56791, "current multimodal large language": 20743, "experimental results proposed method": 32061, "proposed method outperforms stateoftheart": 77227, "capabilities multimodal large language": 12009, "language models propose novel": 50697, "pretrained visual language models": 74501, "experimental results popular benchmarks": 32057, "paving way future advancements": 70658, "various tasks despite achievements": 102595, "reasoning visual question answering": 80085, "handle complex reasoning tasks": 40921, "advances artificial intelligence generated": 3866, "paper explores potential using": 69730, "learning multimodal large language": 53295, "integration artificial intelligence ai": 46755, "intelligence ai particularly large": 46818, "ai particularly large language": 4498, "enhancing teaching learning experiences": 29373, "development large multimodal models": 24669, "follow natural language instructions": 35652, "aim stimulate research development": 4740, "smaller language models achieve": 88756, "reasoning multimodal large language": 79950, "approach does require additional": 6814, "does require additional training": 26324, "require additional training data": 82228, "theory mind tom ability": 96769, "mind tom ability understand": 60064, "achieve stateoftheart performance benchmarks": 2591, "advancements artificial intelligence particularly": 3802, "device experimental results demonstrate": 24760, "significantly outperforms baseline models": 87988, "vision language models lvlms": 102984, "learning models large language": 53279, "knowledge bases large language": 48448, "surpassing previous stateoftheart methods": 92971, "pretrained visionlanguage models vlms": 74498, "yields significant performance gains": 104675, "large visionlanguage models multimodal": 52383, "conduct comprehensive experiments datasets": 17845, "image generation models dalle": 43044, "large language models agents": 51565, "language models mllms demonstrated": 50580, "visual instruction tuning dataset": 103076, "instructionfollowing large language models": 46458, "models like clip llava": 62915, "reasoning abilities language models": 79754, "language models recent advances": 50728, "instructiontuned large visionlanguage models": 46596, "language models llms work": 50518, "language models mllms recently": 50583, "wide variety tasks including": 103708, "language models despite remarkable": 49781, "recognized large language models": 80630, "paper introduces novel task": 69778, "recent large visionlanguage models": 80286, "models achieve strong performance": 61762, "little training data available": 54687, "remains open question paper": 81687, "language models llms introduces": 50307, "improves reasoning capabilities large": 44068, "achieve comparable performance fulldata": 2494, "comprehension ability large language": 17151, "introduce novel framework named": 47470, "shows consistent performance improvement": 87576, "language models llms expanding": 50210, "language model llm generated": 49464, "applications code models available": 6431, "incontext learning large language": 44622, "incontext learning icl ability": 44604, "vision large language models": 102989, "remain underexplored study introduce": 81635, "recent studies demonstrated effectiveness": 80356, "language models llms reasoning": 50403, "present comprehensive experimental results": 73960, "models like gpt4 gemini": 62927, "vision language models clip": 102983, "achieves new stateoftheart performance": 2763, "code data models publicly": 15192, "data models publicly available": 21427, "visionlanguage models vlms clip shown": 103040, "use rich context additional information": 100683, "power pretrained large language models": 73394, "using finetuned large language model": 101451, "shown impressive performance complex reasoning": 87481, "language models exploit artifacts benchmarks": 49859, "natural language processing nlp computer": 65668, "language processing nlp computer vision": 51004, "processing nlp computer vision cv": 75518, "powerful large language model llm": 73451, "automatic speech recognition asr used": 8830, "language models llms demonstrated significant": 50157, "classification semantic segmentation object detection": 14792, "models llms demonstrated impressive reasoning": 63073, "hand large language models llms": 40902, "language models llms gpt4 shown": 50265, "models llms gpt4 shown remarkable": 63213, "enable large language models llms": 28555, "chatgpt gpt4 shown great potential": 13912, "extensive experiments demonstrate effectiveness method": 33059, "visual question answering vqa task": 103109, "powerful large language models llms": 73453, "large language model llm gpt35": 51504, "multimodal large language model llm": 65069, "large language models llms providing": 51972, "stateoftheart multimodal large language models": 90415, "large visionlanguage models vlms like": 52385, "large visionlanguage models lvlms demonstrated": 52381, "alignment large language models llms": 5089, "benchmark datasets demonstrate superior performance": 10128, "multimodal large language models llms": 65074, "using large language models like": 101551, "large visionlanguage models large visionlanguage": 52379, "visionlanguage models large visionlanguage models": 103029, "models large visionlanguage models lvlms": 62871, "large visionlanguage models lvlms recently": 52382, "large language models llms current": 51814, "autonomous driving large language model": 8934, "large language models llm enhanced": 51769, "catastrophic forgetting multimodal large language": 12593, "forgetting multimodal large language models": 35761, "large language models llms designed": 51821, "time large language models llms": 96984, "large language models llms effective": 51836, "large language models llms expanded": 51854, "language models llms large multimodal": 50313, "models llms large multimodal models": 63266, "llms large multimodal models lmms": 56279, "image captioning visual question answering": 43023, "synthesis using large language models": 93223, "using large language models paper": 101553, "large language model recent advancements": 51531, "versatile multimodal large language model": 102794, "large language model llm pretraining": 51510, "performance visionlanguage models like clip": 71707, "uses large language model llm": 101238, "large language models mllms integrate": 52065, "current large language models llms": 20708, "finetuning multimodal large language models": 35150, "extensive experiments demonstrate method achieves": 33062, "experiments demonstrate method achieves stateoftheart": 32160, "demonstrate method achieves stateoftheart performance": 23126, "comprehension capabilities large language models": 17158, "extensive world knowledge embedded llms": 33143, "latest advancements generative artificial intelligence": 52654, "advancements generative artificial intelligence genai": 3823, "training data experimental results demonstrate": 98009, "capabilities large language models chatgpt": 11962, "models llms shown remarkable proficiency": 63437, "current multimodal large language models": 20744, "capabilities multimodal large language models": 12010, "advances artificial intelligence generated content": 3867, "artificial intelligence ai particularly large": 7613, "intelligence ai particularly large language": 46819, "development large multimodal models lmms": 24670, "approach does require additional training": 6815, "does require additional training data": 26325, "theory mind tom ability understand": 96770, "large vision language models lvlms": 52373, "learning models large language models": 53280, "large language models mllms demonstrated": 52063, "instructionfollowing large language models llms": 46459, "instructiontuned large visionlanguage models lvlms": 46597, "large language models llms work": 52044, "large language models mllms recently": 52066, "large language models despite remarkable": 51635, "large language models language models": 51750, "large language models llms introduces": 51912, "improves reasoning capabilities large language": 44069, "comprehension ability large language models": 17152, "large language models llms expanding": 51855, "large language model llm generated": 51502, "incontext learning large language models": 44623, "large language models llms reasoning": 51977, "code data models publicly available": 15193, "metacognitive": 59144, "reasoned": 79744, "hanoi": 40961, "crosssystem": 20443, "theorem": 96728, "prover": 77388, "communitydriven": 16341, "comprise": 17379, "kbbased": 48246, "188": 436, "15000": 334, "650": 1159, "theorybased": 96775, "zeroshotcot": 104888, "flip": 35440, "shuffled": 87626, "787": 1271, "407": 919, "magnitudes": 57809, "cubes": 20573, "662": 1174, "wikitq": 103821, "396": 874, "366": 858, "222": 614, "portable": 72719, "humanprovided": 42561, "enforces": 28903, "nextstep": 66658, "832": 1351, "harvard": 41101, "finals": 34579, "banning": 9340, "gptneox": 40235, "tango": 93850, "beacon": 9920, "imbues": 43154, "531": 1060, "delegated": 22921, "solvable": 89159, "ama": 5293, "park": 70323, "gpt3175b": 39564, "tablerelated": 93691, "fetaqa": 34179, "inputdependent": 45974, "formalise": 35802, "pal": 69540, "runnable": 84951, "pot": 72974, "finqa": 35310, "attentionhead": 8396, "logicnlg": 57279, "dpr": 26768, "286": 704, "accumulation": 2170, "deduced": 22731, "abductive": 1487, "191": 447, "minute": 60143, "outofdate": 68876, "rr": 84902, "letting": 53642, "le": 52790, "paying": 70664, "214": 595, "950": 1441, "treebased": 98826, "parallelizing": 70092, "physicsinformed": 72093, "substituted": 92150, "401": 915, "beams": 9924, "073": 61, "041": 33, "newlyreleased": 66605, "php": 72055, "955": 1445, "764": 1260, "539": 1061, "chameleon": 13262, "1137": 200, "multiplications": 65306, "reorganizing": 81883, "634": 1148, "956": 1446, "pinpoints": 72124, "fatal": 33920, "ps": 77861, "tempting": 95729, "selfthinking": 86281, "recalls": 80127, "ravens": 79446, "deficit": 22859, "993": 1465, "lifted": 53991, "characterizes": 13344, "072": 60, "domainadaptation": 26471, "lookahead": 57422, "polarities": 72523, "isa": 47913, "rectifying": 80716, "mismatched": 60194, "architectureagnostic": 7386, "defend": 22841, "clever": 14892, "believing": 10051, "misled": 60192, "absurdly": 1959, "tablebased": 93690, "clarification": 14682, "noncollaborative": 66884, "merit": 59115, "faulty": 33927, "llmseg": 57064, "224": 616, "multidigit": 64889, "accommodates": 2126, "anticipating": 6244, "rap": 79286, "repurposes": 82210, "llama33b": 54886, "windows": 103834, "34k": 819, "nonsequential": 66950, "alms": 5220, "offload": 67879, "1350": 276, "mad": 57797, "diff": 24960, "tap": 93851, "pts": 77901, "tweaks": 99148, "syllogism": 93112, "unwanted": 100341, "multicontext": 64885, "contextrelated": 18889, "affirmative": 4070, "prerequisites": 73912, "loose": 57436, "consolidates": 18349, "prompter": 76493, "mrc": 64827, "strengthens": 90950, "extrinsically": 33406, "selfcollaboration": 86204, "unleashes": 100158, "multiverse": 65399, "mint": 60141, "multiview": 65400, "enumeration": 29607, "selfcontained": 86209, "359": 847, "equipping": 29699, "acclaim": 2123, "mp": 64815, "introspective": 47577, "registers": 81095, "shall": 87165, "registered": 81093, "fallacious": 33792, "convince": 19463, "sides": 87633, "bolstered": 11249, "elevated": 27976, "ate": 8145, "foresee": 35745, "billionparameter": 11031, "injections": 45830, "perlayer": 71835, "424": 938, "junior": 48210, "kinematics": 48389, "732": 1238, "li": 53944, "constants": 18362, "664": 1176, "220": 609, "flant5base": 35403, "neuro": 66298, "satisfiability": 85202, "modulo": 64686, "deepens": 22808, "multiperspective": 65129, "643": 1154, "toolintegrated": 97344, "1319": 270, "446": 956, "substantiated": 92143, "conspicuously": 18353, "942": 1434, "tactic": 93758, "211": 592, "invited": 47813, "implication": 43361, "evoking": 31012, "boilerplate": 11246, "tda": 95329, "impeded": 43298, "atp": 8153, "tempered": 95689, "slew": 88621, "propositional": 77290, "1000000": 147, "155b": 344, "attenuates": 8400, "subtlety": 92167, "859": 1371, "declaration": 22617, "ordersofmagnitude": 68728, "463": 970, "routines": 84890, "misguided": 60170, "eventual": 30941, "temperatures": 95688, "accuracybased": 2387, "undermines": 99524, "454": 963, "36000": 854, "tacit": 93710, "preferring": 73836, "contextunaware": 18982, "curriculums": 20829, "121": 229, "abridged": 1897, "astrophysics": 8139, "celestial": 12722, "admit": 3602, "sufficiency": 92330, "reconnaissance": 80681, "horizontally": 41984, "vertically": 102838, "impart": 43294, "manifesting": 58210, "conflate": 18050, "cleanly": 14876, "pruner": 77846, "435": 950, "tr": 97612, "atomicity": 8151, "toolbench": 97340, "md": 58686, "codellama7b": 15611, "guanaco": 40694, "crosschecking": 20399, "560": 1082, "652": 1161, "4870": 982, "2769": 691, "nonstandard": 66953, "selfreflective": 86257, "postulate": 72972, "textcode": 96508, "reasonings": 80094, "nonnatural": 66930, "molecular": 64696, "openchat": 68230, "stratification": 90930, "authenticate": 8615, "sec": 85914, "filings": 34461, "planningbased": 72288, "mips": 60146, "092": 84, "609": 1123, "contradictions": 19055, "1digit": 472, "slides": 88625, "augmenter": 8589, "discard": 25552, "widerange": 103773, "ablate": 1801, "reprompting": 82207, "interdiscipline": 47145, "depthfirst": 23636, "visited": 103046, "507": 1033, "debated": 22530, "rumour": 84944, "zs": 104897, "greedily": 40535, "supplements": 92777, "toolsets": 97484, "rewording": 84387, "hintenhanced": 41851, "682": 1189, "751": 1248, "illformed": 42986, "880": 1385, "assortment": 8115, "complimentary": 17070, "411": 930, "prevails": 74628, "substructures": 92159, "ontological": 68022, "frontal": 36391, "parietal": 70320, "reasoningfocused": 80091, "393": 872, "tt": 98986, "peers": 70701, "437": 952, "977": 1459, "826": 1344, "rat": 79364, "192": 449, "bct": 9918, "327": 789, "proportionally": 76917, "cp": 20110, "622": 1137, "960": 1450, "111": 198, "complicate": 17063, "debating": 22532, "706": 1217, "human reasoners": 42348, "apply solve": 6674, "similar way": 88121, "dynamically generated": 26947, "varies specific": 102283, "difficulty effectiveness": 25323, "python program": 78107, "goal input": 39059, "input makes": 45919, "needed test": 66023, "candidate solution": 11811, "problems range": 75193, "domains ranging": 26576, "tower hanoi": 97579, "small user": 88736, "difficulty humans": 25327, "impact program": 43248, "provide unified": 77589, "benchmark currently": 10114, "benchmark help": 10184, "help spur": 41282, "range general": 79160, "general nlp": 37169, "symbolic reasoning": 93130, "object manipulation": 67479, "manipulation navigation": 58224, "demonstrate surprising": 23208, "complicated task": 17066, "simpler tasks": 88256, "model lmbased": 61110, "proposed enhance": 77198, "lmbased methods": 57089, "power lms": 73383, "free text": 36341, "problem aims": 74990, "solving linear": 89233, "perfect accuracy": 70809, "tasks running": 95076, "running programs": 84956, "use openai": 100643, "codex zeroshot": 15683, "synthesize code": 93230, "text yields": 96489, "online model": 67995, "questions given": 78865, "given sample": 38953, "content work": 18709, "transformer trained": 98549, "course problems": 20029, "execute generated": 31438, "requires prompt": 82406, "engineering transform": 29032, "original form": 68774, "form results": 35783, "correct program": 19679, "program solution": 75845, "problems solve": 75206, "fashion using": 33886, "level demonstrate": 53652, "synthesize programs": 93233, "learning openais": 53311, "mathematics computer": 58603, "solve questions": 89190, "probability intermediate": 74959, "randomly sample": 79128, "latest gpt3": 52669, "text automatically": 96092, "81 questions": 1331, "questions approach": 78783, "improves previous": 44061, "solution accuracy": 89072, "series intermediate": 86738, "reasoning particular": 79968, "demonstrations provided": 23482, "prompting improves": 76546, "arithmetic commonsense": 7486, "commonsense symbolic": 16244, "surpassing finetuned": 92959, "relations complex": 81264, "questions required": 78938, "challenge implicit": 12885, "retrieving reasoning": 84111, "models chainofthought": 61975, "prompting demonstrated": 76516, "generalization propose": 37278, "problem series": 75074, "codedavinci002 model": 15594, "prompting solve": 76611, "16 accuracy": 358, "prompting particularly": 76586, "trained entire": 97822, "examples included": 31229, "included prompts": 44241, "specific cases": 89669, "gpt3 baseline": 39413, "prompting recent": 76600, "system2 tasks": 93312, "standard scaling": 90205, "llms decent": 55718, "zeroshot llm": 104818, "date understanding": 22477, "model textdavinci002": 61507, "strongest zeroshot": 91103, "importance carefully": 43441, "knowledge hidden": 48616, "consistently different": 18287, "hard learn": 40981, "overall using": 69340, "language datasets": 49180, "demonstrated stateoftheart": 23340, "computational operations": 17472, "simply concatenating": 88286, "significant experimental": 87749, "reasoning cases": 79819, "reasoning core": 79845, "progress area": 75969, "problems improve": 75152, "giving final": 38990, "second uses": 85959, "develop compare": 24438, "code answering": 15126, "reproducibility future": 82196, "gpt3 opt": 39504, "opt codex": 68532, "potential language": 73151, "solution largescale": 89099, "class instructors": 14696, "instructors teach": 46629, "teach students": 95337, "premises conclusions": 73887, "automatically constitute": 8848, "mediumsized language": 58950, "gptneox opt": 40237, "fewshot techniques": 34320, "prompting specifically": 76612, "fewshot setup": 34317, "tasks reasons": 95012, "mechanisms large": 58814, "models systematically": 64321, "identify define": 42862, "define key": 22863, "querying model": 78562, "model counterfactual": 60720, "results conclude": 83516, "dynamic prompt": 26930, "abstract thinking": 1938, "tasks written": 95268, "text form": 96214, "information tabular": 45645, "textual tabular": 96699, "table types": 93688, "earlier studies": 26965, "selection incontext": 86156, "examples performance": 31264, "accuracy metric": 2313, "reduces prediction": 80842, "compared random": 16623, "selecting incontext": 86144, "perform multistep": 70898, "reasoning existing": 79878, "central question": 12734, "question reasoning": 78699, "selection scheme": 86175, "reasoning prompts": 79992, "tasks strong": 95142, "prompting selecting": 76606, "outputs sample": 69254, "demonstrate robustness": 23182, "evaluating accuracy": 30395, "questionanswering dataset": 78735, "model represented": 61342, "analysis analysis": 5434, "planning multiple": 72269, "modular approach": 64645, "approach solving": 7030, "powerful way": 73476, "way use": 103404, "struggles task": 91238, "simpler subtasks": 88255, "structure allows": 91125, "optimized specific": 68644, "prompts trained": 76840, "prompting allows": 76498, "allows outperform": 5206, "hard llms": 40982, "llms simpler": 56813, "task smaller": 94244, "incorporate symbolic": 44673, "ask simple": 7724, "task additional": 93925, "prompt cause": 76242, "large variations": 52366, "effort dedicated": 27872, "task mitigate": 94144, "proposed prompting": 77249, "uses llm": 101241, "transform task": 98460, "true label": 98912, "complex dependencies": 16927, "noisy predictions": 66874, "strategy enables": 90878, "model match": 61121, "averaged tasks": 9188, "gap language": 36945, "measure models": 58743, "singlehop question": 88417, "reasoning demonstrate": 79860, "question finally": 78669, "thinking answering": 96800, "taskspecific demonstrations": 95283, "demonstrations manual": 23477, "generate reasoning": 37571, "demonstrations propose": 23481, "public benchmark": 77911, "consistently matches": 18299, "longstanding goal": 57403, "goal research": 39071, "existing lms": 31752, "works inference": 104362, "literature shown": 54662, "fewshot reasoners": 34302, "reasoners solve": 79749, "tasks capability": 94417, "table reasoning": 93683, "tablerelated tasks": 93692, "table structures": 93686, "longform answers": 57376, "elicited llms": 27994, "underlying semantic": 99518, "believe llms": 10036, "serve simple": 86775, "simple generic": 88200, "make small": 58027, "reasonable explanations": 79736, "acquire strong": 2911, "finetuning baselines": 35022, "causal framework": 12651, "problems language": 75158, "description generating": 23679, "behavioral testing": 9998, "causal effect": 12648, "problems analysis": 75111, "shows robustness": 87615, "compared gpt": 16554, "model codex": 60668, "undertake detailed": 99922, "detailed case": 24155, "methods chainofthought": 59559, "reasoning numerical": 79963, "reasoning solve": 80027, "derive answer": 23646, "performance financial": 71218, "financial datasets": 34599, "model baselines": 60595, "llama2 mpt": 54845, "mpt falcon": 64823, "distilling reasoning": 25849, "reasoning approaches": 79785, "effective inducing": 27312, "decomposition original": 22701, "models 70": 61720, "finally investigate": 34541, "effective alternative": 27261, "specifically finetune": 89819, "finetune student": 34858, "generated larger": 37732, "larger teacher": 52477, "improves task": 44080, "applied text": 6634, "graphs tables": 40449, "semantic coverage": 86305, "approach text": 7059, "value functions": 102192, "like direct": 54115, "prompting chainofthought": 76508, "consistent summaries": 18276, "models retrievers": 64105, "promise effectively": 76117, "reasoning additionally": 79776, "models worse": 64554, "promising large": 76171, "gpt35 does": 39591, "error accumulation": 29766, "need ability": 65895, "decision tasks": 22587, "select candidate": 86120, "candidate answer": 11798, "score experimental": 85713, "cot methods": 19953, "scale paper": 85286, "large teacher": 52350, "teacher models": 95344, "model tasks": 61492, "extend method": 32942, "method leveraging": 59354, "original sample": 68808, "results substantial": 83865, "capabilities student": 12091, "abductive reasoning": 1488, "challenging gpt4": 13175, "requiring highly": 82435, "highly advanced": 41680, "advanced reasoning": 3741, "question evaluation": 78665, "humans solve": 42638, "outperform random": 68963, "gpt4 solves": 40093, "benchmark future": 10179, "understanding limits": 99801, "start highlevel": 90253, "complex algorithms": 16910, "algorithms code": 4960, "function descriptions": 36485, "descriptions search": 23727, "used domains": 100781, "planning using": 72287, "apps dataset": 7288, "pass rates": 70534, "prior results": 74857, "results directly": 83575, "codex using": 15682, "robotic plans": 84628, "llm limitations": 55160, "useful human": 100946, "seen surge": 86096, "better make": 10745, "symbolic methods": 93128, "create work": 20187, "use symbolic": 100699, "representations specialized": 82123, "attention methods": 8341, "process automatically": 75273, "automatically acquire": 8839, "assist llms": 8017, "finetuning costly": 35038, "costly feasible": 19909, "lightweight approach": 54033, "length llms": 53602, "tasks commonsense": 94455, "tabular reasoning": 93707, "llms causal": 55564, "crucial natural": 20508, "states language": 90518, "f1 findings": 33415, "processes opaque": 75442, "underlying biases": 99488, "way address": 103341, "systems facilitating": 93453, "data release": 21554, "limited model": 54445, "model abilities": 60471, "balance tradeoff": 9308, "scaling curve": 85322, "ability comprehensive": 1618, "model checkpoint": 60646, "reasoning chainofthought": 79821, "generated reasoning": 37767, "framework involving": 36179, "chain problem": 12799, "performance outperforms": 71452, "relational inference": 81259, "accuracy showing": 2360, "chatgpt released": 14166, "large databases": 51416, "mathematical library": 58577, "datasets curated": 22200, "holistic overview": 41920, "cases arise": 12512, "evaluation effort": 30581, "used successfully": 100909, "additionally used": 3351, "positive reports": 72834, "selection bias": 86152, "goal use": 39076, "humans understand": 42648, "sentences combining": 86545, "combining existing": 16009, "conclusions large": 17763, "able leverage": 1862, "short problems": 87297, "knowledge apply": 48426, "reasoning goaldirected": 79899, "applications developed": 6448, "explanation benchmark": 32461, "unified multitask": 100035, "prove correctness": 77369, "compared natural": 16596, "language focus": 49224, "format using": 35828, "embeddings preserve": 28092, "expressions using": 32919, "using constrained": 101379, "produce false": 75625, "model precisely": 61257, "manually verify": 58315, "precise answers": 73593, "examples effectiveness": 31207, "dialogue reasoning": 24887, "methods demonstrated": 59590, "expressed intent": 32908, "additionally assess": 3276, "chatgpt recognize": 14159, "chatgpt examples": 13774, "limitations challenges": 54303, "require improvement": 82262, "leap novel": 52928, "propose training": 77143, "features significantly": 34025, "compared gpt3": 16556, "outperforms chainofthought": 69023, "dataset conducted": 21874, "performance improving": 71307, "results classification": 83498, "learning architectures": 53035, "engineering approaches": 28947, "evaluated automated": 30315, "google microsoft": 39140, "engineered features": 28939, "introduced method": 47505, "engineering remains": 29014, "llm ask": 54971, "extract facts": 33229, "performance reasoning": 71521, "context lead": 18799, "critic provides": 20299, "trained critic": 97808, "humans inference": 42610, "latest large": 52671, "llama various": 54804, "effectively elicit": 27418, "longer effective": 57365, "effective reasoning": 27357, "chatgpt usually": 14337, "chatgpt variety": 14344, "programs natural": 75953, "programs optimization": 75956, "process conducting": 75282, "involvement experts": 47832, "program code": 75832, "task synthesizing": 94261, "form natural": 35777, "mathematical program": 58584, "utilize gpt3": 101935, "patterns observe": 70636, "comprehensive natural": 17281, "release generative": 81370, "analyses multiple": 5405, "newlyreleased datasets": 66606, "benchmarks requiring": 10406, "gpt4 make": 39966, "benchmarks early": 10333, "access gpt4": 2062, "gpt4 yields": 40157, "yields higher": 104665, "gpt4 relatively": 40047, "datasets release": 22390, "successfully employed": 92275, "argue prompt": 7461, "engineering help": 28977, "bring capabilities": 11460, "tasks depends": 94523, "design chainofthought": 23757, "methods enhance": 59619, "guide subsequent": 40752, "multiple interactions": 65202, "progressively guide": 76027, "compared complex": 16520, "selfconsistency gpt4": 86206, "accessing uptodate": 2121, "information stored": 45638, "tools performing": 97454, "precise mathematical": 73597, "various tools": 102610, "tools llms": 97442, "offtheshelf vision": 67896, "python functions": 78101, "tasks heart": 94694, "llmbased planner": 55357, "knowledgeintensive reasoning": 48834, "best published": 10642, "exhibits consistent": 31603, "tool selection": 97316, "potential constraints": 73061, "gpt3 powerful": 39512, "hand rulebased": 40903, "text inspired": 96308, "models arithmetic": 61855, "gpt3 showed": 39529, "require certain": 82231, "ability transformer": 1786, "test task": 95956, "results increase": 83668, "addition task": 3214, "language interaction": 49290, "currently difficulty": 20806, "accomplish tasks": 2135, "tasks autonomously": 94394, "facts limited": 33613, "framework aiming": 36028, "userfriendly understandable": 101063, "strengths llms": 90959, "reasoning correct": 79846, "summarizing reorganizing": 92592, "language format": 49227, "necessary reasoning": 65873, "used testbed": 100915, "studies best": 91366, "introduces uncertainty": 47538, "mechanism guide": 58800, "integrating selfevaluation": 46745, "stochastic beam": 90720, "resulting superior": 83448, "exploration search": 32601, "surpasses corresponding": 92929, "benchmarks respectively": 10407, "results llama2": 83712, "method outperforming": 59375, "methods comparable": 59568, "computational budgets": 17437, "smallscale study": 88810, "scientific medical": 85655, "medical domains": 58883, "exhibits best": 31597, "automated discovery": 8691, "demonstrating good": 23429, "performance generation": 71258, "texts leads": 96582, "knowledge building": 48457, "opendomain questionanswering": 68246, "prompting improving": 76547, "llms explicitly": 55931, "accuracy eliminate": 2252, "calculation errors": 11741, "errors propose": 29838, "detailed instructions": 24177, "gpt3 proposed": 39516, "prompting consistently": 76513, "prediction demonstrate": 73687, "heavily influenced": 41212, "multiplechoice options": 65287, "prompt make": 76374, "make answer": 57964, "models incorrect": 62746, "model explanations": 60843, "transparent explainable": 98779, "enables chatgpt": 28577, "tasks fundamentally": 94657, "divided stages": 26172, "stage llm": 90118, "evaluating understanding": 30492, "understanding generalization": 99742, "particularly using": 70509, "progressive matrices": 76024, "problems ai": 75110, "analogy problems": 5383, "differs original": 25276, "problems focus": 75145, "level abstraction": 53644, "benchmark machine": 10210, "results humans": 83649, "benchmark spur": 10254, "concepts relations": 17635, "shown high": 87469, "questions recently": 78929, "problems faced": 75144, "specify complex": 89912, "complex highlevel": 16939, "engineering applications": 28943, "underexplored lack": 99443, "dataset generalizable": 21953, "publish dataset": 78004, "aspects usage": 7793, "characterizes common": 13345, "domains application": 26488, "varied domains": 102274, "domains achieve": 26485, "recognition task": 80617, "domain finetuning": 26391, "accuracy 95": 2192, "strategy tailored": 90922, "involved text": 47829, "model advantage": 60525, "advantage llms": 3926, "llms generalization": 56036, "yields new": 104670, "specifically using": 89891, "model reason": 61312, "construct specialized": 18437, "support llms": 92819, "approach target": 7053, "types structured": 99267, "baselines codes": 9825, "using mixture": 101616, "mixture objectives": 60354, "objectives extensive": 67520, "improved quality": 43855, "improvements palm": 43987, "capabilities overall": 12033, "evolve time": 31042, "results reported": 83812, "solving large": 89230, "increasingly deployed": 44876, "surmount challenges": 92904, "approach prompting": 6987, "models enables": 62313, "serve intermediate": 86769, "models problemsolving": 63897, "abilities novel": 1546, "planning search": 72281, "solved tasks": 89207, "achieved success": 2680, "opinion expressions": 68472, "detecting implicit": 24246, "requires commonsense": 82365, "infer latent": 45199, "framework mimic": 36206, "aspect opinion": 7760, "sentiment polarity": 86606, "setting code": 86979, "consistency work": 18249, "solutions detect": 89135, "chatgpt reaches": 14147, "debate large": 22523, "llms collaboration": 55640, "collaboration examine": 15821, "llms collaborate": 55639, "effectively achieve": 27391, "shared goal": 87191, "debate llms": 22527, "effectively collaborate": 27411, "superior llms": 92642, "lays foundation": 52780, "developing future": 24581, "explanations finetuning": 32492, "thorough investigation": 96833, "open pretrained": 68092, "transformers opt": 98630, "entails finetuning": 29499, "sets finetuned": 86962, "explanations evaluate": 32487, "outofdomain tasks": 68892, "dimensions finetuning": 25390, "increase classification": 44752, "exhibit negligible": 31534, "new instructiontuning": 66431, "instructions prompting": 46548, "mathematical tasks": 58592, "performed manually": 71762, "previously unpublished": 74766, "completed tasks": 16882, "extensive domain": 33015, "inference abilities": 45207, "setting performance": 87017, "debate regarding": 22528, "performing thorough": 71791, "tasks distinct": 94554, "superiority gpt4": 92678, "challenging science": 13227, "models 15": 61710, "baseline given": 9780, "broad coverage": 11489, "combining large": 16014, "reasoning enhances": 79871, "enhances capacity": 29278, "affecting performance": 4060, "text abstract": 96068, "amr graph": 5372, "graph structured": 40409, "text create": 96156, "truth evaluating": 98952, "testing llms": 96016, "llm user": 55306, "clever hans": 14893, "requires llm": 82394, "achieve correct": 2506, "answer able": 5984, "work generating": 104111, "tables current": 93694, "labels extensive": 48942, "including table": 44489, "understanding response": 99869, "capabilities possess": 12043, "ambiguous queries": 5316, "findings discussed": 34661, "predominantly relied": 73784, "relied supervised": 81551, "demonstrated capacity": 23238, "llms logical": 56356, "size ranging": 88522, "chainofthought finetuning": 12830, "challenges practical": 13101, "practical deployment": 73509, "deployment previous": 23614, "cot finetuning": 19951, "data contains": 21112, "faulty reasoning": 33928, "capabilities work": 12140, "reasoning conduct": 79839, "reasoning general": 79893, "smaller scale": 88789, "reasoning contrast": 79842, "finetuning flant5": 35071, "cot capabilities": 19945, "flant5 11b": 35390, "terms zeroshot": 95848, "furthermore instruction": 36629, "chatgpt utilizing": 14339, "collection data": 15892, "nearperfect accuracy": 65861, "easily trained": 27020, "facilitating reproducibility": 33544, "reproducibility researchers": 82199, "typically evaluated": 99287, "particularly important": 70472, "steps demonstrate": 90681, "chatbased large": 13395, "reasoning improve": 79906, "abilities propose": 1557, "utilize tools": 101957, "llms interact": 56240, "interact tools": 46985, "reasoning approach": 79784, "conversation ability": 19314, "format propose": 35826, "reasoning experiment": 79879, "shown effectiveness": 87449, "automatic model": 8810, "selection large": 86163, "introduce model": 47447, "best worlds": 10659, "analysis underscores": 5711, "underscores feasibility": 99564, "integrated enhance": 46681, "plan execute": 72234, "execute actions": 31434, "output intermediate": 69161, "decomposes question": 22694, "sequence actions": 86644, "critical performance": 20341, "capability current": 12154, "solution likelihood": 89101, "yield incorrect": 104641, "incorrect solutions": 44741, "solutions address": 89127, "discriminator trained": 25645, "candidates based": 11813, "based correctness": 9485, "exhibits substantial": 31636, "problems easy": 75132, "action plans": 2948, "plans executing": 72295, "executing tasks": 31449, "outcomes actions": 68843, "prevents llms": 74657, "involves exploring": 47842, "exploring alternative": 32832, "anticipating future": 6245, "iteratively refining": 48085, "llm world": 55321, "planning algorithm": 72253, "model taskspecific": 61493, "evaluating problem": 30479, "llms curate": 55704, "chemistry problems": 14509, "using techniques": 101809, "grounding abstract": 40585, "unable assess": 99354, "enables effective": 28583, "response selection": 83161, "parallel context": 70075, "context windows": 18879, "limitations evaluation": 54318, "maximum context": 58648, "positional embedding": 72809, "classification challenging": 14730, "framework initially": 36169, "dataset 34k": 21809, "rich diverse": 84414, "lms nlp": 57148, "discovered potential": 25606, "potential chainofthought": 73049, "thinking allows": 96799, "representation original": 82068, "improvement strong": 43947, "model stateoftheart": 61449, "tasks improve": 94716, "leverages chainofthought": 53779, "process apply": 75271, "llms continuously": 55682, "interested setting": 47148, "behavior gpt": 9972, "progress llms": 75993, "models alms": 61827, "tools response": 97465, "action based": 2941, "execution study": 31464, "evaluations public": 30877, "175b gpt35": 406, "simple abstract": 88165, "analysis gpt": 5530, "examples solutions": 31285, "core knowledge": 19548, "capacity identify": 12293, "gpt logs": 39210, "building taskspecific": 11652, "obtained llms": 67675, "datasets medqausmle": 22334, "3b models": 882, "larger parameters": 52466, "problems preliminary": 75184, "described plain": 23666, "set contains": 86856, "question posed": 78694, "highlighting strengths": 41643, "straightforward arithmetic": 90765, "solutions attempt": 89128, "tasks answers": 94373, "evaluation chatbots": 30536, "final answers": 34482, "chatgpt4 outperforms": 14383, "outperforms chatgpt35": 69028, "chatgpt chatbots": 13607, "divergent thinking": 25975, "thinking large": 96803, "behaviors llms": 10008, "problemsolving strategies": 75240, "propose multiagent": 77029, "framework multiple": 36210, "agents express": 4188, "process obtain": 75366, "framework encourages": 36118, "framework extensive": 36135, "obtain good": 67650, "used agents": 100731, "reasoning generative": 79897, "provided observe": 77629, "observe notable": 67593, "notable differences": 66997, "117 million": 209, "intriguing research": 47382, "research endeavor": 82577, "gpt4 solving": 40094, "perform evaluation": 70866, "difficult high": 25296, "conversational approach": 19358, "issues impact": 47991, "outputs small": 69256, "style reasoning": 91912, "working legal": 104327, "learns imitate": 53502, "surpasses conventional": 92927, "conventional stateoftheart": 19295, "models vicuna13b": 64508, "lsat gre": 57646, "prompt engineered": 76284, "make specific": 58030, "image interpretation": 43050, "significantly benefit": 87885, "benefit chainofthought": 10442, "allows models": 5202, "comprehensive reasoning": 17291, "propose natural": 77035, "generate precise": 37556, "correct final": 19668, "tools language": 97430, "constrain generation": 18373, "set valid": 86951, "statements given": 90292, "reasoning used": 80079, "used guide": 100818, "problem natural": 75053, "turbo llama": 99117, "llama accuracy": 54718, "challenging realworld": 13216, "increasing context": 44827, "problem multiple": 75051, "tokens models": 97216, "multiple architectures": 65138, "capability solve": 12210, "exhibit incontext": 31528, "contrast traditional": 19091, "consistently underperforms": 18313, "engineering focus": 28972, "gap exists": 36928, "probabilistic reasoning": 74953, "tasks raises": 95001, "intriguing question": 47380, "llms actually": 55439, "learning reason": 53372, "taskagnostic manner": 94302, "reasoning module": 79944, "regression tasks": 81103, "tasks 14": 94328, "outperforms bloom": 69022, "models curate": 62140, "questions solutions": 78948, "models fulfill": 62516, "achieves perfect": 2768, "required solving": 82323, "solving questions": 89249, "curriculum design": 20826, "models really": 63983, "really good": 79601, "role domains": 84769, "intelligence recently": 46885, "emerged noteworthy": 28141, "impressive achievements": 43579, "gap provide": 36970, "include representative": 44233, "accuracy propose": 2336, "objective subjective": 67511, "contains 3000": 18546, "settings based": 87039, "works structured": 104387, "recent months": 80299, "lms believe": 57101, "providing assistance": 77736, "problemsolving paper": 75236, "present contribution": 73963, "use build": 100484, "game using": 36892, "reasoning prompt": 79991, "accuracy fewshot": 2267, "evidence models": 30980, "framework reliable": 36257, "holistic perspective": 41921, "accuracy evaluate": 2258, "including tests": 44493, "data popular": 21482, "traditional llms": 97673, "improve moral": 43738, "counterfactual questions": 19995, "accuracy task": 2371, "reasoning field": 79885, "comprehension mrc": 17175, "structures paper": 91200, "effective pretraining": 27344, "beginning era": 9944, "social reasoning": 88909, "everyday lives": 30960, "human mental": 42302, "recent attempts": 80222, "attempts assess": 8268, "distinct challenges": 25859, "templates using": 95704, "llms consists": 55671, "evaluate social": 30287, "compare model": 16473, "tom capabilities": 97247, "inference patterns": 45275, "methods difficult": 59601, "private code": 74922, "large compute": 51409, "key bottleneck": 48276, "examples makes": 31252, "evaluation experimental": 30590, "set opensource": 86908, "proprietary datasets": 77295, "present chinese": 73946, "benchmark tool": 10269, "including commercial": 44306, "achieves success": 2808, "topperforming llms": 97550, "ongoing development": 67964, "current natural": 20745, "language systems": 51122, "typically operate": 99296, "using heuristics": 101504, "step requires": 90654, "statements paper": 90295, "close embeddings": 14974, "conclusions based": 17761, "reasoning types": 80074, "types findings": 99236, "model certain": 60639, "certain categories": 12752, "emergent cognitive": 28201, "outcomes compared": 68846, "compared isolated": 16577, "performance prompting": 71497, "agent collaboratively": 4121, "combines multiple": 15995, "enhance problemsolving": 29200, "different personas": 25143, "personas based": 71929, "based task": 9732, "abilities compared": 1498, "fixed number": 35358, "types unlike": 99273, "factual hallucination": 33632, "task reasoning": 94213, "pairs despite": 69490, "generation methodology": 38265, "analysis evaluate": 5506, "codecontests dataset": 15591, "gpt4 shows": 40084, "solution preliminary": 89106, "logic powerful": 57244, "domains realizing": 26577, "language terms": 51136, "logic programming": 57245, "model serve": 61393, "semantic parser": 86327, "set programs": 86923, "results robust": 83827, "adaptation specific": 3096, "robot planning": 84622, "programs large": 75950, "solve certain": 89161, "problems reasoning": 75196, "combines strengths": 16000, "transform natural": 98458, "descriptions answer": 23693, "relatively simple": 81323, "lms llms": 57146, "approach uniquely": 7067, "input questions": 45944, "questions models": 78896, "diverse formats": 26026, "results strategy": 83859, "model outperform": 61176, "prior approaches": 74840, "approaches utilize": 7223, "established baselines": 29983, "policy improve": 72540, "generate wrong": 37647, "exploration approach": 32588, "select token": 86130, "test method": 95916, "dataset gpt2": 21961, "evidence multiple": 30981, "model aiming": 60533, "given knowledge": 38905, "attention pattern": 8358, "set output": 86910, "study correct": 91560, "aiming understand": 4774, "question answers": 78639, "loss performance": 57470, "use explanation": 100547, "identify models": 42887, "potentially support": 73351, "discovery paper": 25619, "engine generate": 28931, "employ incontext": 28399, "finetune range": 34853, "pretraining strategies": 74603, "specialised models": 89608, "sensitive perturbations": 86465, "suitability existing": 92454, "metrics evaluating": 59911, "essential differences": 29941, "demonstrates training": 23418, "knowledge obtained": 48687, "database queries": 21770, "considers large": 18224, "strategies results": 90846, "exhibit robust": 31547, "key process": 48331, "notable proficiency": 67019, "models display": 62241, "insight generation": 46044, "benchmarks benchmarks": 10313, "domains introduce": 26535, "assisted evaluation": 8065, "approach allowing": 6733, "agreement annotators": 4278, "unprecedented opportunities": 100226, "reasoning collaboration": 79830, "develop principled": 24475, "structured interactions": 91164, "modular design": 64646, "library available": 53953, "data flows": 21240, "learning mathematical": 53259, "reasoning challenging": 79824, "llms scaling": 56747, "llm capacity": 54996, "relation data": 81237, "augment data": 8512, "effort propose": 27881, "sampling finetuning": 85157, "brings improvement": 11471, "despite versatile": 24141, "good zeroshot": 39129, "provide concise": 77433, "accuracy higher": 2279, "gpt35 openais": 39649, "small collection": 88669, "detailed qualitative": 24182, "shown outstanding": 87506, "substantial parameter": 92097, "abilities appear": 1494, "possibility transferring": 72885, "dataset shot": 22072, "performance largely": 71343, "interpreting complex": 47305, "prevalent llms": 74638, "llama2 palm2": 54847, "palm2 gpt35": 69559, "compare method": 16470, "advanced versions": 3761, "highlights benefits": 41647, "school college": 85545, "reasoning boost": 79793, "ability crucial": 1622, "cot technique": 19965, "solving general": 89228, "construct reasoning": 18435, "think like": 96790, "paper innovatively": 69757, "paradigm enables": 70030, "lower model": 57567, "reasoning synthetic": 80040, "synthetic corpus": 93256, "logic theory": 57247, "challenging llms": 13189, "corpora enhance": 19575, "enhance lms": 29180, "human characters": 42118, "complex humanlike": 16941, "behaviors various": 10016, "roleplaying llms": 84814, "consistently surpasses": 18312, "approach datasets": 6794, "technique prompts": 95456, "model think": 61511, "llms release": 56686, "solving challenging": 89217, "skills generating": 88598, "generating executing": 37901, "evaluating output": 30470, "based insight": 9576, "insight propose": 46047, "encourage use": 28798, "solution improve": 89097, "framework graph": 36150, "advancements largescale": 3835, "gpt4 showcased": 40074, "dramatically decreases": 26784, "capacities models": 12281, "technique dubbed": 95444, "method outperformed": 59374, "outperformed gpt4": 68980, "juxtaposed stateoftheart": 48234, "models reinforced": 64035, "method domain": 59270, "experiments mathematical": 32245, "extraordinary capabilities": 33368, "llms substantial": 56878, "chatgpt35 claude": 14371, "llms endowed": 55860, "thinking abilities": 96798, "challenge llms": 12903, "capability integrate": 12175, "integrate information": 46661, "effective ai": 27259, "design highlevel": 23788, "data exchanges": 21202, "detection aims": 24261, "neglecting valuable": 66085, "enhances large": 29282, "lms efficient": 57120, "rationales produced": 79438, "16 improvement": 365, "enhancement compared": 29261, "task extracting": 94057, "term extraction": 95772, "extraction ate": 33280, "processing study": 75572, "mathematical field": 58574, "using corpus": 101387, "2020 study": 533, "work providing": 104240, "analysis makes": 5578, "providing set": 77797, "new annotation": 66324, "tool help": 97294, "process proposing": 75380, "experts overall": 32417, "awareness llms": 9220, "aim better": 4691, "awareness large": 9217, "alignment deployed": 5061, "safety tests": 85056, "examples demonstrations": 31202, "size findings": 88469, "models unable": 64444, "billionparameter language": 11032, "dataset additional": 21816, "substantial scale": 92110, "reasoning prior": 79982, "aim investigate": 4721, "accuracy consequently": 2229, "llama7b models": 54897, "performance combination": 71065, "advanced automated": 3680, "models answering": 61837, "sources large": 89415, "approach pinpoint": 6974, "injections llm": 45831, "propose mechanism": 77018, "additional relevant": 3257, "information inference": 45511, "key attention": 48274, "layer increase": 52719, "increase probability": 44772, "curated instruction": 20635, "coverage diverse": 20056, "allows different": 5193, "coverage use": 20065, "model science": 61376, "framework promotes": 36239, "encourages llms": 28801, "solution space": 89119, "llm science": 55251, "elicit reasoning": 27988, "processing questions": 75559, "enhancing understanding": 29375, "understanding process": 99845, "facilitates bidirectional": 33521, "information second": 45619, "illustrating potential": 43005, "enable bidirectional": 28537, "effectively integrated": 27447, "prompting ensemble": 76526, "strategies code": 90798, "developed chatgpt": 24494, "row column": 84896, "school physics": 85554, "problems covering": 75121, "problems gpt35": 75147, "gpt35 automatically": 39578, "addition solving": 3209, "gpt35 summarize": 39670, "provide relevant": 77558, "relevant explanations": 81460, "input work": 45972, "engineering generating": 28974, "weights generating": 103551, "models producing": 63902, "verify models": 102772, "challenge issue": 12893, "engineering method": 28992, "research proposed": 82734, "li et": 53945, "improves existing": 44023, "making powerful": 58128, "purpose method": 78047, "benchmark existing": 10165, "compared western": 16660, "attention issue": 8326, "explore limitations": 32701, "including rulebased": 44466, "rulebased method": 84929, "bert relatively": 10547, "classification capability": 14726, "information issues": 45518, "examination methods": 31088, "conventional natural": 19285, "impact programming": 43249, "language program": 51062, "experiments gsm8k": 32214, "superior effectiveness": 92638, "performance python": 71510, "better choice": 10700, "coding style": 15717, "exhibited excellent": 31570, "ability despite": 1624, "solving mathematical": 89238, "finetune llama2": 34832, "exceeding stateoftheart": 31320, "better gpt35turbo": 10724, "gpt35turbo release": 39708, "agents improve": 4193, "mechanism leads": 58804, "surpassing prior": 92972, "outperforming gpt4": 69001, "apibased opensource": 6288, "individual components": 45078, "tasks iteratively": 94782, "output based": 69142, "feedback observe": 34114, "use reasoning": 100671, "initial answer": 45762, "space present": 89460, "tasks uncover": 95218, "reasoning utilizing": 80081, "present generated": 73992, "structured text": 91186, "llms write": 57055, "gpt35 claude": 39584, "claude primarily": 14857, "primarily accessible": 74775, "tailored tasks": 93789, "novel prompts": 67237, "50 time": 1020, "achieved improvement": 2641, "respectively furthermore": 83070, "furthermore generated": 36621, "knowledge improve": 48621, "interpretability model": 47278, "model surpassing": 61482, "community develop": 16308, "better prompts": 10772, "enormous parameter": 29400, "extremely high": 33391, "revealed specific": 84192, "work focusing": 104106, "scientific tabletotext": 85664, "approach aim": 6728, "specific llms": 89723, "neuro symbolic": 66299, "specifications natural": 89898, "prompts despite": 76687, "produce factually": 75623, "results despite": 83573, "referred hallucination": 80965, "limitation makes": 54285, "bugs code": 11569, "satisfiability modulo": 85203, "solutions llms": 89150, "feedback llms": 34105, "llms exploiting": 55936, "llms interaction": 56241, "planning domain": 72260, "allows user": 5213, "planning problem": 72272, "language proposed": 51070, "proposed technique": 77262, "stress testing": 90973, "inspired previous": 46179, "impact types": 43265, "prompting leads": 76564, "deepens understanding": 22809, "regarding capability": 81049, "learn reasoning": 52962, "benchmarks inadequately": 10357, "advancing capabilities": 3904, "general flexible": 37127, "dynamically generate": 26946, "generate evaluation": 37443, "highlighting significance": 41641, "analyze failure": 5763, "failure cases": 33710, "finetuning improve": 35088, "ability code": 1612, "solutions hold": 89144, "perspectives llms": 71970, "specifically prompt": 89862, "analysis graph": 5534, "performance foundation": 71226, "including humaneval": 44385, "agents designed": 4180, "seamlessly integrating": 85848, "symbolic solvers": 93134, "reasoning behavior": 79787, "surpassing best": 92953, "competitive gpt4": 16803, "benefits remaining": 10486, "challenges tool": 13135, "reasoning metrics": 79941, "eliminate need": 28003, "tailored prompts": 93785, "demonstrated efficacy": 23247, "robust prompt": 84682, "information complex": 45420, "complex contexts": 16919, "contexts prior": 18919, "significantly augments": 87884, "accuracy llm": 2306, "techniques allowing": 95475, "integration methods": 46777, "backward reasoning": 9285, "forward reasoning": 35891, "details omitted": 24199, "paper formally": 69743, "formally define": 35812, "evaluate task": 30294, "findings significant": 34752, "reasoning compared": 79835, "work exploits": 104077, "set problems": 86920, "accuracy significant": 2361, "experimentation demonstrates": 32088, "method resulting": 59416, "resulting substantial": 83447, "llms standard": 56857, "llms intricate": 56244, "tasks involves": 94777, "exemplars incontext": 31473, "queries query": 78505, "query llm": 78536, "question knowledge": 78681, "performance adaptability": 70971, "reasoning challenges": 79823, "gpt4 exhibited": 39868, "comes high": 16038, "services paper": 86819, "paper motivated": 69813, "study building": 91514, "causal tasks": 12678, "questions addressed": 78769, "difficulty propose": 25331, "datasets gpt35turbo": 22283, "proposed llm": 77216, "comparable using": 16413, "using solely": 101780, "generation classification": 38075, "method boosts": 59221, "model calls": 60624, "rapidly exploring": 79348, "tasks unfortunately": 95220, "approach developing": 6806, "programming model": 75920, "text transformation": 96467, "collecting demonstrations": 15886, "reasoning techniques": 80067, "techniques design": 95499, "studies showing": 91442, "prompting generally": 76536, "proprietary gpt35": 77296, "primarily attributed": 74778, "attributed ability": 8445, "execution output": 31458, "results introduce": 83695, "introduce customized": 47415, "learning agent": 53018, "environment feedback": 29617, "feedback execution": 34077, "terms pass1": 95826, "metric code": 59859, "suggest reasoning": 92389, "struggles capture": 91235, "llms key": 56259, "graph prompts": 40402, "present reasoning": 74045, "effectively capturing": 27410, "capturing complex": 12380, "opensourced llama": 68428, "remarkable average": 81741, "prompting fewshot": 76532, "intricate knowledge": 47366, "knowledge utilization": 48807, "effectiveness prompts": 27569, "insights introduce": 46107, "output typical": 69202, "assesses correctness": 7899, "new solution": 66527, "integrating pretrained": 46743, "prompts iterative": 76759, "logic output": 57243, "logical puzzles": 57264, "bard dataset": 9353, "dataset challenging": 21849, "second output": 85943, "models identified": 62692, "lack commonsense": 48985, "annotated answers": 5858, "chatgpt corresponding": 13666, "instances containing": 46224, "containing specific": 18539, "specific details": 89682, "llama270b models": 54862, "observe substantial": 67601, "quality carefully": 78232, "role improving": 84782, "billions tokens": 11039, "reasoning known": 79919, "inspired works": 46191, "method extracting": 59305, "14b parameter": 316, "openly released": 68288, "limited exploration": 54420, "exploration physical": 32599, "physics reasoning": 72091, "benchmark customized": 10115, "mainstream language": 57861, "llms physical": 56521, "50 vs": 1021, "platform demonstrates": 72304, "way integration": 103373, "widespread applications": 103783, "somewhat constrained": 89267, "conceptual errors": 17643, "topological data": 97543, "analysis tda": 5699, "coding proficiency": 15712, "work endeavors": 104069, "gap theoretical": 36981, "chatgpt showcase": 14213, "coding skills": 15716, "using established": 101430, "claims large": 14677, "able successfully": 1886, "verification findings": 102743, "nature feedback": 65800, "minimal impact": 60094, "collectively results": 15920, "results cast": 83486, "iterative framework": 48057, "framework planning": 36229, "notable models": 67015, "community models": 16329, "showcased significant": 87367, "investigation area": 47782, "benchmark comprised": 10098, "datasets span": 22418, "capabilities open": 12028, "models necessitate": 63663, "gpt4 strong": 40103, "surpassing chatgpt": 92954, "probing method": 74983, "gpt4 greatly": 39921, "greatly advanced": 40520, "carry experiments": 12441, "hinder performance": 41827, "struggle answer": 91209, "introducing task": 47551, "combined prompting": 15983, "tasks solving": 95126, "finding correct": 34623, "solution finetuning": 89093, "solution given": 89095, "tasks offer": 94898, "finetuned palm": 34949, "benchmarks mainly": 10376, "model reduce": 61323, "evaluates generative": 30378, "simplification process": 88268, "process manually": 75357, "generator based": 38734, "lms including": 57134, "pretraining code": 74511, "capable tool": 12268, "code replicate": 15476, "recent rise": 80347, "initial investigation": 45774, "reveals promising": 84222, "step bridging": 90617, "specifically conduct": 89794, "effectiveness iterative": 27536, "solving graph": 89229, "answers external": 6183, "proposed solutions": 77256, "modes llms": 64627, "performance iterative": 71324, "prompting observed": 76584, "art llms": 7522, "multiplication problem": 65305, "using graphbased": 101500, "method generative": 59318, "chatgpt possesses": 14090, "multiplication operations": 65304, "larger input": 52440, "human insights": 42244, "intelligence algorithms": 46833, "mechanistic interpretation": 58822, "gpt2 synthetic": 39354, "llama simple": 54797, "languagebased reasoning": 51213, "distributions investigate": 25964, "various model": 102487, "datasets highlight": 22286, "highlight robust": 41611, "ability outofdistribution": 1731, "neurosymbolic approach": 66313, "intelligence wide": 46906, "potential impacts": 73129, "proposed enable": 77196, "reasoning effectively": 79868, "tasks modular": 94870, "llm acts": 54943, "leveraging approach": 53821, "approach observe": 6956, "modes provide": 64628, "promising evidence": 76164, "social moral": 88901, "moral ethical": 64741, "make action": 57961, "reasoning elicit": 79869, "knowledge gpt3": 48587, "models targeted": 64335, "yields student": 104680, "model distill": 60774, "distill highquality": 25806, "final student": 34500, "tasks end": 94586, "tasks illustrate": 94710, "robustly complex": 84694, "settings evaluating": 87052, "continue grow": 19008, "novel neurosymbolic": 67219, "construction complex": 18464, "second dataset": 85924, "text narratives": 96341, "realworld domains": 79665, "gaps remain": 36999, "models vs": 64524, "challenges human": 13035, "excel solving": 31334, "superior skills": 92669, "fully investigated": 36456, "studies utilize": 91462, "encourage llms": 28793, "context specifically": 18856, "sentence extraction": 86502, "potential solve": 73269, "including mathematical": 44418, "improve complex": 43679, "depend ability": 23527, "problem significant": 75079, "foundational llms": 35980, "demonstrate problem": 23156, "decompose complex": 22686, "produce competitive": 75611, "ordersofmagnitude larger": 68729, "based prompting": 9677, "usually requires": 101876, "based labeled": 9587, "making predictions": 58129, "everevolving nature": 30946, "nature field": 65801, "field article": 34345, "paper pioneers": 69823, "llms firstly": 55989, "construct multilingual": 18428, "languages significantly": 51359, "vital strategy": 103166, "strategy enhancing": 90881, "problem learn": 75039, "data pairs": 21462, "llms employ": 55847, "explain reason": 32435, "generating correction": 37883, "correction data": 19698, "suggest significant": 92392, "crucial various": 20546, "finance economics": 34583, "reasoning numbers": 79962, "introduced recent": 47511, "develop diverse": 24444, "semiautomated approach": 86407, "exploit dataset": 32563, "problem understanding": 75095, "crucial tasks": 20542, "tasks assessing": 94387, "benchmarks require": 10405, "senior high": 86433, "various problems": 102527, "model possesses": 61254, "findings inspire": 34694, "reasoning fundamental": 79890, "enabled large": 28569, "logical questions": 57265, "solvers symbolic": 89211, "lms fewshot": 57123, "gpt4 complex": 39804, "cumbersome language": 20613, "extraction module": 33320, "explicit reasoning": 32539, "responses utilizing": 83325, "utilizing incontext": 102023, "scores guide": 85764, "indicate possible": 45012, "gpt35 175b": 39569, "progress demonstrated": 75974, "identify category": 42850, "types units": 99272, "ensuring consistency": 29476, "programs contain": 75943, "finally finetune": 34530, "generating statements": 37979, "knowledge statements": 48767, "effectively generates": 27432, "performances drop": 71736, "distribution compared": 25932, "generating evaluation": 37898, "engineering despite": 28959, "successfully completing": 92272, "including trials": 44505, "required task": 82324, "sophisticated ai": 89275, "models easy": 62270, "prompting help": 76542, "efficacy reasoning": 27655, "tasks medical": 94858, "medical diagnoses": 58875, "ability gpt35": 1671, "scientific reasoning": 85661, "datasets strategy": 22424, "suggestions future": 92424, "critical inquiry": 20334, "straightforward evaluate": 90768, "questions formal": 78858, "evidence suggesting": 30989, "understanding basic": 99674, "comparable methods": 16381, "used search": 100893, "engines google": 29042, "question valuable": 78719, "gpt4 gpt4v": 39920, "benchmark 10": 10061, "evaluating gpt4": 30433, "oneshot prompting": 67950, "gpt4v multimodal": 40194, "gpt4 zero": 40158, "developed robust": 24529, "abilities humanlike": 1516, "tasks accuracy": 94338, "accuracy essential": 2257, "types llama": 99248, "prompting styles": 76623, "results experiment": 83596, "predictions address": 73733, "understanding commonsense": 99695, "accuracy does": 2244, "rate model": 79392, "contextual evidence": 18940, "observe gpt4": 67583, "struggles effectively": 91236, "reasoning significantly": 80021, "establishing best": 29999, "sequence intermediate": 86651, "reasoning leading": 79930, "involves using": 47859, "transforming task": 98648, "value model": 102194, "intuitive method": 47583, "accurate conclusions": 2404, "offer novel": 67754, "finance domains": 34582, "capabilities applying": 11835, "financial knowledge": 34605, "knowledge solve": 48761, "problems hybrid": 75151, "tabular content": 93703, "content require": 18684, "finance domain": 34581, "effective resolution": 27361, "second provide": 85949, "ensuring highquality": 29483, "llm assessment": 54974, "spectrum 14": 89921, "financial documents": 34600, "containing text": 18541, "including specialized": 44482, "short document": 87281, "significantly lags": 87971, "improved training": 43863, "research training": 82811, "employ different": 28393, "model example": 60827, "provide direct": 77453, "teach model": 95335, "100 tasks": 134, "inspired development": 46170, "pose problem": 72746, "tokenlevel classification": 97173, "generalist large": 37221, "rulebased approach": 84924, "finetuned task": 34981, "generation explanations": 38157, "logic reasoning": 57246, "reasoning underscoring": 80076, "employing gpt35turbo": 28447, "generating clear": 37871, "series tasks": 86753, "including detailed": 44323, "detailed reasoning": 24183, "reveals challenges": 84203, "information models": 45546, "significantly elevates": 87913, "set despite": 86862, "significant contributions": 87724, "stage future": 90115, "advancements automated": 3803, "reasoning findings": 79886, "ai complex": 4341, "assess extent": 7848, "descriptions simple": 23729, "problem types": 75094, "llama2chat models": 54880, "make errors": 57992, "learning lastly": 53244, "result substantial": 83411, "problem space": 75086, "dataset testing": 22104, "questions taken": 78961, "questions experiments": 78850, "poorly answering": 72602, "questions implying": 78871, "small pretrained": 88722, "provides different": 77657, "questions mathematical": 78892, "substantial effort": 92075, "involve multiple": 47826, "modelsllms chatgpt": 64571, "questions analysis": 78775, "analysis categorized": 5449, "generation use": 38491, "challenging problems": 13214, "fluid dynamics": 35487, "code lines": 15384, "necessary sufficient": 65876, "coding errors": 15702, "errors common": 29809, "significant variations": 87868, "physics domain": 72083, "current computational": 20675, "systems reach": 93543, "llm evaluators": 55066, "problem recently": 75066, "problems shows": 75203, "stronger reasoning": 91094, "opensource foundational": 68334, "multiplechoice tasks": 65294, "tasks probe": 94968, "examine model": 31119, "comparing different": 16673, "assessing different": 7910, "computational prowess": 17476, "helps reduce": 41317, "reduce hallucinations": 80780, "certain size": 12778, "logical thinking": 57275, "chatgpt received": 14152, "particular ability": 70392, "computer code": 17523, "provide mathematical": 77516, "used modern": 100856, "outline best": 68867, "achieve reasonable": 2565, "arithmetic questions": 7491, "symbolic solver": 93133, "small frozen": 88678, "equipped efficient": 29696, "efficient lowrank": 27797, "massive improvements": 58454, "absolute point": 1918, "numerous benchmarks": 67418, "goal dataset": 39050, "belief bias": 10026, "bias known": 10853, "progression models": 76021, "pruning large": 77850, "gpt35 wide": 39684, "require comprehensive": 82235, "tackling problems": 93756, "leading confusion": 52842, "potential enhancing": 73086, "extend llms": 32941, "automatically constructed": 8850, "llms demonstrates": 55775, "respectively believe": 83056, "future evolution": 36725, "smallscale models": 88809, "offer various": 67778, "gpt35 finetuning": 39603, "multiple candidate": 65149, "improves planning": 44059, "planning large": 72264, "tasks tool": 95203, "achieving successful": 2889, "task decomposition": 94004, "limitations introduce": 54336, "introduce progressive": 47481, "toolbench dataset": 97341, "enhancement tool": 29267, "helps smaller": 41318, "memory demands": 59032, "applications recent": 6556, "llms combining": 55643, "respectively outperforming": 83084, "instructions need": 46541, "underlying concepts": 99491, "various scales": 102559, "scales large": 85308, "models examining": 62367, "enhancing user": 29377, "behaviors different": 10001, "proposed principles": 77248, "guide researchers": 40748, "perspective understanding": 71962, "llms solely": 56830, "perform quantitative": 70913, "tasks categories": 94421, "way solve": 103402, "alignment learning": 5090, "teaming large": 95384, "tasks consider": 94486, "techniques affect": 95472, "results application": 83465, "techniques findings": 95519, "tasks writing": 95267, "directly assessing": 25487, "bard vicuna": 9372, "vicuna guanaco": 102862, "llms rate": 56633, "examples incontext": 31230, "10 gpt4": 108, "gpt4 far": 39886, "far know": 33869, "llms formal": 56005, "ability effectively": 1635, "results released": 83810, "initial prompt": 45779, "usage enables": 100430, "derive final": 23647, "average response": 9176, "negligible impact": 66090, "performance penalty": 71466, "results practical": 83773, "systems engineers": 93439, "engineers using": 29040, "solve realworld": 89192, "promptengineering techniques": 76492, "addition results": 3208, "methods variations": 59840, "context grounding": 18781, "outputs overcome": 69245, "framework instead": 36171, "evidence decision": 30972, "focusing exclusively": 35624, "approach unlocks": 7068, "unlocks true": 100205, "contextually aware": 18976, "llms tool": 56938, "tool achieves": 97261, "llms example": 55890, "new stateofthe": 66536, "09 f1": 81, "translated data": 98669, "data nonstandard": 21443, "english finetuning": 29070, "makes best": 58046, "applications currently": 6440, "currently limited": 20818, "intricate scientific": 47370, "scientific concepts": 85630, "framework address": 36023, "science domain": 85575, "scientific questions": 85660, "questions followed": 78857, "largerscale models": 52481, "diverse scientific": 26096, "wider research": 103770, "seen considerable": 86082, "remains gap": 81660, "especially concerning": 29865, "inherent nature": 45739, "focuses predicting": 35612, "capability utilize": 12215, "combination gpt4": 15952, "development community": 24624, "reasoning solving": 80028, "especially opensource": 29903, "tools introduce": 97428, "comprising mixture": 17402, "sizes notably": 88560, "previous opensource": 74688, "opensource stateoftheart": 68409, "improvement attributed": 43882, "sampling llm": 85159, "code prompting": 15449, "consistently improved": 18294, "improved llms": 43844, "transforms natural": 98651, "code utilize": 15560, "datasets conduct": 22184, "prompts trigger": 76841, "code formatting": 15261, "essential performance": 29953, "furthermore code": 36583, "approach adapt": 6717, "connects models": 18106, "utilizing english": 102011, "reasoning coding": 79829, "boosts llms": 11302, "conversion language": 19438, "playing important": 72369, "tasks abstract": 94335, "property prediction": 76913, "general natural": 37165, "information expressed": 45464, "implemented prompting": 43350, "leveraging external": 53842, "direct substitution": 25433, "input information": 45908, "application scope": 6387, "requiring multistep": 82441, "language solutions": 51102, "solutions propose": 89153, "steps experiments": 90684, "gpt4 showing": 40077, "benchmarks provides": 10402, "models taskagnostic": 64337, "enhance functionality": 29160, "multiple independent": 65199, "queries employing": 78483, "highlevel instructions": 41561, "tasks smaller": 95123, "smaller manageable": 88764, "end result": 28839, "collaborative prompting": 15843, "instructions furthermore": 46503, "furthermore research": 36657, "rigorous experimentation": 84448, "experimentation gpt4": 32089, "specialized language": 89630, "common content": 16134, "sec filings": 85915, "capabilities required": 12069, "steps including": 90687, "terms cost": 95806, "llama training": 54801, "results verified": 83917, "including previous": 44450, "largescale llms": 52543, "analysis finance": 5517, "finance large": 34585, "capabilities face": 11900, "tools mitigate": 97445, "offload certain": 67880, "suited task": 92484, "task instead": 94103, "inherent abilities": 45714, "using financial": 101444, "13b chat": 289, "model act": 60508, "tool tool": 97322, "baselines respectively": 9848, "augmentation language": 8536, "models finance": 62468, "errors paper": 29831, "construction method": 18471, "analysis proves": 5622, "process human": 75329, "ranked according": 79252, "counterparts like": 20007, "supervision using": 92764, "using trained": 101819, "mips novel": 60147, "model obtaining": 61163, "contrary prior": 19062, "work approach": 103992, "complex structured": 17011, "structured nature": 91172, "structures introduce": 91194, "tackle complex": 93719, "reasoning structure": 80038, "agent reasoning": 4146, "32 compared": 780, "inference compute": 45228, "human reasoning": 42349, "numerous realworld": 67438, "llms secondly": 56753, "trigger llms": 98875, "ir based": 47890, "methods solely": 59803, "solely using": 89061, "effectiveness strategy": 27580, "complex multihop": 16957, "current textual": 20794, "challenges address": 12957, "includes datasets": 44248, "nlp domains": 66728, "contexts humans": 18906, "humans perform": 42627, "obtain strong": 67663, "substantially boosts": 92118, "overall scores": 69322, "zeroshot cot": 104756, "methods employ": 59615, "prompting task": 76624, "dynamically approach": 26944, "operations based": 68458, "analytical experiments": 5729, "benefits process": 10484, "sparse rewards": 89544, "rewards final": 84384, "identifying error": 42919, "requires extensive": 82378, "limitations learning": 54344, "model exploration": 60845, "reasoning gsm8k": 79901, "extra data": 33211, "models closedsource": 62009, "supervise model": 92691, "performance setting": 71560, "setting incontext": 86998, "set finetuning": 86879, "finetuning explore": 35065, "learning shows": 53413, "unified platform": 100037, "models codes": 62025, "improve problemsolving": 43778, "process potentially": 75375, "progressively better": 76026, "common code": 16133, "benchmarks llama2": 10374, "sequences consisting": 86677, "training example": 98099, "execution evaluation": 31455, "mistral7b mixtral8x7b": 60227, "improve solutions": 43807, "solutions iterative": 89148, "iterative fashion": 48055, "llms witnessed": 57049, "domains exploring": 26519, "leading insufficient": 52854, "model sampled": 61370, "data point": 21479, "formal proof": 35798, "llama 27b": 54709, "intelligence techniques": 46895, "techniques address": 95471, "problem solver": 75081, "paper introduced": 69769, "various transformer": 102616, "exhibits notable": 31619, "llms sequential": 56760, "lies interactive": 53975, "traversal node": 98793, "different algorithms": 24992, "search evaluate": 85874, "12 different": 222, "strong sequential": 91072, "optimal policy": 68567, "substantially boost": 92117, "enhancement llms": 29262, "shown immense": 87472, "current largescale": 20709, "basic idea": 9877, "cognitive overload": 15749, "processes better": 75428, "does use": 26334, "including gpt35turbo": 44365, "multilingual program": 65001, "approach characterized": 6771, "ensure accuracy": 29438, "accuracy numerical": 2320, "process currently": 75289, "language result": 51094, "suboptimal solutions": 91993, "overlook potential": 69401, "benefits programming": 10485, "optimal performance": 68566, "capabilities gpt35turbo": 11931, "referred chatgpt": 80964, "using manual": 101604, "zeroshot zs": 104887, "approaches study": 7209, "rigorously evaluated": 84461, "highstakes realworld": 41820, "tasks claim": 94435, "systematic prompt": 93344, "performance 60": 70960, "parameters ranging": 70272, "ranging 70": 79232, "generalize models": 37298, "computation time": 17429, "prompt output": 76388, "optimization employing": 68591, "employing automated": 28441, "prompt optimizer": 76386, "emerges effective": 28209, "additionally findings": 3309, "predict correctness": 73649, "correctness final": 19734, "process based": 75274, "trained synthetic": 97916, "incorrect reasoning": 44738, "draft solution": 26774, "sample baseline": 85082, "prompting involves": 76551, "framework problem": 36237, "llms iteratively": 56254, "iteratively exploring": 48075, "obtained llm": 67674, "llm explicitly": 55072, "extensive complex": 33006, "higher comparable": 41491, "task practical": 94193, "setting construct": 86981, "domains evaluate": 26514, "opensource platform": 68394, "create dynamic": 20158, "leveraging chatgpts": 53831, "assessing model": 7923, "average error": 9149, "stark contrast": 90249, "value dynamic": 102187, "recently showcased": 80556, "key ideas": 48307, "long recognized": 57320, "size needed": 88495, "80 accuracy": 1317, "errors additionally": 29802, "substantial boost": 92063, "calls model": 11785, "dataset 200k": 21804, "iterative learning": 48062, "preference pairs": 73806, "significantly larger": 87972, "overlooked aspect": 69404, "llm pipeline": 55198, "inductive biases": 45146, "byte pair": 11721, "pair encoding": 69470, "study effect": 91588, "effect choice": 27236, "gpt35 finding": 39600, "recover performance": 80701, "possibly indicating": 72930, "general models": 37164, "humans write": 42655, "way large": 103379, "code achieves": 15117, "computational errors": 17458, "language address": 49129, "straightforward highly": 90769, "ppo algorithm": 73486, "enabling provide": 28655, "humans finally": 42596, "solutions code": 89130, "look leap": 57420, "process crucial": 75287, "mislead llms": 60184, "reasoning enhancing": 79872, "enhancing context": 29316, "efficiency experiments": 27682, "enhancement various": 29270, "easily implemented": 27018, "educational tools": 27223, "math education": 58549, "dataset program": 22036, "exhibited great": 31573, "various pretrained": 102525, "framework benchmarking": 36055, "spent decades": 89999, "efforts developing": 27902, "corpora given": 19578, "papers primarily": 70001, "framework systematic": 36294, "methods character": 59561, "toolaugmented large": 97336, "augmented tools": 8588, "popular dataset": 72623, "approach learn": 6928, "framework symbolic": 36290, "specialized modules": 89636, "new version": 66571, "version original": 102811, "extrapolation capabilities": 33375, "capabilities proposed": 12058, "proposed architecture": 77182, "statistical causal": 90546, "advanced quantitative": 3739, "comprises carefully": 17383, "learning materials": 53258, "strongest model": 91102, "encounter difficulties": 28774, "understanding chainofthought": 99686, "llms deploy": 55779, "context generated": 18778, "layers llm": 52751, "strongly biased": 91107, "different functional": 25070, "processes large": 75437, "work conducted": 104025, "processes enhance": 75432, "using frontal": 101459, "dedicated models": 22727, "models versus": 64505, "model aimed": 60532, "novel challenge": 67125, "test phase": 95926, "ability engage": 1636, "enhancing creative": 29318, "hampered scarcity": 40889, "datasets addressing": 22137, "synthesis framework": 93209, "pairs leveraging": 69507, "authentic data": 8613, "extensive synthetic": 33132, "substantial enhancement": 92080, "significant stride": 87856, "method create": 59252, "inspired cognitive": 46168, "mechanism human": 58801, "subsequently used": 92035, "reasoning evaluated": 79875, "equivalent size": 29710, "macro average": 57789, "planning skills": 72282, "models procedural": 63898, "capable planning": 12256, "planning executing": 72261, "studies use": 91459, "models infer": 62771, "experiments utilizing": 32330, "utilizing finetuned": 102015, "models scenarios": 64142, "advancements models": 3842, "intriguing insights": 47379, "proposed tasks": 77260, "7b language": 1289, "previously believed": 74747, "best response": 10644, "capabilities notably": 12025, "notably accuracy": 67023, "accuracy answer": 2203, "sft data": 87147, "reliability generating": 81498, "scarcity publicly": 85383, "million samples": 60039, "respectively provide": 83087, "scaling behaviors": 85319, "longhorizon generation": 57390, "retrieval significantly": 84024, "mitigating hallucination": 60298, "embodied task": 28112, "influencing models": 45367, "finetuning scheme": 35237, "features construct": 33990, "reduces rate": 80843, "model generalizes": 60925, "forms bias": 35847, "bias reducing": 10881, "tasks supervision": 95162, "achieved commendable": 2618, "encounter significant": 28776, "aids llms": 4649, "current cot": 20677, "baselines analysis": 9819, "increases llms": 44807, "accuracy question": 2338, "models summarizing": 64299, "effectiveness data": 27506, "challenges complexity": 12978, "complexity finetuning": 17038, "data bridge": 21033, "50k data": 1036, "accuracy challenging": 2215, "clinical text": 14938, "mimiciii dataset": 60055, "reference model": 80937, "explore contrastive": 32661, "prompting cp": 76515, "answer llms": 6026, "answers experiments": 6182, "cot fewshot": 19949, "tasks seamlessly": 95084, "model confidence": 60694, "confidence important": 18014, "calibration methods": 11767, "llms mistral": 56396, "reasoners large": 79747, "chatgpt prone": 14121, "additional resources": 3259, "ranking problem": 79276, "diverse responses": 26093, "responses leveraging": 83253, "exhibits robustness": 31628, "highquality feedback": 41760, "feedback language": 34097, "generating reasoning": 37967, "accuracy paper": 2325, "pairs demonstrations": 69489, "based semantic": 9713, "implementation publicly": 43340, "improved chainofthought": 43832, "llms establishing": 55878, "synthesis approaches": 93203, "approaches usually": 7222, "focus simpler": 35553, "generation superior": 38437, "developed based": 24493, "correctness verification": 19749, "steps propose": 90693, "arrive correct": 7515, "addition conduct": 3177, "high annotation": 41375, "leading approaches": 52840, "employ various": 28416, "search techniques": 85902, "chatgpt opened": 14048, "framework adeptly": 36025, "stage propose": 90121, "fully leverages": 36458, "methods maintaining": 59724, "great capabilities": 40466, "llms coderelated": 55632, "leveraging logical": 53876, "recently existing": 80492, "language logic": 49316, "received limited": 80142, "programs investigate": 75949, "investigate novel": 47674, "task undertake": 94283, "thorough experiments": 96831, "compared llm": 16584, "achieving notable": 2868, "contingent quality": 18988, "question candidate": 78646, "answer directly": 5999, "performance varies specific": 71665, "models gpt3 t5": 62602, "general nlp tasks": 37170, "language model lmbased": 49480, "use openai codex": 100644, "mathematics computer science": 58604, "improves previous stateoftheart": 44062, "series intermediate reasoning": 86739, "arithmetic commonsense symbolic": 7487, "commonsense symbolic reasoning": 16245, "symbolic reasoning tasks": 93131, "relations complex questions": 81265, "answering question using": 6144, "gpt3 family models": 39456, "language models chainofthought": 49699, "trained entire training": 97823, "analysis highlights importance": 5539, "reasoning tasks including": 80052, "diverse reasoning tasks": 26089, "strongest zeroshot baseline": 91104, "unclear models perform": 99405, "perform consistently different": 70850, "natural language datasets": 65567, "numerical reasoning datasets": 67409, "language model generates": 49406, "according human evaluations": 2151, "language models making": 50558, "examples large language": 31243, "language model prompts": 49522, "questions generate new": 78861, "potential language models": 73152, "language models streamline": 50830, "mediumsized language models": 58951, "language models systematically": 50851, "identify define key": 42863, "models palm gpt3": 63749, "presents unique challenges": 74180, "mathematical reasoning tasks": 58590, "information tabular data": 45646, "textual tabular data": 96700, "incontext examples performance": 44564, "multistep reasoning existing": 65339, "existing work shows": 31851, "prompts work propose": 76851, "new stateoftheart sota": 66542, "models llms solve": 63452, "solve various tasks": 89203, "tasks datasets code": 94512, "code prompts available": 15451, "gap language models": 36946, "model size increases": 61418, "finetuning scenarios large": 35234, "fewshot reasoners solve": 34303, "llms achieve strong": 55421, "serve simple generic": 86776, "research code data": 82513, "code data released": 15201, "strong reasoning capabilities": 91066, "problems language models": 75159, "language models terms": 50859, "language model codex": 49364, "prompting methods chainofthought": 76575, "novel approach uses": 67105, "approach uses llm": 7076, "natural language problems": 65631, "algorithmic reasoning tasks": 4948, "tasks generating code": 94672, "reasoning numerical reasoning": 79964, "supervised finetuning downstream": 92706, "llama2 mpt falcon": 54846, "better understand model": 10802, "model performance finally": 61230, "reasoning capabilities smaller": 79811, "proved effective inducing": 77374, "paper propose knowledge": 69885, "knowledge distillation approach": 48508, "abilities smaller models": 1569, "smaller models work": 88776, "solve complex problems": 89168, "language models reason": 50723, "language models achieving": 49624, "reasoning capabilities models": 79808, "larger teacher model": 52478, "experiments proposed method": 32267, "approach text generation": 7060, "prompting chainofthought prompting": 76509, "comparable performance finetuned": 16390, "performance finetuned gpt2": 71222, "compared direct prompting": 16533, "language models retrievers": 50769, "shown promise effectively": 87518, "evaluate strengths weaknesses": 30293, "strengths weaknesses popular": 90969, "exhibit strong reasoning": 31558, "promising large language": 76172, "cot prompting large": 19956, "strong reasoning ability": 91065, "models solve complex": 64225, "models reduce model": 64028, "ability generate multiple": 1664, "results substantial performance": 83866, "advanced reasoning ability": 3743, "paper introduce benchmark": 69760, "introduce benchmark consisting": 47402, "need research area": 65986, "benchmark future studies": 10180, "despite recent success": 24111, "model llm reasoning": 61103, "tasks like generating": 94822, "use symbolic methods": 100700, "utilize external knowledge": 101932, "issue propose novel": 47956, "tasks commonsense reasoning": 94456, "crucial natural language": 20509, "states language models": 90519, "language models efficacy": 49809, "language model reasoning": 49526, "impressive results wide": 43646, "sets new stateoftheart": 86968, "language understanding large": 51169, "conclusions large language": 17764, "lag human performance": 49082, "believe work provide": 10047, "models existing works": 62396, "using constrained decoding": 101380, "model recently released": 61318, "recently released openai": 80549, "machine learning model": 57707, "processing tasks paper": 75581, "significantly outperforms chainofthought": 87990, "outperforms chainofthought prompting": 69024, "deep learning algorithms": 22756, "deep learning architectures": 22761, "tasks significant improvements": 95112, "significantly improves reasoning": 87957, "inference time large": 45309, "work focus evaluating": 104102, "latest large language": 52672, "novel insights llms": 67188, "programs natural language": 75954, "little attention paid": 54675, "form natural language": 35778, "comprehensive natural language": 17282, "advanced reasoning tasks": 3746, "results chatgpt performs": 83494, "prompt engineering help": 76300, "improves reasoning large": 44070, "solving various natural": 89258, "using external tools": 101438, "language models arithmetic": 49652, "paper evaluate ability": 69695, "natural language interaction": 65611, "llms currently difficulty": 55707, "seen significant success": 86094, "proposed method uses": 77233, "comparative studies best": 16436, "impressive performance large": 43618, "reasoning process llms": 79988, "stochastic beam search": 90721, "robustness code publicly": 84702, "knowledgeintensive tasks paper": 48836, "llms recently shown": 56669, "language models dont": 49799, "models llms achieve": 62969, "strong performance tasks": 91056, "impressive abilities various": 43574, "abilities various tasks": 1578, "domains paper propose": 26567, "models llms multiple": 63310, "data compared baseline": 21086, "despite remarkable success": 24117, "llms generalization ability": 56037, "reasoning task based": 80042, "language model better": 49350, "transformerbased model trained": 98577, "stateoftheart performance diverse": 90434, "problem solving large": 75083, "solving large language": 89231, "models increasingly deployed": 62755, "introduce new framework": 47457, "achieved promising performance": 2652, "debate large language": 22524, "capabilities various applications": 12121, "existing works primarily": 31857, "work contributes understanding": 104036, "reasoning skills large": 80023, "skills large language": 88604, "models llms focusing": 63164, "open pretrained transformers": 68094, "pretrained transformers opt": 74487, "skills findings reveal": 88597, "increase classification accuracy": 44753, "gpt4 demonstrates impressive": 39830, "gap paper presents": 36955, "prompting gpt4 generate": 76541, "capabilities solve problems": 12082, "evaluate llms capabilities": 30219, "combining large language": 16015, "recent findings llms": 80260, "pretraining models large": 74576, "models gpt4 achieved": 62612, "popular prompting techniques": 72678, "unique challenges posed": 100077, "understanding response generation": 99870, "work conduct comprehensive": 104020, "reasoning ability language": 79765, "make attempt investigate": 57966, "series flant5 llama": 86734, "benchmarks demonstrate effectiveness": 10326, "challenges practical deployment": 13102, "ability llms smaller": 1713, "capabilities work propose": 12141, "unseen tasks work": 100280, "capabilities unseen tasks": 12112, "terms zeroshot task": 95849, "tackle challenging tasks": 93718, "easily trained using": 27021, "trained using lora": 97926, "facilitating reproducibility researchers": 33545, "chatbased large language": 13396, "excellent performance variety": 31354, "model selection large": 61388, "method demonstrates significant": 59257, "plan execute actions": 72235, "prompting improve performance": 76545, "fewshot prompting llms": 34296, "zeroshot chainofthought prompting": 104746, "multimodal information using": 65058, "reasoning capability current": 79813, "current ai systems": 20656, "substantial performance gains": 92100, "world model large": 104407, "reasoning capabilities especially": 79798, "limitations propose new": 54363, "propose new llm": 77048, "llm world model": 55322, "tasks demonstrate superiority": 94518, "models llms existing": 63148, "benchmark dataset evaluating": 10122, "opensource proprietary models": 68400, "grounding abstract concepts": 40586, "language models long": 50549, "harnessing power large": 41096, "significant improvement strong": 87772, "llms achieved impressive": 55426, "improve performance propose": 43762, "leverages chainofthought cot": 53780, "augmented language models": 8577, "language models alms": 49643, "llms smaller language": 56822, "models knowledgeintensive tasks": 62836, "models achieve superior": 61763, "described plain text": 23667, "highlighting strengths weaknesses": 41645, "thinking large language": 96804, "remarkable performance general": 81788, "performance general language": 71250, "general language tasks": 37148, "deductive reasoning ability": 22739, "models llms address": 62982, "model learns imitate": 61059, "surpasses conventional stateoftheart": 92928, "zeroshot reasoning benchmarks": 104859, "shows competitive performance": 87570, "advanced ai models": 3673, "improve model capabilities": 43733, "make specific use": 58031, "llms significantly benefit": 56805, "benefit chainofthought cot": 10443, "models achieve higher": 61759, "language models called": 49690, "problem natural language": 75054, "improves performance gpt3": 44053, "gpt35 turbo llama": 39677, "maximum context size": 58649, "exhibit incontext learning": 31529, "tasks taskspecific training": 95186, "performance gap exists": 71243, "evaluate ability large": 30131, "results demonstrate gpt35": 83549, "language models really": 50720, "models really good": 63984, "artificial intelligence recently": 7657, "llms emerged noteworthy": 55840, "include representative llms": 44234, "logical reasoning capability": 57269, "potential artificial general": 73019, "model language models": 61044, "explore ability large": 32627, "explore prompt engineering": 32733, "framework comprises main": 36073, "comprises main components": 17387, "demonstrate approach outperforms": 23019, "zeroshot chainofthought cot": 104745, "minimal human supervision": 60093, "reading comprehension mrc": 79524, "effective pretraining task": 27345, "beginning era large": 9945, "theoryofmind tom reasoning": 96778, "tom reasoning capabilities": 97251, "models align human": 61820, "existing evaluation methodologies": 31708, "hard negative examples": 40986, "construct new benchmark": 18431, "evaluation experimental results": 30591, "including commercial opensource": 44307, "gpt4 achieves success": 39750, "current natural language": 20746, "generation propose novel": 38360, "analysis evaluate quality": 5507, "natural language terms": 65742, "language model serve": 49540, "programs large language": 75951, "transform natural language": 98459, "large lms llms": 52243, "multiplechoice question answering": 65289, "query key value": 78530, "emerging research direction": 28231, "employ incontext learning": 28400, "incontext learning gpt": 44600, "gpt4 googles bard": 39911, "prompting strategies results": 76619, "indicate models exhibit": 45010, "underexplored paper investigate": 99447, "rejection sampling finetuning": 81177, "solving downstream tasks": 89226, "downstream tasks little": 26738, "labeled data despite": 48904, "shown outstanding performance": 87507, "substantial parameter size": 92098, "tackling complex reasoning": 93752, "advanced reasoning abilities": 3742, "investigate possibility transferring": 47682, "smaller models knowledge": 88773, "effective prompt design": 27347, "palm2 gpt35 gpt4": 69560, "high school college": 41454, "reasoning ability crucial": 79763, "reasoning tasks chainofthought": 80044, "foundation models possess": 35960, "enhanced user engagement": 29255, "empirical results illustrate": 28344, "using gpt4 code": 101494, "gpt4 code interpreter": 39798, "based insight propose": 9577, "recent advancements largescale": 80187, "remarkable capabilities addressing": 81744, "language models reinforced": 50742, "remarkable performance natural": 81791, "experiments mathematical reasoning": 32246, "llms substantial margin": 56879, "gpt35 gpt4 using": 39630, "llms evaluation benchmark": 55886, "advanced model gpt4": 3721, "human evaluation benchmark": 42170, "enhances large language": 29283, "empirical evaluations underscore": 28322, "term extraction ate": 95773, "awareness large language": 9218, "safety alignment deployed": 85005, "model size findings": 61415, "billionparameter language model": 11033, "natural language large": 65616, "yield significant improvements": 104649, "language models answering": 49647, "sources large language": 89416, "propose mechanism allows": 77019, "outperform existing opensource": 68934, "language model science": 49537, "llms complex problemsolving": 55654, "enhance reasoning capabilities": 29209, "offtheshelf large language": 67890, "methods chainofthought cot": 59560, "prompting methods including": 76577, "language model solve": 49546, "high school physics": 41458, "language models producing": 50686, "li et al": 53946, "using different methods": 101410, "methods including rulebased": 59682, "conventional natural language": 19286, "experimental results provide": 32064, "results provide valuable": 83794, "opensource llms llama2": 68371, "suite opensource llms": 92478, "models different model": 62227, "llms improve accuracy": 56165, "stateoftheart llms chatgpt": 90376, "novel framework integrates": 67169, "prompting llms generate": 76567, "undesired behaviors llms": 99941, "claude primarily accessible": 14858, "primarily accessible api": 74776, "accessible api calls": 2104, "challenging address challenges": 13146, "model achieved improvement": 60491, "explore potential large": 32722, "ability llms large": 1708, "pose challenges practical": 72739, "smaller models distillation": 88770, "studies explore potential": 91388, "scientific tabletotext generation": 85665, "neuro symbolic reasoning": 66300, "specifications natural language": 89899, "produce factually incorrect": 75624, "gpt4 gpt35 turbo": 39916, "natural language proposed": 65717, "cot prompting leads": 19959, "advancing capabilities llms": 3905, "capabilities llms paper": 11991, "llms paper introduce": 56485, "evaluate various llms": 30303, "language models coding": 49725, "ability code generation": 1613, "performance foundation models": 71227, "models chatgpt paper": 61992, "language models significant": 50805, "models significant progress": 64194, "significant progress various": 87831, "integrating natural language": 46740, "raises concerns regarding": 79078, "model capabilities large": 60627, "furthermore work offers": 36671, "answer given question": 6012, "paper formally define": 69744, "sota llms gpt4": 89314, "gpt4 gpt35 palm2": 39915, "problems propose novel": 75190, "extensive experimentation demonstrates": 33043, "incontext learning recent": 44642, "learning recent advances": 53375, "study introduce framework": 91682, "exemplars incontext learning": 31474, "significantly outperforms prior": 88004, "outperforms prior stateoftheart": 69105, "prior stateoftheart methods": 74860, "gpt4 exhibited remarkable": 39869, "performance comes high": 71067, "api services paper": 6281, "demonstrate proposed llm": 23168, "reasoning recently released": 80008, "dataset models released": 22009, "environment feedback execution": 29618, "llms key idea": 56260, "generation tasks capabilities": 38448, "experimental results datasets": 32023, "language models tailored": 50855, "simple prompting technique": 88231, "specific details using": 89683, "important role improving": 43535, "language models example": 49842, "mainstream language models": 57862, "extensive empirical analysis": 33017, "topological data analysis": 97544, "data analysis tda": 20969, "bridge gap theoretical": 11428, "applications diverse fields": 6455, "claims large language": 14678, "models llms able": 62967, "gpt4 stateoftheart llm": 40102, "encourage investigation area": 28792, "compared performance human": 16603, "carry experiments datasets": 12442, "models struggle answer": 64270, "significant challenge large": 87705, "challenge large language": 12897, "improving model performance": 44140, "benchmarks mainly focus": 10377, "automatically generate additional": 8869, "lms including gpt4": 57135, "capable tool use": 12269, "comprehensive case studies": 17218, "explore capabilities limitations": 32647, "state art llms": 90267, "artificial intelligence algorithms": 7626, "reasoning capabilities language": 79801, "different model architectures": 25115, "commonsense reasoning benchmarks": 16232, "generalization ability outofdistribution": 37245, "approach observe significant": 6957, "failure modes provide": 33714, "model trained human": 61522, "techniques like chainofthought": 95550, "like chainofthought prompting": 54061, "language models vs": 50915, "models vs human": 64525, "problemsolving capabilities large": 75229, "models llms evaluating": 63125, "llms evaluating performance": 55884, "compare performance stateoftheart": 16487, "llms cognitive abilities": 55638, "language models noisy": 50607, "existing studies utilize": 31828, "cot prompting methods": 19960, "reasoning tasks llms": 80058, "new sota performance": 66530, "llms prompted generate": 56596, "impressive reasoning capabilities": 43643, "competitive better performance": 16794, "better performance compared": 10759, "traditional supervised learning": 97704, "based labeled data": 9588, "appropriate prompts especially": 7246, "prompts especially fewshot": 76706, "promising research directions": 76195, "research directions future": 82558, "existing research predominantly": 31813, "learning models llms": 53282, "training data scarcity": 98051, "opensource llms exhibit": 68364, "vital strategy enhancing": 103167, "strategy enhancing model": 90882, "model performance specific": 61238, "llms recently exhibited": 56660, "recently exhibited remarkable": 80491, "work explores llms": 104087, "human learning process": 42287, "experiments various llms": 32337, "potential llms improve": 73180, "models exploit dataset": 62411, "senior high school": 86434, "hope findings inspire": 41951, "reasoning fundamental aspect": 79891, "models llms potentially": 63352, "reasoning datasets demonstrate": 79855, "address complex problems": 3379, "cumbersome language models": 20614, "gpt35 175b parameters": 39570, "consistency large language": 18238, "opensource llms specifically": 68375, "llms specifically analyze": 56848, "code llama 7b": 15389, "effective evaluation llms": 27296, "generating evaluation data": 37899, "tasks taskspecific finetuning": 95185, "finetuning prompt engineering": 35206, "prompt engineering despite": 76294, "findings highlight need": 34672, "highlight need research": 41600, "search engines google": 85869, "cot prompting techniques": 19961, "model types llama": 61545, "models results indicate": 64094, "recent work large": 80401, "offer novel perspective": 67755, "compared prior works": 16619, "limitations existing llms": 54321, "larger models provide": 52461, "help model learn": 41269, "generalist large language": 37222, "quality generated explanations": 78279, "makes significant contributions": 58073, "stage future advancements": 90116, "models make errors": 63576, "language modelsllms chatgpt": 50932, "evaluate llm performance": 30217, "paper aims evaluate": 69603, "provide comprehensive evaluation": 77427, "explore various approaches": 32762, "opensource foundational model": 68335, "llms chatgpt received": 55609, "outline best practices": 68868, "llms external tools": 55954, "belief bias known": 10027, "pruning large language": 77851, "models llms face": 63158, "explore potential enhancing": 32720, "series opensource llms": 86749, "accuracy outperforming existing": 2324, "planning large language": 72265, "llms increasingly employed": 56206, "address limitations introduce": 3450, "outperforms chatgpt task": 69027, "high computational memory": 41390, "results models struggle": 83734, "thought cot capabilities": 96849, "language models goal": 49929, "scales large language": 85309, "language models examining": 49841, "language models project": 50688, "tasks recent years": 95018, "quantitative reasoning tasks": 78422, "red teaming large": 80738, "teaming large language": 95385, "demonstrated ability reason": 23228, "suffer data leakage": 92305, "results provide insights": 83793, "including gpt3 chatgpt": 44360, "examples incontext learning": 31231, "code data results": 15202, "paper investigates performance": 69798, "investigates performance large": 47752, "framework combines strengths": 36069, "combines strengths llms": 16001, "incorporates key aspects": 44683, "using gpt35 gpt4": 101489, "outputs overcome challenges": 69246, "reasoning generation tasks": 79896, "generation tasks surpassing": 38458, "given training data": 38980, "makes best use": 58047, "intricate scientific concepts": 47371, "diverse highquality dataset": 26031, "wider research community": 103771, "seen considerable advancements": 86083, "paper address challenge": 69582, "llms led significant": 56289, "dataset comprising mixture": 21872, "various model sizes": 102488, "model sizes notably": 61429, "fundamental component language": 36539, "llms performance various": 56514, "transforms natural language": 98652, "llm using generated": 55309, "llms trained text": 56950, "trained text code": 97920, "trainable parameters despite": 97791, "release code models": 81357, "paper shows llms": 69955, "language comprehension capabilities": 49164, "natural languages propose": 65770, "natural language specifically": 65730, "analysis social media": 5680, "complex tasks smaller": 17021, "tasks smaller manageable": 95124, "integration external tools": 46765, "specialized language model": 89631, "challenges terms cost": 13134, "experimental results verified": 32075, "outperform baseline models": 68919, "baseline models including": 9799, "finance large language": 34586, "capabilities face challenges": 11901, "face challenges like": 33437, "explore potential language": 32721, "using financial domain": 101445, "13b chat model": 290, "augmentation language models": 8537, "models finance domain": 62469, "llm training address": 55296, "mips novel method": 60148, "exhibits strong generalization": 31634, "challenge language models": 12895, "models complex structured": 62064, "llms paper proposes": 56490, "language processing work": 51058, "benchmark includes datasets": 10190, "method significantly reduces": 59428, "impressive reasoning abilities": 43642, "zeroshot cot prompting": 104757, "introduce novel zeroshot": 47476, "performance proposed method": 71502, "requires extensive manual": 82379, "ability paper introduce": 1733, "setting incontext learning": 86999, "test set finetuning": 95944, "used inference time": 100828, "models llms witnessed": 63514, "data generation framework": 21264, "artificial intelligence techniques": 7662, "search strategy paper": 85899, "language model predict": 49512, "reveal interesting findings": 84155, "performance model size": 71405, "shown immense potential": 87473, "synthetically generated datasets": 93308, "llms data generation": 55712, "closedsource llms gpt4": 15007, "models release code": 64044, "chainofthought prompting chainofthought": 12834, "llms including gpt35turbo": 56179, "including gpt35turbo gpt4": 44366, "gpt35turbo gpt4 llama2": 39703, "achieves comparable superior": 2732, "models parameters ranging": 63771, "effective method enhancing": 27329, "additionally findings reveal": 3310, "correctness final answer": 19735, "extensive human annotations": 33102, "annotations paper propose": 5945, "trained synthetic data": 97917, "improving downstream accuracy": 44113, "training data models": 98037, "llms introduce new": 56246, "scientific domains evaluate": 85641, "llms recently showcased": 56667, "recently showcased remarkable": 80557, "opensource llms demonstrate": 68363, "effectively improve accuracy": 27441, "make code dataset": 57973, "multiple model calls": 65224, "model llm pipeline": 61101, "byte pair encoding": 11722, "use llms reasoning": 100621, "larger models better": 52455, "way large language": 103380, "approach involves generating": 6914, "study propose new": 91792, "release model data": 81379, "synthetic data question": 93268, "llms exhibited great": 55910, "exhibited great potential": 31574, "various pretrained models": 102526, "toolaugmented large language": 97337, "word problems gsm8k": 103919, "instances work propose": 46232, "proposed architecture using": 77183, "data benchmark comprises": 21023, "benchmark comprises carefully": 10100, "model gpt4 achieves": 60961, "models encounter difficulties": 62323, "processes large language": 75438, "demonstrate emergent abilities": 23074, "challenging task complex": 13232, "tasks previous work": 94962, "previous work conducted": 74728, "data synthesis framework": 21675, "rigorous quality control": 84454, "llms reasoning capabilities": 56646, "subsequently used generate": 92036, "finetune opensource llms": 34843, "language models procedural": 50683, "use llms generate": 100616, "models zeroshot prompting": 64566, "scarcity publicly available": 85384, "approach achieves accuracy": 6711, "retrieval significantly improves": 84025, "embodied task planning": 28113, "chainofthought prompting cot": 12835, "accuracy question answering": 2339, "language models summarizing": 50843, "crucial role enhancing": 20526, "cot fewshot cot": 19950, "comparable results compared": 16401, "compared stateoftheart methods": 16641, "opensource llms mistral": 68373, "reasoners large language": 79748, "llms chatgpt prone": 55606, "method enables llms": 59279, "accuracy paper propose": 2326, "prompting methods improve": 76576, "fewshot prompting method": 34298, "improved chainofthought prompting": 43833, "response challenge present": 83124, "present empirical investigation": 73974, "designed automatic generation": 23880, "reasoning steps propose": 80034, "high annotation costs": 41376, "like chatgpt opened": 54089, "opened new possibilities": 68254, "semantic understanding capabilities": 86360, "received limited attention": 80143, "llms demonstrated stateoftheart": 55767, "demonstrated stateoftheart performance": 23341, "stateoftheart performance compared": 90433, "tackle challenge propose": 93714, "language models gpt3 t5": 49941, "series intermediate reasoning steps": 86740, "arithmetic commonsense symbolic reasoning": 7488, "large language models chainofthought": 51594, "examples large language models": 31244, "large language models systematically": 52190, "language models llms solve": 50459, "finetuning scenarios large language": 35235, "large language model codex": 51467, "smaller models work propose": 88777, "large language models achieving": 51559, "cot prompting large language": 19957, "experimental results demonstrate proposed": 32032, "results demonstrate proposed method": 83561, "datasets code publicly available": 22169, "models reduce model size": 64029, "language model llm reasoning": 49474, "address issue propose novel": 3431, "language models pretrained code": 50673, "large language model reasoning": 51529, "results wide range tasks": 83923, "language understanding large language": 51170, "conclusions large language models": 17765, "pretrained natural language models": 74434, "language processing tasks paper": 51052, "significantly outperforms chainofthought prompting": 87991, "inference time large language": 45310, "latest large language models": 52673, "programs natural language specifications": 75955, "improves reasoning large language": 44071, "solving various natural language": 89259, "impressive performance large language": 43619, "robustness code publicly available": 84703, "knowledgeintensive tasks paper propose": 48837, "models llms recently shown": 63392, "chainofthought prompting large language": 12837, "language models llms multiple": 50341, "training data compared baseline": 97998, "models despite remarkable success": 62208, "framework large language model": 36188, "problem solving large language": 75084, "solving large language models": 89232, "language models increasingly deployed": 49988, "debate large language models": 22525, "extensive experiments various datasets": 33094, "reasoning skills large language": 80024, "skills large language models": 88605, "language models llms focusing": 50224, "open pretrained transformers opt": 68095, "combining large language models": 16016, "paper make attempt investigate": 69809, "finetuning language models lms": 35107, "data model checkpoints publicly": 21416, "easily trained using lora": 27022, "employing large language model": 28453, "achieve new stateoftheart results": 2551, "world model large language": 104408, "overcome limitations propose new": 69359, "language models llms existing": 50208, "harnessing power large language": 41097, "models llms achieved impressive": 62973, "llms achieved impressive performance": 55427, "achieved impressive performance various": 2637, "leverages chainofthought cot prompting": 53781, "llms smaller language models": 56823, "language models knowledgeintensive tasks": 50017, "thinking large language models": 96805, "chatgpt shown remarkable performance": 14228, "shown remarkable performance general": 87536, "performance general language tasks": 71251, "language models llms address": 50080, "benefit chainofthought cot prompting": 10444, "significantly improves performance gpt3": 87955, "evaluate ability large language": 30132, "large language models really": 52128, "language models really good": 50721, "potential artificial general intelligence": 73020, "explore ability large language": 32628, "large language models solve": 52169, "language models paper introduce": 50631, "framework comprises main components": 36074, "machine reading comprehension mrc": 57736, "beginning era large language": 9946, "evaluation experimental results demonstrate": 30592, "large language model serve": 51535, "programs large language models": 75952, "models llms gpt3 gpt4": 63201, "answering large language model": 6119, "results indicate models exhibit": 83682, "large language models symbolic": 52187, "solving downstream tasks little": 89227, "performance wide range downstream": 71711, "tackling complex reasoning tasks": 93753, "smaller models knowledge distillation": 88774, "shown remarkable performance natural": 87537, "remarkable performance natural language": 81792, "evaluate performance gpt35 gpt4": 30249, "enhances large language models": 29284, "large language models extract": 51680, "awareness large language models": 9219, "natural language large language": 65617, "outperform existing opensource models": 68935, "large language model science": 51534, "offtheshelf large language models": 67891, "large language models good": 51709, "large language models presents": 52111, "claude primarily accessible api": 14859, "primarily accessible api calls": 74777, "explore potential large language": 32723, "reasoning ability llms large": 79770, "ability llms large language": 1709, "demonstrated remarkable performance wide": 23328, "pose challenges practical deployment": 72740, "large language models coding": 51608, "large language models significant": 52163, "additionally conduct comprehensive analysis": 3283, "enhancing large language model": 29340, "language model capabilities large": 49356, "model capabilities large language": 60628, "outperforms prior stateoftheart methods": 69106, "plays important role improving": 72385, "large language models example": 51669, "large language models capable": 51590, "topological data analysis tda": 97545, "claims large language models": 14679, "language models llms able": 50072, "large language model finetuning": 51475, "significant challenge large language": 87706, "challenge large language models": 12898, "reasoning capabilities language models": 79802, "reasoning commonsense reasoning benchmarks": 79834, "techniques like chainofthought prompting": 95551, "large language models vs": 52220, "language models vs human": 50916, "language models llms evaluating": 50191, "models llms evaluating performance": 63126, "chainofthought cot prompting large": 12820, "appropriate prompts especially fewshot": 7247, "vital strategy enhancing model": 103168, "models llms recently exhibited": 63386, "conduct comprehensive evaluation stateoftheart": 17842, "language models llms potentially": 50377, "consistency large language models": 18239, "findings highlight need research": 34673, "recent work large language": 80402, "large language models instructgpt": 51739, "language models increasingly popular": 49990, "large language modelsllms chatgpt": 52230, "models llms focusing llama": 63165, "models llms chatgpt received": 63035, "pruning large language models": 77852, "language models llms face": 50218, "planning large language models": 72266, "models llms increasingly employed": 63244, "llms demonstrated exceptional performance": 55737, "chain thought cot capabilities": 12804, "scales large language models": 85310, "large language models examining": 51668, "large language models project": 52116, "red teaming large language": 80739, "teaming large language models": 95386, "paper investigates performance large": 69799, "investigates performance large language": 47753, "framework combines strengths llms": 36070, "complex tasks smaller manageable": 17022, "outperform baseline models including": 68920, "finance large language models": 34587, "capabilities face challenges like": 11902, "experiments demonstrate approach significantly": 32152, "llms demonstrated significant potential": 55766, "exhibits strong generalization ability": 31635, "language models complex structured": 49735, "demonstrated remarkable performance diverse": 23322, "language models llms witnessed": 50516, "llms including gpt35turbo gpt4": 56180, "including gpt35turbo gpt4 llama2": 44367, "models llms recently showcased": 63390, "llms recently showcased remarkable": 56668, "language model llm pipeline": 49472, "way large language models": 103381, "models llms exhibited great": 63142, "llms exhibited great potential": 55911, "toolaugmented large language models": 97338, "math word problems gsm8k": 58564, "processes large language models": 75439, "opensource llms llama2 mistral": 68372, "language models zeroshot prompting": 50928, "small models large language": 88708, "play crucial role enhancing": 72337, "results compared stateoftheart methods": 83512, "require extensive human annotations": 82249, "llms like chatgpt opened": 56310, "llms demonstrated stateoftheart performance": 55768, "demonstrated remarkable performance various natural": 23326, "large language models llms solve": 52006, "finetuning scenarios large language models": 35236, "cot prompting large language models": 19958, "experimental results demonstrate proposed method": 32033, "large language model llm reasoning": 51511, "language understanding large language models": 51171, "like chatgpt demonstrated remarkable performance": 54069, "natural language processing tasks paper": 65705, "inference time large language models": 45311, "reasoning large language models large": 79927, "language models llms recently shown": 50414, "chainofthought prompting large language models": 12838, "large language models llms multiple": 51933, "language models despite remarkable success": 49782, "problem solving large language models": 75085, "debate large language models llms": 22526, "reasoning skills large language models": 80025, "large language models llms focusing": 51867, "exhibited remarkable performance various natural": 31587, "generative large language models gpt35": 38638, "data model checkpoints publicly available": 21417, "employing large language model llm": 28454, "world model large language models": 104409, "large language models llms existing": 51853, "harnessing power large language models": 41098, "language models llms achieved impressive": 50075, "llms achieved impressive performance various": 55428, "llms like chatgpt shown remarkable": 56312, "like chatgpt shown remarkable performance": 54100, "large language models llms address": 51781, "evaluate ability large language models": 30133, "large language models really good": 52129, "explore ability large language models": 32629, "large language models paper introduce": 52092, "era large language models like": 29736, "popular large language models llms": 72641, "leveraging large language models generate": 53866, "language models llms gpt3 gpt4": 50255, "llms demonstrated remarkable performance various": 55761, "performance wide range downstream tasks": 71712, "understanding large language models large": 99793, "shown remarkable performance natural language": 87538, "remarkable performance natural language processing": 81793, "enhances large language models llms": 29285, "natural language large language models": 65618, "offtheshelf large language models llms": 67892, "claude primarily accessible api calls": 14860, "explore potential large language models": 32724, "reasoning ability llms large language": 79771, "ability llms large language models": 1710, "llms demonstrated remarkable performance wide": 55762, "demonstrated remarkable performance wide range": 23329, "remarkable performance wide range natural": 81807, "providing valuable insights future research": 77816, "language model capabilities large language": 49357, "model capabilities large language models": 60629, "stateoftheart large language models large": 90368, "generalpurpose large language model gpt4": 37354, "large language models llms able": 51777, "significant challenge large language models": 87707, "challenge large language models llms": 12899, "large language models vs human": 52221, "large language models llms evaluating": 51846, "language models llms evaluating performance": 50192, "chainofthought cot prompting large language": 12821, "language models llms recently exhibited": 50410, "large language models llms potentially": 51956, "help large language models llms": 41261, "recent work large language models": 80403, "work large language models llms": 104160, "large language models increasingly popular": 51736, "language models llms focusing llama": 50225, "language models llms chatgpt received": 50123, "large language models llms face": 51862, "language models llms increasingly employed": 50294, "models llms demonstrated exceptional performance": 63066, "red teaming large language models": 80740, "paper investigates performance large language": 69800, "investigates performance large language models": 47754, "finance large language models llms": 34588, "extensive experiments demonstrate approach significantly": 33057, "models llms demonstrated significant potential": 63088, "llms demonstrated remarkable performance diverse": 55759, "large language models llms witnessed": 52043, "llms including gpt35turbo gpt4 llama2": 56181, "language models llms recently showcased": 50413, "models llms recently showcased remarkable": 63391, "large language model llm pipeline": 51509, "language models llms exhibited great": 50205, "models llms exhibited great potential": 63143, "small models large language models": 88709, "models llms like chatgpt opened": 63280, "inputagnostic": 45973, "racist": 79012, "gem": 37055, "sexist": 87141, "bilstm": 11045, "25k": 665, "kfold": 48371, "crossvalidation": 20447, "incentivized": 44212, "ingest": 45709, "osint": 68835, "corrupting": 19816, "ckg": 14659, "textrank": 96535, "precisions": 73618, "ideology": 42944, "blocksparse": 11205, "regulated": 81122, "stances": 90152, "hero": 41326, "victim": 102855, "threatening": 96881, "ppt": 73490, "fullyconnected": 36478, "proliferating": 76074, "ransomware": 79285, "spawn": 89584, "obfuscate": 67463, "honeypot": 41941, "mac": 57678, "terminal": 95781, "368": 860, "pi": 72094, "bings": 11072, "mitigations": 60316, "depression": 23626, "noises": 66866, "wasting": 103332, "configure": 18035, "decoy": 22712, "counteract": 19987, "mail": 57810, "backdoor": 9257, "stealthiness": 90579, "parameterfree": 70157, "polling": 72577, "elections": 27944, "election": 27943, "personaassigned": 71874, "therapy": 96782, "races": 79005, "poster": 72942, "unharmful": 99997, "brother": 11528, "imperceptibly": 43306, "conspicuous": 18352, "intrusion": 47578, "brands": 11366, "reputable": 82212, "474": 976, "estonian": 30035, "3120": 773, "handlabeled": 40915, "gms": 39038, "gm": 39035, "suicidal": 92447, "suicide": 92449, "intensifying": 46945, "federal": 34049, "commission": 16109, "sheer": 87240, "knowingly": 48407, "panic": 69578, "3m": 897, "vii": 102924, "impracticable": 43563, "cryptographic": 20555, "lwc": 57673, "stylometric": 91920, "farreaching": 33880, "alarming": 4882, "visit": 103045, "zeroday": 104712, "payload": 70665, "incidence": 44216, "vendor": 102715, "unpatched": 100220, "distillbert": 25834, "covert": 20100, "privilege": 74931, "escalation": 29849, "persisted": 71865, "visavis": 102950, "inexperienced": 45189, "hackers": 40796, "unethically": 99955, "accent": 2033, "semanticlevel": 86376, "foolproof": 35715, "intersectionality": 47328, "intersectional": 47327, "gleaned": 39000, "heist": 41225, "sexual": 87142, "predatory": 73626, "urdu": 100401, "studys": 91901, "internetofthings": 47254, "certificate": 12786, "mitres": 60317, "peftlora": 70711, "disturbing": 25966, "mutates": 65425, "imprecise": 43566, "mount": 64796, "hosting": 41991, "progresses": 76018, "psychiatric": 77868, "outlining": 68873, "responders": 83111, "shap": 87173, "contingency": 18985, "predeployment": 73635, "recommending": 80673, "regulators": 81127, "pervasiveness": 72002, "attacked": 8195, "beneath": 10434, "baichuan2": 9297, "ally": 5219, "dnns": 26191, "dnnbased": 26190, "invent": 47600, "prosocial": 77326, "innovating": 45842, "020": 18, "responsive": 83358, "garnering": 37018, "contentbased": 18711, "deepfakes": 22817, "deepfake": 22816, "impersonating": 43311, "vigilant": 102922, "aienhanced": 4651, "preventive": 74655, "astonishingly": 8129, "untrustworthy": 100328, "congressional": 18075, "agreed": 4276, "coax": 15104, "nq": 67311, "1020": 161, "ao": 6256, "fighting": 34450, "patience": 70599, "slowing": 88659, "arms": 7498, "llmspecific": 57066, "overestimate": 69374, "intelligencegenerated": 46911, "nexus": 66667, "undermining": 99525, "competed": 16763, "personification": 71937, "185": 433, "023": 20, "ict": 42774, "iec": 42954, "multicast": 64877, "hitl": 41873, "hardwareintheloop": 41019, "tsa": 98979, "controversy": 19267, "wolf": 103882, "sst": 90078, "vicuna33b": 102874, "steered": 90589, "exploitable": 32573, "representatives": 82162, "mediocre": 58940, "alarm": 4881, "surfaces": 92886, "affine": 4067, "humandesigned": 42466, "protected": 77339, "forbidding": 35723, "saying": 85223, "roadblocks": 84589, "wrap": 104453, "articulated": 7579, "journalists": 48169, "creator": 20271, "065": 54, "engineeringspecific": 29037, "coordinated": 19503, "promptinjection": 76641, "noninstructiontuned": 66912, "journeys": 48172, "054": 44, "062": 52, "goodness": 39130, "summarised": 92512, "predicated": 73641, "postpruning": 72961, "contaminating": 18562, "090": 82, "semanticpreserving": 86377, "866": 1375, "mistral7binstruct": 60229, "perturbationaware": 71989, "icls": 42772, "romance": 84825, "summarise": 92511, "hacks": 40798, "multicriteria": 64886, "multiplecriteria": 65295, "initiating": 45809, "disclosing": 25567, "clicking": 14895, "utilities": 101886, "evidences": 31004, "acknowledged": 2894, "gathers": 37030, "discernible": 25556, "scalings": 85360, "manifestation": 58207, "oversensitive": 69420, "cord19": 19532, "prefixed": 73845, "harming": 41048, "beast": 9928, "rtx": 84911, "a6000": 1480, "48gb": 983, "prp": 77841, "propagating": 76881, "prefixbased": 73844, "overlooks": 69411, "purposely": 78055, "concealing": 17588, "tons": 97255, "risking": 84504, "remediate": 81850, "enters": 29508, "personnel": 71938, "tabletop": 93699, "companys": 16361, "firms": 35313, "connectivity": 18103, "accesses": 2097, "reverts": 84240, "bucket": 11547, "impartial": 43295, "cream": 20141, "marketers": 58396, "muses": 65408, "npm": 67309, "scanner": 85363, "advertisements": 4023, "recognizable": 80622, "disability": 25533, "driver": 26850, "younger": 104686, "women": 103883, "reluctant": 81565, "harassment": 40970, "administrators": 3598, "uninterrupted": 100065, "summarizer": 92585, "examples highlight": 31226, "trigger model": 98876, "specific prediction": 89735, "input dataset": 45887, "word classification": 103889, "optimized using": 68646, "model transfer": 61534, "vocabulary input": 103198, "sentences task": 86571, "narratives online": 65505, "speech data": 89943, "research started": 82789, "sufficient quality": 92339, "aforementioned limitations": 4087, "study collect": 91524, "development cycles": 24627, "lms provided": 57161, "posed malicious": 72758, "maliciously crafted": 58169, "text completion": 96135, "lead promising": 52816, "neural toxic": 66291, "toxic degeneration": 97585, "lms prone": 57157, "lms prompted": 57155, "language effectiveness": 49200, "generation algorithms": 38024, "preventing toxic": 74651, "prompts derived": 76685, "derived large": 23652, "corpus english": 19617, "toxic text": 97594, "prompts empirically": 76696, "adaptive pretraining": 3145, "provides test": 77710, "bed evaluating": 9936, "identification using": 42820, "models team": 64340, "subtasks subtask": 92164, "team ranked": 95382, "crowdsourced dataset": 20457, "tweets dataset": 99151, "lowresource data": 57615, "lexical features": 53916, "uses features": 101223, "set augmentation": 86841, "augmentation data": 8529, "data applying": 20986, "increase f1": 44760, "bert classification": 10507, "attention transformer": 8380, "taskspecific layers": 95291, "extends earlier": 32973, "generation adversarial": 38017, "parameters task": 70292, "task approach": 93938, "setting outperforming": 87013, "achieved 3rd": 2607, "weighted f1": 103533, "proposed ensemble": 77199, "strategies including": 90826, "prevention strategies": 74654, "work seek": 104257, "ecommerce platforms": 27052, "complex landscape": 16947, "using transformerbased": 101827, "data andor": 20973, "intelligence osint": 46880, "effect data": 27238, "poisoning attack": 72521, "needs paper": 66039, "gpt2 finetuning": 39280, "utilize generated": 101933, "text perform": 96355, "fake generated": 33758, "marginalized groups": 58371, "groups given": 40625, "accuracy high": 2278, "dialog generation": 24826, "potential accelerate": 72981, "suffer significant": 92320, "diverse adversarial": 25980, "learning key": 53226, "extractive abstractive": 33346, "exponential increase": 32886, "text message": 96332, "language key": 49298, "bert bidirectional": 10503, "version bert": 102804, "gpt2 generative": 39288, "tuning analysis": 99016, "accuracy evaluating": 2259, "contains main": 18556, "checking text": 14484, "model bias": 60611, "speech classification": 89940, "facebook comments": 33455, "layers predictive": 52756, "compared simply": 16631, "set results": 86931, "achieving acceptable": 2820, "rely massive": 81582, "massive web": 58473, "resources like": 83017, "automatically selecting": 8897, "text suitable": 96443, "suitable language": 92459, "process typically": 75412, "filtering using": 34478, "newspaper articles": 66651, "used gpt3": 100815, "quality demonstrate": 78251, "exploring limits": 32856, "corpus model": 19642, "size parameter": 88503, "efficiency training": 27729, "leverage generative": 53728, "generative power": 38681, "bias shown": 10888, "uses 13": 101211, "comprehensively study": 17330, "3x larger": 902, "ii large": 42977, "adaptation largescale": 3082, "performance deep": 71125, "adversarial perturbation": 3987, "adversarial example": 3972, "problem results": 75070, "online news": 67996, "content purpose": 18674, "specific entities": 89692, "training fewshot": 98114, "zeroshot language": 104804, "news corpus": 66617, "corpus evaluate": 19618, "popular entities": 72628, "texts training": 96609, "exhibit unique": 31565, "models capturing": 61964, "capturing nuances": 12381, "imbalanced training": 43151, "models f1": 62433, "transformer gpt3": 98515, "work highlight": 104116, "release gpt3": 81372, "gpt3 investigate": 39481, "text comprehensive": 96139, "models detection": 62212, "text increasingly": 96302, "potential stateoftheart": 73275, "stateoftheart natural": 90417, "technical challenges": 95401, "includes extensive": 44249, "methods date": 59588, "social context": 88851, "provides strong": 77706, "work addressing": 103977, "addressing critical": 3533, "models ensuring": 62336, "coding questions": 15715, "tasks generally": 94666, "varying success": 102662, "experimental prompts": 32009, "coding approaches": 15688, "given texts": 38974, "texts research": 96593, "media contents": 58829, "current deep": 20680, "challenges insufficient": 13045, "chatgpt launched": 13984, "time chatgpt": 96935, "especially useful": 29925, "research aim": 82482, "gpt3 gpt2": 39468, "revealing sensitive": 84198, "taking actions": 93830, "criteria including": 20292, "need study": 65995, "benchmark revealing": 10244, "language internet": 49295, "internet content": 47248, "technical challenge": 95400, "stateoftheart tool": 90501, "toxicity text": 97605, "gpt3 prompt": 39514, "avoids common": 9209, "dynamic environment": 26913, "paper illustrates": 69752, "confidential information": 18025, "organizations seeking": 68743, "code lms": 15396, "lms lack": 57139, "lack awareness": 48980, "awareness security": 9223, "produce unsafe": 75664, "secure code": 85987, "lms security": 57167, "new security": 66522, "security task": 86040, "called controlled": 11773, "generate secure": 37586, "novel learningbased": 67196, "different regions": 25179, "using highquality": 101506, "curated extensive": 20632, "effective achieving": 27258, "achieving strong": 2888, "instance stateoftheart": 46216, "digital assistants": 25354, "assistants chatbots": 8049, "safety policies": 85047, "evaluates methods": 30384, "prompttuning large": 76856, "tuned using": 99008, "small organizations": 88717, "chatgpt explaining": 13793, "speech challenging": 89939, "studies evaluate": 91383, "applications personal": 6542, "preferences offering": 73824, "concern ability": 17659, "extreme case": 33377, "issue lack": 47940, "behavior user": 9991, "indirect prompt": 45058, "targeted adversarial": 93899, "adversarial prompting": 3990, "instructions employed": 46493, "user directly": 100979, "prompts data": 76681, "demonstrate attacks": 23027, "realworld systems": 79706, "despite increasing": 24076, "users systems": 101186, "real life": 79547, "negatively impact": 66075, "social networking": 88904, "content increasing": 18646, "lack proper": 49037, "paper particularly": 69821, "way generating": 103365, "data resolve": 21572, "dataset analyzed": 21823, "memory model": 59049, "bert generative": 10514, "does contain": 26284, "models interactive": 62800, "effective content": 27276, "systems address": 93387, "interactive explainable": 47100, "explanations classification": 32482, "aimed mitigating": 4754, "potential combining": 73057, "combining stateoftheart": 16025, "fundamentals generative": 36568, "models perspectives": 63808, "chatgpt subsequent": 14279, "including search": 44470, "extensive prior": 33118, "performance applicability": 70989, "tasks remained": 95034, "technical expertise": 95406, "large possible": 52304, "realworld environment": 79667, "applications concerns": 6434, "provide brief": 77415, "overview history": 69431, "chatgpt reply": 14172, "resources use": 83037, "applications aimed": 6406, "realistic human": 79566, "used mitigate": 100852, "ai effective": 4376, "ubiquitous adoption": 99318, "incorrect predictions": 44737, "follow uniform": 35656, "semantics original": 86392, "difficult defend": 25287, "detection social": 24356, "deployment challenges": 23595, "captions using": 12339, "mining plays": 60131, "role understanding": 84808, "understanding public": 99849, "public sentiment": 77948, "preferences particularly": 73826, "political elections": 72567, "limitations data": 54315, "mining framework": 60127, "report chatgpt": 81961, "using social": 101778, "based latent": 9601, "present interpretable": 74000, "method human": 59322, "suggest based": 92350, "latent knowledge": 52636, "knowledge representations": 48743, "toxicity chatgpt": 97597, "services like": 86815, "like students": 54229, "safety systems": 85055, "half million": 40803, "dialoguebased llm": 24921, "certain races": 12774, "broader ai": 11509, "efficacy current": 27630, "safe trustworthy": 84992, "systems chatgpt4": 93408, "reliability bias": 81490, "llm chatgpt4": 55004, "task classifying": 93971, "llm compared": 55010, "considered gold": 18194, "providing ground": 77753, "measure accuracy": 58730, "bias human": 10850, "bot detection": 11315, "analysis dataset": 5477, "gpt4 growing": 39922, "growing attention": 40644, "concerns models": 17692, "used malicious": 100846, "llms promote": 56590, "chinese llm": 14562, "scenarios types": 85488, "process provides": 75381, "responses evaluated": 83205, "evaluated model": 30349, "evaluation utilize": 30825, "utilize llms": 101948, "prompting benchmark": 76505, "safety assessments": 85012, "15 llms": 327, "observe interesting": 67587, "chatgpt detecting": 13706, "rely human": 81578, "time cost": 96943, "potential used": 73299, "chatgpt conducted": 13647, "accuracy approximately": 2206, "specifically model": 89851, "chatgpt impacts": 13941, "implications employing": 43378, "impact prompts": 43251, "provides guidance": 77671, "important aspect": 43490, "users usually": 101198, "model way": 61582, "alignment paper": 5101, "theoretical approach": 96733, "investigate inherent": 47658, "increases length": 44806, "undesired behavior": 99939, "attacks furthermore": 8211, "alignment approaches": 5056, "vulnerabilities chatgpt": 103255, "humans effectively": 42591, "finetuning new": 35157, "paradigm allows": 70022, "big brother": 10983, "perturbing text": 71994, "commercial search": 16095, "tasks closely": 94438, "closely tied": 15036, "perception large": 70789, "automate processes": 8665, "facilitate work": 33514, "study issue": 91719, "related covid19": 81187, "understand perspectives": 99637, "headlines use": 41146, "use guide": 100572, "investigated approaches": 47719, "approaches frame": 7147, "like classification": 54105, "attack blackbox": 8160, "blackbox generative": 11131, "attacks pose": 8232, "labels training": 48954, "paper reveal": 69937, "proposed generative": 77208, "leveraging stateoftheart": 53903, "relative baseline": 81290, "network traffic": 66162, "offers flexible": 67833, "efficient tool": 27826, "common transformer": 16180, "gpt 20": 39173, "performance surprisingly": 71613, "poorly context": 72603, "inference training": 45315, "regarding ability": 81043, "approximately half": 7275, "responses understand": 83321, "understand context": 99603, "work identify": 104123, "attacks generated": 8212, "particularly domain": 70450, "llms resulted": 56720, "examining llms": 31146, "information explore": 45463, "basic prompt": 9884, "prevent models": 74648, "mainstream news": 57867, "synthetic news": 93285, "news detector": 66623, "january 2022": 48111, "increase synthetic": 44779, "languages challenging": 51244, "challenging case": 13157, "require annotated": 82230, "limits applicability": 54492, "challenging scenario": 13225, "supervised learners": 92717, "acceptable performance": 2043, "chatgpt yields": 14363, "model investigate": 61032, "news analytics": 66609, "detection crucial": 24284, "crucial comprehend": 20480, "build robust": 11610, "systems bridge": 93403, "granular level": 40357, "complex emotions": 16932, "workings models": 104336, "potential introduce": 73146, "introduce challenges": 47407, "constraints potential": 18404, "questions number": 78903, "distinct patterns": 25873, "versions 35": 102818, "dataset 3120": 21807, "poses critical": 72770, "approaches produce": 7186, "produce effective": 75619, "leverage recent": 53758, "models order": 63727, "multiple settings": 65257, "handle uncertainty": 40938, "strongly improve": 91110, "evaluation overall": 30702, "lays groundwork": 52781, "future tools": 36786, "perform attack": 70819, "perspective focusing": 71949, "focusing impact": 35628, "impact demonstrations": 43198, "demonstrations used": 23485, "icl particularly": 42762, "particularly given": 70467, "increasing significance": 44857, "advancement llms": 3787, "llms simply": 56815, "limited studies": 54469, "studies conducted": 91369, "survey existing": 93029, "models opt": 63717, "terms effectiveness": 95812, "critically examines": 20378, "examines potential": 31140, "models numerous": 63688, "applications misuse": 6526, "technology provides": 95659, "customized tools": 20857, "furthermore llms": 36635, "positive note": 72829, "conclude emphasizing": 17733, "risks technology": 84535, "phenomenon llms": 72028, "handcrafted linguistic": 40907, "responses similar": 83309, "findings possibility": 34711, "taken account": 93801, "interpreting results": 47307, "focused using": 35596, "remain poorly": 81626, "key concern": 48284, "specifically prompted": 89863, "terms linguistic": 95823, "strategy employed": 90876, "need caution": 65918, "caution applying": 12704, "questions acceptable": 78763, "potential social": 73264, "social harms": 88865, "harms large": 41062, "models pose": 63831, "acceptable response": 2045, "responses dataset": 83198, "based real": 9691, "demonstrating efficacy": 23427, "models researchers": 64079, "important social": 43537, "efforts automate": 27897, "handlabeled training": 40916, "ones recent": 67936, "specific kind": 89715, "text variety": 96477, "provides exciting": 77664, "models gms": 62579, "content harmful": 18640, "values embedded": 102211, "virtual patient": 102941, "suicidal ideation": 92448, "generate model": 37530, "efforts ensure": 27907, "ensure transparency": 29467, "proven highly": 77381, "sheer scale": 87243, "scale current": 85257, "task focusing": 94069, "annotation accuracy": 5883, "ultimately lead": 99344, "regulatory requirements": 81131, "democratic processes": 22989, "shared online": 87193, "detection multimodal": 24332, "community lacks": 16326, "news dataset": 66619, "associated images": 8085, "chatgpt emergence": 13744, "chatgpt having": 13924, "range fields": 79159, "llms extensively": 55950, "extensively researched": 33149, "text synthesis": 96453, "accuracy identifying": 2286, "techniques context": 95493, "gpt4v demonstrated": 40188, "fraudulent activities": 36334, "attack large": 8168, "applications security": 6568, "particularly relation": 70497, "effectively generate": 27431, "prompts enhancing": 76702, "transferability diverse": 98443, "potential security": 73257, "detect ai": 24207, "news chatgpt": 66613, "news generated": 66626, "systems fake": 93455, "news internet": 66629, "studies research": 91438, "research demonstrate": 82537, "roberta models": 84608, "detecting ai": 24234, "generation news": 38297, "roberta bert": 84597, "models excellent": 62372, "text snippets": 96424, "examples model": 31254, "explore intersection": 32692, "advanced artificial": 3677, "increasingly significant": 44907, "preserving data": 74192, "resource limitations": 82971, "iot devices": 47884, "potential producing": 73229, "producing complex": 75706, "offers novel": 67850, "application advanced": 6334, "assessing effectiveness": 7911, "effectiveness gpt3": 27525, "political statements": 72572, "crucial maintaining": 20505, "employed various": 28436, "include use": 44238, "use metadata": 100625, "features recent": 34022, "using additional": 101286, "using carefully": 101323, "prompt achieved": 76230, "dataset detecting": 21908, "detecting human": 24245, "human llmgenerated": 42294, "detrimental effects": 24427, "individuals society": 45116, "dissemination medical": 25794, "overlooked previous": 69407, "works overcome": 104372, "general medical": 37161, "aims facilitate": 4807, "comprehensive research": 17292, "detection sentence": 24355, "openai developed": 68152, "users days": 101092, "literature reports": 54657, "generated chatbots": 37669, "chatgpt subsequently": 14280, "investigated chatgpt": 47720, "vulnerabilities exploited": 103257, "chatgpt addressing": 13501, "harmful consequences": 41028, "directions address": 25456, "text prior": 96365, "classifier does": 14822, "exploring models": 32860, "desired context": 24001, "definition measurement": 22875, "use approach": 100474, "discover classes": 25596, "making code": 58087, "capabilities capturing": 11850, "capable gpt": 12242, "bias adversarial": 10825, "robustness adversarial": 84696, "instance gpt": 46206, "leak private": 52914, "private information": 74926, "work illustrates": 104124, "models interpret": 62804, "expertise experience": 32388, "algorithms assist": 4956, "llms interpret": 56243, "bert study": 10557, "despite power": 24098, "summarize challenges": 92580, "privacy ethics": 74898, "need resolved": 65988, "use genai": 100558, "privacy implications": 74900, "constraints model": 18402, "attacks chatgpt": 8206, "tools developing": 97387, "attacks automated": 8204, "generation detection": 38115, "ethical guidelines": 30071, "discuss social": 25689, "conclusion paper": 17757, "poses security": 72781, "interpretability making": 47277, "vulnerabilities address": 103254, "utilizes techniques": 101998, "embeddings model": 28087, "intended behavior": 46931, "expert involvement": 32365, "enhancing decisionmaking": 29319, "decisionmaking especially": 22596, "accurate identification": 2412, "technical analysis": 95398, "arise models": 7478, "domain capabilities": 26358, "prompt collection": 76251, "2023 enhancing": 553, "subjectivity detection": 91961, "experiments english": 32185, "addition observe": 3201, "results generating": 83623, "emerged critical": 28126, "effectiveness conventional": 27505, "interface humans": 47174, "performance interpretability": 71322, "analytical tools": 5736, "success effective": 92191, "techniques using": 95607, "model created": 60722, "variety potential": 102319, "topics chatgpt": 97526, "chatgpt add": 13497, "information security": 45620, "benefit chatgpt": 10445, "keywords chatgpt": 48369, "process extracting": 75318, "shows existing": 87579, "performance limitations": 71357, "gaps providing": 36998, "open benchmark": 68045, "dataset involving": 21984, "course months": 20028, "larger previously": 52468, "introduced large": 47504, "manual design": 58262, "rate compared": 79377, "exhibit high": 31522, "models blackbox": 61942, "transferable adversarial": 98446, "aligned language": 5021, "required significant": 82321, "range queries": 79197, "queries llm": 78498, "probability model": 74960, "engineering approach": 28946, "interfaces chatgpt": 47185, "significantly advances": 87879, "advances stateoftheart": 3896, "detection twitter": 24374, "tuning evaluating": 99033, "finetuning various": 35288, "confusion matrices": 18073, "outperform finetuned": 68936, "learners gain": 52999, "detection mechanisms": 24319, "sample detection": 85085, "detection framework": 24304, "software vulnerabilities": 89046, "discover optimal": 25601, "concurrently maintaining": 17779, "semantics experiments": 86383, "issues problematic": 48010, "continues grow": 19019, "strategy llm": 90902, "sentences lower": 86560, "response target": 83164, "successfully reduces": 92283, "token length": 97139, "length ranging": 53606, "quality result": 78348, "characterizing evaluating": 13347, "misuse large": 60239, "prompts collected": 76666, "community detection": 16307, "methods discover": 59604, "strategies prompt": 90840, "privilege escalation": 74932, "public platforms": 77941, "private ones": 74929, "posing new": 72791, "prompts create": 76680, "important problem": 43529, "effects user": 27623, "trained humanannotated": 97843, "important models": 43523, "societal issues": 88933, "vast corpora": 102676, "particularly focusing": 70465, "focusing tasks": 35638, "toxicity classification": 97598, "detoxification task": 24421, "learning successfully": 53431, "reduce average": 80761, "pretraining supervised": 74606, "bypass safety": 11712, "mainly conducted": 57845, "role descriptions": 84768, "languages notably": 51332, "notably identify": 67034, "llms secret": 56754, "approach defend": 6795, "attacks notably": 8230, "versions large": 102824, "neglecting security": 66084, "safety implications": 85034, "biases introduced": 10930, "introduced previous": 47510, "updated versions": 100357, "successive versions": 92291, "categories zeroshot": 12620, "adversarial queries": 3995, "models developers": 62215, "released large": 81404, "content directly": 18614, "code studies": 15518, "loop study": 57434, "malicious software": 58162, "redteaming large": 80755, "using chain": 101332, "llms taken": 56907, "taken world": 93811, "minimizing negative": 60122, "preserving utility": 74200, "method address": 59194, "model traditional": 61516, "including long": 44412, "bidirectional long": 10977, "model outperformed": 61177, "paper using": 69988, "text strings": 96436, "assistance research": 8032, "various societal": 102573, "prompts lead": 76768, "inappropriate content": 44204, "method time": 59452, "time propose": 97007, "provide technical": 77582, "generate prompts": 37560, "french spanish": 36370, "virtual scenarios": 102942, "common types": 16181, "conducted models": 17973, "proposed attack": 77184, "research believe": 82502, "ai behavior": 4315, "important research": 43533, "future causal": 36703, "amidst rapid": 5333, "methods essential": 59625, "decisionmaking research": 22606, "impact individuals": 43217, "average treatment": 9183, "treatment effect": 98804, "scores highlight": 85766, "distinct behaviors": 25856, "manually design": 58304, "manually designing": 58307, "heuristics biases": 41342, "fourth group": 35992, "asked explain": 7733, "personalized content": 71908, "used popular": 100870, "detection language": 24309, "surpassed human": 92919, "slightly accurate": 88635, "finally make": 34543, "economic aspects": 27055, "attacks showing": 8237, "models increase": 62747, "capabilities emerging": 11883, "requires developers": 82373, "assess responses": 7872, "responses popular": 83274, "llms instructions": 56234, "train bertlike": 97731, "paper contains": 69657, "example data": 31156, "adversarial finetuning": 3977, "paper tackle": 69975, "judge model": 48177, "examples used": 31299, "performance performance": 71468, "accuracy holdout": 2281, "correctly detected": 19718, "critical area": 20305, "vulnerable populations": 103287, "techniques approaches": 95480, "effective detection": 27287, "systems identify": 93482, "opportunity address": 68517, "approach detection": 6803, "pretrained llama": 74369, "automated manual": 8712, "outcomes indicate": 68850, "applications sentiment": 6570, "medical record": 58913, "increasing prevalence": 44851, "issue addressed": 47924, "unlike traditional": 100189, "analyzed aspects": 5790, "power ml": 73384, "review compare": 84251, "compare existing": 16455, "directions discussed": 25462, "vulnerability large": 103272, "encourage researchers": 28797, "increasingly ubiquitous": 44912, "society task": 88945, "internal workings": 47237, "attacks remains": 8236, "effective large": 27319, "model evidence": 60826, "information adversarial": 45398, "whitebox model": 103634, "underlying mechanism": 99512, "fluency coherence": 35464, "effectiveness systems": 27582, "effectiveness chatgptbased": 27499, "response rate": 83156, "implications results": 43400, "safety guarantees": 85032, "prompt ii": 76338, "maintaining good": 57892, "performance safe": 71549, "prompts additionally": 76648, "efficient empirical": 27756, "information optimize": 45560, "tool uses": 97328, "techniques analyze": 95477, "data semantic": 21611, "initially extracts": 45801, "reports using": 82020, "accuracy rates": 2341, "f1scores ranging": 33425, "chatgpt overall": 14058, "proactively identify": 74946, "considers possibility": 18225, "detection finetuning": 24303, "finetuning peftlora": 35178, "peftlora based": 70712, "tasks analysing": 94368, "analysing text": 5414, "detection manipulation": 24318, "extracting named": 33270, "entities sentiments": 29551, "sentiments obtained": 86619, "obtained results": 67676, "reveal complex": 84139, "extracted sentiments": 33256, "sentiments named": 86615, "entities considered": 29533, "considered predictive": 18200, "predictive features": 73760, "performance pretraining": 71489, "bad behavior": 9287, "need diverse": 65935, "proposes zeroshot": 77283, "model corpus": 60717, "previous iteration": 74681, "experiments uncover": 32322, "facilitating broad": 33530, "llms absence": 55407, "spanning distinct": 89498, "extensive tests": 33134, "enable fast": 28546, "development safer": 24707, "evaluation guidelines": 30629, "paper raise": 69931, "models emphasize": 62300, "improve safety": 43798, "analysis automated": 5440, "family llama": 33852, "qlora efficient": 78169, "light capabilities": 53994, "popularity widely": 72708, "casual conversations": 12574, "programming despite": 75895, "entirely reliable": 29528, "novel blackbox": 67124, "automates generation": 8753, "similar sentences": 88109, "templates high": 95701, "rate surpassing": 79400, "models suboptimal": 64283, "llm robustness": 55249, "encourage exploration": 28785, "safety llm": 85041, "plugins large": 72457, "platforms framework": 72314, "novel challenges": 67126, "challenges providing": 13112, "integrating code": 46712, "risks misuse": 84527, "lead increased": 52808, "knowledge capability": 48460, "sophisticated llm": 89284, "news analysis": 66608, "robustness prompt": 84737, "popular parameterefficient": 72668, "plms based": 72409, "based experiments": 9525, "tuned specific": 99006, "robust adversarial": 84640, "robustness related": 84740, "health large": 41166, "concern potential": 17664, "misinformation online": 60179, "certain personality": 12770, "elusive difficulty": 28028, "performed various": 71770, "detection difficulty": 24289, "build taxonomy": 11612, "compared humanwritten": 16575, "popularity ability": 72694, "llama llms": 54774, "potential performance": 73220, "chatgpt catalyzed": 13594, "highly persuasive": 41703, "detection technique": 24367, "serve robust": 86774, "novel approaches": 67110, "machine learningbased": 57733, "detection explainable": 24300, "challenges model": 13072, "assess aigenerated": 7821, "adapting different": 3122, "random forest": 79104, "frameworks like": 36328, "technical accuracy": 95397, "agents supported": 4240, "provide robust": 77566, "security tasks": 86041, "organizations work": 68744, "work novel": 104186, "approach taskoriented": 7055, "catastrophic risks": 12595, "predeployment risk": 73636, "practices industries": 73564, "behaviors use": 10015, "deployment provide": 23616, "downstream users": 26757, "work applies": 103990, "llms previous": 56567, "safety language": 85036, "english work": 29114, "produce significantly": 75656, "safety chatgpt": 85016, "features adversarial": 33986, "nonexistent facts": 66899, "composed random": 17103, "hallucinations phenomenon": 40880, "automatic hallucination": 8790, "gpt4 ai": 39760, "unsafe content": 100253, "par surpassing": 70016, "previously limited": 74754, "poses risk": 72780, "robust multilingual": 84674, "report generation": 81977, "generation increasingly": 38206, "community emphasizing": 16311, "data sharing": 21621, "address pressing": 3465, "security analysts": 85999, "templatebased approaches": 95693, "generated reports": 37769, "reports accurately": 82006, "furthermore compare": 36584, "reports stateoftheart": 82015, "using tool": 101815, "models warning": 64528, "development downstream": 24633, "ensure ai": 29441, "llms easily": 55823, "models retain": 64097, "respond appropriately": 83099, "learning social": 53418, "social good": 88861, "networks dnns": 66183, "driving force": 26857, "samples perturbed": 85137, "errors result": 29840, "gained lot": 36832, "embedded bias": 28043, "researchers collaborate": 82841, "taxonomy covering": 95321, "auxiliary tool": 8992, "optimizing large": 68661, "finetuning note": 35158, "simply finetuning": 88289, "short addressing": 87270, "advocate research": 4036, "finetuning improving": 35092, "transferability adversarial": 98441, "specially crafted": 89650, "private model": 74927, "queries given": 78491, "local finetuning": 57197, "responses target": 83318, "generated similar": 37782, "generate attack": 37383, "absolute target": 1923, "respectively harnessing": 83072, "chatgpt fake": 13808, "spread fake": 90036, "milestone large": 60017, "exploration chatgpts": 32589, "chatgpts capacity": 14427, "extra information": 33214, "review data": 84254, "attention ai": 8283, "architecture vast": 7383, "vast parameters": 102689, "concerns challenges": 17679, "addressed paper": 3503, "ai quality": 4523, "data developing": 21153, "finetuned gpt": 34896, "perspective ai": 71942, "analysis llm": 5574, "generated adversarial": 37650, "landscape chatgpt": 49105, "multifaceted applications": 64906, "including traditional": 44502, "governments research": 39171, "research seeks": 82770, "understanding dynamic": 99719, "challenge societal": 12933, "techniques contextual": 95494, "11 dataset": 185, "metrics f1": 59920, "study analyzes": 91491, "tasks pose": 94944, "pose potential": 72745, "developed mitigate": 24513, "study reveal": 91815, "safety finetuning": 85030, "achieve substantial": 2599, "substantial reduction": 92106, "rapid progress": 79332, "significantly advancing": 87880, "efforts model": 27915, "behavior human": 9973, "methods increase": 59687, "effective alignment": 27260, "method explores": 59300, "introduce vulnerabilities": 47498, "model emotion": 60796, "accuracy degradation": 2237, "various practical": 102524, "targeting specific": 93911, "groups work": 40632, "policy documents": 72533, "models classifying": 62003, "far achieved": 33864, "progress work": 76016, "involvement manual": 47833, "openai pretrained": 68177, "congressional bills": 18076, "overall accuracies": 69275, "accuracies ranging": 2172, "complete reliance": 16872, "surprisingly high": 93001, "achieved 83": 2608, "automated coding": 8683, "achieve overall": 2558, "coax llms": 15105, "prompt automatic": 76237, "generates semantic": 37849, "existing algorithms": 31651, "security properties": 86031, "paper surveys": 69971, "research emerging": 82570, "emerging interdisciplinary": 28221, "interdisciplinary field": 47142, "survey provide": 93043, "additional attack": 3226, "specifically targeting": 89880, "systems offer": 93519, "potential defenses": 73068, "related topics": 81223, "report outlines": 81985, "creation novel": 20245, "exceptional accuracy": 31365, "hallucinations using": 40883, "tuning retrieval": 99092, "aims develop": 4793, "generate transferable": 37634, "questionanswering examples": 78738, "evaluate resulting": 30279, "collection opensource": 15903, "llms likely": 56332, "questionanswering scenarios": 78745, "generated small": 37783, "recently efforts": 80477, "models works": 64553, "information detection": 45434, "average including": 9162, "datasets considerable": 22186, "effect adding": 27233, "need developed": 65931, "llm fool": 55089, "safetycritical domains": 85063, "robustness paper": 84735, "proposes efficient": 77270, "prompt composed": 76256, "complete task": 16876, "findings include": 34682, "online posts": 67999, "posts using": 72967, "digital age": 25353, "considerable research": 18169, "speech generate": 89946, "gpt35 propose": 39657, "prompt work": 76452, "text overall": 96347, "prompts perform": 76792, "gpt35 outperform": 39650, "outperform humangenerated": 68943, "detailed ablation": 24149, "studies investigate": 91405, "harms biases": 41059, "prompts condition": 76671, "low attack": 57502, "safety research": 85051, "deeply rooted": 22822, "models vicuna7b": 64509, "emerging risk": 28233, "prompts respectively": 76814, "respectively second": 83091, "consistently achieved": 18282, "difficult achieve": 25280, "ratings work": 79426, "written chatgpt": 104510, "languages different": 51259, "different time": 25229, "time periods": 97003, "evolves time": 31045, "stance generated": 90151, "rely highquality": 81577, "leading models": 52869, "models struggling": 64273, "generalize effectively": 37295, "using selfsupervised": 101752, "design incorporates": 23794, "contexts including": 18907, "detection furthermore": 24305, "furthermore emphasize": 36604, "missing labels": 60204, "security applications": 86000, "proposed mitigate": 77237, "researchers focused": 82861, "focused generating": 35584, "compare effectiveness": 16454, "attack generates": 8165, "generates natural": 37840, "adversarial text": 4002, "points use": 72513, "computational savings": 17483, "whitebox blackbox": 103632, "identifying common": 42917, "text attacks": 96087, "efficient robust": 27816, "utilized create": 101964, "automated detection": 8689, "early detection": 26972, "model transferable": 61535, "llms google": 56071, "research aimed": 82483, "new defense": 66376, "subsequent works": 92019, "false sense": 33817, "sense security": 86441, "evaluations additionally": 30833, "prevent misuse": 74647, "feedback remains": 34132, "finetuning public": 35210, "lora efficient": 57442, "specifically finetuning": 89821, "performance validate": 71660, "present selection": 74052, "models considerable": 62093, "including ability": 44265, "new environments": 66387, "evaluating risks": 30485, "risk assessments": 84491, "models meta": 63608, "demonstrate possible": 23147, "developers address": 24544, "llms representing": 56706, "project aims": 76043, "llms processing": 56578, "strengths potential": 90961, "comparative understanding": 16442, "annotations despite": 5925, "understanding interpretation": 99781, "implicit meanings": 43419, "biases research": 10952, "contributes broader": 19137, "broader discourse": 11515, "ai handling": 4424, "attack surface": 8187, "generation engine": 38137, "artificial intelligencegenerated": 7676, "intelligencegenerated content": 46912, "paper designs": 69675, "real network": 79548, "accuracy diversity": 2243, "features using": 34038, "minimal changes": 60082, "changes existing": 13288, "evaluate usefulness": 30298, "changes introduce": 13292, "sources online": 89419, "effective paper": 27342, "method termed": 59447, "like falcon": 54120, "harmless responses": 41051, "vulnerable jailbreak": 103283, "manually crafting": 58295, "claude vicuna": 14861, "models highlights": 62666, "threat integrity": 96877, "necessitating comprehensive": 65889, "generic object": 38752, "extract dataset": 33226, "content produced": 18672, "analysis design": 5485, "considerations including": 18187, "balanced accuracy": 9310, "large visual": 52386, "taken spotlight": 93807, "spotlight natural": 90028, "processing integrating": 75488, "vision enables": 102968, "explore emergent": 32675, "vlms llava": 103188, "llava flamingo": 54907, "flamingo gpt4": 35382, "various visiolinguistic": 102624, "visiolinguistic tasks": 102954, "consequently enormous": 18121, "enormous applications": 29393, "potentially used": 73353, "lack related": 49040, "ability vlms": 1797, "correction tasks": 19709, "experiments effectiveness": 32179, "model discuss": 60771, "generalized nested": 37308, "prompts help": 76738, "help better": 41235, "weaknesses llms": 103460, "whitebox models": 103635, "generalization efficiency": 37257, "seen rapid": 86089, "responses does": 83203, "use annotations": 100469, "content warning": 18706, "examples exhibit": 31213, "distribution consequently": 25934, "easy detect": 27031, "detect using": 24228, "effectiveness transferability": 27586, "model blackbox": 60614, "llms continue": 55680, "pivotal factor": 72201, "contributing success": 19163, "attacks propose": 8233, "integrate goal": 46660, "diminishes attack": 25398, "relationship llms": 81278, "safety code": 85018, "context required": 18840, "realworld context": 79658, "text benchmark": 96098, "models roberta": 64125, "prompts gpt4v": 76733, "indicates potential": 45035, "based acquired": 9429, "tool aim": 97262, "prompts furthermore": 76723, "modifying prompts": 64643, "like search": 54220, "driving ai": 26854, "outcomes underscore": 68854, "result analysis": 83388, "undergone instruction": 99464, "addressing various": 3558, "scenarios include": 85441, "scenarios compared": 85406, "datasets specific": 22421, "limited expertise": 54419, "gpt4 available": 39778, "jailbreaking large": 48104, "reasoning different": 79861, "need knowledge": 65967, "reveal various": 84182, "detection evaluation": 24297, "labeled datasets": 48909, "chapter provide": 13312, "provide review": 77563, "addition general": 3188, "apply evaluate": 6657, "train set": 97773, "recall low": 80112, "feature customization": 33962, "cater specific": 12639, "adversary extract": 4012, "analysis prompt": 5618, "underscore urgent": 99553, "gpt4 opened": 39991, "results programming": 83780, "llms original": 56476, "texts provide": 96591, "workflow using": 104316, "researchers looking": 82874, "looking incorporate": 57425, "provided detailed": 77612, "hundreds times": 42692, "overall llms": 69302, "coding projects": 15713, "projects generating": 76069, "leading loss": 52866, "capacity language": 12295, "models illustrate": 62698, "baselines human": 9835, "margin model": 58364, "tasks enabling": 94583, "models grasp": 62630, "achieving exceptional": 2846, "precision detection": 73607, "remarkably low": 81845, "maintaining models": 57897, "capabilities transfer": 12106, "writing reasoning": 104488, "improve previous": 43777, "code vulnerabilities": 15565, "study transferability": 91868, "whitebox attacks": 103631, "smaller code": 88744, "furthermore make": 36637, "explicit instructions": 32531, "promise improving": 76123, "models log": 63549, "area benefit": 7419, "security specifically": 86039, "used perform": 100867, "analysis effectively": 5494, "finetuning particularly": 35173, "bestperforming finetuned": 10665, "sequence classification": 86645, "stateoftheart average": 90312, "average f1score": 9155, "safe use": 84994, "research systematically": 82797, "paper comprehensively": 69635, "align realworld": 5008, "results chatgpts": 83497, "prompts including": 76750, "including tasks": 44491, "responses prompting": 83282, "additionally discover": 3293, "systems users": 93593, "approach linking": 6937, "changes proposed": 13299, "measuring impact": 58774, "responses written": 83334, "outperforms set": 69111, "set furthermore": 86880, "serve middleware": 86771, "better inform": 10733, "numerous opportunities": 67437, "attack surfaces": 8188, "focus communication": 35509, "queries end": 78484, "powered llms": 73417, "identified vulnerabilities": 42831, "result users": 83415, "moderation policies": 64588, "privacy risk": 74910, "utility preservation": 101899, "based properties": 9678, "properties develop": 76896, "gpt4 obtain": 39987, "produced gpt4": 75677, "obtained gpt4": 67671, "reliable approach": 81516, "applied lowresource": 6622, "predefined templates": 73634, "victim model": 102856, "model utilize": 61566, "method specifically": 59434, "gpt4 reformulate": 40045, "manual templates": 58281, "templates generate": 95699, "directly employ": 25490, "finally conducted": 34516, "methods direct": 59602, "characterizing large": 13348, "despite little": 24082, "informative features": 45682, "provide practical": 77542, "closed form": 14985, "extracted pretrained": 33255, "domain prompt": 26433, "results answer": 83464, "access target": 2087, "large search": 52339, "pruning reduces": 77857, "gpt4 gpt4turbo": 39919, "benchmark developed": 10142, "llms employed": 55848, "generate insecure": 37502, "insecure code": 46028, "code level": 15380, "study tendency": 91863, "considerations development": 18183, "broad scope": 11496, "researchers tool": 82890, "properties llms": 76903, "contributing development": 19158, "development secure": 24709, "secure ai": 85985, "performance preservation": 71481, "potential generation": 73107, "race gender": 79004, "explores limitations": 32810, "methods introduces": 59694, "comparable levels": 16380, "methods preserving": 59755, "preserving generation": 74193, "cases model": 12544, "model incorporates": 61000, "prompt classification": 76247, "prompt response": 76406, "volume demonstrates": 103214, "performance matches": 71391, "scores furthermore": 85760, "allows customization": 5191, "align specific": 5012, "facilitating zeroshot": 33549, "prompting diverse": 76518, "input making": 45920, "inherently subjective": 45752, "lived experiences": 54696, "years seen": 104613, "seen substantial": 86095, "efforts build": 27898, "built data": 11659, "task determining": 94016, "study based": 91507, "crosscultural differences": 20401, "role shaping": 84803, "insights crucial": 46068, "pluralistic world": 72461, "world values": 104420, "evaluating security": 30487, "gpt llama2": 39208, "increasingly adopted": 44865, "llms subject": 56877, "needed evaluate": 66012, "evaluate security": 30283, "neuron level": 66307, "framework opensource": 36218, "analysis rlhf": 5658, "overfitting model": 69380, "competition 2023": 16778, "designed adversarial": 23874, "ml systems": 60373, "website available": 103512, "inquiries chatgpt": 46020, "making significant": 58138, "peoples lives": 70754, "chatgpt cause": 13596, "lead chatgpt": 52797, "designed study": 23952, "testing approach": 95994, "different formats": 25068, "chatgpt malicious": 14004, "chatgpt responds": 14179, "varying effects": 102650, "effects paper": 27618, "capable assigning": 12224, "techniques machine": 95556, "methods context": 59579, "techniques implementation": 95530, "models attacks": 61867, "model applications": 60552, "research works": 82828, "providing indepth": 77758, "mitigation techniques": 60315, "findings research": 34730, "understanding llm": 99802, "contributing robust": 19161, "evolving domain": 31051, "proliferation fake": 76076, "efforts detect": 27900, "inherent bias": 45718, "chatgpt augmented": 13551, "highlight llms": 41596, "serve preliminary": 86772, "mitigate inherent": 60266, "resolving conflicts": 82945, "annotations evaluated": 5931, "tests average": 96036, "recall f1score": 80111, "annotators chatgpt": 5964, "faced challenges": 33458, "holds promise": 41910, "exploring chatgpt": 32840, "inclusive environment": 44526, "prevalence negative": 74633, "software engineeringspecific": 89013, "challenges training": 13136, "training effective": 98083, "explore zeroshot": 32765, "finetuned specifically": 34971, "specifically task": 89881, "developer communication": 24539, "application security": 6388, "varying capabilities": 102643, "quantitative approach": 78402, "media study": 58851, "methodology identifying": 59492, "computing pairwise": 17568, "pairwise distances": 69532, "identifies types": 42839, "dataset able": 21810, "able uncover": 1890, "distinct focus": 25867, "effective detecting": 27286, "aigenerated ones": 4672, "method offers": 59372, "robust tool": 84690, "tool identifying": 97297, "research represents": 82762, "llms attracting": 55498, "users developers": 101094, "llms variety": 57018, "malicious ones": 58157, "generating taskspecific": 37986, "generate taskspecific": 37618, "taskspecific dataset": 95281, "noninstructiontuned model": 66913, "prompt dataset": 76269, "task standard": 94253, "standard llms": 90190, "use exploit": 100549, "rag techniques": 79051, "approach supervised": 7047, "using rag": 101719, "rag llms": 79043, "mitigating misinformation": 60304, "context provided": 18832, "struggle assess": 91210, "method resolve": 59414, "framework categorize": 36061, "missing context": 60200, "valuable component": 102146, "component future": 17075, "quality detection": 78252, "evaluate gpt35": 30194, "overall increase": 69299, "substantial agreement": 92057, "best gpt4": 10598, "causal mechanism": 12661, "rising concerns": 84486, "analysis techniques": 5700, "tools developed": 97386, "online community": 67978, "classify individual": 14840, "gpt bard": 39185, "dataset does": 21915, "mechanism generate": 58799, "factual incorrectness": 33637, "investigate usefulness": 47711, "experiments train": 32318, "gap pretraining": 36963, "settings despite": 87048, "encompasses types": 28759, "attacks poisoning": 8231, "demonstration prompts": 23463, "preserving models": 74195, "daily interactions": 20901, "interaction ai": 46994, "process essential": 75305, "llms compromising": 55661, "vicuna chatglm": 102860, "maintain general": 57873, "gpt35 terms": 39673, "facilitate reproducibility": 33504, "media online": 58841, "pervasive issue": 71998, "issue human": 47935, "demonstrating utility": 23456, "handcrafted features": 40906, "interpretable detection": 47286, "approach evaluate": 6844, "introduces distinct": 47516, "offers unique": 67864, "enabling comprehensive": 28627, "dataset serves": 22069, "crucial benchmark": 20476, "study establishes": 91603, "research enabling": 82576, "comparative analyses": 16417, "work lays": 104163, "wider array": 103766, "realm prompt": 79617, "revolutionizing field": 84358, "field ask": 34349, "prompts addressing": 76649, "rate exceeding": 79382, "interactive environments": 47097, "imperative need": 43303, "llms judging": 56258, "agent interaction": 4136, "descriptions evaluation": 23703, "vulnerable jailbreaking": 103284, "coax models": 15106, "reveal prominent": 84170, "underline potential": 99481, "finding needle": 34630, "input changes": 45879, "input sample": 45947, "model generator": 60940, "learned policy": 52989, "policy using": 72554, "tasks automatic": 94391, "exhibits generalizability": 31611, "modeling reinforcement": 61673, "attacks involve": 8215, "api access": 6264, "inherent reasoning": 45742, "query prompt": 78540, "effective future": 27303, "crucial rapidly": 20517, "alpaca alpacalora": 5225, "source intelligence": 89377, "tasks binary": 94411, "commercial model": 16085, "score 094": 85691, "gpt4all model": 40165, "chatbots limitations": 13451, "researchers improve": 82864, "improve chatbots": 43671, "reduce required": 80803, "algorithm create": 4908, "additionally performed": 3332, "implemented finetuning": 43347, "despite advances": 24024, "alignment language": 5084, "outputs results": 69253, "attack gpt4": 8166, "context extrapolation": 18768, "applications data": 6441, "despite advantages": 24025, "models ignore": 62697, "instructions produce": 46546, "especially early": 29874, "llms anticipate": 55477, "questions quality": 78923, "emerging technologies": 28235, "develop taxonomy": 24485, "taxonomy consisting": 95319, "models mistral7b": 63620, "models gaps": 62532, "comparison finetuned": 16711, "similar tools": 88118, "called prompt": 11776, "llm interfaces": 55137, "alignment technique": 5118, "technique mitigate": 95454, "alignment phase": 5103, "phase results": 72013, "results open": 83751, "largescale ai": 52483, "models organizations": 63731, "security current": 86007, "potential aibased": 72994, "explores concept": 32799, "concerns misinformation": 17689, "explore task": 32747, "need expensive": 65943, "expensive training": 31929, "annotations provided": 5947, "dataset achieving": 21814, "models todays": 64368, "shaping public": 87179, "text news": 96342, "preserving core": 74191, "semantics using": 86397, "sentiment score": 86607, "minimal modifications": 60097, "grammatical correctness": 40334, "objective news": 67504, "tasks relying": 95032, "retraining finetuning": 83951, "finetuning paper": 35165, "delves critical": 22958, "discrete text": 25631, "states llms": 90520, "comprehensive tests": 17309, "integrity reliability": 46788, "detection critical": 24283, "traditional applications": 97654, "involved building": 47828, "underlining importance": 99484, "models discovery": 62238, "strategy generate": 90886, "different roles": 25184, "user llms": 101008, "different independent": 25076, "using clustering": 101364, "graph generate": 40383, "contributing valuable": 19165, "insights development": 46077, "safer reliable": 85002, "roleplaying scenarios": 84815, "evaluating different": 30412, "serve benchmark": 86757, "despite explicit": 24049, "task look": 94133, "like prompt": 54209, "study details": 91573, "details approach": 24194, "speech target": 89969, "enhanced retrieval": 29250, "determine llms": 24411, "result llms": 83396, "llms function": 56013, "agents work": 4249, "work llm": 104168, "schema extraction": 85516, "does need": 26314, "need know": 65966, "findings raise": 34725, "multicriteria decision": 64887, "decision analysis": 22578, "automated decision": 8686, "multiplecriteria decision": 65296, "decisionmaking models": 22598, "aidriven agents": 4646, "complex decisionmaking": 16926, "decisionmaking scenarios": 22608, "cybersecurity applications": 20886, "vision medical": 102990, "medical diagnostics": 58878, "papers books": 69996, "domain questions": 26435, "achieve carefully": 2488, "outperformed humans": 68981, "mistral mixtral": 60221, "sql generation": 90060, "work preliminary": 104206, "methods integration": 59691, "gap investigate": 36943, "attack vector": 8193, "llms rag": 56621, "rag process": 79047, "achieving higher": 2856, "war ukraine": 103312, "knowledge cutoff": 48492, "humans existing": 42595, "existing automated": 31663, "commonly executed": 16190, "involves injecting": 47847, "images sharing": 43113, "diverse attributes": 25987, "study controllable": 91558, "control llm": 19216, "connection problem": 18099, "processing based": 75462, "search adversarial": 85850, "control requirements": 19223, "diverse new": 26060, "standard setting": 90206, "attacks allow": 8203, "broad applicability": 11482, "popularity recent": 72705, "gpt35turbo 48": 39695, "strong simple": 91073, "development better": 24617, "method existing": 59297, "existing generative": 31719, "aibased chatbot": 4626, "allow models": 5164, "benchmark measuring": 10211, "benchmarks include": 10358, "make problem": 58021, "quality overall": 78329, "prompts called": 76660, "cryptographic techniques": 20556, "present pilot": 74034, "issues large": 47997, "tool learning": 97298, "tools augment": 97360, "scenarios llms": 85457, "feedback error": 34075, "stage experiments": 90114, "11 opensource": 194, "conduct studies": 17917, "aim fostering": 4713, "research tool": 82805, "safety data": 85022, "reasoning deception": 79856, "participants simulate": 70374, "scenarios hand": 85438, "hand difficult": 40896, "collection pipeline": 15904, "gpt4 simulate": 40088, "simulate roleplay": 88309, "strategy reduces": 90913, "reduces data": 80830, "evaluate complex": 30159, "textual models": 96685, "paper want": 69990, "end extract": 28825, "13 different": 260, "different features": 25065, "finetuning corpora": 35037, "additional results": 3260, "provide diverse": 77455, "rate features": 79384, "influence model": 45356, "fast effective": 33895, "training robust": 98271, "safety critical": 85021, "multiple techniques": 65269, "known techniques": 48860, "art form": 7520, "llms recognizing": 56671, "observation develop": 67554, "learning training": 53458, "faster convergence": 33903, "dilemma propose": 25379, "model aligns": 60537, "rate diverse": 79381, "backbone lms": 9249, "roberta llama2": 84606, "whitebox setting": 103636, "remain effective": 81616, "effective models": 27333, "nearly 100": 65851, "models persists": 63806, "vicuna llama": 102863, "reveal existing": 84146, "detecting unsafe": 24252, "llms strategies": 56863, "strategies require": 90845, "collection training": 15911, "parameters contrast": 70193, "language findings": 49221, "achieving 70": 2816, "display biases": 25767, "specific subset": 89755, "accessible models": 2112, "powerful zeroshot": 73477, "provide high": 77490, "assessment scores": 7976, "simple concatenation": 88176, "llms applied": 55483, "adversarial vulnerabilities": 4006, "sizes families": 88552, "raise significant": 79059, "concerns reliability": 17707, "scientific domain": 85639, "domain challenging": 26359, "verification challenge": 102741, "required generate": 82313, "new labeled": 66434, "includes humanwritten": 44250, "making comprehensive": 58091, "trend using": 98850, "integrated automated": 46676, "scientific findings": 85645, "engineering strategies": 29021, "prompts varying": 76848, "experiments additionally": 32100, "explore transferability": 32751, "underscores significant": 99578, "messages mitigating": 59127, "fostering advancements": 35904, "data comes": 21080, "tailored use": 93790, "examples finetuning": 31219, "incorporating safety": 44717, "examples making": 31253, "examples integrating": 31237, "practical setting": 73531, "harming performance": 41049, "spam email": 89476, "challenge users": 12940, "underexplored gap": 99442, "study attempts": 91503, "instruction demonstrations": 46320, "networks dnn": 66182, "classifiers extensive": 14832, "dataset presents": 22032, "dataset outperforming": 22024, "outperforming bert": 68992, "privacy attacks": 74887, "jailbreak aligned": 48092, "compared gradientbased": 16559, "nvidia rtx": 67457, "48gb gpu": 984, "attack causes": 8162, "incorrect outputs": 44736, "relevant original": 81469, "inference attacks": 45215, "prompts key": 76760, "strategies employed": 90805, "prompt sent": 76412, "policies based": 72529, "insight design": 46043, "unfortunately recent": 99990, "output response": 69186, "primary llm": 74807, "key contribution": 48285, "llama closedsource": 54733, "attack operates": 8177, "adversary access": 4011, "prompts manually": 76778, "attack types": 8192, "underlying mechanics": 99511, "able translate": 1889, "text makes": 96331, "understand analyze": 99595, "models conducted": 62087, "rate existing": 79383, "approach generalized": 6869, "semantic diversity": 86307, "pretraining focus": 74538, "mechanisms successful": 58818, "safety mechanism": 85044, "hypothesis propose": 42738, "using personalized": 101677, "makes powerful": 58071, "maintain original": 57875, "prior sota": 74858, "gpt4 merely": 39971, "new web": 66579, "fast development": 33891, "works blackbox": 104350, "form content": 35770, "chatgpt web": 14353, "different opensource": 25133, "agents results": 4229, "blackbox scenarios": 11150, "strong robustness": 91071, "robustness maintaining": 84730, "gpt4 identify": 39933, "articles use": 7575, "mislead users": 60186, "challenges development": 12996, "labeled text": 48915, "gpt4 finegrained": 39890, "showed gpt4s": 87393, "finegrained task": 34805, "text compared": 96134, "llm analysis": 54959, "conducted evaluation": 17954, "superior detection": 92637, "enables identification": 28592, "reconstruction attack": 80687, "model reconstruct": 61322, "rate llm": 79391, "role prompt": 84800, "7b instruct": 1288, "cases new": 12546, "potential increasing": 73141, "concerns security": 17711, "systematically analyze": 93359, "security llm": 86021, "alignment information": 5081, "llm llm": 55164, "approach apply": 6741, "chat history": 13376, "opensource initiatives": 68340, "cuttingedge technologies": 20876, "risks including": 84515, "paper suggests": 69965, "bertbase robertalarge": 10568, "datasets sst2": 22423, "multiple advanced": 65132, "advanced baselines": 3681, "leading average": 52841, "techniques reinforcement": 95579, "properties observed": 76906, "loss landscape": 57465, "landscape including": 49107, "detection strategy": 24361, "strategy experimental": 90884, "strategic reasoning": 90784, "level gpt4": 53658, "finetuning embedding": 35054, "underscoring efficacy": 99582, "methodology leveraging": 59496, "convert raw": 19445, "llms central": 55566, "progress wide": 76015, "effective constructing": 27275, "limits practicality": 54506, "comprehensive studies": 17299, "smaller draft": 88747, "draft models": 26773, "prompt candidates": 76241, "model similar": 61406, "draft model": 26772, "hindered challenges": 41830, "obstacles development": 67637, "processes considering": 75430, "limitations need": 54353, "oversight ensuring": 69423, "relevance generated": 81431, "offer compelling": 67736, "compelling alternative": 16753, "weakly annotated": 103445, "labelled training": 48933, "furthermore data": 36595, "bart large": 9386, "engineering widespread": 29035, "challenging detect": 13166, "encounters challenges": 28780, "challenges firstly": 13022, "firstly existing": 35322, "texts containing": 96553, "insights community": 46065, "limitations generating": 54324, "constraints present": 18405, "evaluate data": 30162, "annotation utilize": 5918, "languages make": 51320, "dataset public": 22045, "severe consequences": 87129, "covering 17": 20071, "primary types": 74814, "types direct": 99230, "evaluate 30": 30128, "increases success": 44815, "applications past": 6541, "numerous companies": 67421, "genai capabilities": 37079, "new existing": 66402, "agents powered": 4220, "associated genai": 8083, "inference prompt": 45286, "ecosystem demonstrate": 27067, "demonstrate application": 23015, "tested different": 95975, "models gemini": 62534, "detection problem": 24344, "implicitly expressed": 43428, "detection perform": 24338, "teach llm": 95333, "rlhf process": 84572, "models filter": 62466, "llms uncover": 56978, "agent compared": 4122, "use iterative": 100586, "optimization process": 68613, "minimal overlap": 60099, "directly model": 25509, "data aiming": 20960, "explore code": 32659, "prime example": 74816, "conspiracy theories": 18355, "account important": 2161, "sentiment emotions": 86603, "llm integrates": 55135, "tasks support": 95163, "support llm": 92816, "largely outperforms": 52411, "brought remarkable": 11533, "inputs code": 45987, "code inputs": 15360, "claude2 llama2": 14863, "code input": 15359, "time furthermore": 96967, "distribution gap": 25940, "popular programming": 72674, "languages findings": 51278, "highlight new": 41601, "code domain": 15235, "llms review": 56731, "ai increasingly": 4436, "popular especially": 72629, "applications prompt": 6548, "provides various": 77726, "robust ethical": 84652, "address current": 3386, "current issues": 20696, "encourage impartial": 28790, "future application": 36696, "importance interdisciplinary": 43463, "interdisciplinary approaches": 47140, "realm social": 79618, "leverages generative": 53788, "better predictions": 10766, "predictions results": 73750, "reveal finetuned": 84147, "provides significant": 77702, "understand intents": 99617, "intents reactions": 46968, "final phase": 34490, "improvement points": 43932, "metrics extensive": 59919, "generating superior": 37981, "media large": 58837, "effective correcting": 27278, "difficult scale": 25308, "technologies like": 95631, "tendency produce": 95746, "produce plausible": 75651, "plausible false": 72325, "references results": 80958, "models related": 64040, "content sophisticated": 18691, "differences datasets": 24976, "datasets labeled": 22309, "samples drawn": 85110, "drawn diverse": 26819, "existing sources": 31819, "generated gpt35turbo": 37711, "differences various": 24988, "standard implementation": 90179, "framework available": 36047, "security evaluations": 86011, "enables researchers": 28611, "existing components": 31686, "llms reveals": 56730, "notably advanced": 67025, "chain attacks": 12797, "manual review": 58278, "benefit advanced": 10441, "goal study": 39073, "study assist": 91500, "npm packages": 67310, "demonstrates notable": 23386, "analysis precision": 5611, "scores 15": 85746, "representational harms": 82082, "impact marginalized": 43230, "marginalized populations": 58372, "safe reinforcement": 84986, "feedback multiple": 34111, "furthermore previous": 36647, "tradeoff helpfulness": 97637, "mitigated biases": 60287, "create set": 20175, "new taxonomy": 66551, "llms raise": 56622, "media paper": 58843, "realistic synthetic": 79574, "realistic second": 79569, "training classifiers": 97958, "strategy additionally": 90860, "common problems": 16163, "reports studies": 82016, "impact online": 43241, "investigates capability": 47733, "models classify": 62002, "messages study": 59129, "available apis": 9012, "able collect": 1832, "plms downstream": 72412, "using fixed": 101452, "mislead model": 60185, "model raising": 61308, "adversarial vulnerability": 4007, "paradigm recent": 70051, "based twitter": 9744, "potential problems": 73228, "prediction methods": 73703, "including manual": 44417, "data approximately": 20990, "results baseline": 83474, "implying potential": 43437, "potential assisting": 73023, "mainly explores": 57848, "analyzing key": 5815, "gender religion": 37096, "sexual orientation": 87143, "different demographic": 25043, "younger individuals": 104687, "powered gpt3": 73407, "tailored specifically": 93787, "agent developed": 4126, "formats providing": 35837, "users furthermore": 101114, "davinci gpt3": 22483, "additionally research": 3346, "task graph": 94087, "graph language": 40389, "graphbased approach": 40417, "using news": 101642, "news datasets": 66620, "methodology leverages": 59495, "key ways": 48356, "features make": 34012, "superiority approach": 92675, "news data": 66618, "generation training procedure": 38480, "unexplored bridge gap": 99964, "bert gpt2 xlnet": 10525, "neural toxic degeneration": 66292, "models lms prone": 63535, "preventing toxic degeneration": 74652, "provides test bed": 77711, "test bed evaluating": 95868, "models paper describes": 63752, "average f1 scores": 9154, "method improves performance": 59329, "training set augmentation": 98284, "increase f1 score": 44761, "extends earlier work": 32974, "weighted f1 score": 103534, "different pretrained language": 25151, "various training strategies": 102615, "text descriptions using": 96171, "models used identify": 64466, "diverse adversarial examples": 25981, "language key challenge": 49299, "bert bidirectional encoder": 10504, "based neural network": 9633, "models increasingly rely": 62760, "training corpus model": 97980, "adversarial examples paper": 3976, "use pretrained language": 100657, "training fewshot training": 98115, "task use pretrained": 94285, "best model outperforms": 10613, "pretrained transformer gpt3": 74473, "stateoftheart natural language": 90418, "generated text detection": 37799, "text detection methods": 96176, "guidance future work": 40720, "social media contents": 88880, "new pretrained language": 66490, "large scale language": 52337, "aim explore potential": 4710, "propose framework evaluating": 76983, "high success rate": 41467, "emphasizes need study": 28296, "tool evaluating performance": 97288, "agents like chatgpt": 4204, "increasingly trained massive": 44910, "propose novel learningbased": 77070, "using highquality dataset": 101507, "prompttuning large language": 76857, "tuned using small": 99009, "potential limitations chatgpt": 73170, "challenging problem work": 13213, "increasing concern ability": 44825, "transformers bert generative": 98602, "bert generative pretrained": 10515, "raw data using": 79449, "finetuned transformerbased models": 34988, "excitement potential applications": 31406, "provide brief overview": 77416, "input language model": 45911, "detection social media": 24357, "conventional machine learning": 19281, "like chatgpt gpt35": 54079, "captions using chatgpt": 12340, "preferences particularly context": 73827, "using social media": 101779, "llms achieve high": 55418, "critical information needs": 20333, "capabilities limitations llms": 11981, "safe trustworthy ai": 84993, "considered gold standard": 18195, "providing ground truth": 77754, "llm able correctly": 54930, "paper seek understand": 69945, "significantly reduce cost": 88013, "data annotation tasks": 20980, "chatgpt gpt4 growing": 13901, "15 llms including": 328, "ai models potential": 4476, "results chatgpt achieve": 83491, "performance based insights": 71008, "study provides guidance": 91798, "language models important": 49970, "alignment paper propose": 5102, "security vulnerabilities chatgpt": 86046, "processing nlp large": 75526, "tasks like classification": 94818, "generative models gpt4": 38659, "conduct comprehensive investigation": 17849, "novel approach implementing": 67101, "demonstrate effectiveness efficiency": 23058, "extensive evaluation various": 33032, "performs poorly context": 71817, "humanlike responses understand": 42539, "models llms resulted": 63407, "explore llms ability": 32704, "highlighting need research": 41634, "explore potential solutions": 32728, "readily available paper": 79514, "shown great promise": 87467, "systems bridge gap": 93404, "bridge gap study": 11427, "chatgpt prompt engineering": 14117, "different prompt types": 25165, "chatgpt versions 35": 14349, "challenge current approaches": 12868, "lays groundwork future": 52782, "emergence powerful large": 28184, "introduce new security": 47461, "models results demonstrate": 64093, "models opt bloom": 63718, "focusing specifically chatgpt": 35637, "chatgpt googles bard": 13881, "googles bard large": 39150, "comparative analysis performance": 16428, "perform wide range": 70943, "make use llms": 58039, "handcrafted linguistic features": 40908, "llms generate explanations": 56051, "remain poorly understood": 81627, "study underscores need": 91874, "harms large language": 41063, "language models researchers": 50757, "text variety domains": 96478, "generate harmful content": 37473, "use cases demonstrate": 100490, "machine learning task": 57727, "propose using chatgpt": 77159, "high accuracy identifying": 41373, "performance conducted experiments": 71108, "dataset compared baseline": 21865, "experimental results using": 32071, "highlight potential llms": 41605, "attack large language": 8169, "diverse range models": 26082, "experiments results demonstrate": 32288, "sheds light potential": 87236, "potential security risks": 73258, "bert roberta models": 10555, "neural networks used": 66279, "advanced artificial intelligence": 3678, "application advanced ai": 6335, "stateoftheart machine learning": 90389, "higher accuracy stateoftheart": 41485, "learning using carefully": 53468, "using carefully designed": 101326, "llms chatgpt developed": 55587, "overlooked previous works": 69408, "million users days": 60044, "future directions address": 36714, "directions address challenges": 25457, "language models scratch": 50787, "making code data": 58088, "leak private information": 52915, "models llms nlp": 63317, "llms nlp tasks": 56432, "research directions llms": 82560, "secure code generation": 85988, "lack interpretability making": 49025, "conventional supervised learning": 19297, "supervised learning methods": 92719, "challenges accurately identifying": 12952, "method improve performance": 59326, "improve performance interpretability": 43750, "experimental findings demonstrate": 32001, "language model created": 49368, "wide variety potential": 103706, "information unstructured text": 45663, "open benchmark dataset": 68046, "issue paper introduce": 47944, "success rate compared": 92236, "interfaces chatgpt bard": 47186, "chatgpt bard claude": 13560, "token length ranging": 97140, "text classification generation": 96111, "general language models": 37147, "misuse large language": 60240, "align llms human": 5002, "harmful content llms": 41031, "posing new challenges": 72792, "attack success rates": 8185, "prompt learning large": 76361, "trained vast corpora": 97933, "investigate use llms": 47709, "model architectures datasets": 60564, "tasks prompt learning": 94976, "performance best baseline": 71020, "pretraining supervised finetuning": 74607, "bypass safety alignment": 11713, "llms mainly conducted": 56372, "highquality text generation": 41795, "does require finetuning": 26326, "versions large language": 102825, "significant improvements tasks": 87781, "tasks various domains": 95245, "enhancing user experience": 29378, "previous studies predominantly": 74716, "incontext learning framework": 44598, "categories zeroshot learning": 12621, "newly released large": 66602, "llms open new": 56451, "recently researchers shown": 80552, "possibilities using llms": 72869, "llms chatgpt generate": 55592, "redteaming large language": 80756, "models llms taken": 63471, "llms taken world": 56911, "taken world storm": 93812, "safety alignment llms": 85009, "accuracy precision recall": 2331, "model outperformed models": 61178, "achieving highest accuracy": 2858, "models trained vast": 64411, "raises concerns academic": 79076, "languages english russian": 51266, "analysis case study": 5448, "amidst rapid expansion": 5334, "average treatment effect": 9184, "models demonstrated strong": 62191, "llms low cost": 56365, "achieve results comparable": 2572, "warning paper contains": 103321, "harmful content generation": 41030, "content generation large": 18636, "model challenging dataset": 60642, "accuracy holdout test": 2282, "performance proposed approach": 71501, "indicate proposed method": 45018, "applications sentiment analysis": 6571, "review compare existing": 84252, "models emergent capabilities": 62298, "language models potentially": 50664, "gain deeper insight": 36809, "previous work demonstrated": 74729, "effectiveness systems paper": 27583, "adversarial prompting large": 3991, "vulnerable adversarial attacks": 103277, "semantic information extraction": 86315, "model paper considers": 61199, "paper considers possibility": 69655, "finetuning peftlora based": 35179, "peftlora based approach": 70713, "based approach used": 9437, "approach used study": 7072, "used study model": 100906, "study model finetuned": 91747, "finetuned following tasks": 34891, "following tasks analysing": 35701, "tasks analysing text": 94369, "extracting named entities": 33271, "named entities sentiments": 65468, "sentiments obtained results": 86620, "obtained results finetuned": 67677, "results finetuned llama": 83612, "llama model perform": 54780, "extracted sentiments named": 33257, "sentiments named entities": 86616, "named entities considered": 65465, "entities considered predictive": 29534, "considered predictive features": 18201, "predictive features supervised": 73761, "features supervised machine": 34027, "language model corpus": 49366, "chinese english llms": 14546, "llms zeroshot fewshot": 57060, "paper raise concerns": 69932, "text analysis study": 96080, "model family llama": 60869, "approach achieve competitive": 6707, "shed light capabilities": 87213, "commercial opensource llms": 16091, "chatgpt llama2 models": 13996, "systematic evaluation framework": 93328, "plugins large language": 72458, "potential risks misuse": 73252, "investigate potential llms": 47688, "small large language": 88690, "popular parameterefficient finetuning": 72669, "models plms based": 63820, "mental health large": 59088, "health large language": 41167, "certain personality traits": 12771, "remain elusive difficulty": 81618, "llms gpt3 gpt35": 56085, "gpt35 gpt4 gemini": 39612, "gpt4 gemini pro": 39897, "advancements multiple domains": 3844, "reliably detect llmgenerated": 81533, "llms machine learning": 56369, "quality metrics results": 78320, "approach taskoriented dialogue": 7056, "catastrophic risks ai": 12596, "ai models available": 4466, "models llms previous": 63360, "experimental results llms": 32051, "diverse data sources": 26006, "address pressing challenges": 3466, "language models warning": 50917, "models warning paper": 64529, "neural networks dnns": 66267, "challenges open research": 13083, "llms inference time": 56220, "fall short addressing": 33780, "advocate research efforts": 4037, "milestone large language": 60018, "improve performance experiments": 43748, "significant attention ai": 87683, "architecture vast parameters": 7384, "ai quality assurance": 4524, "provide comprehensive understanding": 77432, "detection conduct experiments": 24279, "evaluate models performance": 30233, "mitigate potential risks": 60275, "querying llms using": 78560, "performance compared previous": 71091, "specific user groups": 89773, "language models classifying": 49714, "achieved remarkable results": 2660, "use gpt 35": 100565, "models openai pretrained": 63704, "models vulnerable adversarial": 64527, "open closedsource llms": 68056, "emerging interdisciplinary field": 28222, "systematic review existing": 93348, "llm hallucinations using": 55117, "paper aims develop": 69602, "generate transferable adversarial": 37635, "paper proposes efficient": 69906, "adversarial examples different": 3974, "comprehensive empirical results": 17232, "different prompts based": 25171, "evaluation metrics measure": 30682, "detailed ablation studies": 24150, "ablation studies investigate": 1810, "low attack success": 57503, "paper present new": 69836, "llms raised concerns": 56624, "raised concerns potential": 79063, "extensive experiments observe": 33079, "significantly reduces computational": 88017, "whitebox blackbox settings": 103633, "future work needed": 36800, "evaluate performance llms": 30254, "performance llms generating": 71369, "false sense security": 33818, "closedsource large language": 15002, "lora efficient finetuning": 57443, "models sizes 7b": 64212, "capabilities including ability": 11941, "language models meta": 50571, "models llms representing": 63404, "pose significant challenge": 72748, "strengths potential limitations": 90962, "human annotations despite": 42084, "annotations despite gpts": 5926, "inherent limitations including": 45736, "research contributes broader": 82526, "artificial intelligencegenerated content": 7677, "generation furthermore explore": 38173, "minimal changes existing": 60083, "generative nlp models": 38679, "transformer models using": 98536, "success various applications": 92245, "closedsource llms like": 15008, "performance evaluation metrics": 71186, "large visual language": 52387, "llms taken spotlight": 56908, "taken spotlight natural": 93808, "spotlight natural language": 90029, "language processing integrating": 50984, "processing integrating llms": 75489, "integrating llms vision": 46733, "llms vision enables": 57035, "vision enables users": 102969, "enables users explore": 28620, "users explore emergent": 101107, "explore emergent abilities": 32676, "models vlms llava": 64522, "vlms llava flamingo": 103189, "gpt4 demonstrated impressive": 39825, "performance various visiolinguistic": 71700, "various visiolinguistic tasks": 102625, "visiolinguistic tasks consequently": 102955, "tasks consequently enormous": 94483, "consequently enormous applications": 18122, "enormous applications large": 29394, "applications large models": 6514, "large models potentially": 52267, "models potentially used": 63846, "lack related work": 49041, "tasks zeroshot prompting": 95273, "language models easily": 49804, "use annotations evaluate": 100470, "content warning paper": 18707, "generated adversarial examples": 37651, "transferability adversarial examples": 98442, "llms continue advance": 55681, "diminishes attack success": 25399, "hope work contribute": 41964, "work provides new": 104236, "provides new insights": 77687, "like search engines": 54221, "driving ai development": 26855, "different aspects including": 25003, "superior performance general": 92653, "larger models vulnerable": 52462, "undergone instruction tuning": 99465, "human annotations work": 42089, "wide range harmful": 103665, "detection using deep": 24377, "deep neural models": 22792, "llms bert roberta": 55531, "compare performance finetuned": 16481, "using gpt35 model": 101490, "gpt35 model achieves": 39644, "recall low precision": 80113, "used various applications": 100931, "cater specific needs": 12640, "findings underscore urgent": 34770, "underscore urgent need": 99554, "gpt4 opened new": 39992, "workflow using llms": 104317, "understanding generation large": 99751, "models llms propose": 63367, "significant margin model": 87793, "surpasses stateoftheart models": 92945, "tasks including writing": 94739, "using carefully crafted": 101324, "research systematically examine": 82798, "paper comprehensively evaluate": 69636, "closely align realworld": 15021, "align realworld scenarios": 5009, "openai gpt35 gpt4": 68162, "based properties develop": 9679, "characterizing large language": 13349, "automated method generating": 8714, "large search space": 52340, "models llms employed": 63118, "generate insecure code": 37503, "case study involving": 12485, "language model families": 49394, "suggest insecure code": 92370, "automated test case": 8743, "secure ai systems": 85986, "models gpt4 demonstrated": 62616, "demonstrated outstanding results": 23298, "methods proposed mitigate": 59765, "language models generation": 49917, "method evaluate effectiveness": 59292, "performance existing benchmarks": 71190, "performance matches exceeds": 71392, "recent years seen": 80438, "crucial role shaping": 20529, "llms gpt llama2": 56077, "project website available": 76052, "inspired previous research": 46180, "performance llms different": 71367, "social media realm": 88896, "techniques machine learning": 95557, "providing indepth analysis": 77759, "offering promising avenue": 67803, "pretrained massive datasets": 74384, "massive datasets finetuned": 58451, "datasets finetuned specifically": 22267, "finetuned specifically task": 34972, "specifically task detecting": 89882, "various prompts including": 102542, "computing pairwise distances": 17569, "approach using synthetic": 7082, "models llms attracting": 62991, "llms variety tasks": 57019, "generation rag techniques": 38383, "like gpt4 shown": 54163, "work introduces new": 104141, "content analysis social": 18592, "evaluate gpt35 gpt4": 30195, "language models detect": 49783, "indicate llms effectively": 45005, "generation capabilities large": 38059, "manual effort required": 58264, "paper propose llmbased": 69886, "llms automatically generate": 55506, "nlp tasks especially": 66781, "experimental results language": 32050, "models ranging size": 63963, "parameters demonstrate effectiveness": 70197, "social media online": 88889, "media online reviews": 58842, "offers unique perspective": 67865, "dataset specifically tailored": 22088, "traditional evaluation methods": 97665, "prompts study introduces": 76827, "realworld applications despite": 79639, "evaluate proficiency llms": 30265, "performance standard benchmarks": 71588, "improve models performance": 43737, "performance extensive experiments": 71202, "experiments diverse nlp": 32176, "modeling reinforcement learning": 61674, "reinforcement learning generate": 81151, "recognition ner tasks": 80611, "open source intelligence": 68116, "source intelligence osint": 89378, "f1 score 094": 33420, "model achieved f1": 60489, "llms increasingly popular": 56209, "alignment language models": 5085, "including gpt2 gpt3": 44358, "language models news": 50603, "emerging ai technologies": 28215, "biases generated text": 10924, "tasks specifically use": 95135, "specifically use llms": 89888, "concerns regarding difficulty": 17704, "conduct empirical analysis": 17855, "inspired findings propose": 46173, "new challenges opportunities": 66361, "paper explores concept": 69723, "language models todays": 50867, "prompt based method": 76239, "based method using": 9616, "method using chatgpt": 59460, "using chatgpt employ": 101343, "offering promising solution": 67804, "incontext learning domain": 44591, "paper delves critical": 69668, "hidden states llms": 41352, "preliminary evaluation using": 73863, "demonstrate models effectiveness": 23137, "language models discovery": 49793, "knowledge graph generate": 48596, "contributing valuable insights": 19166, "development safer reliable": 24708, "tasks despite significant": 94536, "training work study": 98354, "llms match surpass": 56380, "code submission available": 15522, "capabilities llm agents": 11984, "work llm agents": 104169, "widespread deployment llms": 103788, "automated decision support": 8687, "decision support systems": 22586, "benchmark dataset comprising": 10118, "dataset comprising 10000": 21871, "research papers books": 82702, "human machine intelligence": 42299, "findings revealed llms": 34744, "models llms proficient": 63363, "language processing based": 50970, "responses work introduce": 83333, "strong simple baseline": 91074, "llms long term": 56359, "openais chatgpt googles": 68191, "models llms ai": 62986, "llms ai chatbots": 55459, "discuss future research": 25661, "models tool learning": 64371, "tools augment llms": 97361, "llms tool learning": 56939, "tool learning specifically": 97299, "opensource closedsource llms": 68316, "data collection pipeline": 21075, "use gpt4 simulate": 100570, "dataset used evaluate": 22116, "evaluate complex reasoning": 30160, "information paper propose": 45567, "performance llms recognizing": 71375, "aligned language model": 5022, "capabilities generating content": 11920, "existing methods detecting": 31757, "data collection training": 21078, "models demonstrate potential": 62177, "indicate models currently": 45009, "smaller opensource llms": 88782, "human effort required": 42162, "possible use large": 72925, "dataset includes humanwritten": 21974, "growing trend using": 40668, "trend using llms": 98851, "prompt engineering strategies": 76315, "gpt4 llama27b llama213b": 39963, "remarkable performance tasks": 81794, "performance tasks question": 71618, "evaluate chatgpts capabilities": 30155, "neural networks dnn": 66266, "classifiers extensive experiments": 14833, "extensive experiments performance": 33080, "single nvidia rtx": 88386, "membership inference attacks": 58990, "unfortunately recent work": 99991, "llms incorporate additional": 56199, "method achieves better": 59187, "success rate existing": 92237, "existing techniques significantly": 31835, "tasks code completion": 94441, "extensive experiments llms": 33077, "introduce automatic prompt": 47399, "fast development large": 33892, "news articles use": 66612, "compared models finetuned": 16592, "llms demonstrated notable": 55746, "crucial role prompt": 20528, "mistral 7b instruct": 60217, "techniques reinforcement learning": 95580, "address challenge paper": 3363, "strategy experimental results": 90885, "maintaining models performance": 57898, "models llms realm": 63375, "findings demonstrate llm": 34655, "approaches performance level": 7183, "human oversight ensuring": 42312, "relevance generated content": 81432, "novel approach enhancing": 67098, "offering practical insights": 67800, "offer compelling alternative": 67737, "weakly annotated data": 103446, "nlp tasks large": 66796, "labelled training data": 48934, "using large pretrained": 101556, "test cases covering": 95874, "llm agents benchmark": 54950, "risks associated genai": 84509, "types input data": 99243, "evaluate llms tasks": 30224, "blackbox prompt optimization": 11147, "training data aiming": 97990, "opensource llm integrates": 68357, "perform diverse tasks": 70859, "tasks support llm": 95164, "support llm instruction": 92817, "general domain llms": 37120, "llm finetuned using": 55086, "concerns potential misuse": 17698, "methods primarily focus": 59759, "popular programming languages": 72675, "intelligence ai increasingly": 46807, "suggest future research": 92364, "realm social media": 79619, "understand intents reactions": 99618, "outperforms existing benchmarks": 69045, "compared existing systems": 16545, "existing systems including": 31831, "social media large": 88885, "media large language": 58838, "work underscores potential": 104300, "opensourced language models": 68425, "significant differences various": 87738, "standard implementation framework": 90180, "implementation framework available": 43330, "framework available community": 36048, "notably advanced models": 67026, "models like gpt35turbo": 62924, "supply chain attacks": 92782, "goal study assist": 39074, "gpt3 gpt4 models": 39472, "static analysis tool": 90530, "showed promising results": 87400, "precision f1 scores": 73610, "gpt4 demonstrates superior": 39831, "impact marginalized populations": 43231, "safe reinforcement learning": 84987, "language models classify": 49713, "adapts pretrained language": 3153, "plms downstream tasks": 72413, "research demonstrates effectiveness": 82540, "model raising concerns": 61309, "extensive results demonstrate": 33126, "opensourced large language": 68427, "shedding light potential": 87228, "different demographic groups": 25044, "ai technologies like": 4579, "conversational agent developed": 19346, "davinci gpt3 model": 22484, "graph language model": 40390, "presents novel methodology": 74152, "demonstrate superiority approach": 23206, "largely unexplored bridge gap": 52422, "language models lms prone": 50536, "provides test bed evaluating": 77712, "language models paper describes": 50630, "different pretrained language models": 25152, "language models increasingly rely": 49991, "vulnerable adversarial examples paper": 103279, "use pretrained language models": 100658, "improves model performance significantly": 44045, "current stateoftheart sota models": 20788, "generative pretrained transformer gpt3": 38699, "stateoftheart natural language generation": 90419, "new pretrained language model": 66491, "large scale language models": 52338, "prompttuning large language models": 76858, "representations transformers bert generative": 82130, "bert generative pretrained transformer": 10516, "stateoftheart natural language processing": 90420, "generative ai models potential": 38559, "using generative ai models": 101465, "large language models important": 51726, "gained significant attention research": 36839, "language processing nlp large": 51011, "processing nlp large language": 75527, "generate humanlike responses understand": 37492, "language models llms resulted": 50428, "llms highlighting need research": 56135, "llms like chatgpt gained": 56304, "systems bridge gap study": 93405, "emergence powerful large language": 28185, "googles bard large language": 39151, "harms large language models": 41064, "attack large language models": 8170, "advanced artificial intelligence ai": 3679, "achieved stateoftheart performance wide": 2674, "future directions address challenges": 36715, "language models llms nlp": 50347, "models llms nlp tasks": 63318, "address issue paper introduce": 3423, "pretrained language models finetuning": 74311, "misuse large language models": 60241, "leveraging natural language processing": 53884, "prompt learning large language": 76362, "performance compared models trained": 71090, "stateoftheart llms including chatgpt": 90381, "versions large language models": 102826, "models llms open new": 63327, "redteaming large language models": 80757, "language models llms taken": 50478, "models llms taken world": 63474, "llms taken world storm": 56912, "raises concerns academic integrity": 79077, "language models demonstrated strong": 49773, "content generation large language": 18637, "accuracy holdout test set": 2283, "large language models potentially": 52105, "adversarial prompting large language": 3992, "model paper considers possibility": 61200, "finetuning peftlora based approach": 35180, "peftlora based approach used": 70714, "based approach used study": 9438, "approach used study model": 7073, "used study model finetuned": 100907, "study model finetuned following": 91748, "model finetuned following tasks": 60890, "finetuned following tasks analysing": 34892, "following tasks analysing text": 35702, "sentiments obtained results finetuned": 86621, "obtained results finetuned llama": 67678, "results finetuned llama model": 83613, "finetuned llama model perform": 34920, "extracted sentiments named entities": 33258, "sentiments named entities considered": 86617, "named entities considered predictive": 65466, "entities considered predictive features": 29535, "considered predictive features supervised": 18202, "predictive features supervised machine": 73762, "features supervised machine learning": 34028, "pretrained language model corpus": 74285, "large language model family": 51473, "remains underexplored paper investigate": 81714, "small large language models": 88691, "language models plms based": 50652, "mental health large language": 59089, "llms gpt3 gpt35 gpt4": 56086, "language models llms previous": 50385, "models llms including gpt35": 63235, "language models warning paper": 50918, "models warning paper contains": 64530, "deep neural networks dnns": 22797, "milestone large language models": 60019, "generative ai models like": 38557, "mitigate potential risks associated": 60276, "superior performance compared previous": 92650, "effective natural language processing": 27339, "large language models classifying": 51601, "tuning reinforcement learning human": 99090, "large language models fail": 51682, "models llms raised concerns": 63373, "closedsource large language models": 15003, "models sizes 7b 13b": 64213, "large language models meta": 52059, "language models llms representing": 50425, "offers valuable insights future": 67869, "models llms taken spotlight": 63472, "llms taken spotlight natural": 56909, "taken spotlight natural language": 93809, "spotlight natural language processing": 90030, "natural language processing integrating": 65652, "language processing integrating llms": 50985, "processing integrating llms vision": 75490, "integrating llms vision enables": 46734, "llms vision enables users": 57036, "vision enables users explore": 102970, "enables users explore emergent": 28621, "users explore emergent abilities": 101108, "language models vlms llava": 50913, "models vlms llava flamingo": 64523, "impressive performance various visiolinguistic": 43633, "performance various visiolinguistic tasks": 71701, "various visiolinguistic tasks consequently": 102626, "visiolinguistic tasks consequently enormous": 102956, "tasks consequently enormous applications": 94484, "consequently enormous applications large": 18123, "enormous applications large models": 29395, "applications large models potentially": 6515, "large models potentially used": 52268, "content warning paper contains": 18708, "diminishes attack success rate": 25400, "findings underscore urgent need": 34771, "understanding generation large language": 99752, "language models llms propose": 50392, "chatgpt demonstrated impressive capabilities": 13690, "closely align realworld scenarios": 15022, "language models llms employed": 50184, "gpt large language model": 39205, "large language model families": 51472, "automated test case generation": 8744, "method evaluate effectiveness proposed": 59293, "models llms gpt llama2": 63194, "transformer models like bert": 98534, "pretrained massive datasets finetuned": 74385, "massive datasets finetuned specifically": 58452, "datasets finetuned specifically task": 22268, "finetuned specifically task detecting": 34973, "validate approach using synthetic": 102091, "language models llms attracting": 50089, "augmented generation rag techniques": 8575, "llms like gpt4 shown": 56329, "llms gpt35 gpt4 palm": 56094, "findings indicate llms effectively": 34690, "language generation capabilities large": 49237, "generation capabilities large language": 38060, "average attack success rate": 9140, "social media online reviews": 88890, "models llms gpt4 llama2": 63209, "model performance paper propose": 61236, "extensive experiments diverse nlp": 33069, "modeling reinforcement learning generate": 61675, "entity recognition ner tasks": 29581, "open source intelligence osint": 68117, "model achieved f1 score": 60490, "models llms increasingly popular": 63247, "large language models news": 52079, "tasks specifically use llms": 95136, "ai machine learning ml": 4460, "large language models todays": 52201, "prompt based method using": 76240, "experiments human evaluations demonstrate": 32218, "various language tasks paper": 102462, "large language models discovery": 51640, "models llms particularly gpt4": 63340, "large language models knowledge": 51748, "language models llms proficient": 50388, "natural language processing based": 65640, "extensive experiments various llms": 33095, "openais chatgpt googles bard": 68192, "language models llms ai": 50084, "models llms ai chatbots": 62987, "large language models tool": 52202, "language models tool learning": 50869, "llms tool learning specifically": 56940, "possible use large language": 72926, "growing trend using llms": 40669, "performance tasks question answering": 71619, "unfortunately recent work shown": 99992, "fast development large language": 33893, "models llms demonstrated notable": 63074, "techniques reinforcement learning human": 95581, "language models llms realm": 50400, "using large pretrained models": 101559, "paper introduce novel dataset": 69766, "large language model agents": 51458, "paper present novel method": 69839, "tasks support llm instruction": 95165, "support llm instruction tuning": 92818, "artificial intelligence ai increasingly": 7604, "social media large language": 88886, "standard implementation framework available": 90181, "implementation framework available community": 43331, "models like gpt35turbo gpt4": 62925, "safe reinforcement learning human": 84988, "extensive results demonstrate effectiveness": 33127, "graph language model glm": 40391, "encoder representations transformers bert generative": 28708, "large language models chatgpt gpt4": 51597, "natural language processing nlp large": 65674, "language processing nlp large language": 51012, "processing nlp large language models": 75528, "large language models llms resulted": 51991, "models llms like chatgpt gained": 63276, "emergence powerful large language models": 28186, "achieved stateoftheart performance wide range": 2675, "large language models llms nlp": 51938, "language models llms nlp tasks": 50348, "misuse large language models llms": 60242, "prompt learning large language models": 76363, "stateoftheart llms including chatgpt gpt4": 90382, "language models llms open new": 50357, "language models llms taken world": 50480, "models llms taken world storm": 63475, "content generation large language models": 18638, "adversarial prompting large language models": 3993, "finetuning peftlora based approach used": 35181, "peftlora based approach used study": 70715, "based approach used study model": 9439, "approach used study model finetuned": 7074, "used study model finetuned following": 100908, "study model finetuned following tasks": 91749, "model finetuned following tasks analysing": 60891, "finetuned following tasks analysing text": 34893, "sentiments obtained results finetuned llama": 86622, "obtained results finetuned llama model": 67679, "results finetuned llama model perform": 83614, "extracted sentiments named entities considered": 33259, "sentiments named entities considered predictive": 86618, "named entities considered predictive features": 65467, "entities considered predictive features supervised": 29536, "considered predictive features supervised machine": 18203, "predictive features supervised machine learning": 73763, "features supervised machine learning models": 34029, "large language models llms previous": 51962, "language models llms including gpt35": 50285, "language models warning paper contains": 50919, "milestone large language models llms": 60020, "generative ai models like chatgpt": 38558, "remarkable capabilities wide range tasks": 81759, "models llms demonstrated superior performance": 63093, "instruction tuning reinforcement learning human": 46410, "tuning reinforcement learning human feedback": 99091, "language models llms raised concerns": 50398, "closedsource large language models llms": 15004, "large language models llms representing": 51988, "large language models llms taken": 52017, "language models llms taken spotlight": 50479, "models llms taken spotlight natural": 63473, "llms taken spotlight natural language": 56910, "taken spotlight natural language processing": 93810, "spotlight natural language processing integrating": 90031, "natural language processing integrating llms": 65653, "language processing integrating llms vision": 50986, "processing integrating llms vision enables": 75491, "integrating llms vision enables users": 46735, "llms vision enables users explore": 57037, "vision enables users explore emergent": 102971, "enables users explore emergent abilities": 28622, "visual language models vlms llava": 103082, "language models vlms llava flamingo": 50914, "demonstrated impressive performance various visiolinguistic": 23284, "impressive performance various visiolinguistic tasks": 43634, "performance various visiolinguistic tasks consequently": 71702, "various visiolinguistic tasks consequently enormous": 102627, "visiolinguistic tasks consequently enormous applications": 102957, "tasks consequently enormous applications large": 94485, "consequently enormous applications large models": 18124, "enormous applications large models potentially": 29396, "applications large models potentially used": 6516, "diminishes attack success rate asr": 25401, "understanding generation large language models": 99753, "large language models llms propose": 51969, "llms chatgpt demonstrated impressive capabilities": 55585, "large language models llms employed": 51839, "language models llms gpt llama2": 50249, "pretrained massive datasets finetuned specifically": 74386, "massive datasets finetuned specifically task": 58453, "datasets finetuned specifically task detecting": 22269, "large language models llms attracting": 51789, "retrieval augmented generation rag techniques": 83969, "models llms like gpt4 shown": 63293, "language generation capabilities large language": 49238, "generation capabilities large language models": 38061, "language models llms gpt4 llama2": 50263, "agents large language models llms": 4201, "named entity recognition ner tasks": 65477, "language models llms increasingly popular": 50296, "intelligence ai machine learning ml": 46811, "language models llms particularly gpt4": 50368, "large language models llms proficient": 51965, "large language models llms ai": 51785, "language models llms ai chatbots": 50085, "large language models tool learning": 52203, "possible use large language models": 72927, "fast development large language models": 33894, "language models llms demonstrated notable": 50151, "techniques reinforcement learning human feedback": 95582, "large language models llms realm": 51975, "tasks support llm instruction tuning": 95166, "remarkable capabilities natural language processing": 81749, "like large language models llms": 54183, "standard implementation framework available community": 90182, "safe reinforcement learning human feedback": 84989, "345m": 815, "retrained": 83948, "pools": 72588, "traumatic": 98788, "relevancebased": 81441, "summit": 92611, "pod": 72467, "transformersbased": 98640, "lstmcrf": 57654, "bertsized": 10582, "humanevaluation": 42482, "nonscalable": 66945, "570": 1090, "095": 87, "086": 76, "autocorrection": 8641, "reannotation": 79718, "accident": 2122, "602": 1120, "medqa": 58957, "490": 987, "857": 1370, "655": 1163, "portability": 72717, "mandates": 58203, "shaky": 87163, "usmle": 101863, "licensure": 53969, "0975": 90, "0970": 89, "consultation": 18490, "anonymized": 5982, "tolerance": 97243, "2class": 720, "035": 26, "060": 50, "019": 16, "relaxed": 81341, "0301": 24, "163": 375, "335": 805, "uniqueness": 100094, "korea": 48866, "doctor": 26195, "hospitals": 41987, "chatglm6b": 13468, "nonclinical": 66883, "bear": 9925, "physician": 72073, "4135": 933, "071": 59, "004": 5, "tissues": 97102, "concordance": 17770, "discordant": 25573, "depart": 23520, "shanghai": 87171, "multipleturn": 65297, "240": 636, "542": 1073, "277": 692, "022": 19, "693": 1196, "436": 951, "bionlp": 11109, "irrelevance": 47898, "retrievalaugmentation": 84038, "lymphoma": 57675, "621": 1136, "757": 1252, "questioned": 78754, "asymmetry": 8141, "precipitated": 73591, "reimagined": 81133, "enrollment": 29416, "departments": 23523, "wellness": 103603, "radiologists": 79025, "nda": 65834, "psg": 77867, "golden": 39099, "symptom": 93141, "4th": 1002, "wise": 103852, "soared": 88838, "gross": 40552, "2way": 733, "recognizer": 80632, "thinkers": 96796, "click": 14894, "closelyintegrated": 15037, "pathologies": 70588, "190": 444, "percentages": 70776, "criminology": 20281, "cosmology": 19826, "80gb": 1328, "bestfinetuned": 10661, "deployability": 23560, "planned": 72246, "199": 459, "textmining": 96531, "coercing": 15727, "ci": 14625, "depressive": 23629, "084": 74, "tumor": 98992, "breast": 11414, "san": 85175, "051": 42, "notwithstanding": 67075, "scarcely": 85371, "psychologist": 77885, "mpt7binstruct": 64825, "clinician": 14950, "hampering": 40890, "specialties": 89656, "reimplementation": 81135, "shareable": 87189, "radiological": 79023, "mainstay": 57857, "fewshots": 34328, "arranged": 7502, "boardcertified": 11234, "excited": 31403, "tough": 97571, "v35": 102069, "deserves": 23743, "macroaveraged": 57792, "403": 916, "678": 1186, "675": 1184, "categorised": 12622, "damage": 20918, "levenshtein": 53705, "058": 47, "concert": 17717, "highrecall": 41800, "psychotherapy": 77895, "contradicting": 19053, "approved": 7258, "resourceheavy": 82991, "3gb": 895, "cpt": 20112, "bleu1": 11180, "2744": 689, "persisting": 71868, "selfdiagnose": 86216, "domainadapted": 26472, "burnout": 11696, "nationally": 65533, "extractionie": 33344, "condensing": 17784, "cohorts": 15798, "trailed": 97725, "singlechoice": 88411, "localglobal": 57210, "fusionindecoder": 36688, "arity": 7496, "posttest": 72970, "interrelated": 47316, "indications": 45048, "pbu": 70669, "multisensor": 65319, "selftracking": 86282, "icd": 42751, "lstmbased": 57652, "syndrome": 93148, "hispanic": 41858, "nvidias": 67459, "outcompete": 68856, "receiver": 80154, "acknowledges": 2895, "7b13b": 1304, "gi": 38821, "mobility": 60426, "flant5xl": 35406, "ft": 36419, "969": 1454, "partitioned": 70513, "patientcentric": 70608, "300000": 758, "mobilefriendly": 60424, "050": 41, "167k": 380, "diseaserelated": 25739, "xgboost": 104547, "bartbase": 9391, "pervades": 71996, "extroverted": 33407, "bigru": 11002, "usbased": 100456, "rags": 79053, "oa": 67461, "9606": 1451, "timesaving": 97086, "hospitalizations": 41986, "manuallylabeled": 58321, "closure": 15053, "minoritized": 60138, "fetching": 34183, "selfexplanatory": 86229, "demystifying": 23491, "patientcentered": 70607, "havent": 41113, "llamaindex": 54903, "prescription": 73915, "subdisciplines": 91927, "prescribing": 73914, "illuminates": 42990, "womens": 103884, "radiation": 79019, "prostate": 77335, "049": 38, "375": 864, "friends": 36390, "confounding": 18062, "authorized": 8629, "retrospectively": 84119, "upload": 100372, "871": 1377, "diet": 24958, "345": 814, "mirage": 60149, "gpt4level": 40171, "prognosis": 75827, "409": 920, "632": 1146, "8times": 1393, "peptides": 70755, "delineate": 22933, "180k": 428, "digestible": 25351, "therapies": 96780, "caregivers": 12426, "fm": 35492, "tcm": 95327, "surfacing": 92887, "precipitate": 73590, "dsm5": 26881, "fewshort": 34205, "rapport": 79354, "provisioning": 77820, "phenotypedriven": 72030, "doors": 26668, "termbased": 95779, "individuallevel": 45105, "sesame": 86827, "insincere": 46145, "dispositions": 25774, "asrs": 7804, "environmentally": 29638, "optimus prime": 68667, "article describes": 7537, "model retrained": 61355, "pubmed articles": 78017, "articles subsequently": 7573, "item stems": 48034, "draft text": 26775, "improve results": 43795, "shown good": 87462, "incorporating generative": 44699, "factor 10": 33576, "potential aiding": 72996, "clinical decisionmaking": 14920, "current approach": 20661, "compared typical": 16656, "require new": 82281, "given proposed": 38935, "publication year": 77957, "data class": 21046, "train bertbased": 97730, "advantages method": 3946, "improvements 11": 43956, "used biomedical": 100754, "information regarding": 45587, "provide potential": 77541, "seek answers": 86062, "questions responses": 78942, "automatically answer": 8842, "medical experts": 58890, "responses bert": 83181, "additionally based": 3277, "vast data": 102678, "reach new": 79466, "low inference": 57515, "advantage using": 3931, "using embeddings": 101427, "input subsequent": 45961, "language life": 49311, "scientists researchers": 85674, "entities like": 29541, "resulting better": 83424, "extraction relevant": 33327, "transformersbased models": 98641, "glove embeddings": 39026, "bidirectional lstmcrf": 10978, "performed experiments": 71757, "benchmarks datasets": 10324, "knowledgeinfused model": 48830, "improved mental": 43846, "health study": 41178, "media corpus": 58830, "personal use": 71887, "benefit use": 10457, "short extracting": 87284, "limitation using": 54293, "vast corpus": 102677, "corpus achieve": 19595, "stateoftheart relation": 90462, "representations used": 82132, "used scientific": 100892, "measure social": 58750, "management recent": 58189, "assessing bias": 7905, "including sample": 44468, "systems gpt2": 93470, "ai medical": 4461, "medical settings": 58917, "dialogue summarization": 24901, "summarization summaries": 92565, "information dialogue": 45435, "summarization require": 92559, "present algorithm": 73928, "focus capturing": 35504, "human labeled": 42270, "yield results": 104647, "produces high": 75694, "linking task": 54619, "task second": 94233, "based cosine": 9486, "task generally": 94075, "generally challenging": 37324, "challenging addition": 13144, "recognition entity": 80592, "novel texttotext": 67268, "uses generative": 101227, "diverse demands": 26009, "true fewshot": 98910, "dynamic incontext": 26919, "example retrieval": 31173, "gains accuracy": 36857, "clinical texts": 14939, "texts despite": 96555, "lies large": 53977, "texts contain": 96552, "largescale annotated": 52486, "realworld multilingual": 79683, "notes patients": 67055, "common form": 16144, "shown critical": 87447, "conducting research": 17999, "timeconsuming inefficient": 97046, "standard dataset": 90163, "achieved best": 2613, "positive predictive": 72830, "predictive value": 73771, "llama2 finetuning": 54832, "finetuning achieved": 35005, "unique challenge": 100075, "input obtain": 45927, "learning frozen": 53169, "large frozen": 51431, "consists pretraining": 18343, "clinical settings": 14936, "settings data": 87046, "methods training": 59827, "domain models": 26418, "literature prompt": 54654, "learning able": 53011, "learning provides": 53367, "applicable clinical": 6329, "size plms": 88506, "reproduce experiments": 82189, "copy mechanism": 19520, "shows proposed": 87611, "selects salient": 86188, "coherent accurate": 15777, "demonstrate lightweight": 23116, "little 40": 54673, "scenario large": 85390, "clinical information": 14925, "clinical nlp": 14929, "studied extensively": 91353, "structured outputs": 91174, "classification relation": 14783, "systems introduce": 93489, "based manual": 9614, "focus methods": 35539, "german dataset": 38805, "finally tutorial": 34573, "limited chatgpt": 54405, "power transfer": 73401, "produce impressive": 75639, "questions focus": 78855, "augmentation based": 8526, "based expert": 9526, "demonstrated gpt35": 23262, "automatically summarizing": 8898, "generate clinical": 37392, "new nlp": 66465, "medical information": 58895, "text experiment": 96202, "experiment data": 31962, "pretraining method": 74572, "exposure medical": 32902, "medical concepts": 58869, "domain pretrained": 26431, "models indicating": 62766, "tackling problem": 93755, "various healthcare": 102445, "sensitive nature": 86462, "novel textual": 67269, "generate artificial": 37382, "finetune generative": 34820, "results deep": 83530, "predictive performance": 73766, "pretrained sentence": 74448, "models sentence": 64161, "database result": 21771, "fail identify": 33680, "clinical applications": 14908, "knowledge typically": 48793, "medical exams": 58889, "multiple axes": 65142, "17 human": 393, "comprehension recall": 17183, "medical reasoning": 58912, "reinforcing importance": 81169, "precision model": 73612, "popular recent": 72680, "years tasks": 104619, "domains finetuning": 26524, "datasets necessary": 22348, "performance transformerbased": 71647, "176b parameters": 415, "accuracy interpretability": 2297, "finetuned domainspecific": 34881, "domainspecific datasets": 26622, "50 average": 1010, "generative design": 38615, "placed chatgpt": 72218, "word count": 103892, "participants informed": 70370, "informed responses": 45694, "score 34": 85696, "complexity task": 17055, "medical report": 58914, "summarization study": 92564, "large medical": 52249, "summarization proposed": 92554, "proposed datasets": 77191, "leverage sampled": 53760, "model t5large": 61486, "clinical language": 14926, "highly specialized": 41714, "domains clinical": 26495, "suggested llms": 92401, "medical knowledge": 58897, "success generaldomain": 92201, "generaldomain llms": 37208, "different clinical": 25016, "ability parse": 1734, "small specialized": 88730, "approaches finetuned": 7142, "development highly": 24653, "aid clinical": 4637, "texts focus": 96567, "tasks resulted": 95066, "required data": 82308, "collection labeling": 15898, "mitigate data": 60257, "solution enhance": 89088, "enhance applicability": 29139, "zeroshot medical": 104822, "developed used": 24535, "identifying information": 42922, "showed highest": 87395, "development use": 24728, "shaky foundations": 87164, "trained small": 97905, "provide meaningful": 77517, "propose improved": 76998, "medical challenge": 58866, "challenge problems": 12921, "gpt4 generalpurpose": 39898, "problems training": 75210, "datasets measuring": 22333, "measuring model": 58779, "critical importance": 20330, "like medicine": 54195, "prompt crafting": 76268, "20 points": 496, "gpt35 demonstrating": 39589, "discussed potential": 25701, "medical education": 58884, "processing algorithm": 75453, "development validation": 24731, "personalized treatment": 71921, "nlp offers": 66756, "extract valuable": 33247, "algorithms extract": 4967, "notes retrieved": 67056, "represent various": 82045, "algorithms developed": 4963, "algorithms chatgpt": 4959, "conducted dataset": 17949, "areas particularly": 7448, "gradient boosting": 40290, "lower precision": 57570, "detection achieving": 24256, "observed medical": 67619, "wikipedia data": 103812, "model realworld": 61311, "interactions significantly": 47079, "improved models": 43850, "needs provide": 66041, "provide informed": 77500, "observed substantial": 67628, "high stakes": 41465, "low error": 57513, "reliable information": 81519, "tasks relevant": 95030, "2class classification": 721, "depression detection": 23628, "annotated social": 5877, "tasks public": 94990, "detection respectively": 24351, "models mental": 63606, "concept extraction": 17603, "used gpt35": 100816, "feasibility potential": 33946, "gpt4 provides": 40038, "researchers information": 82868, "output test": 69198, "conversation summarization": 19337, "showing similar": 87427, "text detecting": 96174, "need automated": 65912, "texts gpt4": 96574, "suggest gpt": 92367, "finetuned specialized": 34969, "texts study": 96602, "study unveils": 91877, "methods mitigate": 59731, "realworld clinical": 79653, "chatgpt japanese": 13964, "gain popularity": 36816, "including current": 44315, "apis llms": 6294, "recommendations medical": 80664, "deploying dialogue": 23581, "techniques train": 95602, "remarkably able": 81841, "able finetune": 1847, "biomedical applications": 11088, "api public": 6275, "bow model": 11346, "llm prompting": 55217, "technique study": 95462, "types single": 99266, "chatgpt new": 14034, "potentially uncover": 73352, "uncover new": 99422, "important applications": 43488, "applications understanding": 6586, "key problems": 48330, "history single": 41871, "future applications": 36697, "reasoning perform": 79972, "potential fully": 73094, "health analysis": 41155, "capabilities automated": 11843, "emotional reasoning": 28263, "emotional information": 28259, "related works": 81227, "strong incontext": 91034, "examples effectively": 31206, "analysis addition": 5421, "addition chatgpt": 3176, "models ready": 63981, "specialized nature": 89637, "tasks presents": 94954, "taskspecific learning": 95292, "strategies prompting": 90841, "additionally indepth": 3317, "distribution potential": 25946, "improvement using": 43951, "llms performed": 56516, "clinical trials": 14940, "laborious process": 48970, "using prompting": 101700, "strategy combining": 90868, "techniques investigate": 95539, "given medical": 38913, "recall 10": 80106, "decision process": 22583, "tools improved": 97421, "national center": 65526, "retrievalaugmented llms": 84055, "generalize longer": 37297, "work different": 104053, "advancements fields": 3816, "fields machine": 34431, "study utilizes": 91891, "reviews specifically": 84296, "requires smaller": 82411, "training sample": 98273, "gpt3 performance": 39510, "cold start": 15805, "findings literature": 34699, "using simulated": 101765, "data findings": 21233, "learning various": 53469, "experiments involved": 32229, "prediction model": 73704, "zero samples": 104706, "parameters research": 70278, "reaction prediction": 79490, "realworld information": 79675, "llms healthcare": 56121, "utility safety": 101901, "objective determine": 67493, "based majority": 9612, "13 questions": 262, "hallucinated references": 40821, "additional research": 3258, "purpose models": 78048, "building opensource": 11640, "models medicine": 63601, "domains require": 26583, "procedure building": 75249, "generalpurpose foundation": 37347, "model medical": 61124, "alignment domainspecific": 5064, "largescale comprehensive": 52500, "protein sequence": 77348, "profoundly impacted": 75825, "research utilized": 82823, "ones predict": 67935, "book chapter": 11254, "novel artificial": 67111, "automatic clinical": 8759, "results approaches": 83468, "performance measured": 71395, "approach gpt4": 6876, "making promising": 58136, "multiple prompt": 65245, "finetune data": 34817, "method provides": 59398, "templates automatically": 95697, "finetuned plm": 34950, "baselines particular": 9845, "easily applied": 27010, "algorithmic bias": 4941, "emerging paradigm": 28228, "cases prompting": 12553, "biases prior": 10947, "zero hero": 104704, "datasets timeconsuming": 22440, "learn semantic": 52965, "transformerbased methods": 98575, "approach task": 7054, "task dialogue": 94020, "implement distinct": 43316, "achieve excellent": 2517, "based classification": 9466, "models medical": 63598, "massachusetts general": 58440, "general hospital": 37131, "clinical diagnosis": 14922, "gpt35 accurately": 39572, "respectively gpt4": 83071, "test 28": 95859, "multiple trials": 65277, "identical prompts": 42803, "evaluating model": 30458, "study approach": 91494, "including clinical": 44301, "paper tackles": 69976, "tasks sequentially": 95098, "patient information": 70604, "backbone experiments": 9244, "summarization metrics": 92547, "reference summaries": 80942, "clinically accurate": 14948, "setting summarizing": 87027, "domain news": 26424, "articles generated": 7565, "consider single": 18141, "accuracy generated": 2272, "used work": 100936, "second existing": 85930, "medicine engineering": 58932, "medical datasets": 58874, "conducted datasets": 17950, "chatgpt ernie": 13761, "grand challenges": 40351, "suggested significant": 92402, "dataset improving": 21972, "observed performance": 67623, "performance approaching": 70992, "performed detailed": 71755, "detailed human": 24171, "relevant clinical": 81447, "clinical utility": 14943, "adversarial questions": 3996, "probe llm": 74970, "efficacy models": 27646, "knowledge extend": 48562, "language boundaries": 49146, "various medical": 102479, "leverages incontext": 53791, "diverse external": 26022, "investigated effectiveness": 47721, "llms medical": 56385, "knowledge perspectives": 48700, "exceeds average": 31323, "showcasing great": 87375, "models allows": 61826, "clinical concepts": 14912, "concepts target": 17638, "explicitly tailored": 32554, "using qlora": 101714, "singlegpu training": 88414, "challenges concerning": 12981, "llms researchers": 56713, "researchers investigating": 82872, "investigating performance": 47771, "generate reasons": 37572, "reasons answer": 80096, "explanation datasets": 32463, "knowledge questions": 48727, "diversity address": 26136, "bias lack": 10854, "medical benchmark": 58864, "different preferences": 25149, "potential investigation": 73147, "need attention": 65911, "makes step": 58076, "step explore": 90639, "research healthcare": 82617, "biomedical natural": 11098, "worst best": 104446, "clinical relevance": 14933, "human physicians": 42326, "insights opportunities": 46117, "taming language": 93846, "core recipe": 19549, "leverage strengths": 53762, "strengths data": 90953, "align language": 4994, "including automatic": 44277, "manual metrics": 58274, "chatgpt cases": 13593, "summaries using": 92508, "models studied": 64275, "various sections": 102566, "summary using": 92603, "training environments": 98092, "history present": 41870, "model improved": 60989, "caused different": 12694, "rouge score": 84861, "summarization entire": 92532, "models previously": 63887, "processing benchmarks": 75463, "automatically extract": 8863, "errors produced": 29835, "biomedical data": 11089, "corpora capture": 19568, "diverse patterns": 26066, "accuracy 34": 2176, "outperform generalpurpose": 68938, "metrics capture": 59892, "methodologies evaluation": 59476, "better represent": 10780, "bert gpt35": 10529, "integrating data": 46716, "data biomedical": 21029, "procedure models": 75253, "advanced nlp": 3730, "highlight promising": 41609, "reducing barriers": 80860, "tasks chemical": 94433, "responses results": 83303, "models biased": 61933, "chemical compounds": 14500, "text critical": 96157, "learning contrast": 53086, "contrast supervised": 19090, "requires costly": 82370, "gpt4 struggle": 40105, "mitigation framework": 60309, "corresponding output": 19800, "resourceconstrained scenarios": 82986, "clear definitions": 14879, "available generating": 9042, "make information": 58000, "35 using": 834, "following axes": 35670, "understanding biomedical": 99679, "models advances": 61800, "open datasets": 68060, "effectiveness new": 27560, "leverages chatgpt": 53782, "conducted benchmark": 17938, "retrieval collections": 83974, "approaches generalpurposed": 7149, "quality medical": 78316, "relevance comprehensiveness": 81428, "comprehensive chinese": 17219, "medical exam": 58886, "transformed field": 98482, "openended manner": 68260, "analyses llms": 5403, "medical professionals": 58907, "annotations including": 5939, "conducted thorough": 17987, "relevant reasoning": 81474, "medical annotations": 58862, "solutions developing": 89136, "health crisis": 41161, "similarity existing": 88134, "augmentation backtranslation": 8525, "balanced dataset": 9312, "respectively evaluation": 83065, "generative transformers": 38726, "transformers chatgpt": 98604, "extraction document": 33290, "corpora makes": 19582, "tool various": 97331, "approaches developing": 7128, "growth scientific": 40680, "understanding scientific": 99872, "method finding": 59308, "finding study": 34633, "large automatically": 51394, "indicate using": 45022, "summarize extract": 92582, "literature databases": 54645, "provide opportunity": 77533, "specific llm": 89722, "uses combination": 101213, "synthetic prompts": 93289, "abstract title": 1939, "trained llama": 97865, "demonstrate training": 23215, "competitively chatgpt": 16828, "primarily using": 74793, "medical imaging": 58894, "chatgpt medical": 14009, "possess remarkable": 72858, "streamlining clinical": 90941, "clinical workflows": 14945, "workflows paper": 104321, "complex interactions": 16946, "interactions llms": 47069, "research institutions": 82638, "strategic planning": 90782, "outcomes work": 68855, "annotation corpus": 5886, "formats using": 35838, "compare gpt4": 16460, "performance highperforming": 71289, "augmentation chatgpt": 8527, "identification key": 42812, "availability annotated": 8995, "identifying key": 42925, "extensive datasets": 33013, "chatgpts response": 14448, "finetuned humanannotated": 34906, "models biomedicine": 61939, "drawn considerable": 26817, "transformative power": 98479, "extensive literature": 33112, "field text": 34414, "accelerating discovery": 2016, "fabricated information": 33429, "associated sensitive": 8100, "comprehensive timely": 17310, "rare diseases": 79356, "bottleneck development": 11321, "annotated corpus": 5862, "training recently": 98254, "nlp paradigm": 66757, "chatgpt revolutionary": 14189, "complex human": 16940, "approach conducted": 6781, "analysis overall": 5596, "resulted higher": 83420, "certain entities": 12757, "provide opportunities": 77532, "critically evaluate": 20376, "serves foundation": 86793, "unlike general": 100171, "boundary detection": 11339, "adopt framework": 3609, "assessment remains": 7973, "multiturn interaction": 65388, "turns refine": 99135, "professionals evaluation": 75769, "factually consistent": 33659, "reference summary": 80943, "supported gpt4": 92847, "product development": 75724, "summarization challenging": 92521, "unstructured nature": 100292, "gold summaries": 39098, "process selecting": 75401, "using topk": 101817, "4th place": 1003, "gpt4 summaries": 40110, "summaries abstractive": 92490, "aiassisted medical": 4619, "complex medical": 16955, "questionnaire used": 78759, "prompt furthermore": 76326, "accuracy order": 2322, "needed better": 66011, "models fewer": 62457, "medical fewshot": 58891, "2023 findings": 555, "outperform slms": 68964, "slms fewshot": 88646, "fewshot medical": 34276, "building previous": 11644, "findings introduce": 34695, "finding relevant": 34632, "clinical decision": 14917, "requires abundant": 82358, "annotations difficult": 5927, "difficult obtain": 25303, "lexical matching": 53920, "contrastively pretrained": 19115, "use contrastive": 100513, "performance biomedical": 71023, "various baselines": 102365, "including larger": 44400, "data retrieve": 21579, "responses best": 83182, "aims analyze": 4779, "openai context": 68151, "tool medical": 97302, "chatgpt outperformed": 14054, "achieved scores": 2664, "proven impractical": 77382, "requirements associated": 82335, "issue parameterefficient": 47946, "adapter layer": 3111, "multiple clinical": 65161, "additional advantages": 3220, "extraction evaluation": 33296, "points f1": 72500, "standard biomedical": 90161, "pitfalls using": 72193, "healthcare workers": 41196, "patients results": 70613, "thought fewshot": 96853, "prompting achieve": 76496, "gpt4 accurately": 39743, "incorrect statements": 44742, "overlooking crucial": 69410, "medical findings": 58893, "findings recommendations": 34727, "potential scalability": 73255, "evaluates gpt4": 30379, "like medical": 54194, "using interactive": 101527, "potential causes": 73048, "highquality medical": 41776, "human training": 42398, "33 billion": 798, "parameters small": 70289, "a100 80gb": 1474, "ones obtained": 67934, "carry study": 12444, "simple techniques": 88243, "using reallife": 101724, "reallife tasks": 79597, "did provide": 24953, "based unstructured": 9749, "challenging important": 13176, "problem settings": 75078, "classification llms": 14759, "llms expected": 55921, "llms neglect": 56428, "boost llms": 11272, "sample selection": 85090, "samples given": 85119, "report experimental": 81971, "llms empowered": 55851, "applications significant": 6573, "gap research": 36974, "field mental": 34390, "flant5 gpt35": 35392, "covering zeroshot": 20089, "tasks simultaneously": 95118, "15 times": 331, "accuracy best": 2213, "stateoftheart taskspecific": 90493, "exploratory case": 32616, "tasks illustrating": 94711, "illustrating promising": 43006, "certain models": 12768, "summarize findings": 92583, "tasks emphasize": 94578, "racial gender": 79009, "evaluates new": 30387, "makes nearly": 58067, "nearly impossible": 65856, "provide realtime": 77554, "ability summarize": 1778, "determine model": 24412, "indepth insights": 44957, "highlevel understanding": 41570, "pdf documents": 70674, "software tool": 89041, "margin 10": 58356, "levels accuracy": 53687, "tasks outside": 94916, "engineering needed": 28997, "improve chatgpt": 43672, "benefits local": 10480, "local training": 57209, "specific generative": 89700, "provide structured": 77576, "llama bert": 54728, "reduced precision": 80820, "multilabel tasks": 64931, "presents effective": 74131, "capable assessing": 12223, "scores based": 85750, "matching using": 58529, "matching key": 58520, "cuttingedge llms": 20874, "solution help": 89096, "remarkable breakthroughs": 81742, "understanding responding": 99868, "efforts incorporate": 27913, "proactive inquiry": 74944, "pretraining sft": 74599, "construct chinese": 18414, "given unique": 38981, "various capacities": 102376, "despite 100x": 24018, "ability safety": 1768, "advance language": 3665, "detailed schema": 24185, "tasks expert": 94613, "extract important": 33232, "research complex": 82519, "quality patient": 78331, "review stateoftheart": 84274, "lack trust": 49066, "services need": 86818, "fields study": 34446, "falcon 7b": 33766, "stablevicuna 13b": 90101, "questions overall": 78905, "overall success": 69330, "achieved score": 2663, "llms poorly": 56532, "potentially significant": 73350, "study developed": 91575, "gptj falcon": 40221, "versions gpt3": 102822, "tool combines": 97278, "methods extract": 59637, "including model": 44423, "layer transformer": 52734, "derive new": 23648, "identify social": 42901, "extremely valuable": 33402, "valuable clinical": 102145, "study experimented": 91619, "social support": 88919, "explore large": 32697, "detailed set": 24186, "abstract screening": 1934, "scenarios explore": 85429, "process explore": 75313, "explore future": 32683, "code list": 15385, "perception use": 70796, "methods make": 59725, "clinical decisions": 14921, "gpt4 prompted": 40032, "significant llm": 87788, "safe effective": 84983, "potential unified": 73294, "dialogue tackle": 24911, "diagnostic capabilities": 24804, "based original": 9650, "make great": 57996, "presents innovative": 74143, "approach application": 6739, "chatgpt approach": 13531, "approach introduces": 6910, "feature description": 33963, "novelty work": 67291, "work lies": 104166, "utilization domain": 101907, "supervised ml": 92729, "data conditions": 21100, "insights effectiveness": 46083, "varied data": 102272, "llms application": 55481, "highlights transformative": 41673, "enhancing automated": 29308, "internet users": 47253, "depressive symptoms": 23630, "ranking task": 79280, "task focused": 94068, "used clinical": 100758, "diverse ranking": 26085, "advancing development": 3906, "assessment methodology": 7961, "feasibility employing": 33943, "undertake comprehensive": 99921, "analyze role": 5783, "principles prompt": 74833, "help teachers": 41284, "improve education": 43692, "just prompt": 48223, "students think": 91342, "models students": 64274, "order fully": 68698, "topic using": 97520, "using identical": 101515, "cause student": 12691, "contains multiple": 18558, "approach ensure": 6842, "quality care": 78231, "existing question": 31802, "capture complexity": 12347, "evaluate general": 30188, "32k 2k": 793, "lengths gpt4": 53617, "finally report": 34562, "review make": 84265, "preferences large": 73820, "clinical studies": 14937, "analysis investigated": 5564, "medical specialties": 58918, "replace specialized": 81925, "healthcare potential": 41191, "provide patients": 77535, "consequences paper": 18115, "terms standard": 95840, "principles provide": 74835, "literature use": 54666, "evaluating using": 30493, "demonstrate synthetic": 23209, "real ones": 79549, "used development": 100777, "research zeroshot": 82830, "radiological reports": 79024, "traditional information": 97670, "major bottlenecks": 57925, "building information": 11631, "extraction systems": 33334, "achieving good": 2852, "tasks parameter": 94933, "reports generate": 82011, "combining prompt": 16022, "reports inputs": 82013, "cancer hospital": 11795, "answering largescale": 6122, "gains ranging": 36870, "notably gpt4turbo": 67033, "100x smaller": 156, "knowledge database": 48494, "identifying understanding": 42939, "finetuning research": 35226, "similar names": 88089, "studies applied": 91360, "focuses investigating": 35607, "information gpt": 45497, "demographics various": 23007, "various social": 102572, "history information": 41869, "information given": 45496, "given gpt": 38890, "text different": 96179, "studies identified": 91398, "identified limitations": 42827, "science requires": 85607, "understanding strengths": 99879, "attribute extraction": 8438, "including simple": 44476, "performance chatgpt35": 71052, "chatgpt35 gpt4": 14372, "data mixed": 21408, "model relevant": 61337, "asked answer": 7727, "respectively contrast": 83062, "results chatgpt4": 83496, "35 version": 836, "having llms": 41122, "dataset sizes": 22080, "compute scale": 17514, "based case": 9457, "objective evaluate": 67496, "methods selected": 59794, "commonly seen": 16195, "case new": 12464, "new prompt": 66500, "chatgpt v35": 14340, "followed comparison": 35660, "cases respectively": 12556, "clinical care": 14910, "quick accurate": 78978, "accurate diagnoses": 2407, "diagnoses patients": 24789, "process inefficient": 75334, "area curve": 7422, "curve auc": 20833, "input token": 45967, "length 512": 53583, "surpassed performance": 92920, "investigating large": 47767, "applying natural": 6694, "simplification using": 88272, "sari score": 85187, "vs 22": 103241, "meaning preservation": 58700, "code finetuned": 15260, "simplification biomedical": 88264, "health informatics": 41163, "rich source": 84424, "traditional discriminative": 97663, "challenges lack": 13052, "alleviate problems": 5137, "labels prompt": 48949, "answering models": 6130, "tendency hallucinate": 95745, "document analysis": 26200, "according context": 2144, "analysis solution": 5681, "levenshtein distance": 53706, "match rougel": 58497, "criteria human": 20291, "editing medical": 27101, "provided llm": 77624, "vicuna model": 102867, "potential model": 73200, "effectively identifying": 27439, "utilizing data": 102007, "35 model": 830, "relaxed match": 81342, "using ontology": 101656, "tasks examine": 94600, "chatgpt foundation": 13831, "gpt35turbo gpt40": 39704, "setup models": 87109, "learning achieved": 53013, "comparable state": 16406, "surpassing current": 92956, "different runs": 25185, "field llms": 34387, "hold immense": 41887, "promise applications": 76113, "applying real": 6699, "scenarios presents": 85473, "conduct automatic": 17827, "blind reviews": 11186, "content research": 18685, "application value": 6394, "disease concepts": 25736, "structural features": 91120, "features lexical": 34009, "particular provide": 70418, "extraction present": 33325, "postprocessing step": 72958, "based lexical": 9604, "beating stateoftheart": 9931, "models cognitive": 62030, "develop ai": 24434, "detection propose": 24345, "medical llm": 58904, "consistent patterns": 18268, "negatively correlated": 66074, "aid medical": 4640, "llms category": 55563, "available evidence": 9032, "2023 using": 564, "accuracy 56": 2179, "process evaluation": 75307, "presents potential": 74158, "sole reliance": 89052, "method combining": 59232, "study introduction": 91690, "exhibits significant": 31629, "refining llms": 80999, "huge challenge": 42033, "questions including": 78872, "llms larger": 56281, "represents pioneering": 82179, "pioneering effort": 72131, "models relying": 64054, "need advanced": 65906, "reliable responses": 81525, "evaluations framework": 30853, "solution present": 89107, "rigorously evaluates": 84462, "knowledge unlike": 48797, "systems retrieve": 93563, "relational graph": 81258, "graph enabling": 40381, "drug repurposing": 26877, "unknown knowledge": 100137, "evaluation curated": 30561, "models healthcare": 62653, "35 human": 828, "body regions": 11243, "evaluated 10": 30311, "generic domainspecific": 38749, "reveal varying": 84183, "tuning fewshot": 99038, "benchmarking language": 10291, "limitations adopting": 54298, "data incorporating": 21320, "scope tasks": 85681, "tasks instructions": 94760, "instructions available": 46473, "adversely affecting": 4020, "health conversations": 41160, "single turn": 88401, "requires users": 82420, "multiple turns": 65278, "help promote": 41274, "dataset synthetic": 22096, "augmented synthetic": 8586, "substantially surpasses": 92141, "superior synthetic": 92670, "based clinical": 9468, "major contributor": 57930, "cases physicians": 12551, "results promise": 83782, "promise ai": 76110, "documentation used": 26229, "interaction remains": 47033, "access real": 2083, "nature information": 65803, "plm t5": 72401, "curated instructions": 20636, "information extractionie": 45477, "comparing llms": 16684, "model competitive": 60682, "community concerns": 16305, "hallucination issues": 40838, "extremely harmful": 33390, "domain nlp": 26425, "promise aligning": 76111, "extremely expensive": 33389, "preference feedback": 73798, "complex situations": 17005, "extensive expert": 33099, "addition gpt": 3189, "edits human": 27120, "alignment especially": 5067, "continuous training": 19036, "prohibitive training": 76035, "training instruction": 98150, "approach producing": 6984, "model comparable": 60679, "comparable gpt35turbo": 16373, "resource resulting": 82976, "domainspecific model": 26640, "applications broadly": 6417, "domainspecific training": 26654, "lack required": 49042, "range medical": 79174, "tasks investigation": 94772, "learning designed": 53108, "generation medical": 38261, "yielding stateoftheart": 104657, "participants survey": 70377, "assessed llms": 7890, "human cohorts": 42131, "postgraduate students": 72949, "form test": 35786, "network interface": 66143, "scores llm": 85774, "exhibited greater": 31575, "compared different": 16531, "comprehensively evaluated": 17325, "showed significantly": 87404, "represented gpt4": 82165, "benefits medical": 10481, "different medical": 25108, "tasks enhancing": 94589, "education review": 27183, "development practical": 24697, "detailed overview": 24180, "opportunities face": 68493, "including basic": 44280, "model structures": 61457, "scales data": 85306, "comparison performance": 16721, "following questions": 35695, "employed realworld": 28433, "develop deploy": 24442, "dataset extracted": 21939, "extracted literature": 33253, "balance diversity": 9304, "set important": 86887, "output labels": 69162, "settings explore": 87054, "synthetic abstracts": 93248, "provide best": 77412, "llms presented": 56554, "presented new": 74098, "multiplechoice exam": 65286, "handle longer": 40927, "designed investigate": 23924, "performance long": 71380, "fusionindecoder fid": 36689, "improvement hope": 43915, "expert input": 32364, "problem leading": 75038, "result extraction": 83394, "current systems": 20792, "including extractive": 44342, "extractive models": 33347, "llms fully": 56011, "demonstrate difficulty": 23054, "research extracting": 82593, "llms adapting": 55441, "propose transform": 77145, "unified simple": 100039, "inputoutput pair": 45979, "developed model": 24514, "medicine domain": 58931, "advantages existing": 3938, "effectiveness generalization": 27522, "data consisting": 21106, "enhance computational": 29149, "transformer training": 98550, "outperforming llms": 69003, "greater accuracy": 40503, "deployment resourceconstrained": 23618, "environments propose": 29655, "resource demands": 82960, "generation roberta": 38405, "results f1": 83605, "research reports": 82761, "accurate way": 2435, "used example": 100793, "given queries": 38937, "results light": 83709, "model incorporate": 60999, "considerably better": 18174, "classification explanation": 14745, "provide mental": 77519, "practice requires": 73552, "individuals mental": 45112, "clinically useful": 14949, "depression anxiety": 23627, "new humanai": 66421, "collaboration approach": 15818, "tools combine": 97376, "support clinical": 92793, "numerical data": 67404, "approach recent": 6998, "excessive number": 31398, "leading high": 52847, "verification stage": 102753, "function model": 36489, "decisions training": 22616, "according experiments": 2148, "meaningful explanations": 58709, "computing attention": 17559, "ontology using": 68027, "exhibits gender": 31610, "racial biases": 79008, "led rapid": 53531, "facilitate clinical": 33483, "evaluate leading": 30214, "leading llm": 52859, "35 exhibits": 824, "demonstrate gender": 23087, "largescale medical": 52545, "adapted medical": 3106, "corpus including": 19632, "articles abstracts": 7558, "achieves absolute": 2703, "best public": 10639, "medpalm gpt4": 58956, "opensource development": 68330, "development capable": 24618, "generalist foundation": 37219, "surprising capabilities": 92989, "prior study": 74864, "capabilities medical": 12001, "challenge benchmarks": 12859, "special training": 89606, "prompting highlight": 76543, "engineering prompting": 29008, "innovation unlock": 45846, "purpose make": 78046, "design carefully": 23756, "specialist models": 89611, "27 reduction": 685, "dataset best": 21840, "clinical psychology": 14932, "knowledge graphenhanced": 48600, "llms driving": 55821, "progress ai": 75968, "unprecedented rate": 100229, "knowledge infusion": 48629, "taskagnostic knowledge": 94301, "questions multiplechoice": 78899, "performance llama2": 71360, "frameworks capacity": 36324, "llm respectively": 55241, "query medical": 78539, "studies understanding": 91458, "systems typically": 93588, "pairs large": 69506, "measure llm": 58741, "gpt4 asked": 39766, "prompting multiple": 76581, "evaluated ability": 30312, "yielding higher": 104656, "receiver operating": 80155, "operating characteristic": 68447, "diagnosis model": 24795, "ability differentiate": 1630, "markers model": 58391, "confidence conclude": 18011, "conclude gpt4": 17735, "ability assess": 1596, "method measure": 59358, "success field": 92196, "research specialized": 82788, "diagnosis medical": 24794, "mainly relies": 57856, "making diagnostic": 58095, "disease diagnosis": 25737, "results smaller": 83853, "diagnosis compared": 24793, "showcasing immense": 87376, "text analytics": 96081, "learning architecture": 53034, "architecture trained": 7377, "known prompt": 48852, "evaluated proposed": 30360, "outperformed previous": 68984, "developed promptbased": 24523, "opensourced model": 68430, "technique finetuning": 95449, "provide comparative": 77421, "need development": 65932, "development especially": 24640, "graphs play": 40447, "emerges crucial": 28208, "employ contrastive": 28391, "samples additionally": 85100, "designed efficient": 23895, "explanations conclusion": 32484, "models objective": 63689, "specifically llms": 89850, "decision based": 22579, "external corpus": 33178, "verification method": 102748, "method tailored": 59441, "explicitly incorporate": 32546, "text chunks": 96107, "pipeline exhibits": 72151, "extraction various": 33343, "accuracy automated": 2208, "automated solution": 8738, "review hybrid": 84259, "fewer errors": 34190, "provides reliable": 77699, "involves assessing": 47836, "exclusion criteria": 31425, "patient summaries": 70606, "7b13b 70b": 1305, "enhance adaptability": 29134, "llms created": 55697, "reveal opensource": 84164, "proprietary counterparts": 77294, "deployment realworld": 23617, "realworld healthcare": 79672, "applications foster": 6484, "physicians medical": 72075, "students evaluate": 91306, "evaluate effect": 30169, "improve content": 43681, "demonstrates llms": 23384, "sentences using": 86573, "recognized important": 80626, "ner dataset": 66108, "sampling techniques": 85171, "used select": 100894, "impressive f1": 43599, "impressive incontext": 43606, "finetuned chatgpt": 34872, "evaluated generated": 30338, "finetuning supervised": 35268, "automated knowledge": 8708, "comprehensive highquality": 17267, "finetuning ft": 35075, "employed gpt4": 28427, "icl models": 42761, "performance declines": 71124, "require taskspecific": 82296, "integrate generative": 46659, "literature background": 54642, "suitability use": 92455, "articles prompts": 7571, "asked gpt4": 7735, "present articles": 73933, "llms assessed": 55492, "information critical": 45429, "response reasoning": 83157, "evaluations data": 30841, "validation testing": 102132, "testing sets": 96025, "interpretability study": 47283, "significance prompt": 87656, "observed gpt4": 67612, "outputs improving": 69227, "demonstrate opensource": 23141, "data capable": 21035, "performance domainspecific": 71159, "represents important": 82175, "analysis datasets": 5478, "development area": 24609, "retrieval neural": 84002, "rankers large": 79258, "models overcome": 63747, "dataset combined": 21861, "years used": 104620, "dense sparse": 23512, "retrievers based": 84098, "generaldomain large": 37205, "highquality natural": 41777, "language summaries": 51118, "sheer number": 87241, "number unique": 67397, "salient entities": 85075, "retrieval specifically": 84026, "llm retrieve": 55247, "coverage faithfulness": 20057, "models repurposed": 64069, "systems review": 93565, "challenges rapid": 13113, "study involved": 91716, "equipped tools": 29698, "resistance hallucinations": 82926, "hallucinations results": 40881, "generation recommendations": 38393, "patients healthcare": 70610, "lay users": 52714, "sources using": 89425, "serve vital": 86785, "limitations terms": 54377, "designing novel": 23978, "using range": 101720, "demonstrates efficacy": 23372, "popular chatgpt": 72620, "health challenges": 41158, "question involves": 78680, "expressions human": 32918, "health conditions": 41159, "presents initial": 74142, "negative outcomes": 66065, "acceptable level": 2042, "classified groups": 14817, "methods bert": 59553, "076 showing": 65, "value dataset": 102184, "healthcare providers": 41193, "lstm model": 57649, "biomedical generative": 11091, "study era": 91601, "bilstm gru": 11046, "gru bigru": 40685, "according experiment": 2147, "achieving nearperfect": 2864, "competitive gpt35": 16802, "mixedmethods study": 60335, "tool make": 97301, "llms simplify": 56814, "information add": 45393, "breast cancer": 11415, "action understanding": 2954, "indepth interviews": 44958, "evaluated errors": 30337, "improve readability": 43789, "metrics work": 59978, "having human": 41121, "correct potential": 19677, "metric learning": 59865, "chemistry large": 14505, "chatgpt fall": 13809, "experiments observed": 32257, "text target": 96456, "domain time": 26461, "model consists": 60701, "knowledge annotated": 48421, "target datasets": 93860, "baselines scenarios": 9850, "complexity manual": 17046, "llms dynamic": 55822, "powered langchain": 73410, "relevant answers": 81445, "compute demands": 17504, "optimization including": 68595, "model hallucinations": 60970, "decisionmaking enhancing": 22595, "studied methods": 91354, "exhibit improved": 31527, "accurate recommendations": 2420, "rag methods": 79044, "operates need": 68443, "qa chatbot": 78123, "relevance informativeness": 81434, "promising tool": 76206, "domains need": 26559, "exploring language": 32852, "increasingly crucial": 44873, "capabilities shown": 12076, "qa remains": 78150, "critical questions": 20345, "context medical": 18812, "llm tailored": 55283, "showed significant": 87403, "clinical contexts": 14914, "summaries based": 92492, "code descriptions": 15224, "baseline training": 9811, "macrof1 scores": 57795, "selfgenerated data": 86232, "generation candidate": 38054, "including unseen": 44510, "gpt35 identify": 39633, "descriptions performs": 23720, "assessing semantic": 7934, "concepts extracted": 17622, "evaluations based": 30837, "tasks dont": 94562, "assessments llms": 7989, "sought evaluate": 89329, "clinical context": 14913, "analytic methods": 5726, "analyses models": 5404, "association specific": 8109, "specific diseases": 89684, "need future": 65951, "applications ensure": 6466, "fair accurate": 33724, "popular information": 72632, "manuallylabeled dataset": 58322, "compare zeroshot": 16501, "networks attention": 66172, "performed significantly": 71764, "multiple samples": 65253, "reduce burden": 80763, "potential speed": 73274, "datasets result": 22401, "answering benchmark": 6080, "patient cases": 70602, "interpret information": 47270, "results evaluated": 83589, "evaluated opensource": 30353, "accuracy observed": 2321, "particularly tasks": 70503, "single multiple": 88382, "documents models": 26258, "accuracy levels": 2303, "use especially": 100535, "need model": 65974, "enhancing diagnostic": 29321, "cognitive bias": 15740, "addressing biases": 3526, "mitigating biases": 60296, "make initial": 58003, "differential diagnosis": 25264, "responses evaluating": 83206, "education novel": 27165, "significantly influences": 87969, "widely accepted": 103711, "simplification models": 88267, "research utilizing": 82824, "alongside existing": 5222, "facilitating model": 33542, "unlabeled text": 100148, "additionally methods": 3325, "domains improving": 26528, "retrieval selfreflection": 84022, "retrievalaugmented large": 84052, "domain ranging": 26437, "input llms": 45917, "generation applying": 38033, "domainspecific problems": 26644, "components retriever": 17097, "question retrieves": 78705, "relevant documents": 81456, "information retrieved": 45612, "capabilities biomedical": 11849, "usage impact": 100439, "research employs": 82574, "respectively findings": 83069, "trust persist": 98932, "insights inform": 46106, "abstractive summarisation": 1948, "approach combining": 6776, "media user": 58853, "points view": 72515, "summaries human": 92500, "coherent summaries": 15789, "expressed social": 32911, "concerns necessitating": 17693, "llms explainable": 55930, "achieved integrating": 2642, "bert novel": 10539, "detection methodology": 24322, "contribute development": 19123, "guidance qualified": 40724, "issues mitigated": 48002, "results related": 83807, "related question": 81212, "using langchain": 101533, "langchain framework": 49121, "meta llama": 59138, "responses occasionally": 83268, "helpful relevant": 41296, "llms fast": 55974, "evaluated medical": 30348, "focused accuracy": 35571, "variability llm": 102237, "accessible llm": 2111, "demonstrates feasibility": 23375, "better resource": 10781, "llms ondevice": 56447, "enhance privacy": 29199, "health support": 41179, "necessary training": 65877, "social factors": 88860, "performance achieving": 70970, "integrated large": 46688, "fail lack": 33681, "employing incontext": 28449, "report purpose": 81992, "humangenerated responses": 42493, "models optimize": 63724, "10 minutes": 113, "compared humangenerated": 16572, "rag model": 79045, "shows advantages": 87562, "testing novel": 96018, "fully autonomous": 36443, "used alongside": 100733, "study illuminates": 91669, "references evaluation": 80956, "sources support": 89424, "actually support": 3018, "propose contributions": 76954, "scalable evaluation": 85238, "second develop": 85927, "dataset 1200": 21800, "nearly half": 65854, "rapid pace": 79329, "pace llm": 69448, "potential harms": 73118, "capability produce": 12201, "factors drive": 33590, "factors related": 33606, "difficult extract": 25293, "accurately extract": 2451, "respectively human": 83073, "modeling approaches": 61626, "radiation oncology": 79020, "model initially": 61010, "gpt4 teacher": 40124, "services enhancing": 86813, "care delivery": 12393, "nlp benefit": 66713, "communication skills": 16282, "dataset integrated": 21981, "llama2 aiming": 54820, "aiming assess": 4761, "instructiontuned llama2": 46600, "llama2 significantly": 54851, "considerable promise": 18168, "diagnosis rare": 24796, "primarily lack": 74787, "context recent": 18836, "recent news": 80301, "underscore llms": 99544, "largest opensource": 52600, "domain facilitate": 26384, "diagnostic performance": 24805, "underscore promising": 99552, "diagnostic process": 24806, "exciting possibilities": 31415, "use llmgenerated": 100613, "data gpt35": 21281, "extraction model": 33318, "set 20": 86837, "especially applications": 29855, "treatment strategies": 98809, "llm produces": 55211, "confounding factors": 18063, "based ai": 9433, "personal experience": 71881, "compared questions": 16622, "evaluating cognitive": 30407, "licensing exam": 53965, "exam usmle": 31079, "revealed varying": 84194, "effects biases": 27599, "responding questions": 83115, "2020 2023": 531, "additionally chatgpt": 3279, "consistency evaluated": 18232, "insights multiple": 46116, "support tools": 92837, "applications methods": 6525, "methods dataset": 59586, "dataset 200": 21802, "reallife cases": 79595, "google palm": 39141, "single llms": 88375, "commercial vendor": 16100, "protein structures": 77350, "users upload": 101192, "user questions": 101031, "absolute relative": 1922, "statistical tools": 90559, "tools study": 97472, "education decision": 27144, "llm artificial": 54969, "purpose assess": 78034, "assess alignment": 7822, "generated finetuned": 37702, "questions paired": 78906, "testing dataset": 96001, "alignment results": 5111, "evaluation demonstrated": 30569, "identified gpt4": 42825, "validation future": 102121, "management facilitating": 58185, "current llmbased": 20719, "analytical capabilities": 5728, "compare proposed": 16490, "findings proposed": 34717, "applications specialized": 6577, "pubmed central": 78018, "comprising 10": 17392, "quantization model": 78446, "approaches results": 7200, "medical models": 58906, "address limited": 3456, "multilingual generalization": 64959, "evaluated benchmark": 30319, "domain datasets": 26371, "datasets multilingual": 22343, "summarization llms": 92542, "useful improving": 100947, "accessibility technical": 2099, "abstracts generated": 1955, "evaluate correctness": 30161, "including newly": 44431, "correlate poorly": 19756, "keyvalue data": 48362, "adequately address": 3572, "input sizes": 45958, "data optimal": 21456, "dataset automatic": 21832, "automatic diagnosis": 8771, "tasks suboptimal": 95151, "llm family": 55080, "tasks 12": 94327, "gpt4 addition": 39755, "addition investigated": 3196, "forgetting problem": 35762, "applications release": 6560, "benchmarking retrievalaugmented": 10300, "regarding optimal": 81062, "largescale experiments": 52516, "backbone llms": 9248, "results combination": 83502, "combination various": 15961, "implementing rag": 43357, "empowering language": 28504, "prediction largescale": 73702, "predictions various": 73754, "challenges poor": 13094, "workflow efficiency": 104315, "process poses": 75374, "various clinical": 102380, "published literature": 78008, "tools given": 97413, "given patient": 38926, "utility language": 101894, "multiturn chats": 65381, "answering openended": 6132, "bilingual instruction": 11008, "8times faster": 1394, "bilingual llm": 11010, "benchmark 15": 10063, "components dialogue": 17085, "information processing": 45578, "reports evaluate": 82009, "extraction named": 33322, "analysis limitations": 5573, "tasks conclusion": 94475, "motivate future": 64769, "llama demonstrated": 54738, "alignment study": 5115, "utilizes gpt35": 101987, "enhancing factual": 29327, "summarization research": 92561, "ai outputs": 4490, "outputs need": 69243, "scant research": 85368, "capacity deliver": 12289, "use distinct": 100527, "diverse audience": 25988, "following aspects": 35669, "training existing": 98105, "llms second": 56752, "assessed number": 7891, "task developing": 94018, "comprehensive endtoend": 17234, "transparency trustworthiness": 98775, "gpus tpus": 40276, "data revolutionized": 21581, "understanding intelligent": 99775, "gap humans": 36935, "delves current": 22959, "systems domain": 93430, "exploration research": 32600, "lack natural": 49034, "handling multiple": 40952, "categories tasks": 12618, "performed extensive": 71758, "collection online": 15902, "interactions centered": 47048, "datasets conducted": 22185, "finetuning enhance": 35055, "real online": 79550, "quite high": 78991, "adding information": 3167, "retrieving information": 84110, "models imperative": 62703, "reduce bias": 80762, "use vector": 100723, "data presented": 21496, "vector database": 102697, "classifying data": 14843, "explosive growth": 32882, "services context": 86812, "play increasingly": 72344, "role medical": 84794, "systems medical": 93512, "jointly trains": 48163, "approach joint": 6916, "demand computational": 22964, "questions experimental": 78848, "critical problem": 20342, "data according": 20938, "interoperability standards": 47259, "gap gpt4": 36931, "testable hypotheses": 95962, "holds immense": 41901, "lack flexibility": 49009, "model general": 60922, "process requires": 75396, "guides llm": 40770, "model attains": 60575, "achieved need": 2646, "strategy involves": 90897, "propose modified": 77028, "explore chain": 32650, "better strategies": 10790, "prompt chaining": 76243, "domainadapted large": 26473, "capabilities healthcare": 11934, "preprocessed dataset": 73904, "input generating": 45902, "observe highquality": 67585, "metrics qualitative": 59960, "reader study": 79506, "length limited": 53600, "address unique": 3497, "text lengths": 96326, "development reliable": 24704, "family caregivers": 33844, "enhance capacity": 29146, "supporting caregivers": 92851, "care study": 12394, "aimed develop": 4749, "resources evaluate": 83010, "rag framework": 79039, "parameters larger": 70241, "gpt35 benchmark": 39581, "caregivers individuals": 12427, "models challenge": 61976, "reflect real": 81009, "employing zeroshot": 28466, "training focus": 98118, "focus generating": 35519, "prompted approach": 76473, "model exceeds": 60829, "studied performance": 91356, "knowledge recall": 48735, "evaluate settings": 30285, "research leveraging": 82656, "models advance": 61796, "recent ai": 80219, "progress achieving": 75967, "comprehend meaning": 17133, "step developing": 90625, "llmgenerated answers": 55371, "possible biases": 72894, "coupled thorough": 20022, "diverse rater": 26086, "identify specific": 42903, "deployment ai": 23593, "lack granularity": 49011, "face limitations": 33446, "overcoming challenges": 69366, "patterns study": 70639, "investigates application": 47729, "propose workflow": 77167, "llms carefully": 55559, "treatment planning": 98806, "automatic summarization": 8831, "llms summarize": 56889, "fewshort learning": 34206, "metrics proposed": 59958, "prior llm": 74849, "voice conversations": 103207, "cooperative agents": 19495, "engaging conversation": 28923, "agents focused": 4189, "regulatory documents": 81130, "safety clinical": 85017, "agents demonstrate": 4179, "agents significantly": 4230, "larger generalpurpose": 52438, "generalpurpose llm": 37357, "received enormous": 80139, "enormous attention": 29397, "various ethical": 102421, "attention debate": 8300, "lacks systematic": 49079, "systematic overview": 93342, "background work": 9273, "queried using": 78468, "rapid review": 79336, "information loss": 45536, "guidance human": 40722, "cases suggested": 12559, "settings varying": 87102, "rare genetic": 79357, "disorder diagnosis": 25756, "critical process": 20343, "genetic disorders": 38762, "training diverse": 98077, "complex models": 16956, "experiments explored": 32195, "models prompts": 63919, "task difficulty": 94024, "levels findings": 53696, "size similar": 88529, "increasing trend": 44861, "smaller gpt4": 88752, "input llm": 45916, "input bias": 45878, "potentially explaining": 73340, "response time": 83165, "medical inquiries": 58896, "partial differential": 70346, "like infectious": 54173, "infectious disease": 45195, "chatgpt showcased": 14214, "data textual": 21693, "model challenges": 60640, "research including": 82632, "intent understanding": 46961, "unique domain": 100082, "domain traditional": 26462, "successfully develop": 92273, "llm field": 55084, "tool provide": 97307, "provide important": 77496, "applications intelligent": 6504, "algorithmic fidelity": 4943, "impact applications": 43189, "applications domains": 6457, "scarce data": 85370, "future researchers": 36777, "semantic lexical": 86319, "demographic group": 23002, "groups used": 40630, "notes structured": 67057, "simulation using": 88333, "digital mental": 25366, "participants responses": 70373, "psychological scales": 77881, "simulate responses": 88308, "scales demonstrate": 85307, "using responses": 101739, "scales present": 85314, "responses ground": 83231, "screening tasks": 85816, "approach alignment": 6731, "evaluation scenarios": 30765, "scenarios conclude": 85407, "significant drops": 87742, "particularly affected": 70431, "primarily studied": 74791, "concerning performance": 17670, "environments paper": 29654, "mentions entities": 59102, "comprehensive collection": 17221, "methodologies study": 59479, "require users": 82300, "targeted models": 93906, "achieving score": 2874, "medmcqa dev": 58954, "particular nlp": 70415, "studies attempt": 91362, "attempt evaluate": 8258, "evaluate performances": 30258, "tasks developed": 94541, "classification employing": 14740, "zeroshot classifiers": 104751, "train lightweight": 97752, "lightweight supervised": 54047, "models achieves": 61774, "develop smaller": 24481, "smaller effective": 88748, "training lightweight": 98176, "models ineffective": 62769, "amounts augmented": 5337, "recent transformer models": 80387, "small number labeled": 88714, "general domain data": 37119, "language model learns": 49442, "data class imbalance": 21047, "extraction relevant information": 33328, "domainspecific tasks using": 26651, "compared current stateoftheart": 16529, "improved mental health": 43847, "mental health study": 59091, "social media corpus": 88881, "fall short extracting": 33784, "measure social bias": 58751, "summarization require large": 92560, "create synthetic training": 20179, "produces high quality": 75695, "human labeled data": 42271, "based cosine similarity": 9487, "entity recognition entity": 29572, "recognition entity linking": 80593, "capability large pretrained": 12183, "performance gpt3 incontext": 71269, "true fewshot setting": 98911, "given high cost": 38892, "hope study provides": 41962, "test set best": 95940, "set best model": 86846, "clinical notes patients": 14931, "achieved best performance": 2614, "positive predictive value": 72831, "processing nlp field": 75520, "smaller finetuned models": 88750, "increasing size plms": 44859, "code reproduce experiments": 15480, "generation models including": 38281, "synthetic data augmentation": 93260, "scenario large language": 85391, "classification regression tasks": 14782, "english german dataset": 29073, "long input sequences": 57313, "power transfer learning": 73402, "llms produce impressive": 56581, "requires model understand": 82399, "achieves significant performance": 2785, "domain pretrained language": 26432, "augmentation method generate": 8543, "data specifically propose": 21648, "pretrained sentence embedding": 74449, "sentence embedding models": 86498, "human evaluation model": 42182, "human evaluation reveals": 42188, "human evaluations reveal": 42200, "models reinforcing importance": 64039, "increasingly popular recent": 44895, "popular recent years": 72681, "recent years tasks": 80442, "specific tasks datasets": 89761, "gpt3 175b parameters": 39389, "language models highly": 49963, "results showcase potential": 83840, "using likert scale": 101565, "clinical language models": 14927, "domainspecific language models": 26634, "models trained general": 64389, "code generation effectiveness": 15295, "privacy concerns associated": 74890, "data collection labeling": 21071, "llm chatgpt gpt4": 55003, "medical text data": 58924, "understanding models capabilities": 99817, "foundation models trained": 35966, "light findings propose": 54005, "medical challenge problems": 58867, "model performance experiments": 61228, "performance experiments conducted": 71197, "language processing algorithm": 50964, "processing nlp offers": 75534, "objective study aims": 67510, "analysis conducted dataset": 5466, "models ability understand": 61737, "given high stakes": 38893, "providing accurate reliable": 77731, "tasks public datasets": 94991, "language models mental": 50569, "models mental health": 63607, "language models clinical": 49715, "prompts improve performance": 76745, "improved model performance": 43849, "potential clinical applications": 73054, "dataset results suggest": 22062, "results suggest gpt": 83870, "gpt models effectively": 39215, "challenges applying llms": 12964, "potential llms like": 73181, "models llms gain": 63170, "llms gain popularity": 56020, "experiments gpt4 outperforms": 32213, "gpt4 outperforms chatgpt": 40000, "llms benchmark available": 55525, "investigates performance llms": 47755, "llm prompting prompt": 55218, "prompting prompt engineering": 76595, "chatgpt new bing": 14035, "uncover new insights": 99423, "type annotation using": 99203, "potential multimodal large": 73203, "impact various fields": 43268, "offer significant potential": 67771, "challenges data privacy": 12986, "mental health analysis": 59085, "llms chatgpt exhibit": 55588, "chatgpt exhibit strong": 13778, "shows strong incontext": 87621, "strong incontext learning": 91035, "effectively improve performance": 27442, "approach human performance": 6886, "showing great potential": 87416, "task offers valuable": 94166, "llms specialized domain": 56842, "effectiveness various generaldomain": 27592, "llms shown perform": 56781, "investigate performance llms": 47678, "able correctly identify": 1838, "language models domain": 49797, "models llms successfully": 63467, "stateoftheart performance tasks": 90444, "models using generative": 64473, "fields machine learning": 34432, "machine learning natural": 57717, "model gpt family": 60949, "using simulated data": 101766, "growing using large": 40673, "models llms healthcare": 63217, "based majority vote": 9613, "llms able provide": 55405, "require additional research": 82226, "research prompt engineering": 82732, "general purpose models": 37184, "building opensource language": 11641, "language models medicine": 50567, "model specifically designed": 61445, "alignment domainspecific instructions": 5065, "dataset instruction tuning": 21980, "models codes datasets": 62026, "generative models recent": 38670, "recent chatgpt gpt4": 80232, "language models design": 49776, "stateoftheart performance range": 90441, "tasks small number": 95122, "specifically proposed method": 89869, "based prompt templates": 9676, "improvements strong baselines": 44003, "models provide substantial": 63935, "challenges paper proposes": 13091, "achieved average f1": 2612, "language models medical": 50566, "models gpt4 gpt35": 62618, "massachusetts general hospital": 58441, "significant differences models": 87736, "evaluating model performance": 30459, "yields best performance": 104661, "summaries generated using": 92498, "experiments conducted datasets": 32136, "detailed human evaluations": 24172, "observed significant improvements": 67627, "models realworld settings": 63987, "leverages incontext learning": 53792, "llms medical knowledge": 56388, "llms varying sizes": 57029, "exceeds average human": 31324, "knowledge incontext learning": 48624, "coverage paper present": 20062, "finetuned llama2 using": 34924, "biomedical natural language": 11099, "align language model": 4995, "automatic manual metrics": 8800, "language model efficiency": 49382, "language models previously": 50682, "language processing benchmarks": 50971, "automatically extract information": 8864, "errors produced llms": 29836, "alternative approach use": 5261, "examines potential llms": 31141, "background knowledge using": 9266, "learning contrast supervised": 53087, "future research direction": 36763, "using highquality information": 101508, "gpt 35 using": 39181, "new evaluation metrics": 66398, "approach leverages chatgpt": 6933, "language model extract": 49393, "empirical evaluation conducted": 28317, "retrieval performance compared": 84006, "performance compared existing": 71083, "existing approaches generalpurposed": 31656, "highlight potential use": 41608, "challenges potential solutions": 13100, "end propose simple": 28837, "generative transformers chatgpt": 38727, "extraction document classification": 33291, "document classification question": 26202, "zeroshot chatgpt outperforms": 104748, "domain findings demonstrate": 26388, "study investigate impact": 91694, "datasets model performance": 22340, "explore potential benefits": 32717, "trained llama 7b": 97866, "models evaluated human": 62357, "performs competitively chatgpt": 71810, "models possess remarkable": 63839, "workflows paper introduces": 104322, "performance tasks study": 71620, "limited availability annotated": 54398, "availability annotated data": 8996, "pretrained bert models": 74234, "trained extensive datasets": 97830, "data augmentation based": 20996, "models finetuned humanannotated": 62480, "mental health professionals": 59090, "opportunities challenges chatgpt": 68490, "drawn considerable attention": 26818, "field text generation": 34415, "like chatgpt fields": 54074, "information generated responses": 45493, "opportunities challenges associated": 68489, "fewshot settings respectively": 34315, "knowledge training data": 48788, "methods recent advances": 59774, "great potential improving": 40478, "introduce simple effective": 47485, "results highlight effectiveness": 83640, "aiassisted medical education": 4620, "united states medical": 100104, "domain recent advancements": 26439, "models lms led": 63530, "exceptional capabilities wide": 31368, "based extensive experiments": 9528, "outperform slms fewshot": 68965, "clinical decision support": 14919, "various baselines including": 102366, "baselines including larger": 9837, "stateoftheart transformerbased models": 90508, "providing accurate answers": 77730, "address issue parameterefficient": 3425, "issue parameterefficient finetuning": 47947, "significantly reducing computational": 88021, "proposed framework achieves": 77204, "multilabel classification tasks": 64928, "llms gpt4 demonstrated": 56099, "paper study llms": 69962, "conduct case study": 17833, "potential pitfalls using": 73223, "pitfalls using large": 72194, "model chatgpt gpt4": 60644, "demonstrated promising performance": 23309, "chatgpt gpt4 identify": 13902, "chain thought fewshot": 12807, "gpt4 language model": 39948, "study evaluates gpt4": 91610, "nvidia a100 80gb": 67452, "tremendous success various": 98842, "success various downstream": 92246, "report experimental results": 81972, "fewshot learning method": 34261, "tasks evaluate stateoftheart": 94595, "field mental health": 34391, "flant5 gpt35 gpt4": 35393, "zeroshot fewshot prompt": 104776, "fewshot prompt designs": 34285, "boost performance llms": 11277, "exploratory case study": 32617, "tasks illustrating promising": 94712, "racial gender bias": 79010, "makes nearly impossible": 58068, "able provide realtime": 1880, "zeroshot learning natural": 104812, "used wide variety": 100934, "language reasoning capabilities": 51080, "approach extracting structured": 6857, "including llama bert": 44406, "datasets demonstrating ability": 22214, "presents effective approach": 74132, "llms explicitly trained": 55932, "paper conduct systematic": 69646, "achieved remarkable breakthroughs": 2656, "rely supervised finetuning": 81593, "given unique characteristics": 38982, "outperforms baselines various": 69018, "datasets extensive evaluation": 22257, "abilities recent llms": 1562, "overall best performance": 69280, "recent introduction chatgpt": 80270, "llms based transformer": 55514, "bert pretrained model": 10543, "models identify social": 62695, "explore large language": 32698, "scenarios explore impact": 85430, "systematic review process": 93350, "hindering application llms": 41837, "manual evaluation metrics": 58267, "benchmark chinese large": 10089, "solve issue propose": 89177, "presents innovative approach": 74144, "novelty work lies": 67292, "utilization domain knowledge": 101908, "fewshot prompt learning": 34287, "prompt learning based": 76359, "performance openais chatgpt": 71444, "highlights transformative potential": 41674, "serves valuable resource": 86803, "principles prompt engineering": 74834, "help teachers students": 41285, "models llms follow": 63166, "llms follow natural": 56000, "existing question answering": 31803, "context lengths gpt4": 18808, "preferences large language": 73821, "offers promising avenue": 67857, "models llms agents": 62985, "challenges risks using": 13123, "information extraction systems": 45474, "question answering largescale": 78608, "despite 100x smaller": 24019, "100x smaller size": 157, "shedding light strengths": 87229, "model llm develop": 61087, "models extract information": 62430, "evaluation metrics including": 30680, "believe results improved": 10040, "effective prompts guide": 27354, "training data known": 98024, "understanding strengths weaknesses": 99882, "different llms prompt": 25104, "llms gpt35 bard": 56090, "different prompt engineering": 25162, "human participants using": 42315, "results demonstrate ability": 83532, "potential applications llms": 73010, "publicly available online": 77988, "followed comparison responses": 35661, "area curve auc": 7423, "model surpassed performance": 61478, "investigating large language": 47768, "applying natural language": 6695, "gpt35 gpt4 openai": 39617, "including bleu rouge": 44286, "models text simplification": 64359, "faces challenges lack": 33467, "training data opensource": 98040, "capability evaluate performance": 12159, "question answering models": 78615, "utilizing incontext learning": 102024, "approach mitigate challenges": 6946, "llms including gpt2": 56175, "gpt 35 model": 39179, "latest generative pretrained": 52666, "comparable state art": 16407, "hold immense promise": 41888, "models generate content": 62547, "evaluations using rouge": 30890, "stateoftheart sota methods": 90483, "language models cognitive": 49726, "rapid development new": 79318, "direction future research": 25448, "domains like medicine": 26545, "contribution study introduction": 19172, "exhibits significant performance": 31630, "llms medical applications": 56386, "llms medical domain": 56387, "results underscore potential": 83901, "represents pioneering effort": 82180, "human cognitive processes": 42130, "framework based large": 36051, "evaluates llm performance": 30381, "knowledge unlike previous": 48798, "enabling researchers explore": 28657, "need extensive human": 65946, "revolutionize way users": 84337, "error analysis revealed": 29769, "language models healthcare": 49958, "models different tasks": 62230, "benchmarking language models": 10292, "insights strengths limitations": 46137, "strengths limitations adopting": 90956, "previous research focused": 74693, "performance general domain": 71249, "provide public access": 77549, "framework leveraging large": 36199, "human evaluation demonstrates": 42174, "model plm t5": 61252, "model trained synthetic": 61525, "enhance performance large": 29193, "tasks results performance": 95069, "promise aligning llms": 76112, "improving factual consistency": 44119, "extensive expert knowledge": 33100, "evaluations demonstrate potential": 30844, "prohibitive training costs": 76036, "input text introduce": 45963, "radiology report summarization": 79028, "language models bart": 49667, "outputs code available": 69211, "llms highly specialized": 56139, "llms chatgpt gpt35": 55596, "ability answer questions": 1593, "clinical decision making": 14918, "development practical applications": 24698, "provide detailed overview": 77450, "used model development": 100854, "llms tailored specific": 56906, "comparison performance different": 16722, "performance llms medical": 71371, "provide insights opportunities": 77509, "fewshot learning open": 34263, "capabilities leading llms": 11970, "leading llms including": 52861, "ability handle longer": 1675, "investigate model performance": 47671, "room improvement hope": 84837, "automatic prompt optimization": 8817, "adapting language model": 3126, "language model specialized": 49547, "enhance computational efficiency": 29150, "achieved best results": 2615, "results f1 score": 83606, "chatgpts ability perform": 14421, "baseline methods terms": 9795, "provide mental health": 77520, "individuals mental health": 45113, "methods use llms": 59833, "support clinical decisionmaking": 92794, "popular transformer models": 72691, "performance baseline models": 71010, "models provide explanations": 63933, "ability models like": 1722, "chatgpt exhibits gender": 13784, "gender racial biases": 37095, "chatgpt 35 exhibits": 13472, "adapted medical domain": 3107, "prompt engineering prompting": 76311, "gpt4 achieves stateoftheart": 39749, "prompt types including": 76445, "questions multiplechoice questions": 78900, "synthetic qa pairs": 93291, "tasks study evaluates": 95148, "receiver operating characteristic": 80156, "success field natural": 92197, "showcasing immense potential": 87377, "approach achieved stateoftheart": 6709, "generative llm approach": 38641, "model provides accurate": 61299, "conducted benchmark datasets": 17939, "capabilities medical domain": 12002, "knowledge graphs play": 48609, "learning models trained": 53284, "employ contrastive learning": 28392, "test set model": 95945, "chatgpt case studies": 13591, "takes advantage large": 93817, "advantage large language": 3924, "curated benchmark dataset": 20628, "expert evaluation results": 32359, "evaluation results indicate": 30756, "performance comparable gpt4": 71077, "recent research advances": 80336, "realworld settings paper": 79701, "fully automated solution": 36440, "inclusion exclusion criteria": 44524, "gpt4 opensource llms": 39995, "findings reveal opensource": 34739, "reveal opensource llms": 84165, "opensource llms finetuned": 68365, "realworld healthcare applications": 79673, "research applications field": 82491, "chatgpt potential enhance": 14092, "study demonstrates llms": 91570, "publicly available large": 77980, "strategies improve performance": 90825, "improve performance task": 43765, "zeroshot fewshot prompts": 104779, "various training settings": 102614, "impressive f1 score": 43600, "parameters achieve comparable": 70166, "impressive incontext learning": 43607, "chatgpt shown potential": 14225, "models study compares": 64278, "llms hold promise": 56142, "training validation testing": 98348, "validation testing sets": 102133, "gpt4 demonstrated superior": 39828, "significance prompt engineering": 87657, "surpassing performance stateoftheart": 92968, "like chatgpt research": 54096, "model trained dataset": 61520, "research development area": 82548, "rankers large language": 79259, "generaldomain large language": 37206, "gpt4 turbo perform": 40138, "highquality natural language": 41778, "natural language summaries": 65736, "models llms offers": 63325, "information multiple sources": 45548, "performance address challenges": 70977, "mental health challenges": 59087, "natural language study": 65735, "biomedical generative pretrained": 11092, "remarkably low perplexity": 81846, "models transformer models": 64423, "comprehensive study era": 17302, "bilstm gru bigru": 11047, "results proposed model": 83789, "metrics work demonstrates": 59979, "chemistry large language": 14506, "chatgpt fall short": 13810, "common practice training": 16161, "contrastive learning enhance": 19104, "models llms dynamic": 63110, "conduct automatic human": 17828, "novel approach enhance": 67096, "despite challenges like": 24030, "nlp tasks potential": 66807, "largely unexplored study": 52425, "llms specific domains": 56845, "study compared performance": 91530, "general llms like": 37159, "introduces novel benchmark": 47532, "performance llms complex": 71366, "performance compared llms": 71088, "models medical report": 63599, "medical report generation": 58915, "need future research": 65952, "llms demonstrated promising": 55752, "transfer learning capability": 98416, "performed significantly better": 71765, "complex tasks large": 17018, "question answering benchmark": 78576, "offer potential benefits": 67760, "evaluated opensource llms": 30354, "benchmark evaluation code": 10162, "language models mitigate": 50576, "text simplification models": 96420, "retrievalaugmented large language": 84053, "generation rag methods": 38382, "benchmark datasets experimental": 10129, "model parameter size": 61209, "release data code": 81365, "social media user": 88898, "expressed social media": 32912, "conversational agents like": 19351, "using langchain framework": 101534, "responses human responses": 83238, "allowing users interact": 5187, "significant potential improving": 87820, "mental health support": 59092, "capabilities generative ai": 11922, "trained realworld dataset": 97898, "integrated large language": 46689, "employing incontext learning": 28450, "augmented generation large": 8570, "hold significant promise": 41892, "compared performance different": 16602, "recall f1 scores": 80110, "performance current stateoftheart": 71118, "rapid pace llm": 79330, "recently developed large": 80473, "respectively human evaluation": 83074, "promise various domains": 76138, "diagnosis rare diseases": 24797, "pioneering benchmark designed": 72130, "model able extract": 60474, "medical exam questions": 58887, "medical licensing exam": 58901, "licensing exam usmle": 53966, "gpt4 googles palm": 39912, "llms openai gpt4": 56457, "research code pretrained": 82514, "prompting technique used": 76631, "using statistical tools": 101793, "areas like healthcare": 7444, "ai particularly llms": 4500, "medical education decision": 58885, "model llm artificial": 61080, "llm artificial intelligence": 54970, "gpt4based evaluation human": 40169, "finetuned llms evaluation": 34930, "various opensource llms": 102516, "opensource llms tailored": 68376, "factuality metrics including": 33654, "metrics correlate poorly": 59900, "significantly outperforms established": 87993, "outperforms established baseline": 69041, "domainspecific datasets study": 26623, "performance existing opensource": 71192, "performance comparable chatgpt": 71075, "catastrophic forgetting problem": 12594, "benchmarking retrievalaugmented generation": 10301, "llms achieved stateoftheart": 55433, "various clinical contexts": 102381, "evaluations multiple datasets": 30871, "complex tasks requiring": 17020, "gaining increasing attention": 36852, "work study performance": 104284, "given appropriate prompts": 38858, "motivate future research": 64770, "gpt35 gpt4 generate": 39613, "experimental analysis demonstrate": 31986, "bert gpt3 trained": 10527, "aims bridge gap": 4786, "performance multiple natural": 71416, "protein sequence generation": 77349, "inherent limitations current": 45735, "natural language capabilities": 65556, "sequence generation task": 86648, "domain expertise large": 26380, "models llms field": 63161, "extensive data collection": 33011, "using various llms": 101840, "enhancing quality efficiency": 29367, "designed overcome challenges": 23934, "questions experimental results": 78849, "long context window": 57304, "holds immense potential": 41902, "learning models created": 53275, "llms gained popularity": 56023, "indepth study llms": 44964, "specific fields like": 89697, "existing llms llama": 31750, "strategy involves using": 90898, "finetuned llms using": 34931, "explore chain thought": 32651, "thought cot reasoning": 96851, "method performs better": 59387, "domainadapted large language": 26474, "performance generalpurpose llms": 71255, "proprietary llms gpt35": 77308, "opensource llms using": 68377, "quantitative metrics qualitative": 78415, "gpt4 demonstrated potential": 39826, "demonstrated potential clinical": 23302, "study aimed develop": 91480, "generation rag framework": 38381, "accurate contextually relevant": 2406, "previous work studied": 74735, "paves way future": 70652, "range tasks models": 79217, "underscores importance using": 99568, "methods face limitations": 59641, "study investigates application": 91703, "model achieved best": 60487, "llm agents significantly": 54954, "agents significantly outperform": 4231, "significantly outperform larger": 87980, "received enormous attention": 80140, "diagnosis rare genetic": 24798, "rare genetic disorders": 79358, "conducted comprehensive evaluation": 17944, "models including generative": 62726, "gpt4 achieved accuracy": 39746, "limitations existing tools": 54322, "evaluated performance chatgpt": 30356, "using different prompting": 101411, "different prompting techniques": 25169, "partial differential equations": 70347, "like infectious disease": 54174, "evaluating performance llms": 30476, "provide guidance future": 77488, "like chatgpt enhance": 54072, "humangenerated data synthetic": 42490, "leveraging pretrained large": 53892, "responses ground truth": 83232, "study results indicate": 91813, "observed model performance": 67621, "scenarios conclude discussing": 85408, "method using gpt4": 59461, "impressive performance wide": 43635, "model trained exclusively": 61521, "leveraging llms text": 53875, "using llms gpt4": 101585, "reducing human effort": 80876, "amounts augmented data": 5338, "outperforms previous stateoftheart models": 69101, "create synthetic training data": 20180, "entity recognition entity linking": 29573, "capability large pretrained language": 12184, "performance gpt3 incontext learning": 71270, "test set best model": 95941, "using natural language processing": 101631, "machine learning models large": 57711, "language processing nlp field": 51006, "language generation models including": 49249, "scenario large language models": 85392, "achieves significant performance gains": 2786, "demonstrated superior performance various": 23352, "data augmentation method generate": 21002, "using large pretrained language": 101557, "pretrained sentence embedding models": 74450, "increasingly popular recent years": 44896, "language models trained general": 50873, "models llm chatgpt gpt4": 62952, "natural language processing algorithm": 65634, "language processing nlp offers": 51018, "language models mental health": 50570, "large language models clinical": 51602, "language models llms gain": 50229, "models llms gain popularity": 63171, "llm prompting prompt engineering": 55219, "type annotation using chatgpt": 99204, "potential multimodal large language": 73204, "existing automatic evaluation metrics": 31666, "significant progress various domains": 87832, "llms gpt35 gpt4 bard": 56092, "task offers valuable insights": 94167, "effectiveness various generaldomain natural": 27593, "models llms shown perform": 63429, "large language models domain": 51643, "language models llms successfully": 50474, "models llms successfully applied": 63468, "using generative pretrained transformers": 101478, "machine learning natural language": 57718, "generative pretrained transformer models": 38702, "growing using large language": 40674, "language models llms healthcare": 50269, "building opensource language models": 11642, "language model specifically designed": 49549, "gpt4 demonstrated exceptional capabilities": 39824, "small number labeled examples": 88715, "large language models medical": 52054, "large language models particularly": 52098, "large language models medicine": 52055, "open large language model": 68080, "biomedical natural language processing": 11100, "improve language model efficiency": 43722, "natural language processing benchmarks": 65641, "llms significant advancements natural": 56799, "models llms shown potential": 63430, "end propose simple effective": 28838, "extraction document classification question": 33292, "document classification question answering": 26203, "domain findings demonstrate chatgpt": 26389, "limited availability annotated data": 54399, "chatgpt results indicate chatgpt": 14186, "united states medical licensing": 100105, "domain recent advancements language": 26440, "language models lms led": 50531, "models demonstrated exceptional capabilities": 62185, "exceptional capabilities wide range": 31369, "various baselines including larger": 102367, "address issue parameterefficient finetuning": 3426, "issue parameterefficient finetuning peft": 47948, "models llms gpt4 demonstrated": 63207, "pitfalls using large language": 72195, "llms chatgpt shown remarkable": 55614, "chatgpt shown remarkable success": 14229, "models zero fewshot scenarios": 64560, "large language models mental": 52057, "zeroshot fewshot prompt designs": 104777, "significantly boost performance llms": 87893, "zeroshot learning natural language": 104813, "language reasoning capabilities large": 51081, "llms achieved remarkable breakthroughs": 55430, "rely supervised finetuning sft": 81594, "models llms based transformer": 62998, "llms based transformer architecture": 55515, "language models identify social": 49967, "explore large language models": 32699, "benchmark chinese large language": 10090, "fewshot prompt learning based": 34288, "language models llms follow": 50226, "models llms follow natural": 63167, "llms follow natural language": 56001, "despite 100x smaller size": 24020, "shedding light strengths limitations": 87230, "language model llm develop": 49459, "llms shown remarkable capabilities": 56788, "investigating large language models": 47769, "applying natural language processing": 6696, "using publicly available dataset": 101712, "metrics including bleu rouge": 59934, "language models text simplification": 50865, "external knowledge bases large": 33190, "bases large language models": 9869, "latest generative pretrained transformer": 52667, "perform wide range tasks": 70944, "large language models cognitive": 51609, "new large language models": 66441, "framework based large language": 36052, "language models different tasks": 49788, "framework leveraging large language": 36200, "intelligence ai chatbots chatgpt": 46801, "stateoftheart pretrained language model": 90454, "language model plm t5": 49509, "enhance performance large language": 29194, "language models bart t5": 49668, "multiple large language models": 65212, "results underscore potential llms": 83902, "leading large language models": 52858, "leading llms including gpt4": 52862, "large language model specialized": 51538, "extractive question answering qa": 33351, "success field natural language": 92198, "empowered large language models": 28498, "gpt35 gpt4 opensource llms": 39619, "findings reveal opensource llms": 34740, "reveal opensource llms finetuned": 84166, "publicly available large language": 77981, "available large language models": 9062, "models zeroshot fewshot settings": 64564, "parameters achieve comparable performance": 70167, "language models study compares": 50836, "models llms hold promise": 63224, "training validation testing sets": 98349, "automatic human evaluations demonstrate": 8794, "models like chatgpt research": 62911, "rankers large language models": 79260, "generaldomain large language models": 37207, "language models llms offers": 50355, "language models transformer models": 50883, "chemistry large language models": 14507, "language models llms dynamic": 50177, "evaluate effectiveness proposed methods": 30176, "conduct automatic human evaluation": 17829, "various nlp tasks potential": 102508, "remains largely unexplored study": 81673, "models medical report generation": 63600, "models llms demonstrated promising": 63080, "large language models mitigate": 52060, "retrievalaugmented large language models": 84054, "retrievalaugmented generation rag methods": 84043, "integrated large language models": 46690, "research underscores potential llms": 82815, "retrieval augmented generation large": 83965, "augmented generation large language": 8571, "purpose large language models": 78044, "data using large language": 21737, "recently developed large language": 80474, "promise various domains including": 76139, "medical licensing exam usmle": 58902, "openais gpt4 googles palm": 68212, "aiassisted medical education decision": 4621, "language model llm artificial": 49452, "model llm artificial intelligence": 61081, "significantly outperforms established baseline": 87994, "models llms achieved stateoftheart": 62978, "llms achieved stateoftheart performance": 55434, "code model weights datasets": 15407, "performance multiple natural language": 71417, "language models llms field": 50221, "advanced language models chatgpt": 3704, "machine learning models created": 57710, "chinese large language model": 14557, "models llms gained popularity": 63174, "explore chain thought cot": 32652, "chain thought cot reasoning": 12806, "domainadapted large language models": 26475, "paves way future research": 70653, "wide range tasks models": 103693, "model achieved best performance": 60488, "using different prompting techniques": 101412, "humangenerated data synthetic data": 42491, "leveraging pretrained large language": 53893, "impressive performance wide variety": 43636, "capability large pretrained language models": 12185, "machine learning models large language": 57712, "natural language processing nlp field": 65670, "language models llm chatgpt gpt4": 50059, "natural language processing nlp offers": 65679, "results natural language processing nlp": 83741, "large language models llms gain": 51870, "language models llms gain popularity": 50230, "effectiveness various generaldomain natural language": 27594, "language models llms shown perform": 50443, "large language models llms successfully": 52014, "language models llms successfully applied": 50475, "machine learning natural language processing": 57719, "using large pretrained language models": 101558, "large pretrained language models large": 52315, "pretrained language models large pretrained": 74320, "growing using large language models": 40675, "large language models llms healthcare": 51888, "models llms significant advancements natural": 63445, "llms significant advancements natural language": 56800, "language models llms shown potential": 50444, "extraction document classification question answering": 33293, "address issue parameterefficient finetuning peft": 3427, "language models llms gpt4 demonstrated": 50261, "models llms chatgpt shown remarkable": 63040, "llms chatgpt shown remarkable success": 55615, "large language models mental health": 52058, "zeroshot learning natural language processing": 104814, "language reasoning capabilities large language": 51082, "models llms achieved remarkable breakthroughs": 62975, "language models llms based transformer": 50095, "models llms based transformer architecture": 62999, "explore large language models llms": 32700, "benchmark chinese large language models": 10091, "large language models llms follow": 51868, "language models llms follow natural": 50227, "models llms follow natural language": 63168, "llms follow natural language instructions": 56002, "popular large language model chatgpt": 72639, "large language model llm develop": 51498, "models llms shown remarkable capabilities": 63435, "large language models text simplification": 52199, "external knowledge bases large language": 33191, "knowledge bases large language models": 48449, "bases large language models llms": 9870, "new large language models llms": 66442, "integrating large language models llms": 46730, "based large language model llm": 9596, "framework leveraging large language models": 36201, "artificial intelligence ai chatbots chatgpt": 7598, "pretrained language model plm t5": 74289, "enhance performance large language models": 29195, "leading llms including gpt4 gpt35": 52863, "leverages large language models llms": 53800, "success field natural language processing": 92199, "large language model specifically designed": 51540, "findings reveal opensource llms finetuned": 34741, "publicly available large language models": 77982, "background large language models llms": 9271, "language models llms hold promise": 50274, "large language models llms offers": 51943, "chemistry large language models llms": 14508, "large language models llms dynamic": 51835, "efficacy large language models llms": 27643, "language models llms demonstrated promising": 50155, "role large language models llms": 84790, "impact large language models llms": 43223, "prompting large language models zeroshot": 76562, "retrieval augmented generation large language": 83966, "augmented generation large language models": 8572, "purpose large language models llms": 78045, "large language model llm artificial": 51494, "language model llm artificial intelligence": 49453, "language models llms achieved stateoftheart": 50077, "models llms achieved stateoftheart performance": 62979, "large language models llms field": 51864, "language models llms gained popularity": 50233, "leveraging pretrained large language models": 53894, "pretrained language models plms based": 74339, "multimode": 65118, "248": 641, "nearhuman": 65848, "codewriting": 15653, "montecarlo": 64731, "bloated": 11194, "javascript": 48126, "obviate": 67691, "vegalite": 102710, "pop": 72610, "decompilation": 22683, "projectspecific": 76071, "functionlevel": 36520, "texttocode": 96618, "testdriven": 95967, "declare": 22620, "codeql": 15615, "postprocess": 72955, "sequencebased": 86672, "drawback": 26802, "2154": 597, "codetocode": 15651, "nlcode": 66681, "harvested": 41103, "12b": 251, "smells": 88822, "copilots": 19517, "tester": 95988, "codegen2": 15602, "prefixlm": 73847, "largebatch": 52396, "intelligenceai": 46908, "fabricating": 33430, "port": 72716, "4000": 912, "lowcode": 57539, "275": 690, "fsl": 36418, "cleansing": 14877, "cuda": 20575, "julia": 48202, "ios": 47882, "handcraft": 40904, "symmetry": 93140, "equivariant": 29714, "resembles": 82902, "finger": 35299, "semisynthetic": 86427, "commented": 16065, "leaks": 52922, "derivative": 23642, "integrations": 46784, "specializations": 89614, "mastered": 58478, "typescript": 99276, "handengineered": 40911, "600x": 1119, "machinelearned": 57776, "intensively": 46951, "608": 1122, "438": 953, "285": 702, "oversimplified": 69424, "unattained": 99369, "bugfixing": 11560, "prioritized": 74879, "931": 1427, "ptm": 77899, "habits": 40793, "finish": 35302, "bugfree": 11561, "binaries": 11048, "130b": 268, "locus": 57232, "freezes": 36363, "oop": 68034, "fp": 35993, "431": 948, "happy": 40967, "halting": 40887, "alan": 4879, "graphcodebert": 40419, "unixcoder": 100135, "allocates": 5151, "fillintheblank": 34465, "invalidating": 47591, "restructuring": 83382, "roguel": 84752, "structuredness": 91188, "unmet": 100209, "subsumed": 92160, "constraintbased": 18389, "soup": 89337, "762": 1257, "notebooks": 67052, "decompiling": 22684, "rotary": 84850, "567": 1085, "code contexts": 15171, "work high": 104115, "models lightweight": 62900, "feature combinations": 33961, "methods natural": 59734, "language documentation": 49193, "style present": 91911, "26 million": 671, "syntactically correct": 93188, "perform code": 70833, "achieving bleu": 2836, "sequencetosequence baseline": 86691, "related code": 81186, "generation difficult": 38122, "assess code": 7835, "meet challenge": 58960, "apps benchmark": 7287, "code similar": 15505, "models gptneo": 62626, "problems machine": 75167, "models beginning": 61909, "code introduce": 15369, "working solutions": 104334, "difficult prompts": 25306, "investigation model": 47793, "model reveals": 61362, "including difficulty": 44327, "powerful code": 73429, "generation technologies": 38463, "model automatic": 60579, "walks life": 103298, "ai generating": 4417, "generating output": 37946, "algorithm using": 4939, "simulation methods": 88328, "aibased text": 4632, "support evaluation": 92807, "nl description": 66680, "nlp metrics": 66748, "metrics applied": 59879, "acceptable quality": 2044, "augmented model": 8581, "largest publicly": 52603, "ensemble models": 29424, "use codex": 100508, "generate entire": 37441, "automatic program": 8813, "standard program": 90199, "synthesis benchmark": 93205, "achieved results": 2662, "addition discuss": 3181, "readability usability": 79502, "automatically repairing": 8893, "challenges leveraging": 13058, "fit examples": 35338, "examples queries": 31278, "results mixed": 83728, "conflict resolution": 18052, "symbolic approaches": 93120, "benefits finetuning": 10470, "finetuning neural": 35155, "sufficient data": 92334, "design special": 23848, "constraints semantic": 18408, "constraints introduce": 18399, "variable function": 102239, "function names": 36490, "process reduces": 75388, "practical usability": 73536, "improving reliability": 44152, "method semantic": 59419, "utterances similar": 102057, "similar target": 88114, "examples pretrained": 31270, "methods synthesizing": 59814, "languages sql": 51361, "framework characterize": 36062, "characterize performance": 13341, "extensive quantitative": 33122, "llms ready": 56635, "program test": 75852, "information automatic": 45410, "mainstream approach": 57859, "testing essential": 96005, "syntax compliance": 93192, "code ignoring": 15352, "requirements paper": 82349, "information iteratively": 45519, "previous evaluation": 74674, "completing code": 16891, "opensource existing": 68331, "achieve close": 2490, "parameters based": 70178, "opensource publicly": 68401, "questions findings": 78854, "consists human": 18331, "human synthesized": 42387, "summaries long": 92504, "long complicated": 57300, "results codex": 83501, "terms strict": 95841, "strict accuracy": 90977, "accuracy analysis": 2202, "stateoftheart program": 90457, "paradigm program": 70050, "prompts analysis": 76650, "make training": 58036, "transformerbased program": 98592, "issues using": 48021, "attributes types": 8459, "types information": 99241, "data order": 21457, "tasks giving": 94676, "quality reduce": 78344, "reduce errors": 80774, "learning allow": 53026, "different tools": 25230, "simply providing": 88298, "extent stateoftheart": 33173, "traditional tools": 97711, "oracle generation": 68675, "task compare": 93977, "built tool": 11676, "tools provide": 97461, "improve predictions": 43775, "diverse ways": 26130, "tasks instances": 94756, "instances llms": 46227, "execution small": 31462, "development paper": 24689, "tasks great": 94685, "code particularly": 15433, "adopted widely": 3620, "popular open": 72663, "modeling sentiment": 61678, "result paper": 83400, "tool provides": 97308, "provides unique": 77716, "texttocode generation": 96619, "solutions given": 89143, "description train": 23690, "using twostage": 101830, "pairs natural": 69509, "continuous integration": 19027, "equivalent better": 29708, "window training": 103833, "interactive code": 47092, "code suggestions": 15523, "semantics paper": 86393, "codex llm": 15673, "popularity using": 72707, "allow explore": 5161, "language frequency": 49230, "languages empirical": 51263, "programming ai": 75875, "expressed concerns": 32906, "generated codes": 37680, "average maximum": 9165, "code terms": 15538, "terms execution": 95814, "queries code": 78475, "developers questions": 24559, "answering requires": 6152, "question identify": 78678, "identify code": 42853, "answers code": 6174, "singlehop multihop": 88416, "assess value": 7881, "style model": 91909, "used models": 100855, "exploration specifically": 32602, "post processing": 72933, "processing approaches": 75458, "code including": 15357, "agreement dataset": 4279, "novel practical": 67227, "code satisfies": 15493, "language pl": 50955, "design algorithm": 23747, "module integrate": 64665, "state prediction": 90278, "joint prediction": 48156, "prediction state": 73721, "working programming": 104332, "speak different": 89588, "pl nl": 72213, "texttotext generation": 96640, "advantage zeroshot": 3932, "generation extend": 38160, "realistic settings": 79572, "nlcode pairs": 66682, "humanwritten test": 42676, "supports natural": 92869, "behavioral differences": 9996, "cases generating": 12529, "functions standard": 36525, "thirdparty libraries": 96813, "semantics code": 86379, "design environment": 23776, "environment based": 29613, "optimization prompting": 68616, "gpt35 surpassing": 39672, "generation particularly": 38321, "promising strategy": 76204, "networks way": 66210, "structured prediction": 91175, "small fraction": 88677, "exponentially large": 32889, "set prediction": 86917, "programs programs": 75959, "programs correct": 75945, "parts generated": 70526, "converse effectively": 19434, "given llm": 38910, "engineering apply": 28945, "second presents": 85946, "multiple patterns": 65236, "human average": 42105, "challenges possible": 13098, "engineering require": 29015, "follow language": 35649, "completion tools": 16905, "checking abstract": 14482, "taxonomy chatgpt": 95317, "design techniques": 23858, "techniques software": 95592, "api implemented": 6271, "rapid prototyping": 79335, "code making": 15398, "parameters code": 70183, "code key": 15370, "requirement understanding": 82332, "preliminary test": 73882, "content algorithms": 18588, "evaluate public": 30270, "13b different": 291, "content artificial": 18593, "aigc garnered": 4658, "garnered considerable": 37008, "including software": 44477, "development maintenance": 24675, "misuse chatgpt": 60238, "performance coderelated": 71063, "evaluating existing": 30420, "popular software": 72684, "development humans": 24654, "humans usually": 42652, "software quality": 89028, "generation employing": 38134, "intervention effectively": 47339, "relatively improves": 81312, "gpt4 showcase": 40073, "potentially enable": 73337, "efficiently handle": 27852, "long code": 57298, "observed language": 67617, "modeling long": 61651, "solution use": 89124, "process approach": 75272, "text consistent": 96144, "technique applied": 95434, "applied code": 6602, "proposed encoder": 77197, "validity code": 102137, "code correctness": 15176, "correctness code": 19729, "reliability code": 81491, "strengths shortcomings": 90963, "respectively comparison": 83061, "minutes chatgpt": 60145, "selecting optimal": 86145, "llm useful": 55305, "repair code": 81890, "investigates chatgpts": 47736, "original intention": 68786, "interesting insights": 47154, "llms programming": 56585, "providing better": 77737, "understanding chatgpts": 99690, "demonstrate ai": 23013, "using current": 101393, "established metrics": 29988, "programming natural": 75921, "learning program": 53353, "upper bounds": 100377, "failures successes": 33722, "provide final": 77476, "16b parameters": 384, "use api": 100472, "tools automatically": 97363, "largescale code": 52496, "appropriate apis": 7236, "developers using": 24566, "tools existing": 97400, "gpt35 highlighting": 39632, "language semantics": 51096, "enhance semantic": 29212, "learning generalization": 53175, "llm supports": 55278, "pass1 humaneval": 70537, "including improved": 44388, "improving chatgpt": 44100, "based requirements": 9698, "inputs prompts": 46006, "evaluates capability": 30374, "code given": 15346, "platform provides": 72308, "study underlines": 91871, "approach transformers": 7065, "addressing need": 3551, "automatic parallelization": 8812, "based transformerbased": 9742, "exploits inherent": 32583, "inherent structure": 45744, "chatgpt targeted": 14297, "insights derived": 46073, "risk control": 84493, "artificial intelligenceai": 7673, "gpt35 starcoder": 39668, "demonstrating initial": 23434, "static code": 90532, "susceptible hallucinations": 93072, "provides initial": 77676, "legacy code": 53549, "generate readable": 37567, "portability furthermore": 72718, "based sequencetosequence": 9716, "realworld code": 79654, "code evaluate": 15243, "unknown llms": 100138, "languages programming": 51345, "analyze control": 5749, "tested prompts": 95984, "minimal coding": 60084, "parallel recent": 70085, "chatgpt greatly": 13919, "easy access": 27029, "implementing ml": 43356, "ml pipelines": 60372, "75 tasks": 1247, "shows ai": 87563, "users discover": 101096, "power ai": 73364, "increase future": 44763, "proposed augment": 77187, "twostep pipeline": 99195, "llm act": 54941, "code achieved": 15116, "error message": 29786, "baselines significant": 9851, "promptingbased methods": 76639, "software specifications": 89032, "ensuring reliability": 29486, "reliability software": 81509, "applied numerous": 6625, "automating process": 8914, "learning fsl": 53170, "prompt construction": 76262, "symbolic execution": 93121, "input code": 45881, "idea guide": 42786, "pretrained extensive": 74255, "producing inaccurate": 75715, "effect pronounced": 27251, "work extend": 104090, "idea propose": 42787, "closely match": 15027, "java repositories": 48125, "making available": 58083, "technical level": 95409, "technique employs": 95445, "authorship attribution": 8633, "attribution tasks": 8465, "utilization natural": 101919, "defect detection": 22836, "opportunities associated": 68486, "associated incorporating": 8086, "training machine": 98187, "code similarity": 15506, "similarity test": 88152, "codebleu scores": 15585, "potential dataset": 73067, "ai results": 4536, "humanwritten aigenerated": 42663, "openai text": 68179, "helps boost": 41306, "classification performances": 14771, "issues quality": 48014, "roadmap future": 84591, "patterns code": 70623, "features code": 33989, "facilitated prompt": 33517, "effectiveness utilizing": 27590, "utilizing nlp": 102038, "inherently lack": 45750, "code framework": 15262, "code specifically": 15516, "user involvement": 101006, "retrieval process": 84008, "support comprehensive": 92796, "numerous experiments": 67424, "tasks approximately": 94378, "approximately 500": 7271, "following main": 35687, "coding ability": 15687, "gpt35 exhibit": 39595, "generating entire": 37896, "generation strategy": 38431, "strategy best": 90864, "ability understanding": 1791, "enables precise": 28609, "variant selfattention": 102251, "closely resembles": 15034, "reached level": 79474, "handle novel": 40931, "2022 gained": 539, "model creating": 60724, "research major": 82665, "unexpected behaviors": 99958, "areas development": 7438, "developer productivity": 24540, "assessment code": 7943, "recent popular": 80306, "snippets generated": 88835, "critical aspects": 20307, "engage multiround": 28907, "findings uncover": 34764, "uncover potential": 99424, "instructions leads": 46531, "improvements natural": 43980, "changes human": 13291, "code repair": 15474, "practice code": 73545, "represented training": 82168, "semisynthetic data": 86428, "low test": 57537, "test coverage": 95881, "benchmarks multiple": 10386, "shown extraordinary": 87459, "language generating": 49234, "practice software": 73553, "reliability robustness": 81507, "reliable robust": 81526, "lead severe": 52819, "vulnerable code": 103281, "llms facilitates": 55965, "applied realworld": 6630, "code evaluation": 15245, "coding interviews": 15704, "cause unexpected": 12692, "unexpected consequences": 99959, "products like": 75749, "evaluation optimization": 30701, "systematic research": 93346, "application evaluation": 6351, "aiming answer": 4760, "effectively handle": 27435, "reviewed current": 84281, "llms perspective": 56518, "tasks hoping": 94701, "papers evaluation": 69999, "evaluation content": 30555, "address code": 3377, "bleu codebleu": 11167, "research largely": 82654, "performance illustrate": 71295, "chatgpts generative": 14432, "study showcase": 91837, "offer interpretable": 67750, "support large": 92813, "contexts zeroshot": 18929, "inputs 100k": 45982, "100k tokens": 152, "reaches stateoftheart": 79479, "code benchmarks": 15142, "7b outperforms": 1297, "robustness issues": 84723, "slightly different": 88637, "critical code": 20311, "systems significant": 93572, "code existing": 15250, "issues limited": 47999, "test robustness": 95932, "original code": 68763, "code robust": 15490, "commercial tools": 16097, "increasing need": 44842, "modeling overall": 61663, "overall coverage": 69286, "applied evaluate": 6609, "furthermore finetuned": 36618, "contain specific": 18521, "able increase": 1859, "llms numerous": 56439, "dataset focusing": 21949, "code correction": 15174, "tests llms": 96050, "capabilities achieving": 11820, "llms promoting": 56591, "development growth": 24651, "gpt3 llms": 39492, "llms hpc": 56144, "assembly code": 7811, "lowlevel control": 57589, "analyze existing": 5760, "program translation": 75853, "struggle scale": 91226, "code appropriate": 15127, "information features": 45480, "different test": 25226, "gpt4 competitive": 39803, "study findings": 91638, "generating design": 37888, "specific method": 89725, "resolve problem": 82940, "feasible using": 33953, "data modality": 21413, "tasks remain": 95033, "ability modern": 1723, "utilizing structure": 102046, "models working": 64552, "fully utilize": 36477, "utility dataset": 101891, "process dataset": 75291, "focus single": 35554, "variety programming": 102321, "consists novel": 18341, "datasets investigate": 22305, "thorough analyses": 96819, "properties models": 76904, "quality synthesized": 78369, "code errors": 15242, "limitations handling": 54330, "holds considerable": 41898, "focusing refining": 35632, "exploring ways": 32878, "work observe": 104187, "capable synthesizing": 12265, "reranking approach": 82455, "approach generated": 6871, "improves ranking": 44065, "notable reduction": 67020, "code experimental": 15251, "paper available": 69620, "research example": 82585, "examples positive": 31266, "285 274": 703, "performing code": 71777, "generate targeted": 37616, "participants use": 70378, "furthermore perform": 36645, "user participation": 101016, "simulation method": 88327, "simulate user": 88310, "effectively facilitate": 27428, "context prompt": 18828, "capability code": 12151, "contexts software": 18925, "reference implementation": 80932, "description target": 23688, "decoderonly llm": 22651, "recent focus": 80261, "gating network": 37032, "finetuning specifically": 35259, "strategy use": 90925, "encompasses variety": 28760, "evolution deep": 31019, "scarcity work": 85385, "llms edit": 55825, "designed adapt": 23869, "adapt llms": 3047, "optimization code": 68589, "covers multiple": 20097, "process starts": 75404, "promise pitfalls": 76130, "pitfalls chatgpt": 72187, "code samples": 15492, "meticulous manual": 59849, "metrics key": 59936, "accuracy suggesting": 2368, "valuable contributions": 102147, "dataset methodology": 22002, "offer robust": 67769, "robust foundation": 84655, "unparalleled prowess": 100219, "generation processing": 38344, "myriad applications": 65441, "benefit llms": 10454, "reports results": 82014, "impact accuracy": 43187, "accuracy time": 2376, "code benchmark": 15141, "study lays": 91727, "groundwork research": 40604, "implications utilizing": 43406, "testdriven development": 95968, "capabilities field": 11905, "model ptm": 61301, "codet5 plbart": 15650, "prediction function": 73692, "aspects experimental": 7769, "embeddings obtained": 28089, "promising area": 76150, "evaluating diverse": 30413, "presented incontext": 74093, "learning novel": 53305, "demonstrations overall": 23480, "scratch work": 85810, "setup llms": 87108, "notable machine": 67011, "task necessitates": 94157, "documents understanding": 26269, "challenges notably": 13081, "effectively navigate": 27460, "results improvements": 83662, "improvements code": 43964, "writing secure": 104493, "users learn": 101134, "learn write": 52974, "reduction average": 80899, "programs semantically": 75961, "task showing": 94239, "prediction designed": 73688, "acquire broad": 2902, "generating domainspecific": 37893, "knowledge prompts": 48719, "incorporate api": 44662, "process experiment": 75309, "finetuning refer": 35214, "significantly closes": 87898, "using abundant": 101282, "manual writing": 58285, "parameters generate": 70221, "parameters empirically": 70204, "method advantage": 59197, "findings design": 34658, "boost various": 11283, "applications novel": 6533, "approach rapid": 6996, "stands powerful": 90238, "modern software": 64622, "improvement em": 43902, "approach llm": 6938, "source python": 89391, "gpt3 natural": 39501, "applied wellknown": 6641, "wellknown open": 103600, "interactive use": 47119, "significant factor": 87751, "source libraries": 89386, "study robust": 91821, "fields software": 34444, "engineering researchers": 29017, "instruction prompting": 46353, "users professional": 101161, "finetuning requires": 35225, "novel prompt": 67230, "guidance llms": 40723, "prompting schemes": 76605, "summaries compared": 92493, "simple sequences": 88236, "encoderdecoder transformer": 28731, "points exact": 72498, "match score": 58498, "create future": 20163, "second evaluate": 85929, "finetuning schemes": 35238, "setup gpt4": 87107, "achieves pass1": 2767, "llama 34b": 54712, "model close": 60657, "consistent gpt4": 18260, "capabilities areas": 11837, "collaboration developers": 15820, "extensive studies": 33129, "metrics llms": 59945, "evaluated humans": 30342, "small changes": 88668, "objectoriented programming": 67533, "advancing automated": 3903, "programming oop": 75922, "benchmark featuring": 10169, "enhancing traditional": 29374, "llms oop": 56449, "benchmark highlights": 10186, "need improvements": 65960, "attention numerous": 8354, "gpt4 accuracy": 39742, "complexity given": 17039, "alan turing": 4880, "codes challenging": 15623, "challenging analyze": 13148, "java codes": 48120, "python codes": 78098, "subsequently present": 92031, "experiments employing": 32183, "codebert graphcodebert": 15582, "codet5 chatgpt": 15649, "leveraging recent": 53896, "massive size": 58468, "hindering widespread": 41839, "minimal computation": 60085, "inference context": 45230, "inference capabilities": 45218, "layers model": 52753, "enhance decisionmaking": 29151, "novel dynamic": 67149, "aims produce": 4821, "restricted extensive": 83372, "code corpus": 15173, "fillintheblank task": 34466, "codex gpt35": 15666, "chatgpt technical": 14302, "template second": 95691, "library versions": 53957, "latest breakthroughs": 52657, "review code": 84249, "study analyze": 91490, "analyze code": 5746, "chatgpt method": 14012, "constraints used": 18409, "global view": 39019, "learns small": 53505, "domains datasets": 26508, "accuracy predicting": 2332, "accuracy increases": 2295, "domains analysis": 26486, "rulebased retrievalbased": 84932, "based code": 9470, "chatgpt previous": 14104, "data goal": 21276, "graph developed": 40375, "code differences": 15229, "comparable terms": 16411, "approach popular": 6975, "metrics respectively": 59962, "results metrics": 83725, "apply proposed": 6672, "review summarization": 84277, "models vital": 64515, "generating efficient": 37895, "average worst": 9186, "automated generation": 8700, "comprising pairs": 17403, "evaluation additionally": 30503, "analyze effectiveness": 5757, "generating program": 37955, "levels difficulty": 53694, "evaluation takes": 30805, "input chatgpt": 45880, "average time": 9182, "attributes including": 8455, "including accuracy": 44266, "investigating utility": 47779, "tracking systems": 97629, "systems serve": 93570, "serve primary": 86773, "meet users": 58968, "challenge identifying": 12884, "identifying best": 42915, "lack study": 49056, "chatgpt integrated": 13959, "design plays": 23824, "utility performance": 101898, "instructions lead": 46529, "improve relevance": 43793, "chatgpt exploration": 13794, "exploration enhance": 32590, "prompts single": 76822, "optimal prompts": 68569, "llms gemini": 56033, "contract code": 19049, "multimodal prompts": 65097, "scores better": 85751, "desired task": 24012, "state machine": 90277, "synthesis technique": 93219, "data algorithms": 20962, "conversations large": 19422, "gained widespread": 36845, "program comprehension": 75833, "chatgpt related": 14163, "understand developers": 99604, "relies text": 81559, "contribute broader": 19119, "broader understanding": 11523, "understanding collaboration": 99694, "tool development": 97282, "practices software": 73568, "methods empirical": 59614, "aibased code": 4627, "promising tools": 76207, "processing interact": 75492, "developers suggesting": 24562, "snippets method": 88836, "considering variety": 18221, "productivity improve": 75743, "need scale": 65991, "message passing": 59120, "remained unexplored": 81641, "models subsequently": 64285, "accuracy argument": 2207, "importance domainspecific": 43450, "sources work": 89426, "required work": 82327, "low recall": 57530, "precision paper": 73613, "method augments": 59213, "method reducing": 59407, "context augmentation": 18730, "augmentation knowledge": 8535, "support developers": 92800, "evaluations research": 30881, "understanding effectively": 99720, "effectively llms": 27453, "analysis conversations": 5472, "practice using": 73556, "concepts providing": 17633, "training widely": 98352, "generalizing large": 37315, "construct knowledge": 18425, "execution feedback": 31456, "strategy iteratively": 90899, "frequently updated": 36384, "execution based": 31452, "understanding query": 99850, "query resolution": 78541, "future scenarios": 36780, "generation opensource": 38309, "latest gpt": 52668, "using latest": 101562, "gpt4 advance": 39757, "improved stateoftheart": 43860, "models 3b": 61715, "llm benchmarks": 54987, "terms providing": 95832, "tools effectiveness": 97393, "mainly consider": 57846, "largely ignore": 52408, "tokens source": 97232, "dataset considers": 21875, "importance evaluating": 43455, "representation llms": 82064, "knowledge accurately": 48410, "transform different": 98457, "schema information": 85517, "twophase learning": 99171, "code pretraining": 15440, "constructed data": 18443, "baselines zeroshot": 9861, "benchmark evaluates": 10153, "unit testing": 100098, "languages domains": 51261, "including gpt4turbo": 44373, "programming concepts": 75891, "technique empowers": 95446, "model autonomously": 60581, "solution plans": 89105, "generate programming": 37558, "rotary positional": 84851, "highquality pretraining": 41782, "500 billion": 1024, "indicate model": 45007, "role fostering": 84775, "agents emulate": 4185, "specific roles": 89748, "communication patterns": 16278, "utilizing gpt35": 102019, "gpt35 underlying": 39679, "design code": 23762, "temperature values": 95686, "api usage": 6283, "llms ways": 57042, "puts forward": 78081, "fixes identified": 35364, "code repository": 15478, "gpt35turbo code": 39698, "processing code": 75466, "attention launch": 8330, "applied powerful": 6626, "chatgpt application": 13527, "10 topics": 120, "texts compared": 96550, "number projects": 67370, "findings discuss": 34660, "largescale deep learning": 52508, "natural language documentation": 65571, "model code generation": 60663, "meet challenge introduce": 58961, "problems machine learning": 75168, "quality generated code": 78277, "largest publicly available": 52604, "program synthesis benchmark": 75847, "genetic programming approaches": 38764, "learning large neural": 53242, "leveraging language models": 53860, "finetuning neural models": 35156, "code generation automatic": 15282, "variable function names": 102240, "process reduces computational": 75389, "reduces computational requirements": 80829, "code generation pretrained": 15322, "models used generate": 64465, "using gpt3 codex": 101486, "languages sql queries": 51362, "language model set": 49542, "generated code ignoring": 37677, "proposes new evaluation": 77276, "new evaluation metric": 66397, "test generated code": 95894, "proposed method effectively": 77223, "models code large": 62018, "natural language modeling": 65622, "based gpt2 architecture": 9554, "opensource publicly available": 68402, "success large pretrained": 92215, "terms strict accuracy": 95842, "advancements large pretrained": 3834, "large pretrained transformer": 52324, "test oracle generation": 95921, "llms generate correct": 56048, "development paper propose": 24690, "llms gpt3 codex": 56083, "surpass stateoftheart models": 92916, "decoderonly language model": 22645, "pairs natural language": 69510, "context window training": 18878, "openai codex llm": 68149, "generation models generate": 38280, "code generation benchmark": 15284, "stateoftheart code generation": 90324, "time memory usage": 96996, "programming language pl": 75907, "code generation framework": 15299, "models llms release": 63393, "humanwritten test cases": 42677, "model outperforms previous": 61187, "generation generative pretrained": 38182, "propose benchmark named": 76943, "demonstrated strong capabilities": 23344, "fewshot prompting chainofthought": 34291, "trained code generation": 97806, "generated output prompts": 37747, "prompt engineering apply": 76288, "automate software development": 8667, "code completion tools": 15165, "techniques software engineering": 95593, "code generation translation": 15341, "opensourced code model": 68418, "new prompting technique": 66504, "content aigc garnered": 18587, "garnered considerable attention": 37009, "impressive performance chatgpt": 43613, "highquality responses various": 41788, "applications including software": 6500, "including software development": 44478, "software development maintenance": 88989, "potential misuse chatgpt": 73195, "conducted human study": 17969, "code generation chatgpt": 15287, "software development humans": 88987, "tackle complex tasks": 93720, "exemplified chatgpt specifically": 31478, "need human intervention": 65956, "complex realworld tasks": 16988, "language modeling long": 49585, "modeling long text": 61652, "code correctness code": 15177, "various tasks paper": 102600, "tasks paper present": 94928, "generation program repair": 38348, "program repair code": 75843, "study investigates chatgpts": 91706, "study shows chatgpt": 91845, "future work build": 36791, "ai tools based": 4586, "report experiments using": 81974, "largescale code generation": 52497, "code data finetune": 15185, "code pretrained models": 15439, "generating humanlike responses": 37925, "responses wide range": 83330, "paper evaluates capability": 69699, "code analysis large": 15122, "study evaluate capabilities": 91605, "comprehend code syntax": 17126, "foundational models gpt4": 35983, "static code analysis": 90533, "like chatgpt greatly": 54083, "source code paper": 89358, "code paper explores": 15432, "explores use large": 32824, "source code analysis": 89344, "machine learning artificial": 57694, "various methods proposed": 102483, "challenges propose novel": 13108, "strong baselines significant": 91011, "reliability software systems": 81510, "successfully applied numerous": 92270, "empirical study evaluate": 28356, "lack domain knowledge": 49001, "reinforcement learning feedback": 81148, "performance coderelated tasks": 71064, "contributions research include": 19187, "utilization natural language": 101920, "including code generation": 44303, "challenges opportunities associated": 13085, "study present novel": 91781, "present novel dataset": 74022, "training machine learning": 98188, "chatgpt gained popularity": 13840, "empirical study investigate": 28358, "study investigate feasibility": 91693, "programs generated chatgpt": 75948, "valuable insights current": 102155, "roadmap future research": 84592, "facilitated prompt engineering": 33518, "despite remarkable capabilities": 24115, "llms inherently lack": 56226, "code generation based": 15283, "following main findings": 35688, "models limited ability": 62937, "understanding long instructions": 99809, "program analysis tasks": 75830, "study code generation": 91523, "using chatgpt 35": 101334, "training using large": 98346, "released openai november": 81411, "november 2022 gained": 67296, "encompasses comprehensive analysis": 28756, "code snippets generated": 15510, "chatgpts ability engage": 14420, "findings uncover potential": 34765, "improvements natural language": 43981, "represented training data": 82169, "training data lowresource": 98032, "natural language generating": 65581, "products like chatgpt": 75750, "paper comprehensively investigate": 69637, "shown llms effectively": 87502, "metrics bleu codebleu": 59890, "llms performance existing": 56513, "results case study": 83484, "case study demonstrate": 12480, "inputs 100k tokens": 45983, "code llama code": 15390, "7b outperforms llama": 1298, "code based natural": 15139, "topic modeling overall": 97514, "understanding commonsense reasoning": 99696, "widely used llms": 103739, "compared human performance": 16569, "model shows competitive": 61402, "different test sets": 25227, "particularly openais chatgpt": 70489, "code programming language": 15446, "variety programming languages": 102322, "deep learning code": 22763, "explore ability llms": 32630, "generated test cases": 37795, "work inspire research": 104134, "contrastive learning objective": 19105, "human evaluation involving": 42179, "generation publicly available": 38366, "code completion tasks": 15164, "extensive experiments stateoftheart": 33086, "paper explore application": 69708, "enhance training efficiency": 29217, "evolution deep learning": 31020, "data scarcity work": 21594, "explore use large": 32755, "instructiontuning dataset designed": 46613, "designed adapt llms": 23870, "generation capabilities chatgpt": 38056, "robust foundation future": 84656, "data codes available": 21063, "paper reports results": 69936, "study lays groundwork": 91728, "lays groundwork research": 52783, "study pretrained language": 91785, "pretrained model ptm": 74394, "classification tasks code": 14802, "tasks code vulnerability": 94448, "vulnerability detection code": 103271, "aspects experimental results": 7770, "notable machine learning": 67012, "built gpt4 results": 11665, "fewshot examples llm": 34235, "qualitative evaluation shows": 78195, "llms pretrained code": 56560, "binary code similarity": 11054, "language models domainspecific": 49798, "code generation approach": 15278, "significantly closes gap": 87899, "synthetic data generated": 93263, "improve performance code": 43746, "potential llms software": 73183, "software engineering applications": 88999, "applications novel approach": 6534, "potential automatic code": 73029, "code generation existing": 15297, "evaluating generated code": 30426, "open source python": 68127, "case studies applied": 12471, "providing detailed description": 77742, "open source libraries": 68122, "models llms numerous": 63322, "fields software engineering": 34445, "software engineering researchers": 89005, "novel prompt learning": 67231, "widely used metrics": 103740, "points exact match": 72499, "exact match score": 31069, "improve performance benchmark": 43745, "open closed source": 68054, "capabilities areas improvement": 11838, "llms llama chatgpt": 56339, "capability llms large": 12190, "generation software testing": 38423, "test ability llms": 95862, "case study popular": 12490, "study popular llms": 91774, "objectoriented programming oop": 67534, "stateoftheart neural models": 90422, "leveraging recent advancements": 53897, "models demonstrated capability": 62183, "massive size poses": 58469, "terms computational costs": 95801, "hindering widespread adoption": 41840, "utilizes llm chatgpt": 101994, "prompt template second": 76431, "latest breakthroughs large": 52658, "code review code": 15488, "domains analysis reveals": 26487, "goal assess extent": 39043, "able outperform previous": 1868, "generation approaches proposed": 38037, "generation novel approach": 38303, "novel approach captures": 67091, "like code review": 54111, "automatically generated code": 8873, "language models 13": 49606, "using chatgpt generate": 101345, "automatic program repair": 8814, "study aims examine": 91484, "prompt design plays": 76276, "models ability extract": 61729, "finite state machine": 35308, "conversations large language": 19423, "gained widespread popularity": 36846, "engineering tasks including": 29028, "findings contribute broader": 34649, "aibased code assistants": 4628, "language processing interact": 50987, "unexplored study investigates": 99970, "performance stateoftheart language": 71592, "widely used models": 103741, "notable performance degradation": 67017, "zeroshot performance using": 104844, "paving way new": 70660, "empirical findings indicate": 28328, "generalizing large language": 37316, "new benchmark comprising": 66345, "models llms development": 63100, "tasks including code": 94724, "designed evaluate performance": 23908, "used language model": 100835, "competitive performance zeroshot": 16815, "llms ranging 1b": 56629, "structured knowledge llms": 91171, "baselines zeroshot setting": 9862, "achieves significant improvements": 2784, "benchmark evaluates llms": 10154, "future development llms": 36709, "models paper propose": 63761, "multitask learning approach": 65360, "rotary positional embedding": 84852, "highquality pretraining data": 41783, "500 billion tokens": 1025, "capabilities code comprehension": 11857, "software engineering practices": 89002, "gpt35 underlying llm": 39680, "analysis reveals distinct": 5651, "powerful capabilities natural": 73424, "language processing code": 50974, "based findings discuss": 9535, "deep learning models trained": 22773, "modern machine learning models": 64610, "large language models github": 51707, "pretrained language models used": 74355, "process reduces computational requirements": 75390, "transformer based language models": 98492, "paper proposes new evaluation": 69912, "proposes new evaluation metric": 77277, "language models code large": 49721, "models code large language": 62019, "success large pretrained language": 92216, "recent advancements large pretrained": 80186, "large pretrained transformer models": 52325, "pretrained language models code": 74302, "llms demonstrated impressive ability": 55741, "models llms gpt3 codex": 63199, "language models llms release": 50415, "llms demonstrated strong capabilities": 55770, "opensourced code model weights": 68419, "propose new prompting technique": 77053, "significantly improve performance llms": 87943, "applications including software development": 6501, "including software development maintenance": 44479, "llms exemplified chatgpt specifically": 55900, "language modeling long text": 49586, "capabilities various tasks paper": 12134, "code generation program repair": 15326, "generation program repair code": 38349, "intelligence ai tools based": 46830, "ai tools based large": 4587, "largescale code generation models": 52498, "source code data finetune": 89350, "code analysis large language": 15123, "study evaluate capabilities llms": 91606, "paper explores use large": 69733, "explores use large language": 32825, "machine learning artificial intelligence": 57695, "address challenges propose novel": 3375, "utilization natural language processing": 101921, "training machine learning models": 98189, "released openai november 2022": 81412, "provides valuable insights performance": 77724, "model achieve stateoftheart performance": 60485, "code based natural language": 15140, "large language models significantly": 52164, "like openais chatgpt googles": 54204, "impressive incontext learning icl": 43608, "conduct human evaluation involving": 17892, "models significant progress recent": 64195, "paper explore application large": 69709, "empirical study pretrained language": 28363, "study pretrained language models": 91786, "pretrained language models demonstrated": 74306, "classification tasks code vulnerability": 14803, "tasks code vulnerability detection": 94449, "aspects experimental results indicate": 7771, "models shown promising performance": 64188, "large language models domainspecific": 51644, "conduct extensive experiments various": 17886, "potential llms software engineering": 73184, "potential automatic code generation": 73030, "language models llms numerous": 50352, "models llms used generate": 63501, "capability llms large language": 12191, "case study popular llms": 12491, "study popular llms gpt35": 91775, "leveraging recent advancements large": 53898, "challenges terms computational costs": 13133, "large language models 13": 51552, "using chatgpt generate code": 101346, "conversations large language models": 19424, "software engineering tasks including": 89012, "natural language processing interact": 65654, "performance stateoftheart language models": 71593, "generalizing large language models": 37317, "language models llms development": 50167, "tasks including code generation": 94725, "powerful capabilities natural language": 73425, "natural language processing code": 65643, "large language models trained code": 52205, "paper proposes new evaluation metric": 69913, "large language models code large": 51605, "language models code large language": 49722, "models code large language models": 62020, "success large pretrained language models": 92217, "models llms demonstrated impressive ability": 63070, "language models llms gpt3 codex": 50253, "generation large language models demonstrated": 38230, "large language models llms release": 51981, "models llms demonstrated strong capabilities": 63090, "applications including software development maintenance": 6502, "code generation program repair code": 15327, "artificial intelligence ai tools based": 7624, "intelligence ai tools based large": 46831, "ai tools based large language": 4588, "models llms demonstrated remarkable abilities": 63082, "paper explores use large language": 69734, "explores use large language models": 32826, "framework large language models large": 36190, "utilization natural language processing nlp": 101922, "work provides valuable insights performance": 104239, "models significant progress recent years": 64196, "paper explore application large language": 69710, "empirical study pretrained language models": 28364, "classification tasks code vulnerability detection": 14804, "language models shown promising performance": 50802, "large language models llms numerous": 51941, "language models llms used generate": 50504, "capability llms large language models": 12192, "case study popular llms gpt35": 12492, "leveraging recent advancements large language": 53899, "breakthroughs large language models llm": 11405, "large language models offer new": 52083, "conversations large language models llms": 19425, "large language models llms development": 51825, "supplying": 92784, "careers": 12397, "incited": 44223, "postpandemic": 72953, "ages": 4250, "18x": 440, "securityoriented": 86051, "tailormade": 93795, "hong": 41942, "kong": 48865, "314": 775, "digitized": 25376, "nonmale": 66928, "dichotomy": 24944, "fastestgrowing": 33916, "quasiexperimental": 78465, "dates": 22478, "onethird": 67959, "reputation": 82213, "dummy": 26896, "committee": 16119, "educator": 27226, "beginner": 9941, "sensitively": 86470, "intelligently": 46928, "944": 1435, "prisma": 74885, "838": 1354, "sf": 87145, "syntaxrelated": 93200, "digitally": 25374, "meteoric": 59179, "harmonized": 41056, "withholding": 103856, "chatgtp": 14458, "solicited": 89063, "sessionlevel": 86829, "selfregulation": 86258, "transcribed": 98385, "authorial": 8623, "1916": 448, "invites": 47814, "leaders": 52835, "sovereignty": 89436, "studentwritten": 91350, "292": 712, "540": 1064, "110": 196, "squares": 90068, "determinant": 24400, "fivepoint": 35344, "pu": 77902, "thematically": 96725, "synchronizing": 93145, "scopusindexed": 85686, "saudi": 85213, "arabia": 7299, "126": 244, "useless": 100965, "personalised": 71890, "n58": 65450, "talked": 93838, "dei": 22918, "astronomy": 8135, "tending": 95747, "catalytic": 12582, "fore": 35729, "administration": 3596, "transducer": 98391, "instanceof": 46220, "feeling": 34169, "principals": 74823, "overwhelmingly": 69437, "scopus": 85685, "doubts": 26677, "generation programming": 38350, "models application": 61839, "remains need": 81681, "students interact": 91313, "implications academic": 43363, "consider llms": 18137, "impact field": 43207, "integrity study": 46790, "perform highlevel": 70878, "highlevel cognitive": 41558, "text capacity": 96101, "capacity raises": 12310, "capable exhibiting": 12233, "highly realistic": 41708, "needed fully": 66015, "understand implications": 99614, "chatgpt devise": 13713, "spectrum human": 89923, "postpandemic era": 72954, "principles chatgpt": 74829, "ultimate objective": 99339, "advancements education": 3809, "evolution human": 31024, "novice programmers": 67303, "chatgpt sophisticated": 14254, "sophisticated natural": 89289, "discussion chatgpt": 25718, "gather data": 37025, "regarding effectiveness": 81054, "effectiveness usability": 27588, "papers evaluate": 69998, "instance used": 46217, "educational technology": 27221, "generation recommendation": 38392, "including low": 44413, "studies including": 91400, "intersection ai": 47322, "enabled chatgpt": 28567, "challenges application": 12962, "chatgpt aibased": 13508, "various advantages": 102342, "internet access": 47247, "access provided": 2082, "number test": 67383, "number successful": 67378, "various opportunities": 102519, "assessment focusing": 7949, "maintain academic": 57869, "settings address": 87037, "interactive capabilities": 47091, "policy framework": 72534, "chatgpt classroom": 13619, "chatbot development": 13409, "significant positive": 87817, "students leverage": 91318, "chatgpts high": 14433, "science analysis": 85561, "challenges higher": 13033, "perceptions generative": 70800, "challenges effective": 13000, "students various": 91348, "hong kong": 41943, "concerns accuracy": 17674, "values expressed": 102215, "technologies address": 95622, "promoting effective": 76223, "outcomes insights": 68851, "development integration": 24658, "pass introductory": 70532, "chatgpt teaching": 14301, "technology study": 95660, "traditional teaching": 97707, "chatgpt example": 13773, "integrate chatgpt": 46656, "offering opportunity": 67796, "foreign language": 35739, "initiate dialogue": 45805, "market outcomes": 58394, "exposure ai": 32898, "belief updates": 10029, "students indicating": 91310, "ai concerns": 4348, "regularly engage": 81117, "chatgpt explainable": 13792, "feedback crucial": 34072, "identify appropriate": 42844, "refined chatgpt": 80981, "model simultaneously": 61408, "chatgpt furthermore": 13835, "rationales generated": 79437, "generated proposed": 37759, "chatgpt applications": 13528, "education foster": 27151, "analysis key": 5566, "key social": 48340, "attitudes chatgpt": 8406, "university student": 100131, "student homework": 91252, "integrity education": 46787, "challenge introducing": 12892, "designed identify": 23919, "academic assignments": 1971, "chatgptgenerated responses": 14406, "enhancing precision": 29362, "topic artificial": 97500, "universities research": 100123, "applications advantages": 6403, "issues possible": 48007, "application history": 6361, "main effects": 57822, "responses negative": 83265, "generic responses": 38753, "explore factors": 32681, "including existence": 44339, "approximately 67": 7272, "chatgpt assessments": 13543, "consider use": 18145, "explore understand": 32753, "questions make": 78890, "programs enhance": 75946, "applied gpt4": 6614, "practices effectively": 73561, "share vision": 87188, "future recommendation": 36753, "contexts research": 18923, "aidriven language": 4647, "key aim": 48269, "effectively making": 27454, "way paper": 103393, "assessment research": 7974, "technologies key": 95628, "questions raised": 78925, "significant debate": 87728, "debate community": 22522, "aimed addressing": 4747, "present research": 74048, "leverage ai": 53709, "improvement results": 43941, "ranging academic": 79234, "adapt ai": 3034, "transformative effects": 98468, "volumes data": 103219, "researchers engineers": 82853, "ai general": 4412, "general relevant": 37190, "chatgpt lacks": 13968, "evaluation practices": 30720, "chatgpt learning": 13986, "opportunities threats": 68512, "student programmers": 91266, "good llms": 39117, "request help": 82215, "cases llm": 12541, "output formatting": 69155, "interested using": 47149, "llms needs": 56427, "learning game": 53172, "issue using": 47962, "responses investigate": 83246, "correctness students": 19747, "answers results": 6218, "chatgpt respond": 14178, "extending use": 32971, "study automated": 91504, "students rated": 91328, "availability gpt": 8998, "timely feedback": 97065, "chatgpt hold": 13932, "investigating ability": 47761, "deliver effective": 22938, "setting use": 87031, "approaches compared": 7117, "offers specific": 67863, "prompting scenario": 76603, "secondary students": 85964, "complete writing": 16880, "engineer prompts": 28937, "trialanderror process": 98864, "secondary school": 85963, "students used": 91344, "prompt content": 76265, "need provide": 65982, "process learning": 75350, "difficult assess": 25283, "assessing multiplechoice": 7925, "method correctly": 59250, "using automated": 101302, "media public": 58849, "use automated": 100479, "offer alternative": 67735, "cases work": 12564, "bias mitigated": 10864, "significant popularity": 87815, "practical benefits": 73504, "chatgpt realworld": 14149, "given application": 38856, "errors complex": 29811, "detection ai": 24258, "instance ai": 46204, "usually complex": 101866, "questions facilitate": 78852, "comprehension analysis": 17154, "tasks academic": 94336, "academic texts": 1999, "result attain": 83389, "text provide": 96374, "field humancomputer": 34375, "making paper": 58124, "generated replies": 37768, "general availability": 37111, "code analyzed": 15125, "textbased responses": 96497, "categorized according": 12628, "systems understanding": 93589, "software platform": 89023, "related applications": 81183, "workinprogress paper": 104339, "feedback generates": 34087, "seeking help": 86072, "tasks identifying": 94707, "types responses": 99262, "achieve goals": 2524, "sequences dataset": 86679, "contain misleading": 18517, "feedback compared": 34068, "reported chatgpt": 82001, "chatgpt capacity": 13588, "useful feedback": 100945, "using bleu": 101320, "gauge overall": 37035, "score terms": 85740, "indicate chatgpts": 44983, "impact artificial": 43190, "education comparative": 27137, "chat bard": 13362, "bard ernie": 9356, "like bing": 54058, "meteoric rise": 59180, "education fostering": 27152, "tools educational": 97390, "spite limited": 90009, "carefully trained": 12424, "increasingly higher": 44882, "worse pretrained": 104442, "textual answers": 96656, "thanks availability": 96715, "decisionmaking roles": 22607, "responses supported": 83315, "dialogues chatgpt": 24927, "includes conversation": 44247, "satisfaction estimation": 85194, "potential scenarios": 73256, "scenarios utilizing": 85492, "environment large": 29619, "written prompts": 104523, "relation task": 81252, "description language": 23682, "prompt approach": 76232, "tasks lowest": 94840, "chatgpt unclear": 14322, "framework interactive": 36174, "data chatbots": 21044, "combines interactive": 15992, "possess significant": 72859, "mind tasks": 60061, "linguistic dimensions": 54574, "dimensions fluency": 25391, "fluency accuracy": 35463, "writing contrast": 104473, "specific feedback": 89695, "actionable feedback": 2957, "used estimate": 100790, "protocol design": 77354, "model classify": 60656, "feedback utterances": 34157, "automatic scoring": 8824, "trained enormous": 97821, "pretrained gpt35": 74275, "language trained": 51144, "responses expert": 83212, "bert results": 10548, "results indomain": 83690, "accuracy bert": 2212, "confirmed effectiveness": 18046, "effectiveness finetuned": 27517, "study second": 91827, "human writing": 42422, "interviews writing": 47352, "logs results": 57290, "offers critical": 67826, "chatgpt utilized": 14338, "tool exploring": 97289, "serving valuable": 86826, "ongoing dialogue": 67965, "education educational": 27147, "economic political": 27056, "perceived potential": 70764, "adoption technology": 3649, "perceived advantages": 70760, "unbalanced data": 99378, "categories introduces": 12610, "studentwritten responses": 91351, "35 accuracy": 822, "responses findings": 83215, "techniques utilizing": 95610, "accurate classification": 2398, "llms appear": 55480, "offer accessible": 67734, "solution study": 89121, "gpt4 outperformed": 39998, "creating significant": 20232, "hypotheses achieve": 42729, "education insights": 27155, "contribute current": 19122, "formative feedback": 35833, "learning delivering": 53102, "fault localization": 33923, "cases gpt35": 12531, "additionally gpt35": 3314, "evaluation including": 30638, "instruction finetune": 46323, "utterances derived": 102056, "varies significantly": 102282, "engagement satisfaction": 28917, "rates using": 79419, "researchers prior": 82880, "way support": 103403, "information learning": 45531, "provide formative": 77480, "provide wide": 77600, "frameworks chatgpt": 36325, "delves practical": 22961, "applications implications": 6497, "detection strategies": 24360, "ai capability": 4319, "achieving desired": 2842, "student ai": 91242, "need adapting": 65900, "different academic": 24991, "saudi arabia": 85214, "technology produce": 95657, "generate complete": 37402, "employed prompt": 28431, "increase zeroshot": 44787, "enhancing effectiveness": 29324, "35 various": 835, "greedy sampling": 40539, "academic contexts": 1975, "contexts analyzing": 18892, "policies guidelines": 72530, "education data": 27143, "diverse types": 26124, "topics focusing": 97530, "focusing general": 35625, "strategies data": 90800, "evaluation strategies": 30792, "firstly assess": 35319, "submissions using": 91977, "fear students": 33939, "hard detect": 40977, "llm solely": 55265, "clear limitations": 14884, "average word": 9185, "feedback aligning": 34060, "feedback study": 34143, "insights specific": 46135, "evolution natural": 31030, "possibility generating": 72878, "offer enhanced": 67742, "analysis educational": 5493, "opportunities presented": 68506, "conducted provide": 17976, "approaches effective": 7129, "effective collaboration": 27272, "llm challenge": 54998, "results supervised": 83883, "learning activities": 53015, "evaluation privacy": 30724, "providing textual": 77807, "problems design": 75126, "constraints chatgpt": 18393, "statistical machine": 90549, "substantial data": 92073, "limited adaptability": 54387, "contrast study": 19089, "conduct automated": 17826, "english essays": 29065, "results exhibit": 83594, "proficiency prompts": 75800, "key areas": 48270, "analysis suggest": 5689, "suggest contemporary": 92354, "private datasets": 74924, "novice expert": 67301, "discovery llms": 25616, "accuracy par": 2327, "experts experts": 32409, "seek provide": 86067, "llms successful": 56881, "successful various": 92267, "challenging wide": 13257, "writing programming": 104486, "knowledgebased question": 48822, "introduced chatgpt": 47502, "emulating humanlike": 28526, "heated debate": 41207, "hand chatgpt": 40894, "feedback essential": 34076, "considerations future": 18185, "direct responses": 25432, "motivated learning": 64777, "transparency control": 98768, "highquality comprehensive": 41742, "ai products": 4519, "students overly": 91321, "limited learning": 54443, "qualitative observations": 78202, "ai facilitate": 4394, "intelligence tools": 46899, "report explores": 81976, "experience including": 31938, "ability respond": 1766, "personalised learning": 71891, "students critical": 91294, "findings importance": 34679, "stakeholders extensive": 90145, "half time": 40805, "findings caution": 34643, "number research": 67372, "junior senior": 48211, "systems learning": 93503, "assessments address": 7984, "representing data": 82172, "tailored individual": 93779, "center study": 12728, "online courses": 67980, "terms reliability": 95837, "feasibility leveraging": 33944, "deployed evaluated": 23564, "needs challenges": 66033, "deploying ai": 23576, "years shown": 104614, "role aspects": 84759, "investment research": 47808, "opinions statements": 68482, "bring fore": 11461, "lead decline": 52799, "education ranging": 27176, "design needs": 23814, "based principle": 9666, "brings additional": 11470, "chatbots emerged": 13442, "adaptive learning": 3143, "participants engaged": 70364, "introducing concept": 47543, "research emphasizing": 82572, "formal training": 35800, "gpt35 gpt": 39606, "regarding correctness": 81051, "shows notable": 87599, "student programs": 91267, "increasing importance": 44831, "ai adapted": 4289, "adapted fit": 3105, "topic specific": 97518, "shows practical": 87606, "concepts ai": 17618, "problem automated": 74992, "50 years": 1022, "knowledge analyze": 48420, "check models": 14473, "dataset revealed": 22063, "slight advantage": 88629, "terms predictions": 95831, "llms avoid": 55509, "settings subsequently": 87095, "frequently achieved": 36379, "gpt4 showcases": 40075, "limited addressing": 54390, "courses study": 20037, "interactions including": 47061, "gpt4 enhance": 39854, "course university": 20031, "evaluating students": 30490, "science paper": 85600, "k12 science": 48238, "focuses employing": 35602, "using humanintheloop": 101514, "enhance automated": 29140, "training key": 98154, "motivated potential": 64779, "based inherent": 9574, "gpt4 predictive": 40023, "performance albeit": 70983, "research applying": 82492, "integration chatbot": 46758, "access support": 2086, "data access": 20935, "potential elevate": 73080, "efficiency satisfaction": 27717, "enhancement strategy": 29266, "strategy development": 90872, "regarding ai": 81045, "using twostep": 101831, "diverse disciplines": 26012, "usefulness ai": 100960, "limited paper": 54449, "view chatgpts": 102914, "insights role": 46133, "discourse ais": 25584, "guidelines governance": 40765, "like generative": 54124, "increasingly utilized": 44915, "utilized educational": 101967, "innovative approaches": 45851, "approaches learning": 7162, "landscape concerning": 49106, "drawing insights": 26809, "crucial issues": 20498, "issues including": 47993, "students perception": 91326, "purpose study": 78050, "applications addition": 6400, "students perceive": 91324, "outcomes based": 68844, "recommend future": 80640, "examines application": 31137, "comprehend produce": 17136, "literature study": 54663, "searched google": 85909, "benefits improve": 10473, "problems include": 75153, "developing generative": 24582, "changing field": 13304, "gai chatbots": 36806, "technological changes": 95619, "variety sectors": 102329, "sectors including": 85982, "potential higher": 73121, "language models application": 49648, "test cases code": 95873, "highlight future research": 41588, "research needed fully": 82681, "domains including limited": 26531, "sophisticated natural language": 89290, "like chatgpt practical": 54093, "exploring use chatgpt": 32873, "opportunities challenges application": 68488, "number test cases": 67384, "students using chatgpt": 91346, "maintain academic integrity": 57870, "understand generate humanlike": 99610, "generate humanlike text": 37493, "diverse range questions": 26083, "perceptions generative ai": 70801, "attention industry academia": 8325, "education paper aims": 27168, "traditional teaching methods": 97708, "launch chatgpt november": 52692, "labor market outcomes": 48962, "finetune smaller language": 34855, "generated proposed method": 37760, "academic integrity education": 1982, "new era artificial": 66390, "topic artificial intelligence": 97501, "ethical issues possible": 30076, "face challenges using": 33439, "generic responses lack": 38754, "recently gained significant": 80497, "regarding use ai": 81075, "findings indicate significant": 34692, "public attitudes chatgpt": 77909, "discuss challenges faced": 25654, "based empirical findings": 9512, "best practices effectively": 10633, "practices effectively using": 73562, "significant debate community": 87729, "large volumes data": 52393, "generative ai general": 38547, "llms openai codex": 56455, "gpt35 model generate": 39645, "task paper presents": 94177, "assessing multiplechoice questions": 7926, "language models palm": 50627, "gained significant popularity": 36840, "paper aims bridge": 69600, "language models comparative": 49732, "models comparative study": 62053, "comparative study human": 16439, "limitations current evaluation": 54313, "models llms automatically": 62995, "field humancomputer interaction": 34376, "leverages power chatgpt": 53808, "used input llms": 100831, "comprehensive framework including": 17265, "impact artificial intelligence": 43191, "education comparative study": 27138, "tools including chatgpt": 97424, "bing chat bard": 11067, "ai tools educational": 4592, "availability large language": 9001, "applications advantages limitations": 6404, "remain limited study": 81625, "environment large language": 29620, "finetune opensource llm": 34842, "theory mind tasks": 96767, "using proposed method": 101703, "academic writing process": 2001, "ai tools data": 4590, "work contributes ongoing": 104034, "contributes ongoing dialogue": 19148, "economic political social": 27057, "ai development deployment": 4367, "data augmentation framework": 20999, "model specifically tailored": 61446, "precision recall f1": 73617, "responses findings indicate": 83216, "effectiveness data augmentation": 27507, "language models accurate": 49614, "finetuning gpt35 model": 35083, "using llms enhance": 101582, "promising results various": 76198, "chatgpt provide formative": 14126, "provide formative feedback": 77481, "provide wide range": 77601, "usage generative artificial": 100434, "models particularly chatgpt": 63777, "implications generative ai": 43386, "detection methods chatgpt": 24324, "using generative artificial": 101468, "investigates application large": 47730, "llms specifically gpt35": 56852, "employed prompt engineering": 28432, "potential using chatgpt": 73303, "llms introduce novel": 56247, "survey results revealed": 93050, "evolution natural language": 31031, "like chatgpt emerged": 54071, "emerged powerful tools": 28148, "vast knowledge base": 102683, "language processing approaches": 50967, "capabilities tasks involving": 12097, "statistical machine learning": 90550, "human evaluation experiments": 42175, "knowledgebased question answering": 48823, "openai introduced chatgpt": 68165, "generative ai products": 38564, "artificial intelligence tools": 7666, "students critical thinking": 91295, "lack comprehensive research": 48989, "llms evaluating llms": 55883, "insights models strengths": 46115, "advanced generative models": 3698, "ai models tailored": 4480, "models tailored individual": 64331, "ethical issues arise": 30075, "approach achieves better": 6712, "groundwork future research": 40603, "language models automatically": 49663, "transformerbased models demonstrate": 98581, "prominent llms gpt35": 76098, "work shown llms": 104274, "gpt4 model generate": 39980, "science paper explores": 85601, "learning chainofthought reasoning": 53062, "ai models including": 4470, "contribute broader discourse": 19120, "broader discourse ais": 11516, "like generative ai": 54125, "ai tools including": 4593, "increasingly utilized educational": 44916, "developed openai chatgpt": 24518, "provide thorough assessment": 77587, "intelligence gai chatbots": 46851, "variety sectors including": 102330, "large language models application": 51574, "sophisticated natural language processing": 89291, "understand generate humanlike text": 99611, "ensure responsible use technology": 29461, "launch chatgpt november 2022": 52693, "finetune smaller language model": 34856, "new era artificial intelligence": 66391, "topic artificial intelligence ai": 97502, "face challenges using chatgpt": 33440, "recently gained significant attention": 80498, "best practices effectively using": 10634, "large language models particular": 52097, "large language models palm": 52090, "models gained significant popularity": 62528, "paper aims bridge gap": 69601, "large language models comparative": 51611, "language models comparative study": 49733, "language models llms automatically": 50093, "chatgpt bing chat bard": 13574, "availability large language models": 9002, "environment large language models": 29621, "work contributes ongoing dialogue": 104035, "generative ai tools like": 38581, "language model specifically tailored": 49550, "large language models accurate": 51554, "promising results various tasks": 76199, "chatgpt provide formative feedback": 14127, "usage generative artificial intelligence": 100435, "using generative artificial intelligence": 101469, "study investigates application large": 91704, "investigates application large language": 47731, "models llms specifically gpt35": 63459, "evolution natural language processing": 31032, "llms like chatgpt emerged": 56302, "natural language processing approaches": 65637, "findings indicate chatgpt provide": 34685, "prominent llms gpt35 gpt4": 76099, "recent work shown llms": 80411, "traditional machine learning methods": 97676, "contribute broader discourse ais": 19121, "generative ai tools including": 38579, "ai tools including chatgpt": 4594, "artificial intelligence gai chatbots": 7636, "large language models gained significant": 51698, "language models gained significant popularity": 49905, "large language models comparative study": 51612, "large language models llms automatically": 51793, "potential large language models generate": 73157, "availability large language models llms": 9003, "environment large language models llms": 29622, "generative ai tools like chatgpt": 38582, "large language model specifically tailored": 51541, "usage generative artificial intelligence ai": 100436, "study investigates application large language": 91705, "investigates application large language models": 47732, "language models llms specifically gpt35": 50466, "evolution natural language processing nlp": 31033, "models llms like chatgpt emerged": 63274, "using generative ai tools chatgpt": 101467, "generative ai tools including chatgpt": 38580, "generative artificial intelligence gai chatbots": 38601, "destination": 24146, "moved": 64799, "towers": 97580, "coexistence": 15728, "614": 1130, "evoked": 31010, "startup": 90262, "chained": 12812, "658": 1166, "webshop": 103510, "landmarks": 49101, "harmoniously": 41055, "exercised": 31490, "openloop": 68284, "specificities": 89902, "attends": 8275, "xml": 104565, "closeddomain": 14994, "visitors": 103047, "facilities": 33551, "utilises": 101883, "sensorimotor": 86483, "254": 658, "pour": 73362, "inadvertent": 44199, "chatgpt4s": 14387, "prefrontal": 73849, "comfortable": 16046, "holmes": 41926, "dynamical": 26939, "wikitext": 103818, "scrutinization": 85826, "mundane": 65405, "ignite": 42959, "intensify": 46944, "smoother": 88826, "layered": 52738, "architected": 7324, "927": 1425, "pretending": 74215, "preconceived": 73622, "missions": 60208, "subscenarios": 92006, "vibrant": 102851, "dissect": 25789, "swim": 93100, "physicists": 72076, "autism": 8634, "socialiqa": 88923, "tsne": 98985, "forgotten": 35764, "269": 680, "occupancy": 67703, "selfdebugging": 86214, "geometrically": 38791, "instructions recently": 46556, "converting natural": 19449, "accomplish goals": 2133, "unseen cases": 100260, "strong visual": 91080, "openais seminal": 68223, "applications efficiently": 6461, "learning significantly": 53415, "hours training": 42006, "time resulting": 97017, "specifying goals": 89916, "interface language": 47175, "require expensive": 82243, "interface user": 47179, "gpt3 requiring": 39523, "mobile robot": 60423, "recommendation task": 80654, "spoken dialogue": 90016, "different customers": 25035, "modules gpt2": 64673, "tracking dst": 97626, "used original": 100865, "original speech": 68814, "dialog task": 24837, "task result": 94230, "actions making": 2964, "generating symbolic": 37982, "bloom llms": 11217, "llms symbolic": 56899, "focused tackling": 35594, "related mathematical": 81206, "action sequences": 2951, "plans achieve": 72290, "planning problems": 72273, "length reduced": 53607, "solving different": 89223, "varying complexities": 102644, "planning language": 72263, "language llm": 49314, "leverage commonsense": 53716, "underspecified goals": 99591, "case natural": 12462, "fail generate": 33678, "alignment safe": 5112, "research gaps": 82612, "information transfer": 45658, "efficiency transparency": 27732, "symbolic task": 93135, "affect overall": 4054, "output instead": 69160, "ability synthesize": 1780, "planning model": 72268, "traditional symbolic": 97705, "embodied language": 28111, "positive transfer": 72837, "parameters addition": 70172, "result catastrophic": 83391, "feedback received": 34126, "time request": 97010, "leverage stateoftheart": 53761, "llama2 language": 54837, "expansion operating": 31883, "effectively complete": 27413, "provides compelling": 77646, "integration language": 46769, "pre post": 73583, "finite set": 35306, "control various": 19230, "requirements various": 82354, "feedback safe": 34138, "planning based": 72254, "solution address": 89074, "numerous challenges": 67420, "efficient construction": 27747, "limitations adaptability": 54296, "leverages advanced": 53776, "model automated": 60578, "technologies field": 95626, "involved various": 47830, "understanding communication": 99697, "nuances human": 67321, "natural intuitive": 65553, "study significant": 91846, "deployment autonomous": 23594, "raised significant": 79071, "llms analyzing": 55471, "mixed reality": 60326, "virtual world": 102944, "approach emerging": 6827, "environments knowledge": 29649, "data interaction": 21341, "reality ii": 79581, "target variables": 93894, "potential benefit": 73037, "study finetuning": 91642, "generalizability llmbased": 37232, "paper initiative": 69756, "initiative investigate": 45812, "require llms": 82268, "composed set": 17104, "spatial representations": 89578, "fewer tokens": 34199, "chatgpt instructgpt": 13957, "embodied conversational": 28106, "current machine": 20724, "implementation approach": 43325, "domain training": 26463, "automated debugging": 8685, "respect training": 83044, "domains compare": 26500, "models progress": 63907, "trained jointly": 97849, "finetuning instructionfinetuned": 35099, "reasoning outperforming": 79965, "gpt4based agent": 40167, "highquality demonstrations": 41750, "available promote": 9082, "commonsense model": 16222, "planning new": 72270, "achieve effective": 2513, "vastly improving": 102694, "search efficiency": 85863, "travel planning": 98790, "models construct": 62102, "llms planning": 56524, "novel alternative": 67086, "initially employ": 45800, "users lack": 101130, "language effectively": 49199, "effectively encode": 27419, "framework enjoys": 36124, "data advancing": 20955, "capability gpt": 12170, "performing zeroshot": 71795, "zeroshot sequential": 104866, "makes decision": 58054, "integrating commonsense": 46713, "task resolution": 94229, "given agents": 38855, "learningbased models": 53488, "slow thinking": 88654, "theory human": 96763, "integrates strengths": 46704, "performance framework": 71228, "action trajectories": 2953, "heuristic method": 41338, "gpt4 initial": 39940, "tasks specification": 95137, "procedure generate": 75251, "learning highlevel": 53187, "results address": 83458, "autoregressively generates": 8981, "observations input": 67567, "demos shown": 23489, "model gives": 60942, "participants able": 70359, "selects appropriate": 86185, "chatbots llms": 13452, "users solve": 101179, "dialogue comprehension": 24852, "evidence superiority": 30991, "achieving semantic": 2875, "tackle propose": 93738, "twostep framework": 99194, "framework semantic": 36265, "skills enables": 88593, "execution various": 31466, "encompasses range": 28758, "tasks allowing": 94365, "introduce opensourced": 47478, "opensourced research": 68433, "chatgpt integration": 13960, "started using": 90256, "collected different": 15876, "create desired": 20155, "direct control": 25419, "instructions complex": 46480, "specific goal": 89702, "goal position": 39064, "use learned": 100608, "develop engaging": 24448, "capable using": 12276, "goal requires": 39070, "integrating recent": 46744, "learn predict": 52959, "simulation experiments": 88325, "discovery novel": 25618, "structures different": 91193, "conclude finetuning": 17734, "agent improving": 4135, "planning propose": 72275, "planning despite": 72259, "images aid": 43081, "images perceive": 43108, "scene information": 85499, "object attributes": 67468, "attention networks": 8351, "construction pipeline": 18473, "inference experiments": 45243, "objects demonstrate": 67539, "environments need": 29652, "complex dynamics": 16931, "correctness task": 19748, "tree generation": 98819, "limited compared": 54406, "compared realworld": 16624, "limited representation": 54456, "facilitates zeroshot": 33526, "experts proposed": 32419, "moving step": 64813, "graph traversal": 40414, "cognitive neuroscience": 15748, "previous tasks": 74723, "generalization significantly": 37283, "training minimal": 98198, "effectively addresses": 27396, "endtoend fashion": 28872, "dataset showcase": 22073, "challenge autonomous": 12858, "llms fundamental": 56014, "internal decisionmaking": 47228, "approach largescale": 6925, "mllms improving": 60388, "perception cognition": 70784, "multiagent cooperation": 64862, "decisionmaking abilities": 22591, "indicate powerful": 45014, "learning different": 53111, "idea create": 42782, "create userfriendly": 20185, "text audio": 96088, "prompted provide": 76485, "constraints leveraging": 18401, "prompted reason": 76486, "reason act": 79722, "fails perform": 33706, "environments environments": 29642, "dynamical systems": 26940, "token sequences": 97156, "perspective enhancing": 71946, "conversational service": 19400, "driven gpt4": 26842, "intelligent decisionmaking": 46923, "learned vast": 52996, "errors execution": 29814, "features pretrained": 34019, "benchmark generating": 10182, "synthetic trajectories": 93303, "interactive agents": 47086, "challenging methods": 13193, "provide findings": 77477, "impact diverse": 43203, "task objectives": 94162, "trained leveraging": 97862, "gpt4 control": 39811, "feedback allows": 34064, "functionality present": 36512, "additional annotated": 3223, "frameworks effectiveness": 36326, "effectiveness adaptability": 27488, "adaptability diverse": 3057, "possess sufficient": 72861, "segmentation vision": 86110, "time llms": 96988, "range common": 79144, "reward design": 84365, "tasks harnessing": 94693, "fundamental gap": 36541, "evolutionary optimization": 31039, "rl environments": 84553, "inputs improve": 45997, "rapid speed": 79337, "data end": 21184, "explicit policy": 32534, "conclusions regarding": 17766, "regarding behavior": 81047, "behavior different": 9966, "reports generated": 82012, "paper novel": 69814, "texttospeech synthesis": 96631, "framework experiments": 36133, "set diverse": 86863, "opportunities improving": 68498, "context aware": 18733, "execute complex": 31436, "bart lm": 9387, "task making": 94139, "instead individual": 46249, "evaluated multiple": 30352, "dialogue manager": 24877, "textbased prompts": 96495, "prompts visual": 76849, "allows vision": 5216, "available project": 9080, "enhanced new": 29239, "tight integration": 96919, "vision speech": 103003, "web technologies": 103497, "technologies present": 95634, "collaborative behaviors": 15837, "successful integration": 92262, "changes hardware": 13289, "software platforms": 89024, "effectiveness developing": 27509, "socially interactive": 88925, "social abilities": 88842, "navigating complex": 65826, "outputs corresponding": 69213, "capabilities innovative": 11949, "especially applied": 29856, "outofthebox performance": 68904, "offers intriguing": 67844, "manner llms": 58242, "leverage chatgpts": 53715, "prompt structure": 76422, "compared directly": 16534, "interpreting executing": 47306, "area code": 7420, "available text": 9093, "falls outside": 33798, "adopt various": 3611, "actions time": 2965, "explicit programming": 32537, "used collect": 100760, "evolving digital": 31049, "digital landscape": 25363, "significance development": 87654, "agents natural": 4210, "individual gpt": 45081, "gpt4 importantly": 39934, "strategies given": 90820, "research technical": 82801, "robot systems": 84623, "enables dynamic": 28581, "dialogues humans": 24932, "lora adapter": 57440, "model examples": 60828, "examples behavior": 31192, "game rules": 36891, "service using": 86810, "user based": 100970, "maintain quality": 57876, "showed effectiveness": 87388, "appropriately respond": 7253, "respond users": 83106, "provided information": 77618, "selfdriving vehicles": 86224, "scenarios existing": 85427, "cognitive maps": 15747, "spatial navigation": 89572, "map representations": 58338, "representations use": 82131, "consisting images": 18320, "prediction network": 73708, "method building": 59222, "finally utilizing": 34575, "forms data": 35848, "like images": 54172, "compare performances": 16488, "resembles human": 82903, "2023 competition": 551, "develop dialogue": 24443, "results solving": 83855, "gpt4 extensive": 39881, "solve large": 89178, "present position": 74037, "position directly": 72800, "experiments support": 32308, "researchers different": 82850, "include node": 44232, "node information": 66851, "design propose": 23835, "performing multistep": 71786, "10 12": 95, "abilities gpt": 1514, "nature large": 65805, "generate number": 37540, "number task": 67379, "approach improved": 6892, "datasets revolutionizing": 22407, "range ai": 79137, "empower researchers": 28492, "gpt4 train": 40132, "prompt successfully": 76427, "llm enabling": 55056, "physical constraints": 72061, "llmbased decisionmaking": 55349, "particularly emphasizing": 70458, "gpt4 scalable": 40066, "social robot": 88912, "questions options": 78904, "pipeline better": 72142, "generation social": 38421, "social situations": 88918, "evaluated appropriateness": 30314, "appropriateness children": 7256, "benchmark focuses": 10171, "common realworld": 16167, "sandbox environment": 85177, "agents struggle": 4236, "right tools": 84438, "agents tackle": 4241, "manipulate specific": 58216, "implicit human": 43417, "indirect verbal": 45059, "incorporating implicit": 44701, "realworld experiments": 79670, "humans applications": 42575, "solve communication": 89165, "robotics paper": 84635, "comparison different": 16707, "rated good": 79405, "experiments proved": 32271, "need overcome": 65978, "grounding llms": 40591, "algorithms direct": 4964, "palm gpt35": 69550, "knowledge tackle": 48778, "context enhancing": 18760, "rates achieves": 79413, "improve generalizability": 43707, "information tasks": 45649, "tasks missing": 94865, "planning tool": 72285, "tool extends": 97290, "extends existing": 32975, "rate current": 79380, "approach newly": 6953, "scenarios covering": 85412, "control large": 19212, "capabilities writing": 12142, "markov decision": 58407, "code outputs": 15430, "previous interactions": 74680, "training transition": 98341, "gives rise": 38988, "rise language": 84475, "improvement skill": 43945, "lowest level": 57585, "freeform natural": 36348, "unified interface": 100026, "complex physical": 16972, "multimodal decisionmaking": 65043, "model required": 61343, "integrate multiple": 46669, "localization capabilities": 57214, "embodied environments": 28108, "suggest robust": 92391, "robust mllms": 84671, "representations texts": 82126, "corpus paper": 19645, "novel strategy": 67254, "generate desired": 37425, "applications providing": 6552, "generally speaking": 37339, "need understand": 66004, "order enhance": 68696, "representation utilizing": 82078, "queries based": 78473, "chatgpt35 tasks": 14373, "tasks leads": 94809, "prompt paradigm": 76391, "generates code": 37829, "directly natural": 25511, "initial attempt": 45764, "performance feasibility": 71211, "using lightweight": 101563, "specific dataset": 89678, "dataset key": 21985, "using static": 101791, "deploying solutions": 23590, "taskspecific requirements": 95302, "notable advancements": 66994, "research opensource": 82689, "temporally extended": 95726, "language lack": 49301, "counterparts paper": 20009, "language models infer": 49992, "converting natural language": 19450, "state tracking dst": 90283, "graph neural network": 40395, "paper explore use": 69719, "question llms able": 78687, "leverage commonsense knowledge": 53717, "commonsense knowledge reasoning": 16220, "case natural language": 12463, "experiments reveal llms": 32292, "value alignment safe": 102180, "designed bridge gap": 23885, "performance comparable traditional": 71078, "wide range complex": 103660, "prompt design leverage": 76274, "llama2 language models": 54838, "emerged promising solution": 28153, "promising solution address": 76201, "tasks current approaches": 94504, "advanced reasoning capabilities": 3744, "paper contributes ongoing": 69660, "contributes ongoing efforts": 19150, "various aspects human": 102358, "aspects human life": 7776, "remains significant concern": 81698, "study significant implications": 91847, "raised significant concerns": 79072, "improves quality generated": 44064, "case study finetuning": 12482, "question llms good": 78688, "reduces number tokens": 80840, "embodied conversational agent": 28107, "current machine learning": 20725, "finetuning instructionfinetuned language": 35100, "shows llms provide": 87595, "language models construct": 49747, "chatgpt gpt4 exhibit": 13900, "integrating commonsense knowledge": 46714, "like gpt4 initial": 54158, "conduct experiments verify": 17872, "model paper presents": 61202, "overall success rate": 69331, "experimental results generated": 32042, "challenges including high": 13042, "various realworld scenarios": 102549, "study investigate large": 91695, "models llms act": 62981, "highlighting strengths limitations": 41644, "language model improve": 49426, "potential applications large": 73007, "works primarily focused": 104378, "graph attention networks": 40362, "pipeline generate synthetic": 72157, "additional data collection": 3236, "foundation models foundation": 35942, "llms paper investigate": 56487, "demonstrate impressive performance": 23104, "evaluate llms including": 30222, "tasks real world": 95006, "llms capable processing": 55556, "models llms fundamental": 63169, "internal decisionmaking process": 47229, "evaluate approach largescale": 30141, "models mllms improving": 63628, "advanced reasoning skills": 3745, "address questions introduce": 3483, "questions introduce new": 78875, "results indicate powerful": 83685, "remarkable success wide": 81836, "line research work": 54516, "llms demonstrates significant": 55776, "code generation prompting": 15328, "experimental results performance": 32055, "present compelling results": 73952, "additional annotated data": 3224, "experimental results demonstrated": 32039, "design choices prompt": 23761, "quality safety generated": 78354, "performance large margin": 71342, "response generation capabilities": 83133, "generate informative responses": 37499, "evaluate performance framework": 30245, "execute complex instructions": 31437, "model bart lm": 60586, "capabilities conversational agents": 11871, "daily tasks natural": 20905, "computer vision speech": 17546, "vision speech processing": 103004, "reasoning capabilities innovative": 79800, "models llms represent": 63400, "significantly improves task": 87959, "llm specifically gpt4": 55272, "tasks using llms": 95234, "evolving digital landscape": 31050, "llms like generative": 56314, "like generative pretrained": 54126, "agents natural language": 4211, "user study 12": 101048, "systems paper introduces": 93524, "customer service using": 20845, "appropriately respond users": 7254, "based neural networks": 9634, "closely resembles human": 15035, "paper provides overview": 69926, "foundation models used": 35967, "large variety tasks": 52368, "nature large language": 65806, "approach aims generate": 6730, "foundation models autonomous": 35935, "models autonomous driving": 61883, "models trained extensive": 64387, "wide range ai": 103656, "training data need": 98038, "models llms industrial": 63251, "reinforcement learning method": 81160, "language agents capable": 49133, "agents tackle complex": 4242, "significantly enhanced performance": 87917, "models llms shows": 63442, "approaches face challenge": 7139, "extends existing work": 32976, "newly created dataset": 66592, "control large language": 19213, "markov decision process": 58408, "capabilities largescale language": 11968, "freeform natural language": 36349, "differences gpt35 gpt4": 24979, "balance accuracy efficiency": 9301, "significant performance disparities": 87807, "llms recently large": 56664, "llms demonstrated great": 55738, "dataset generation code": 21957, "directly natural language": 25512, "provide correct solutions": 77438, "propose framework enables": 76982, "framework enables llms": 36114, "gpt4 task descriptions": 40121, "comprehensive comparison multiple": 17223, "comparison multiple llms": 16720, "demonstrate potential llms": 23150, "setting new standards": 87011, "knowledge encoded large": 48536, "models llms information": 63252, "language models key": 50009, "performance gpt35turbo stateoftheart": 71276, "dialogue state tracking dst": 24898, "various aspects human life": 102359, "like chatgpt gpt4 exhibit": 54082, "generative models like gpt4": 38665, "source code available github": 89346, "different prompt engineering techniques": 25163, "study investigate large language": 91696, "language models llms act": 50079, "large language model improve": 51483, "potential applications large language": 73008, "need additional data collection": 65903, "foundation models foundation models": 35943, "models foundation models chatgpt": 62507, "models llms demonstrate impressive": 63059, "llms demonstrate impressive performance": 55731, "performance wide variety tasks": 71719, "language models llms fundamental": 50228, "language models mllms improving": 50581, "address questions introduce new": 3484, "finetune pretrained language model": 34849, "daily tasks natural language": 20906, "computer vision speech processing": 17547, "language models llms represent": 50421, "models llms like generative": 63283, "llms like generative pretrained": 56315, "user study 12 participants": 101049, "nature large language models": 65807, "foundation models autonomous driving": 35936, "models trained extensive datasets": 64388, "language models llms industrial": 50300, "language models llms shows": 50450, "control large language models": 19214, "llms recently large language": 56665, "models llms demonstrated great": 63067, "llms demonstrated great potential": 55739, "able provide correct solutions": 1879, "knowledge encoded large language": 48537, "language models llms information": 50301, "llms like chatgpt gpt4 exhibit": 56308, "recent large language models llm": 80282, "study investigate large language models": 91697, "large language models llms act": 51780, "potential applications large language models": 73009, "foundation models foundation models chatgpt": 35944, "language models llms demonstrate impressive": 50143, "models llms demonstrate impressive performance": 63060, "impressive performance wide variety tasks": 43637, "model multimodal large language models": 61144, "large language models llms fundamental": 51869, "large language models mllms improving": 52064, "large language models llms represent": 51986, "language models llms like generative": 50321, "models llms like generative pretrained": 63284, "large language models llms industrial": 51905, "large language models llms shows": 52001, "large language models recent advances": 52134, "control large language models llms": 19215, "llms recently large language models": 56666, "language models llms demonstrated great": 50149, "models llms demonstrated great potential": 63068, "knowledge encoded large language models": 48538, "large language models llms information": 51906, "shortrange": 87335, "alternating": 5258, "fallback": 33794, "discount": 25574, "realizations": 79586, "selfdisclosure": 86220, "spt": 90047, "jurassic": 48213, "inefficiencies": 45174, "fitted": 35341, "coldstart": 15807, "multicultural": 64888, "954": 1444, "dss": 26883, "crossmodel": 20439, "fruitful": 36413, "uid": 99329, "unverifiable": 100338, "fisher": 35333, "discourage": 25580, "slu": 88662, "programmability": 75860, "dungeon": 26897, "speechtext": 89975, "521": 1051, "glass": 38997, "thats": 96716, "impressions": 43570, "provisions": 77821, "consequent": 18117, "horizontal": 41983, "gptneo27b": 40234, "suddenly": 92302, "invention": 47601, "systems data": 93420, "reasoning decision": 79857, "small amounts": 88666, "amounts taskspecific": 5356, "relevance diversity": 81429, "gpt2 demonstrated": 39268, "capture longrange": 12359, "structures language": 91195, "examine use": 31127, "improvements stateoftheart": 44000, "based metrics": 9618, "ngram analysis": 66669, "contributing factors": 19159, "modeling dialogue": 61635, "incorporating language": 44706, "generation exploration": 38158, "model requires": 61344, "outperforms par": 69095, "dialogue domain": 24860, "research deep": 82535, "systems works": 93604, "domain ability": 26346, "problems deep": 75124, "performance introduce": 71323, "leads stateoftheart": 52908, "stateoftheart joint": 90354, "reveals robustness": 84223, "main metrics": 57830, "rate 97": 79371, "nlg research": 66689, "technique solve": 95460, "finetuning steps": 35264, "highlight current": 41584, "existing opendomain": 31784, "human replies": 42352, "need able": 65896, "problem comparison": 74998, "response pairs": 83148, "ranker outperformed": 79256, "perplexity baseline": 71854, "shows ranking": 87612, "ranking method": 79271, "correlates better": 19762, "chatbot output": 13415, "learning including": 53211, "following concept": 35672, "implementation perspective": 43338, "framework modeling": 36208, "tasks multiturn": 94875, "context infuse": 18788, "result better": 83390, "responses conditioned": 83189, "fusion methods": 36684, "creating user": 20235, "chat dataset": 13367, "responses experimental": 83209, "training sequence": 98281, "domains limited": 26547, "tagging task": 93766, "testing different": 96004, "task adaptive": 93923, "task 9th": 93916, "build endtoend": 11588, "solve natural": 89179, "fault tolerance": 33924, "considerable risks": 18170, "diversity training": 26160, "sources improve": 89411, "responsible extracting": 83349, "values model": 102220, "turn level": 99128, "graph models": 40393, "dialogue skills": 24895, "single neural": 88383, "methods endtoend": 59618, "dialogue natural": 24881, "performance alleviate": 70984, "strengths approaches": 90952, "variational learning": 102264, "semisupervised manner": 86425, "architecture work": 7385, "learning speeds": 53421, "tasks realistic": 95007, "data empirical": 21175, "techniques finetune": 95520, "raw input": 79451, "models candidate": 61955, "candidate reranking": 11809, "performance singleturn": 71571, "communication people": 16279, "area nlp": 7431, "leverage multitask": 53748, "strategies gpt2": 90821, "challenge opendomain": 12912, "quality coverage": 78245, "video game": 102883, "wikidata kg": 103808, "evaluation uses": 30818, "hallucination rate": 40850, "12 experiments": 223, "users knowledge": 101129, "responses directly": 83201, "challenge conversational": 12865, "expensive terms": 31926, "resources time": 83034, "require gradientbased": 82256, "examples lm": 31249, "document retrieval": 26218, "learning requiring": 53386, "finally combining": 34510, "queries different": 78480, "humanlike response": 42537, "using dialogue": 101408, "performance response": 71540, "size shows": 88527, "automatically lead": 8888, "role contextual": 84765, "experiments response": 32286, "understanding prior": 99843, "propose structureaware": 77126, "inherent uncertainty": 45745, "prediction extensive": 73691, "conversation focus": 19323, "dataset customized": 21894, "wikipedia knowledge": 103814, "abilities make": 1535, "models utilize": 64483, "results achieving": 83455, "study effectiveness": 91590, "hallucination generate": 40835, "scores achieve": 85747, "build generative": 11590, "model complexity": 60685, "systems experiments": 93447, "generation building": 38053, "task lie": 94129, "second data": 85923, "superiority method": 92679, "transformer encoderdecoder": 98504, "gpt2 endtoend": 39275, "process address": 75267, "privacy constraints": 74891, "improvements models": 43979, "validation tasks": 102131, "novel nlp": 67220, "framework performs": 36228, "framework augments": 36044, "coldstart problem": 15808, "slot filling": 88648, "prediction 11": 73677, "parameters fail": 70211, "tasks response": 95064, "distinguishing synthetic": 25908, "discuss effects": 25656, "language construct": 49170, "unified multilingual": 100033, "codeswitching datasets": 15646, "greatly improve": 40525, "em algorithm": 28031, "systems remains": 93555, "learning building": 53048, "serve effective": 86759, "generative architecture": 38589, "memory compute": 59024, "potential violations": 73318, "interactions introduce": 47063, "addressing novel": 3552, "model backbone": 60584, "questions representing": 78935, "discovery task": 25622, "conversation context": 19320, "selfverification mechanism": 86285, "baselines 10": 9815, "identification finally": 42811, "explanation matching": 32469, "goal effectively": 39054, "tend rely": 95740, "used survey": 100910, "ai insights": 4437, "theoretical physics": 96743, "connecting concepts": 18094, "recently seen": 80555, "language despite": 49187, "representational power": 82083, "power models": 73385, "general applicability": 37107, "created openai": 20200, "openai trained": 68181, "chatgpt spurred": 14264, "settings potential": 87082, "instruction paper": 46350, "correct explanations": 19667, "context leads": 18800, "higher rate": 41520, "systems new": 93517, "candidate choices": 11800, "allow humans": 5162, "using multidimensional": 101622, "consists short": 18344, "building personalized": 11643, "systems important": 93483, "data user": 21731, "facilitating intuitive": 33541, "formulate problem": 35865, "problem conditional": 75002, "setting requires": 87022, "leverages domain": 53784, "twostep training": 99198, "goal step": 39072, "intermediate outputs": 47212, "conversational patterns": 19388, "distribute information": 25922, "humans tend": 42645, "uniform information": 100049, "information density": 45432, "density uid": 23517, "different decoding": 25041, "judgments quality": 48198, "greater extent": 40508, "generate higherquality": 37477, "responses potential": 83276, "quality ratings": 78342, "abstractive dialogue": 1946, "unverifiable information": 100339, "approximation fisher": 7281, "fisher information": 35334, "information matrix": 45541, "informationseeking dialogue": 45677, "method extended": 59301, "dialogue understanding": 24919, "understanding zeroshot": 99909, "data gained": 21249, "including spoken": 44483, "understanding slu": 99875, "addition extensive": 3187, "multiturn interactive": 65391, "research building": 82504, "longterm context": 57412, "context account": 18722, "investigated models": 47723, "language conversation": 49171, "built transformer": 11677, "trained millions": 97872, "pretrained deep": 74246, "language conversations": 49172, "conversations study": 19431, "chatgpt 10": 13470, "main domains": 57821, "domains providing": 26575, "conducted experimental": 17956, "comparing performances": 16689, "performances gpt35": 71738, "authors believe": 8631, "level understanding": 53682, "understanding empathy": 99726, "fully replace": 36467, "basic understanding": 9890, "functioning large": 36517, "models critically": 62137, "built model": 11671, "adventure game": 3966, "language art": 49140, "work draws": 104062, "ordinary users": 68733, "extension works": 32987, "chatbots data": 13439, "bioinformatics knowledge": 11077, "graphs paper": 40446, "use conversational": 100514, "systems widely": 93602, "current dialogue": 20682, "life current": 53980, "agents humans": 4192, "lack resources": 49044, "dialogue corpus": 24855, "finegrained labels": 34796, "synthetic conversations": 93255, "categories social": 12617, "uses deep": 101219, "interact computers": 46973, "healthcare marketing": 41190, "brief introduction": 11451, "introduction development": 47555, "future possible": 36749, "benchmark spoken": 10253, "gap academic": 36909, "conversation scenarios": 19334, "asr errors": 7800, "spoken conversations": 90015, "based characteristics": 9459, "detection new": 24334, "challenges conduct": 12983, "advanced dialogue": 3691, "building conversational": 11626, "domain specifically": 26453, "experiments present": 32262, "dialogue interactions": 24873, "training requires": 98263, "value function": 102191, "function user": 36493, "responses preferred": 83278, "analysis aigenerated": 5428, "annotations large": 5940, "exhibited unprecedented": 31592, "demonstrate quality": 23173, "sociocultural context": 88948, "probabilistic generative": 74948, "features dialogue": 33994, "latent variables": 52645, "dataset limited": 21995, "higher f1": 41504, "score outperforming": 85730, "outperforming current": 68994, "research dialogue": 82552, "purpose language": 78039, "amounts diverse": 5342, "training present": 98237, "models limit": 62934, "limit ability": 54273, "involves understanding": 47858, "generating helpful": 37919, "finetuned endtoend": 34885, "text experiments": 96203, "conversations dataset": 19412, "able generalize": 1849, "unable fully": 99355, "names chatgpt": 65489, "llm created": 55028, "widespread public": 103792, "goal provide": 39068, "public users": 77951, "predict sentences": 73657, "sentences based": 86542, "immense value": 43175, "particularly scenarios": 70499, "closedended questions": 14996, "correctness efficiency": 19732, "acceptance rates": 2049, "crucial robust": 20523, "ai people": 4503, "highly systematic": 41720, "evaluations finetuned": 30851, "goals provide": 39084, "annotated conversations": 5860, "pattern information": 70615, "information contexts": 45427, "networks build": 66174, "users experience": 101102, "gpt2 improved": 39298, "proposed pretrained": 77246, "grounded multiple": 40576, "documents providing": 26261, "providing relevant": 77791, "extracts relevant": 33363, "information documents": 45442, "llms adequately": 55450, "likely include": 54255, "presence hallucinations": 73922, "personalized customer": 71909, "stateoftheart framework": 90346, "framework presented": 36230, "retrieval integration": 83987, "particularly educational": 70452, "value extraction": 102190, "focus underexplored": 35563, "models selecting": 64156, "t5 chatgpt": 93620, "chatgpt struggle": 14272, "responses resulting": 83302, "suboptimal quality": 91991, "marginal likelihood": 58368, "using t5": 101806, "knowledge response": 48747, "enhanced chatgpt": 29228, "involves wide": 47861, "range scenarios": 79202, "scenarios domains": 85421, "strategy reduce": 90912, "data enhance": 21187, "enhance dialogue": 29153, "conduct initial": 17897, "examination chatgpts": 31087, "concerns present": 17699, "utilizing novel": 102039, "data utilized": 21740, "engineering evaluation": 28966, "analysis evaluations": 5510, "collect new": 15868, "scratch recent": 85808, "impact including": 43213, "data response": 21575, "examined including": 31132, "daytoday interactions": 22504, "norms different": 66989, "humanlike dialogue": 42529, "connections users": 18101, "utilization shared": 101925, "training instance": 98147, "crucial requirement": 20521, "suffer hallucinations": 92307, "3b parameters": 884, "challenges deploying": 12991, "domain artificial": 26354, "potent tool": 72976, "taxonomy existing": 95324, "online shopping": 68010, "conversational flow": 19369, "effectively used": 27477, "ernie large": 29753, "analyze strengths": 5784, "aigc technology": 4661, "intelligence explore": 46846, "optimization paths": 68608, "user personas": 101019, "models spoken": 64247, "sets lack": 86964, "set spoken": 86937, "stateoftheart asr": 90311, "information implicit": 45505, "depends users": 23554, "work field": 104094, "important findings": 43509, "processing data": 75472, "specifically focused": 89823, "resolution experimental": 82933, "incontext prompting": 44657, "14 respectively": 308, "collection diverse": 15894, "iteratively prompt": 48081, "norm violations": 66968, "behaviors lead": 10006, "tasks help": 94696, "dialogues real": 24939, "learning collecting": 53075, "task ensure": 94037, "performance obtained": 71438, "pivotal technology": 72209, "field information": 34378, "integration product": 46780, "marks new": 58412, "new phase": 66484, "distinct training": 25881, "existing paradigms": 31789, "regarding text": 81068, "seeks examine": 86075, "similar incontext": 88078, "learning previous": 53344, "use raw": 100668, "finetuned annotated": 34863, "domains new": 26560, "data unavailable": 21713, "product search": 75729, "extra inference": 33212, "retrieval approach": 83961, "performance objective": 71435, "emotional response": 28264, "compared various": 16659, "society artificial": 88939, "companies like": 16353, "groundbreaking invention": 40565, "invention chatgpt": 47602, "responses input": 83243, "versatile effective": 102788, "applications chatbots": 6424, "revolutionize various": 84334, "transform way": 98462, "interact technology": 46984, "overview chatgpt": 69428, "paper suggest": 69964, "reasoning decision making": 79858, "approach holds promise": 6884, "models gpt2 demonstrated": 62590, "significant improvements stateoftheart": 87779, "language model requires": 49531, "capable generating humanlike": 12240, "problems deep learning": 75125, "deep learning framework": 22765, "dialog generation tasks": 24827, "leads stateoftheart performance": 52909, "analysis reveals robustness": 5656, "dialogue systems use": 24910, "technique solve problem": 95461, "highlight current limitations": 41585, "human feedback data": 42220, "responses human replies": 83237, "baseline large margin": 9788, "evaluation shows ranking": 30785, "finetuned gpt2 model": 34898, "conversational ai systems": 19357, "unidirectional language model": 100003, "model gpt2 sequence": 60954, "responses experimental results": 83210, "task adaptive pretraining": 93924, "shared task 9th": 87195, "solve natural language": 89180, "address issues introduce": 3437, "diversity training data": 26161, "model substantially outperforms": 61464, "dialogue natural language": 24882, "dataset demonstrate proposed": 21899, "systems paper propose": 93526, "generative model inference": 38653, "use transformer architecture": 100716, "experiments conducted benchmark": 32135, "datasets different languages": 22219, "learn different tasks": 52939, "tasks unified framework": 95222, "gpt2 based model": 39258, "leverage multitask learning": 53749, "dialogue systems need": 24907, "datasets training models": 22446, "computational resources time": 17481, "lms different sizes": 57119, "model improves performance": 60993, "performance response generation": 71541, "bert gpt2 language": 10522, "gpt2 language modeling": 39301, "models outperform strong": 63740, "language models utilize": 50901, "conduct human evaluations": 17893, "tasks finetuning pretrained": 94647, "pretrained models finetuning": 74407, "models plms gpt2": 63822, "superiority method strong": 92680, "dialogue summarization task": 24903, "used train downstream": 100921, "large number trainable": 52291, "generate diverse responses": 37436, "dialogue systems chatgpt": 24906, "timeconsuming paper propose": 97054, "language model hallucination": 49422, "response generation dialogue": 83135, "limitations paper proposes": 54356, "generation code available": 38077, "future research opportunities": 36775, "capabilities limitations chatgpt": 11976, "trained massive datasets": 97870, "human written text": 42424, "uses pretrained gpt2": 101250, "policy optimization algorithm": 72549, "novel reward function": 67243, "generation task finetune": 38444, "generalization unseen domains": 37286, "present detailed ablation": 73968, "ablation study demonstrate": 1814, "uniform information density": 100050, "information density uid": 45433, "approximation fisher information": 7282, "fisher information matrix": 35335, "spoken language understanding": 90019, "language understanding slu": 51187, "gpt2 models finetuned": 39320, "natural language conversation": 65561, "built transformer architecture": 11678, "pretrained deep learning": 74247, "natural language conversations": 65562, "comparing performances gpt35": 16690, "performances gpt35 gpt4": 71739, "functioning large language": 36518, "text adventure game": 96075, "deep learning systems": 22777, "bioinformatics knowledge graphs": 11078, "knowledge graphs paper": 48608, "paper present work": 69846, "current dialogue systems": 20683, "generated chatgpt human": 37671, "promising research direction": 76194, "model uses deep": 61560, "uses deep learning": 101220, "work language models": 104156, "way interact computers": 103375, "brief introduction development": 11452, "present comparative analysis": 73949, "training neural networks": 98215, "language models exhibited": 49850, "demonstrate quality generated": 23174, "improve models ability": 43736, "higher f1 score": 41505, "outperforming current stateoftheart": 68995, "gpt3 chatgpt zeroshot": 39426, "larger language model": 52442, "general purpose language": 37179, "purpose language models": 78040, "large amounts diverse": 51386, "preliminary experimental results": 73867, "stateoftheart performance zeroshot": 90449, "llm created openai": 55029, "human evaluations finetuned": 42198, "finetuned t5 model": 34978, "exposure bias problem": 32900, "model outperforms baselines": 61181, "metrics evaluating large": 59912, "perform human evaluation": 70880, "models knowledge retrieval": 62834, "wide range scenarios": 103685, "new pretrained model": 66492, "pretrained model specifically": 74396, "dialogue summarization datasets": 24902, "exceptional performance chatgpt": 31377, "address concerns present": 3382, "exhibits remarkable performance": 31627, "remarkable performance improvements": 81789, "zeroshot fewshot setting": 104781, "source code provided": 89359, "prompt engineering evaluation": 76296, "broader research community": 11521, "models suffer hallucinations": 64295, "standard datasets models": 90165, "domain artificial intelligence": 26355, "challenges ethical considerations": 13007, "ernie large language": 29754, "practical applications like": 73501, "improve performance stateoftheart": 43763, "downstream tasks including": 26732, "tasks including dialogue": 94727, "work study methods": 104283, "experimental findings indicate": 32002, "specific tasks domains": 89762, "13b parameter models": 300, "power chatgpt generate": 73367, "field information retrieval": 34379, "regarding text quality": 81069, "previous works use": 74742, "extra inference cost": 33213, "capabilities llms propose": 11992, "society artificial intelligence": 88940, "groundbreaking invention chatgpt": 40566, "potential revolutionize various": 73246, "revolutionize various industries": 84335, "transform way interact": 98463, "pretrained language models existing": 74307, "pretrained language model requires": 74290, "transfer learning large language": 98419, "language model gpt2 sequence": 49416, "natural language generation task": 65596, "largescale pretrained models like": 52566, "performance automatic human evaluations": 71004, "models outperform strong baselines": 63741, "tasks finetuning pretrained models": 94648, "language models plms gpt2": 50654, "large number trainable parameters": 52292, "language model incontext learning": 49429, "leveraging largescale language model": 53871, "experimental results proposed model": 32062, "proximal policy optimization algorithm": 77833, "conduct extensive experimental analysis": 17880, "uniform information density uid": 100051, "approximation fisher information matrix": 7283, "spoken language understanding slu": 90020, "pretrained deep learning models": 74248, "comparing performances gpt35 gpt4": 16691, "functioning large language models": 36519, "model uses deep learning": 61561, "general purpose language models": 37180, "pretrained language models finetuned": 74310, "based pretrained language model": 9660, "metrics evaluating large language": 59913, "language models knowledge retrieval": 50015, "significantly outperforms previous stateoftheart": 88003, "suggest future research directions": 92365, "ernie large language models": 29755, "rapid advancement artificial intelligence": 79292, "advancement artificial intelligence ai": 3768, "llms including gpt4 chatgpt": 56183, "generate natural language responses": 37534, "potential revolutionize various industries": 73247, "large pretrained language models bert": 52310, "transfer learning large language models": 98420, "performance various natural language tasks": 71691, "based pretrained language models plms": 9662, "pretrained language models plms gpt2": 74341, "large pretrained language models demonstrated": 52312, "rapid advancement artificial intelligence ai": 79293, "tiling": 96924, "939": 1430, "qag": 78161, "enjoyable": 29382, "wikisql": 103816, "stratify": 90932, "wisely": 103853, "tokenisation": 97163, "copied": 19510, "naturalquestions": 65796, "autoprompt": 8946, "kge": 48377, "vod": 103204, "renyi": 81880, "190000": 446, "embark": 28038, "recommender": 80671, "718": 1232, "forwardlooking": 35893, "unification": 100005, "nonsynthetic": 66955, "mplugowl": 64818, "textitrr": 96529, "636": 1149, "273": 686, "bidirectionality": 10980, "metalorganic": 59158, "mofs": 64695, "communitybased": 16340, "neighborhoods": 66103, "transductive": 98392, "cypher": 20890, "dq": 26769, "carriers": 12436, "vein": 102714, "llmenhanced": 55369, "recitation": 80583, "top2": 97492, "capture rich": 12364, "kgs enhance": 48380, "paper utilize": 69989, "textual corpora": 96661, "lexical syntactic": 53931, "information simultaneously": 45626, "rules generate": 84937, "models short": 64172, "short paper": 87294, "unsupervised learning": 100305, "unsupervised training": 100319, "text english": 96193, "outputs ranked": 69251, "ranked list": 79253, "scales model": 85313, "models explores": 62416, "corpus generated": 19625, "83 billion": 1348, "train state": 97778, "apply methodology": 6664, "em score": 28034, "questions corresponding": 78810, "corresponding input": 19796, "transformerbased unidirectional": 98594, "model leveraging": 61065, "easy answer": 27030, "set baseline": 86843, "knowledge recent": 48736, "recent deep": 80236, "tasks answering": 94372, "propose unsupervised": 77154, "large majority": 52244, "reliable tools": 81530, "clickthrough rates": 14900, "performance step": 71596, "scale study": 85295, "series novel": 86747, "models pegasus": 63783, "versatile generative": 102790, "different permutations": 25142, "answer answer": 5986, "structured query": 91179, "work simulate": 104278, "despite pretraining": 24099, "large opendomain": 52296, "unseen topics": 100283, "response propose": 83154, "transformer generator": 98507, "generator t5": 38739, "pipeline methods": 72166, "novelty lies": 67290, "method approach": 59207, "method extract": 59304, "processes test": 75449, "methods performance": 59748, "advances needed": 3893, "comparison extractive": 16710, "showing better": 87410, "outofdomain generalization": 68888, "queries natural": 78501, "pointer generator": 72488, "networks bert": 66173, "bert embeddings": 10508, "outperforms taskspecific": 69131, "works methods": 104370, "metrics experiments": 59917, "spectrum natural": 89924, "graph text": 40412, "trained smaller": 97906, "improvement exact": 43905, "graphs knowledge": 40437, "safety domain": 85023, "domain commercial": 26362, "number documents": 67336, "documents like": 26255, "resource community": 82956, "community researchers": 16334, "graph database": 40373, "complex operations": 16969, "needs explored": 66035, "recently generative": 80501, "effective lowresource": 27323, "largescale unsupervised": 52582, "settings furthermore": 87057, "information textbased": 45652, "embeddings represent": 28095, "models opensourced": 63715, "kgs plms": 48381, "supports various": 92871, "retrievalaugmented models": 84057, "research optimization": 82692, "models multiplechoice": 63653, "dataset outperform": 22023, "model scored": 61378, "retriever component": 84094, "sources knowledge": 89414, "novel knowledge": 67191, "knowledge interaction": 48636, "provides reasoning": 77698, "models decision": 62161, "spread multiple": 90039, "step use": 90663, "transportation safety": 98784, "t5 achieve": 93615, "validate findings": 102097, "t5large obtain": 93665, "gpt3 different": 39443, "including prompting": 44453, "interactive interface": 47104, "knowledge growing": 48613, "testing various": 96030, "datasets total": 22443, "graph question": 40403, "additional neural": 3251, "kgs based": 48379, "techniques knowledge": 95541, "does directly": 26288, "directly produce": 25515, "produces corresponding": 75692, "responses recent": 83296, "prototype called": 77361, "integrated data": 46680, "answers recent": 6213, "answers user": 6228, "chatgpts failures": 14431, "knowledge memorization": 48672, "factuality propose": 33656, "augmenting model": 8602, "cues knowledge": 20579, "13b 27b": 283, "multiple ways": 65283, "graphs chatgpt": 40433, "shown superior": 87554, "graph used": 40415, "linear classifier": 54522, "applications emerging": 6463, "reasoning inference": 79908, "inference challenging": 45220, "paper analyzes": 69611, "specialized pretrained": 89638, "case created": 12455, "automatic creation": 8767, "creation knowledge": 20243, "creation using": 20250, "models reasonable": 63990, "detecting hallucinations": 24244, "hallucinations llm": 40872, "static information": 90534, "dynamic scenarios": 26932, "need propose": 65981, "relation event": 81239, "based dynamically": 9508, "better handle": 10726, "ecommerce llms": 27051, "providing structured": 77801, "product types": 75730, "recommender systems": 80672, "dynamic nature": 26926, "ecommerce domains": 27049, "surprising results": 92995, "llms relation": 56683, "effectiveness predicting": 27563, "sampling technique": 85170, "create context": 20148, "using wide": 101850, "prompt demonstrate": 76272, "answers improves": 6190, "methods result": 59787, "tree size": 98823, "work including": 104128, "opportunities paper": 68504, "thoroughly exploring": 96842, "construction inference": 18467, "gpt4 suited": 40109, "task development": 94019, "tens hundreds": 95755, "parameterized llms": 70161, "gpt35 based": 39580, "benchmarks makes": 10379, "difficult evaluate": 25292, "evaluate improve": 30203, "right information": 84434, "approaches chainofthought": 7113, "274 unique": 688, "hallucinate wrong": 40815, "facts used": 33618, "answers robust": 6219, "train language": 97745, "framework trains": 36306, "key technical": 48347, "effectiveness robustness": 27577, "draw line": 26801, "typically covered": 99284, "gap end": 36926, "problem models": 75047, "llms closed": 55623, "size performance": 88505, "models remarkably": 64059, "short capturing": 87274, "providing external": 77746, "graphtotext generation": 40452, "mutually beneficial": 65433, "powerful emergent": 73433, "like knowledge": 54177, "like previous": 54208, "previous smaller": 74699, "knowledge providing": 48724, "queries paper": 78503, "reviews studies": 84297, "graph enhanced": 40382, "fewshot domain": 34228, "synthetic feedback": 93279, "llm novel": 55177, "generate abstractive": 37367, "llm synthetic": 55280, "model score": 61377, "framework align": 36030, "optimization step": 68617, "improve rag": 43788, "llm foundation": 55091, "making llm": 58119, "sentences provide": 86566, "largest opensourced": 52601, "palm2 paper": 69564, "matching quality": 58524, "llava mplugowl": 54915, "leveraging larger": 53868, "larger llm": 52449, "techniques code": 95488, "data opensourced": 21454, "grow size": 40638, "costs additionally": 19921, "lack efficient": 49005, "knowledge performance": 48698, "model greatly": 60966, "greatly enhanced": 40524, "requirement significantly": 82330, "times improvement": 97076, "drastic performance": 26790, "knowledge mitigating": 48674, "model longer": 61112, "retrieval method": 83993, "second method": 85942, "utilising relevant": 101885, "processing enabling": 75477, "bases kb": 9865, "facilitating information": 33540, "llama architecture": 54725, "005 parameters": 7, "parameters base": 70177, "prompts engineered": 76700, "sizes capabilities": 88547, "metrics lastly": 59942, "relatively smaller": 81333, "tools corresponding": 97379, "corresponding tools": 19805, "used efficiently": 100787, "solutions indicating": 89146, "metalorganic frameworks": 59159, "frameworks mofs": 36329, "structured databases": 91159, "complicated graph": 17065, "variations resulting": 102269, "queries evaluate": 78487, "queries apply": 78471, "issues different": 47986, "query languages": 78532, "science knowledge": 85592, "filling missing": 34464, "utilizing textual": 102049, "encounter limitations": 28775, "secondly leverage": 85968, "providing supplementary": 77803, "yield promising": 104645, "results knowledge": 83697, "capacity models": 12302, "works pretrained": 104375, "reranking generated": 82457, "aims derive": 4790, "form finetuned": 35773, "manner introduce": 58241, "accommodate new": 2125, "transition new": 98656, "points em": 72497, "studies provided": 91433, "model field": 60878, "processing gpt": 75484, "related queries": 81210, "approach conducting": 6782, "graph inference": 40386, "cypher query": 20891, "contains parts": 18559, "auxiliary model": 8988, "sample prompt": 85088, "comprehensive response": 17293, "framework guides": 36153, "documentbased qa": 26231, "numerical extraction": 67406, "retrieving answering": 84106, "gpt35 question": 39659, "reliable task": 81529, "limits applications": 54493, "extraction documents": 33294, "applications information": 6503, "retrieval document": 83979, "retrieval relevant": 84017, "models required": 64074, "filtering models": 34475, "time experiment": 96961, "approaches extractive": 7137, "model building": 60620, "offers users": 67866, "multiple advantages": 65133, "advantages including": 3941, "complex research": 16997, "highlight significant": 41613, "metrics performance": 59954, "task observed": 94164, "tasks exploring": 94619, "performance conditional": 71105, "initially investigate": 45802, "tools llm": 97441, "subsequently examine": 92027, "pretraining structured": 74605, "commonsense models": 16223, "decomposing complex": 22696, "improves reliability": 44072, "users current": 101089, "employs rulebased": 28482, "gpt4 vicuna": 40150, "vicuna llama2": 102864, "available future": 9037, "amounts textual": 5359, "graph nodes": 40400, "controllable manner": 19239, "multidocument question": 64901, "questions complex": 78800, "dependencies long": 23534, "context provide": 18831, "provide dataset": 77443, "challenging powerful": 13209, "information missing": 45543, "engine queries": 28933, "explore approach": 32640, "best settings": 10648, "advantages plms": 3947, "llms motivates": 56407, "match sota": 58500, "outperform leading": 68952, "access language": 2066, "investigate generative": 47651, "memorized content": 59003, "furthermore applying": 36579, "lora achieves": 57439, "entailment tasks": 29496, "learning datasets": 53098, "common nlp tasks": 16157, "unsupervised learning techniques": 100306, "english language model": 29079, "knowledge using natural": 48805, "factors model size": 33604, "83 billion parameter": 1349, "train state art": 97779, "increase model complexity": 44766, "transformerbased unidirectional language": 98595, "automatically acquire knowledge": 8840, "knowledge largescale corpora": 48652, "paper propose unsupervised": 69901, "using automated metrics": 101303, "answering qa task": 6139, "foster research improving": 35902, "queries natural language": 78502, "outperforms taskspecific models": 69132, "spectrum natural language": 89925, "text work propose": 96487, "improvement exact match": 43906, "knowledge graphs knowledge": 48604, "large number documents": 52286, "recently generative pretrained": 80502, "pretrained language modelbased": 74293, "language models opensourced": 50621, "existing approaches based": 31654, "graph question answering": 40404, "models plms bert": 63821, "additional neural network": 3252, "answers recent advancements": 6214, "potential impact various": 73128, "impact various aspects": 43267, "smaller models finetuned": 88771, "chatgpt knowledge graphs": 13966, "shown superior performance": 87555, "tackle limitations propose": 93734, "method conduct experiments": 59239, "findings indicate using": 34693, "models recent success": 64009, "new task called": 66546, "code datasets available": 15214, "llms shown surprising": 56795, "shown surprising results": 87557, "ability achieve competitive": 1585, "using wide range": 101851, "various metrics including": 102485, "metrics including accuracy": 59932, "future work including": 36796, "requires models provide": 82401, "ability llms information": 1707, "methods including supervised": 59683, "dev test sets": 24431, "train language model": 97746, "existing knowledge graphs": 31731, "gap human performance": 36934, "fall short capturing": 33781, "providing external knowledge": 77747, "powerful emergent abilities": 73434, "knowledge graph enhanced": 48595, "reward model score": 84370, "knowledge graph generation": 48597, "models llm foundation": 62954, "llm foundation models": 55092, "used different tasks": 100780, "input sentences provide": 45952, "generation test cases": 38466, "code data opensourced": 15194, "integration language models": 46770, "language tasks models": 51129, "significant challenges terms": 87714, "computational costs additionally": 17451, "models shown exhibit": 64178, "dense retrieval method": 23509, "models generally outperform": 62542, "language processing enabling": 50980, "knowledge bases kb": 48445, "powerful models knowledge": 73458, "language models varying": 50903, "varying sizes capabilities": 102660, "additionally propose novel": 3337, "innovative framework called": 45854, "datasets experimental analysis": 22252, "present comprehensive benchmark": 73955, "metalorganic frameworks mofs": 59160, "approach utilizing chatgpt": 7085, "materials science knowledge": 58539, "yield promising results": 104646, "generated candidates based": 37667, "largescale knowledge bases": 52524, "finetuning opensource llms": 35163, "task zeroshot manner": 94296, "language model field": 49397, "language processing gpt": 50982, "remains limited paper": 81676, "address gap presenting": 3402, "realworld knowledge graphs": 79679, "selection incontext learning": 86158, "like chatgpt gpt3": 54078, "cypher query language": 20892, "assessing llms performance": 7921, "information retrieval tasks": 45610, "emphasizing need research": 28303, "retrieval relevant knowledge": 84018, "llms presents opportunity": 56557, "models like t5": 62932, "evaluation metrics performance": 30684, "intricate nature human": 47368, "llm large language": 55145, "available future research": 9038, "training data current": 98000, "multidocument question answering": 64902, "language models type": 50891, "complex reasoning llms": 16992, "search engine queries": 85865, "models explore approach": 62414, "generation generative models": 38181, "leading llms like": 52864, "paper investigate generative": 69785, "demonstrates strong zeroshot": 23412, "knowledge using natural language": 48806, "using natural language queries": 101633, "using automated metrics human": 101304, "question answering qa task": 78622, "language models plms bert": 50653, "answers recent advancements large": 6215, "superior performance various natural": 92660, "evaluate effectiveness proposed method": 30175, "models recent success large": 64010, "propose new task called": 77055, "models llms shown surprising": 63441, "tasks paper conduct empirical": 94923, "relation extraction event extraction": 81243, "alpaca experimental results demonstrate": 5230, "language models llm foundation": 50061, "models llm foundation models": 62955, "language models shown exhibit": 50795, "natural language processing enabling": 65648, "language models varying sizes": 50904, "models varying sizes capabilities": 64501, "enabling large language models": 28643, "natural language processing gpt": 65650, "llm large language models": 55146, "large language models type": 52210, "language models explore approach": 49861, "leading llms like gpt4": 52865, "generative pretrained language models plms": 38686, "pretrained language models plms bert": 74340, "answers recent advancements large language": 6216, "superior performance various natural language": 92661, "models recent success large language": 64011, "language models llms shown surprising": 50449, "tasks paper conduct empirical study": 94924, "advances large language models llm": 3882, "large language models llm foundation": 51770, "language models llm foundation models": 50062, "field natural language processing enabling": 34396, "language models varying sizes capabilities": 50905, "era large language models llms": 29737, "field natural language processing gpt": 34397, "llm large language models llms": 55147, "listed": 54626, "gpt1": 39247, "vader": 102076, "finbert": 34618, "crypto": 20553, "differenceindifference": 24968, "twomonth": 99168, "valuations": 102177, "gnn": 39039, "cash": 12567, "bloomberggpt": 11223, "bloat": 11193, "portfolio": 72720, "interproduct": 47313, "closesourced": 15049, "profitable": 75815, "funds": 36570, "subscription": 92007, "literate": 54640, "masses": 58442, "latitude": 52689, "fund": 36526, "governmental": 39169, "interferes": 47193, "valuation": 102176, "terrains": 95852, "cryptocurrency": 20554, "quarters": 78464, "priced": 74770, "bureau": 11691, "receivers": 80157, "esg": 29851, "assembling": 7809, "pictorial": 72099, "buy": 11708, "horizons": 41982, "strikes": 90986, "reactivity": 79492, "voluminous": 103221, "applicationlevel": 6396, "investments": 47809, "emotion data": 28249, "nlp model": 66749, "data transfer": 21707, "stateoftheart emotion": 90338, "chatgpt annotated": 13521, "main advantages": 57812, "emotions expressed": 28270, "emotions play": 28271, "financial markets": 34607, "sensitivity analysis": 86472, "financial sector": 34612, "layers gpt2": 52747, "information maintained": 45538, "comparisons models": 16739, "models drawing": 62265, "method analyzing": 59204, "analysis needs": 5587, "reason introduce": 79727, "analysis introduce": 5561, "chatgpt scores": 14199, "stronger smaller": 91097, "accuracy constraints": 2231, "employs advanced": 28469, "test gpt4": 95898, "approaches chatgpt": 7114, "impact downstream": 43204, "analytical problems": 5732, "20 large": 491, "undergone rapid": 99466, "designed chinese": 23888, "stages pretraining": 90136, "intelligence related": 46886, "related crypto": 81188, "analysis introduction": 5562, "attention artificial": 8284, "ai emerged": 4378, "including 200": 44264, "manual scoring": 58280, "clarity completeness": 14688, "models fostering": 62504, "efficiently extract": 27848, "hybrid long": 42705, "performance textual": 71632, "understanding tabular": 99886, "hybrid text": 42708, "extraction complex": 33286, "llms financial": 55980, "financial tasks": 34614, "opensource generative": 68338, "enhance graph": 29164, "networks gnn": 66188, "networks graph": 66191, "chatgpt textbased": 14311, "academic journals": 1984, "demonstrated unique": 23356, "development financial": 24645, "construct largescale": 18426, "largescale multitask": 52549, "tasks financial": 94636, "able follow": 1848, "llms uncovering": 56979, "weaknesses handling": 103458, "results opensourced": 83753, "domains sparking": 26589, "sparking great": 89518, "unique data": 100080, "unlike proprietary": 100184, "adaptation technique": 3100, "lower price": 57571, "information asymmetry": 45409, "indicate generative": 44993, "meets llm": 58974, "application machine": 6371, "offering unified": 67813, "including widely": 44518, "reasoning information": 79909, "information utilizing": 45670, "available llm": 9064, "albeit relatively": 4887, "models sentiment": 64162, "contextual comprehension": 18936, "development chinese": 24621, "strategies running": 90847, "scenarios based": 85403, "initial study": 45789, "context set": 18848, "investigate systems": 47702, "data unfortunately": 21715, "lora qlora": 57448, "analysis algorithmic": 5433, "aims democratize": 4789, "novel chatgptbased": 67128, "chatgptbased data": 14395, "analysis important": 5546, "important tool": 43541, "work answer": 103989, "precise nature": 73598, "chatgpt incorporate": 13951, "approach led": 6930, "selection perform": 86169, "market trends": 58395, "study breaks": 91510, "ground investigating": 40554, "financial applications": 34593, "utilized dataset": 101966, "financial services": 34613, "tasks efficacy": 94568, "comprehensive model": 17279, "evaluating stateoftheart": 30489, "stateoftheart chinese": 90321, "benchmark utilizing": 10275, "summarizing text": 92593, "text extracting": 96206, "fields work": 34447, "unstructured textual": 100296, "improving future": 44123, "breaking bank": 11386, "learning gpt35": 53184, "additionally finetune": 3311, "learning technique": 53445, "fewer examples": 34191, "better given": 10722, "methods offer": 59739, "llm comparison": 55011, "based sentiment": 9714, "platform using": 72310, "modern llm": 64606, "offer unprecedented": 67775, "gauge effectiveness": 37034, "reveal notable": 84162, "source advice": 89339, "dataset supervised": 22095, "tasks embodying": 94571, "various facets": 102428, "balance model": 9306, "realworld application": 79637, "applying code": 6679, "furthermore given": 36622, "depth accuracy": 23632, "text provides": 96375, "stateoftheart commercial": 90325, "texts providing": 96592, "highquality domainspecific": 41755, "10 pretrained": 116, "sourced publicly": 89399, "related fields": 81193, "sources bias": 89404, "analysis critical": 5473, "discrepancy pretraining": 25626, "significantly diminish": 87911, "analysis address": 5422, "sentiment labels": 86604, "benchmarked traditional": 10280, "datasets presents": 22372, "ensuring seamless": 29488, "scheme designed": 85524, "incorporating novel": 44714, "understand adaptability": 99593, "articles facts": 7564, "events news": 30935, "particular entity": 70405, "tools enabling": 97395, "features capabilities": 33988, "llms hybrid": 56154, "hybrid method": 42706, "features semantic": 34024, "tasks matching": 94854, "analysis considering": 5469, "analysis crucial": 5474, "crucial accurately": 20467, "purpose work": 78051, "evaluation comprising": 30550, "models decoderonly": 62164, "demonstrate notable": 23140, "existing risk": 31816, "ai risk": 4539, "perform outside": 70906, "techniques effective": 95504, "aforementioned approaches": 4084, "evaluation cuttingedge": 30562, "methods costeffective": 59581, "querying method": 78561, "extensive error": 33024, "twitter sentiment": 99162, "sentiment data": 86602, "like twitter": 54236, "offer insightful": 67748, "negative neutral": 66064, "emphasizes growing": 28291, "model configurations": 60695, "configurations including": 18033, "manually review": 58313, "using longer": 101591, "enterprise settings": 29506, "corpus economic": 19614, "time leverage": 96986, "techniques gpt35": 95527, "entities related": 29547, "tested proposed": 95985, "propose consider": 76951, "overall sentiment": 69323, "likely use": 54263, "chatgpt likely": 13991, "computational linguistic": 17464, "alignment test": 5120, "analysis finetuned": 5519, "substantial advantages": 92056, "thoroughly explored": 96841, "explored bridge": 32769, "given computational": 38868, "finetuned smaller": 34967, "development innovative": 24657, "suggesting combination": 92408, "modest computational": 64630, "insights methodologies": 46112, "key indicators": 48309, "environmental social": 29635, "social governance": 88862, "governance esg": 39165, "learning methodologies": 53263, "explanations notable": 32509, "huge text": 42050, "model 2023": 60463, "twostage prompt": 99188, "negative correlation": 66056, "industry conventional": 45165, "achieve specific": 2588, "highlevel strategic": 41566, "data conducted": 21103, "experiments applying": 32109, "text modeling": 96337, "modeling summarization": 61680, "questions demonstrating": 78821, "pivotal step": 72208, "step enhancing": 90634, "construct graph": 18421, "elements specifically": 27972, "information long": 45535, "architecture models": 7357, "insights vast": 46143, "customer satisfaction": 20842, "tasks survey": 95172, "llm researchers": 55240, "researchers identify": 82863, "identify new": 42888, "practical challenges": 73505, "questions address": 78768, "rougel scores": 84869, "necessity finetuning": 65893, "showcase capability": 87354, "accuracy zeroshot": 2386, "providing superior": 77802, "combination finetuning": 15950, "process known": 75343, "known retrieval": 48854, "spanish financial": 89487, "bilingual evaluation": 11006, "bias existing": 10839, "cause significant": 12690, "detection address": 24257, "applications experimental": 6476, "iterative humanai": 48058, "modeling analysis": 61624, "efficiency precision": 27708, "analysis focusing": 5523, "indicators like": 45054, "media elements": 58835, "underscores practical": 99575, "benefits integrating": 10476, "offering nuanced": 67795, "nuanced perspective": 67318, "training exploiting": 98109, "tasks 25": 94329, "highlights urgent": 41675, "need systematic": 65999, "thoroughly assess": 96837, "associative memory": 8114, "evaluation 15": 30498, "chatgpt latest": 13983, "showing clear": 87412, "tuning boosts": 99020, "performance falls": 71208, "accuracy response": 2352, "learningbased methods": 53487, "faithful rationales": 33748, "mechanism finetune": 58797, "key tokens": 48352, "methods prediction": 59753, "distillation transfer": 25829, "learning resulting": 53390, "interactions increasingly": 47062, "interaction analysis": 46995, "repository data": 82026, "queries compared": 78476, "process particularly": 75372, "mathematical framework": 58576, "plan solve": 72244, "news online": 66636, "better informed": 10734, "context sensitivity": 18846, "framework introduce": 36175, "model order": 61173, "handle complexities": 40922, "trained classify": 97804, "sacrificing accuracy": 84977, "findings showcase": 34750, "models navigate": 63659, "domainspecific settings": 26648, "emotions social media": 28273, "gpt2 bert models": 39261, "based t5 model": 9729, "datasets findings indicate": 22264, "serves foundation future": 86794, "positive correlation chatgpt": 72821, "finally propose new": 34559, "challenges limitations using": 13061, "using benchmark datasets": 101313, "strengths limitations current": 90957, "specifically designed chinese": 89804, "artificial intelligence related": 7658, "attention artificial intelligence": 8285, "chatgpt gpt4 revolutionized": 13906, "data remains underexplored": 21562, "remains underexplored research": 81716, "method results suggest": 59418, "finetuned annotated data": 34864, "data finetuned models": 21238, "neural networks gnn": 66270, "networks graph neural": 66192, "model consistently outperformed": 60699, "consistently outperformed stateoftheart": 18304, "tuning datasets evaluation": 99026, "datasets evaluation benchmarks": 22239, "intelligence ai paper": 46816, "strengths weaknesses handling": 90967, "processing tasks diverse": 75576, "tasks diverse domains": 94556, "domains sparking great": 26590, "unlike proprietary models": 100185, "lowrank adaptation technique": 57602, "results indicate generative": 83675, "indicate generative ai": 44994, "application machine learning": 6372, "offering unified solution": 67814, "publicly available llm": 77983, "models sentiment analysis": 64163, "paper introduce simple": 69768, "approach address issues": 6722, "sentiment analysis models": 86588, "generating humanlike texts": 37927, "uses generative ai": 101228, "models achieve better": 61753, "study breaks new": 91511, "new ground investigating": 66417, "performance using metrics": 71659, "knowledge evaluation benchmark": 48554, "unstructured textual data": 100297, "provide quantitative insights": 77553, "insights improving future": 46104, "incontext learning gpt35": 44601, "perform better given": 70826, "based sentiment analysis": 9715, "llms develop novel": 55793, "reveal notable performance": 84163, "models llms augmented": 62992, "using carefully curated": 101325, "commercial models gpt35": 16088, "various domains remains": 102411, "sourced publicly available": 89400, "deep learning research": 22776, "sentiment analysis large": 86584, "retrieval augmented large": 83970, "sentiment analysis critical": 86581, "traditional nlp models": 97690, "sentiment analysis address": 86580, "benchmarked traditional models": 10281, "like chatgpt llama": 54086, "model gpt 35": 60948, "evaluation chatgpt gpt4": 30539, "stateoftheart taskspecific models": 90494, "chainofthought cot fewshot": 12818, "indepth analysis models": 44945, "way future studies": 103363, "general natural language": 37166, "assess ability llms": 7819, "study compares performance": 91532, "language models decoderonly": 49764, "provides useful insights": 77718, "extensive error analysis": 33025, "positive negative neutral": 72828, "comparative analysis finetuned": 16420, "zeroshot fewshot incontext": 104772, "incontext learning various": 44654, "explored bridge gap": 32770, "llms achieve comparable": 55416, "performance stateoftheart finetuned": 71591, "environmental social governance": 29636, "social governance esg": 88863, "capabilities various llms": 12124, "incontext learning methodologies": 44625, "decision making process": 22582, "llms trained huge": 56947, "statistically significant positive": 90566, "significant positive correlation": 87818, "study provide comprehensive": 91796, "known retrieval augmented": 48855, "processing nlp application": 75513, "applications experimental results": 6477, "introduced new paradigm": 47507, "iterative humanai interaction": 48059, "highlights urgent need": 41676, "urgent need systematic": 100410, "evaluation benchmark specifically": 30526, "representative llms including": 82146, "deep learningbased methods": 22782, "framework outperforms stateoftheart": 36224, "knowledge distillation transfer": 48518, "responses queries compared": 83290, "compared human responses": 16570, "dynamic incontext learning": 26920, "language models navigate": 50598, "despite lacking explicit": 24079, "providing specific examples": 77799, "large language models predicting": 52109, "chatgpt gpt4 revolutionized natural": 13907, "achieve significant performance improvements": 2580, "llms demonstrate exceptional performance": 55729, "graph neural networks gnn": 40398, "networks graph neural networks": 66193, "instruction tuning datasets evaluation": 46376, "tuning datasets evaluation benchmarks": 99027, "artificial intelligence ai paper": 7611, "language processing tasks diverse": 51047, "processing tasks diverse domains": 75577, "results indicate generative ai": 83676, "era large language model": 29734, "study breaks new ground": 91512, "breaks new ground investigating": 11393, "language models llms augmented": 50090, "sentiment analysis large language": 86585, "retrieval augmented large language": 83971, "large language models financial": 51686, "llms like chatgpt llama": 56309, "language model gpt 35": 49413, "zeroshot fewshot incontext learning": 104773, "llms achieve comparable performance": 55417, "environmental social governance esg": 29637, "statistically significant positive correlation": 90567, "known retrieval augmented generation": 48856, "language processing nlp application": 51000, "evaluation benchmark specifically designed": 30527, "framework outperforms stateoftheart methods": 36225, "variety natural language processing tasks": 102313, "openais large language model chatgpt": 68221, "chatgpt gpt4 revolutionized natural language": 13908, "models llms demonstrate exceptional performance": 63058, "instruction tuning datasets evaluation benchmarks": 46377, "natural language processing tasks diverse": 65701, "language processing tasks diverse domains": 51048, "harnessing large language models llms": 41091, "study breaks new ground investigating": 91513, "large language models llms augmented": 51790, "sentiment analysis large language models": 86586, "models llms like chatgpt llama": 63279, "domain natural language processing nlp": 26422, "large language model gpt 35": 51479, "known retrieval augmented generation rag": 48857, "natural language processing nlp application": 65665, "benchmark large language models llms": 10204, "stateoftheart language models like gpt4": 90361, "stereotypical": 90704, "profession": 75752, "downloads": 26680, "sexuality": 87144, "intersections": 47329, "permeating": 71838, "goto": 39162, "felt": 34174, "underspecification": 99589, "countrys": 20018, "debias": 22534, "standardise": 90216, "perpetuates": 71850, "broadcoverage": 11503, "sociolinguistic": 88953, "absorbed": 1925, "sake": 85066, "sociodemographic": 88949, "mouth": 64798, "twolevel": 99167, "ethnic": 30098, "favourable": 33935, "scholarship": 85543, "marriage": 58417, "females": 34178, "reacts": 79493, "bertrand": 10579, "2003": 507, "pregnancy": 73850, "nonbinary": 66881, "warm": 103313, "masculine": 58420, "rewriters": 84390, "odds": 67720, "recognise": 80584, "operationalise": 68454, "195": 451, "395": 873, "americans": 5329, "disabilities": 25532, "purchase": 78026, "developing algorithms": 24570, "tasks word": 95258, "sentence paper": 86512, "analyze extent": 5761, "models contextual": 62111, "particular group": 70408, "captured existing": 12372, "dataset english": 21923, "biases domains": 10922, "analogical reasoning": 5377, "generation understand": 38487, "different uses": 25249, "model huggingface": 60977, "lives recent": 54700, "shown capture": 87444, "trained unfiltered": 97923, "politically biased": 72574, "potentially causing": 73330, "framework mitigating": 36207, "bias gender": 10842, "million 27": 60025, "unconditional zeroshot": 99414, "tests conducted": 96040, "suggest technical": 92395, "need combine": 65921, "causal effects": 12649, "properties experiments": 76897, "progress evaluation": 75979, "bias exhibited": 10838, "method dataset": 59254, "finetuning especially": 35057, "memorization capacity": 58998, "measure bias": 58731, "families roberta": 33840, "risks arise": 84507, "biases gpt3": 10925, "interactions digital": 47055, "improve fairness": 43703, "ongoing work": 67972, "biases pretrained": 10946, "demographic attributes": 23000, "gpt2 glove": 39289, "embeddings language": 28085, "understanding biases": 99678, "given token": 38976, "lightweight blackbox": 54034, "models equally": 62338, "models lower": 63557, "studies multilingual": 91421, "performance consistency": 71110, "impact important": 43212, "asking models": 7743, "regard gender": 81039, "fail fully": 33676, "generate expressive": 37449, "texts large": 96581, "biases various": 10961, "development techniques": 24719, "research pointed": 82710, "paper extend": 69736, "models studies": 64276, "exhibit biases": 31504, "gpt2 present": 39331, "chatgpt social": 14249, "different social": 25199, "set test": 86941, "chatgpt controllable": 13659, "methods approach": 59533, "chatgpt test": 14308, "enable seamless": 28563, "categories attributes": 12602, "plms text": 72438, "text sentences": 96411, "male female": 58151, "results realworld": 83803, "realworld benchmarks": 79649, "performance term": 71625, "simplification text": 88270, "current automated": 20665, "performed tasks": 71768, "novel ai": 67084, "demonstrated tools": 23355, "utilizing generative": 102016, "ai powered": 4513, "like siri": 54223, "systems produce": 93535, "makes existing": 58058, "existing bias": 31677, "identify measure": 42881, "adopts novel": 3652, "based existence": 9521, "experiments commercial": 32129, "deployed conversational": 23563, "large bias": 51400, "performed large": 71761, "depends number": 23552, "abilities social": 1570, "readily applicable": 79510, "south korea": 89430, "generate personas": 37548, "personas target": 71936, "target group": 93870, "reflect patterns": 81008, "implications downstream": 43375, "ai deployment": 4361, "analyses indepth": 5399, "indepth studies": 44962, "regarding fairness": 81055, "fairness llms": 33738, "chatgpts outputs": 14437, "unbiased prompts": 99380, "fosters development": 35910, "evergrowing size": 30949, "explore biases": 32645, "finetune gptneo": 34824, "automated sentiment": 8735, "newly developed": 66595, "available consumers": 9023, "bias multiple": 10868, "measure degree": 58734, "highlighted generative": 41619, "use subjective": 100697, "response prompt": 83152, "76 accuracy": 1255, "improved time": 43862, "retrieval downstream": 83981, "bias prompting": 10878, "producing good": 75709, "data prone": 21517, "prominent language": 76092, "bias ai": 10826, "current knowledge": 20697, "data gpt2": 21279, "text findings": 96209, "narratives present": 65506, "discussion explores": 25721, "reducing gender": 80869, "techniques research": 95585, "build efficient": 11587, "contain inherent": 18515, "address biases": 3359, "ensure models": 29454, "scaling findings": 85328, "biases crucial": 10920, "examine biases": 31094, "distinct biases": 25857, "applications understand": 6585, "differences human": 24980, "texts human": 96575, "multitask benchmark": 65349, "length vocabulary": 53614, "prompts covering": 76679, "scores robust": 85778, "larger parameter": 52465, "similar observed": 88092, "observed humans": 67615, "prompting researchers": 76601, "unique advantage": 100071, "control properties": 19222, "study harness": 91653, "maintaining consistency": 57887, "importance incontext": 43458, "llms detecting": 55790, "biases promptbased": 10949, "apply prompts": 6671, "labelled examples": 48932, "approach social": 7029, "adverse impact": 4017, "impact tools": 43263, "selection decisions": 86154, "majority llms": 57952, "context especially": 18762, "findings work": 34774, "including diverse": 44328, "diverse voices": 26129, "contexts chatgpt": 18895, "shared observations": 87192, "difference llms": 24965, "bias aigenerated": 10827, "prompts constructed": 76674, "llm demonstrates": 55034, "demonstrates substantial": 23413, "llm exhibits": 55068, "accessible users": 2116, "value paper": 102195, "identify possible": 42891, "problematic issues": 75105, "users need": 101147, "processing systems": 75573, "chatgpt useful": 14330, "users draft": 101098, "data ai": 20958, "accessible general": 2108, "designed predict": 23935, "members society": 58986, "curate datasets": 20622, "accuracy 50": 2178, "finetune bert": 34815, "bert trained": 10560, "light pressing": 54014, "issues associated": 47975, "science findings": 85586, "investigation methods": 47792, "cases test": 12562, "usually expensive": 101870, "presence biases": 73921, "biases address": 10910, "parameter finetuning": 70104, "approach identifying": 6888, "undesirable biases": 99936, "tools effectively": 97392, "bias use": 10897, "huge differences": 42037, "causal discovery": 12647, "perform causal": 70830, "problematic model": 75106, "projection weight": 76061, "neglecting potential": 66083, "writing paper": 104482, "largescale user": 52583, "bias various": 10899, "suggestions research": 92430, "natural sentences": 65779, "source contributions": 89367, "information names": 45549, "compare tools": 16498, "variety contexts": 102289, "englishspeaking countries": 29127, "purpose chatgpt": 78035, "possible chatgpt": 72895, "constraints results": 18407, "models attributed": 61872, "sourced various": 89401, "work define": 104041, "mbert mt5": 58668, "human scores": 42362, "disparities fairness": 25760, "issues artificial": 47973, "evaluate fairness": 30184, "fairness outcomes": 33739, "fairness large": 33735, "biases inherent": 10929, "process involving": 75340, "responses applying": 83177, "various bias": 102374, "advanced sentiment": 3749, "detection research": 24350, "exhibit varying": 31566, "transformers increasing": 98616, "sizes existing": 88551, "performance considering": 71109, "essential aspect": 29935, "black people": 11123, "available wide": 9100, "method prune": 59399, "approach practical": 6978, "demonstrate reduction": 23176, "workings remain": 104337, "speculate possible": 89932, "amplify biases": 5369, "systems provided": 93541, "chatgpts current": 14429, "advancements mitigating": 3840, "7b chat": 1286, "models tendency": 64347, "responses significantly": 83308, "similarity models": 88145, "models nuanced": 63686, "insights effective": 46080, "using activation": 101284, "importance integrating": 43462, "use expanded": 100546, "examining potential": 31148, "people disabilities": 70733, "reduced training": 80821, "work additionally": 103971, "biased statements": 10907, "necessary adapt": 65868, "study empirically": 91596, "costs data": 19926, "performance preserving": 71482, "cost large": 19858, "need ensure": 65941, "human personality": 42324, "represents majority": 82176, "express diverse": 32904, "design investigate": 23797, "providing numerical": 77782, "required finetuning": 82311, "early attempts": 26969, "attempts achieve": 8266, "evaluating fairness": 30422, "representations bert gpt2": 82090, "finetuning specific tasks": 35258, "million 27 billion": 60026, "effect model size": 27248, "models existing studies": 62394, "language models substantial": 50837, "wide range llms": 103668, "end create new": 28821, "exhibit different levels": 31510, "sensitive attributes gender": 86456, "generated texts large": 37804, "models paper examines": 63753, "language models studies": 50834, "shown large pretrained": 87498, "models exhibit biases": 62378, "empirical results realworld": 28345, "systems remains challenging": 93556, "language processing understanding": 51057, "depends number parameters": 23553, "implications downstream applications": 43376, "responsible ai deployment": 83339, "assessing chatgpts performance": 7909, "size language models": 88478, "openais chatgpt generative": 68190, "avoid generating harmful": 9201, "models increasingly large": 62758, "counterfactual data augmentation": 19993, "language models bias": 49680, "models gained immense": 62525, "models trained realworld": 64405, "significant attention potential": 87689, "paper aims analyze": 69599, "prominent language models": 76093, "generated text findings": 37800, "reducing gender bias": 80870, "language model applications": 49334, "various realworld applications": 102548, "realworld applications understanding": 79646, "llms downstream applications": 55818, "human llmgenerated text": 42295, "conduct quantitative analysis": 17910, "human aigenerated texts": 42075, "nlp tasks empirical": 66779, "similar observed humans": 88093, "significant performance drops": 87809, "importance incontext learning": 43459, "different types biases": 25238, "provide comparative analysis": 77422, "comparative analysis models": 16427, "access model parameters": 2073, "models offer significant": 63696, "develop novel dataset": 24471, "context finally investigate": 18772, "llms potential transform": 56540, "light pressing issue": 54015, "test cases test": 95876, "novel method detecting": 67207, "projection weight matrices": 76062, "llms increasingly utilized": 56212, "conduct largescale user": 17900, "largescale user study": 52584, "students divided groups": 91300, "use ai writing": 100467, "various linguistic phenomena": 102474, "open source contributions": 68114, "evaluation framework named": 30613, "previous research shown": 74695, "language models attributed": 49657, "training data collected": 97996, "models mbert mt5": 63592, "better alignment human": 10683, "issues artificial intelligence": 47974, "fairness large language": 33736, "analysis conducted using": 5467, "advanced sentiment analysis": 3750, "model sizes existing": 61428, "performance language modeling": 71333, "chatgpt stateoftheart llm": 14271, "highlighting challenges posed": 41625, "llama 7b chat": 54716, "findings reveal inherent": 34736, "address important concern": 3414, "data aiming enhance": 20961, "synthetic data existing": 93262, "potential synthetic data": 73281, "cost large language": 19859, "resources required finetuning": 83032, "pretrained language models trained": 74354, "million 27 billion parameters": 60027, "generative language models enabled": 38629, "language models existing studies": 49852, "text generation model gpt2": 96257, "large language models studies": 52180, "shown large pretrained language": 87499, "demonstrate proposed method yields": 23170, "natural language processing understanding": 65710, "large language model application": 51459, "avoid generating harmful content": 9202, "language models increasingly large": 49989, "language models gained immense": 49902, "garnered significant attention potential": 37016, "language models language model": 50021, "models llms demonstrated potential": 63077, "nlp tasks large language": 66797, "language models offer significant": 50613, "produced large language models": 75682, "models llms potential transform": 63351, "models llms increasingly utilized": 63250, "conduct largescale user study": 17901, "models llms various applications": 63510, "large language models attributed": 51577, "fairness large language model": 33737, "provides valuable insights potential": 77725, "pretrained language models existing studies": 74308, "shown large pretrained language models": 87500, "large language models gained immense": 51697, "language models llms demonstrated potential": 50153, "nlp tasks large language models": 66798, "language models llms potential transform": 50376, "assistance large language models llms": 8031, "language models llms increasingly utilized": 50299, "language models llms various applications": 50512, "size large language models llms": 88482, "topicfocused": 97524, "peertopeer": 70702, "psychologists": 77886, "empathybased": 28278, "promptresponse": 76644, "metainformation": 59150, "empathize": 28276, "manifestations": 58208, "chatgptannotated": 14390, "causalities": 12679, "917": 1417, "reacted": 79487, "misalignments": 60160, "migrated": 60009, "accumulate": 2168, "chatgpt40": 14386, "phoneme": 72045, "falcon7binstruct": 33775, "relaxation": 81340, "sociology": 88955, "toprated": 97552, "hubert": 42029, "liwc": 54703, "recalloriented": 80122, "understudy": 99916, "youth": 104688, "stigma": 90707, "dialectical": 24818, "speechbased": 89973, "eca": 27040, "cskg": 20564, "1900": 445, "cskgs": 20565, "expand users": 31870, "generating poetry": 37953, "poetry generation": 72473, "generation human": 38196, "text previous": 96364, "robust results": 84687, "studies test": 91453, "detailed comparison": 24156, "approach online": 6959, "millions people": 60047, "reduce global": 80776, "platforms paper": 72317, "paper work": 69991, "agent leverages": 4143, "performs dual": 71812, "generating candidate": 37869, "combination automatic": 15947, "complex behaviors": 16914, "uses gpt2": 101229, "easier access": 27001, "provide services": 77568, "answers appropriate": 6170, "models allow": 61824, "contexts previous": 18918, "approaches investigate": 7155, "generate negative": 37536, "encoder pretrained": 28704, "pretrained autoregressive": 74230, "pretrained roberta": 74444, "context extracted": 18767, "sentiment understanding": 86611, "objective crucial": 67492, "coherent responses": 15785, "responses evaluate": 83204, "text specifically": 96430, "output speech": 69194, "speech signals": 89967, "speech text": 89970, "paragraphlevel generation": 70070, "affective computing": 4062, "perform text": 70933, "embeddings word2vec": 28100, "integrating cuttingedge": 46715, "chatgpt equipped": 13760, "generation series": 38416, "exhibits promising": 31625, "proposes using": 77282, "gathered information": 37027, "treatment processes": 98807, "singleturn multiturn": 88430, "chatgpt mental": 14010, "total average": 97560, "average 104": 9125, "assess overall": 7864, "demonstrate trained": 23214, "chatgpt extracting": 13800, "understand content": 99602, "emotion speaking": 28252, "psychological metrics": 77879, "fundamental human": 36542, "task improves": 94094, "improves prediction": 44060, "best tradeoff": 10655, "responding prompts": 83114, "results multilingual": 83735, "directions correcting": 25460, "chatgpt release": 14165, "finetuning roberta": 35231, "roberta language": 84605, "chatgpt novel": 14037, "enhance existing": 29158, "personality assessment": 71895, "improve existing": 43698, "early late": 26978, "models aid": 61813, "speech vision": 89972, "experimentally demonstrate": 32085, "llms speech": 56855, "results data": 83528, "values critical": 102208, "critical realworld": 20346, "discussed impact": 25699, "method architecture": 59208, "humanlike characteristics": 42523, "characteristics llms": 13333, "intelligence significantly": 46889, "intelligence exhibiting": 46844, "indepth discussion": 44949, "novel avenue": 67116, "models component": 62066, "weak areas": 103429, "areas models": 7446, "interaction existing": 47005, "proves suitable": 77394, "benchmarks advancing": 10308, "systems perspective": 93531, "extent chatgpt": 33157, "presented specific": 74101, "containing 400": 18532, "including variations": 44514, "enhancing utility": 29379, "users prefer": 101158, "chatbot generative": 13410, "dynamic zeroshot": 26938, "especially text": 29922, "firstly utilize": 35327, "gpt2 learn": 39306, "different benchmarks": 25010, "years deep": 104592, "support various": 92841, "interactions mental": 47070, "field including": 34377, "paradigms work": 70065, "insights computational": 46067, "learning potential": 53335, "research implementations": 82627, "paradigm emerged": 70029, "simply using": 88301, "model problem": 61279, "models quite": 63954, "gpt35 13": 39568, "polarity classification": 72525, "measurement personality": 58758, "ranking classification": 79268, "related sentiment": 81217, "prediction trained": 73727, "human agency": 42070, "unrelated words": 100244, "hidden variables": 41357, "variables model": 102246, "enabling precise": 28654, "recognition introduce": 80597, "lstm networks": 57650, "model assisted": 60573, "models nonetheless": 63682, "tremendous impact": 98837, "existing speech": 31820, "unlabeled speech": 100147, "boost speech": 11281, "generation technique": 38461, "congruent text": 18078, "designed text": 23958, "synthetic speech": 93295, "including random": 44459, "data contextual": 21119, "contextual cues": 18937, "interactions environments": 47057, "dataset captions": 21845, "llm solution": 55266, "field psychology": 34403, "seven metrics": 87122, "psychological aspects": 77876, "consisting multiple": 18322, "humans terms": 42646, "evaluating psychological": 30480, "coverage generated": 20058, "using discrete": 101418, "makes task": 58077, "brings new": 11473, "stateoftheart dialogue": 90336, "substantial promise": 92105, "pretraining gpt": 74541, "models responded": 64086, "llms remarkably": 56700, "technique based": 95435, "recommending appropriate": 80674, "user sentiment": 101041, "responses retrieved": 83304, "users questions": 101168, "interface evaluate": 47173, "understanding domain": 99717, "highquality instructions": 41771, "improvement finetuning": 43912, "labels significantly": 48951, "potential finetuning": 73093, "enhancing chatgpts": 29311, "groundwork better": 40601, "emotion analysis": 28248, "wide availability": 103651, "identifying synthetic": 42937, "inspiration psychological": 46155, "text consequently": 96142, "improvements range": 43992, "text detector": 96177, "llm recently": 55228, "perform various": 70939, "able manipulate": 1864, "asking predict": 7745, "general gpt4": 37130, "emotional commonsense": 28254, "physical social": 72067, "descriptions related": 23725, "recognition systems": 80616, "considerations user": 18191, "tasks generalized": 94665, "ability integrate": 1687, "provides quantitative": 77696, "code encourage": 15240, "having ability": 41115, "accurately representing": 2467, "cognitive capability": 15743, "domain intelligent": 26400, "software developer": 88984, "datasets expensive": 22247, "nature software": 65814, "model speech": 61448, "used fields": 100803, "coherent speech": 15787, "features results": 34023, "highquality speech": 41791, "opinion score": 68473, "computational framework": 17459, "highrisk setting": 41811, "based 13": 9427, "framework suggests": 36287, "anecdotal examples": 5840, "tasks widespread": 95256, "researchers started": 82887, "exploring application": 32834, "cover various": 20052, "generate contextually": 37412, "comparing systems": 16700, "improvements observed": 43984, "better outcomes": 10753, "human professionals": 42335, "llms advance": 55452, "agents increasingly": 4195, "used address": 100729, "research context": 82524, "textbased user": 96499, "human chatgptgenerated": 42123, "dataset research": 22059, "linguistic inquiry": 54581, "inquiry word": 46022, "count liwc": 19980, "liwc analysis": 54704, "analysis comparing": 5463, "comparing chatgptgenerated": 16671, "categories results": 12616, "emotional tone": 28267, "corpus human": 19629, "symptoms based": 93143, "phase models": 72012, "models engage": 62326, "drawing resources": 26814, "recommendations study": 80666, "recalloriented understudy": 80123, "understudy gisting": 99917, "gisting evaluation": 38831, "evaluation rouge": 30763, "improving user": 44169, "experience current": 31935, "ability naive": 1724, "long conversations": 57307, "leads enhanced": 52895, "contrast propose": 19086, "intent types": 46960, "framework requires": 36259, "subjective assessments": 91952, "different modeling": 25119, "modelbased classifiers": 61607, "llms reflected": 56678, "evaluate response": 30277, "score llms": 85725, "individuals lack": 45111, "training provides": 98251, "experts domain": 32406, "feedback participants": 34118, "used provide": 100883, "analysis evaluation": 5509, "outperforms random": 69108, "underscores effectiveness": 99560, "task competition": 93979, "challenges developing": 12995, "annotated conversation": 5859, "evaluate level": 30215, "cognitive affective": 15736, "approximately 10": 7268, "instructing chatgpt": 46298, "responses makes": 83257, "models eliminating": 62285, "designed process": 23936, "speech images": 89949, "versatility potential": 102799, "signal processing": 87640, "conversation abilities": 19313, "important safetycritical": 43536, "life depend": 53982, "researchers relevant": 82885, "additional analysis": 3222, "analysis examine": 5511, "prediction natural": 73706, "design contrastive": 23765, "evaluated single": 30363, "single rtx": 88391, "rtx 2080": 84912, "compared llava": 16583, "critical understanding": 20370, "users express": 101109, "examples resulting": 31280, "techniques field": 95518, "generation parameters": 38319, "analysis pivotal": 5604, "parameters autoregressive": 70176, "explore efficacy": 32674, "contexts experimental": 18899, "bartbased knowledge": 9393, "produce responses": 75652, "terms use": 95846, "poetry generation based": 72474, "stateoftheart text generation": 90499, "model improves various": 60994, "ai models developed": 4468, "showed finetuned model": 87390, "pretrained roberta gpt2": 74445, "specific downstream task": 89689, "challenges need addressed": 13079, "chatgpt mental health": 14011, "largescale diverse highquality": 52512, "evaluation automatic human": 30517, "findings demonstrate feasibility": 34654, "explore impact prompt": 32689, "achieves best tradeoff": 2717, "resources training inference": 83036, "foundation models models": 35957, "language models aid": 49639, "tasks language generation": 94796, "critical realworld applications": 20347, "model size training": 61425, "tasks using various": 95235, "provide indepth discussion": 77499, "factors influence performance": 33599, "address limitations paper": 3452, "perspective paper propose": 71959, "chatgpt evaluated using": 13766, "challenging task aims": 13231, "automatic manual evaluations": 8799, "recent years deep": 80426, "interactions mental health": 47071, "harnessing capabilities large": 41085, "foundation models new": 35958, "using general purpose": 101461, "sentiment analysis sentiment": 86595, "neural networks transformers": 66278, "paper explore chatgpts": 69713, "token prediction trained": 97148, "text generation technique": 96273, "performance level chatgpt": 71353, "psychological aspects llms": 77877, "able achieve stateoftheart": 1823, "texttospeech synthesis using": 96632, "automatically using large": 8903, "mental health care": 59086, "llms capability generate": 55552, "generative pretraining gpt": 38707, "generation dialogue systems": 38120, "responses retrieved large": 83305, "answer users questions": 6067, "finetuning llama models": 35127, "datasets compare results": 22177, "identifying synthetic text": 42938, "generate synthetic text": 37612, "perform various tasks": 70940, "explore ability gpt4": 32626, "ethical considerations user": 30067, "user privacy data": 101023, "language model speech": 49552, "language comprehension text": 49166, "comprehension text generation": 17189, "models llms greatly": 63215, "accurately assess capabilities": 2440, "lead severe consequences": 52820, "llms based 13": 55513, "tasks widespread application": 95257, "exploring application llms": 32838, "ability llms propose": 1712, "generate contextually relevant": 37413, "linguistic inquiry word": 54582, "inquiry word count": 46023, "word count liwc": 103893, "count liwc analysis": 19981, "using advanced large": 101289, "recalloriented understudy gisting": 80124, "understudy gisting evaluation": 99918, "gisting evaluation rouge": 38832, "prompting method code": 76571, "language modelbased classifiers": 49575, "llms chatgpt paper": 55605, "dataset available research": 21834, "text audio video": 96089, "generated humans chatgpt": 37717, "language models eliminating": 49812, "models eliminating need": 62286, "text speech images": 96433, "speech images videos": 89950, "success language understanding": 92208, "llms including gpt": 56174, "prediction natural language": 73707, "model better understand": 60610, "trained evaluated single": 97825, "rtx 2080 ti": 84913, "commonsense knowledge graph": 16218, "contexts experimental results": 18900, "experimental results validate": 32072, "results validate effectiveness": 83909, "bartbased knowledge model": 9394, "models achieving performance": 61777, "results showed finetuned model": 83844, "large language models aid": 51568, "harnessing capabilities large language": 41086, "capability large language model": 12180, "automatically using large language": 8904, "large language model speech": 51542, "language comprehension text generation": 49167, "language models llms greatly": 50267, "linguistic inquiry word count": 54583, "inquiry word count liwc": 46024, "word count liwc analysis": 103894, "using advanced large language": 101290, "llms generative pretrained transformer": 56066, "recalloriented understudy gisting evaluation": 80125, "understudy gisting evaluation rouge": 99919, "large language models long": 52048, "frozen large language models": 36405, "models llms chatgpt paper": 63032, "language models eliminating need": 49813, "text speech images videos": 96434, "results indicate gpt4 turbo": 83678, "experimental results validate effectiveness": 32073, "harnessing capabilities large language models": 41087, "automatically using large language models": 8905, "large language models llms greatly": 51886, "linguistic inquiry word count liwc": 54584, "inquiry word count liwc analysis": 46025, "using advanced large language models": 101291, "models llms generative pretrained transformer": 63191, "llms generative pretrained transformer gpt4": 56067, "recalloriented understudy gisting evaluation rouge": 80126, "language models llms chatgpt paper": 50121, "leakages": 52919, "differentially": 25267, "strike": 90984, "regenerate": 81083, "perturb": 71986, "clipping": 14964, "clipped": 14963, "intricately": 47373, "tsinghua": 98983, "oblivious": 67549, "15times": 355, "18times": 439, "12times": 254, "bullet": 11684, "hiding": 41359, "truncate": 98922, "bid": 10966, "paradigmatic": 70059, "societys": 88946, "fedllm": 34055, "hypothetically": 42749, "submodel": 91983, "transmitted": 98764, "geospatial": 38798, "gigabytes": 38825, "behaving": 9956, "securely": 85993, "memorised": 58996, "codegenmono16b": 15605, "zerothorder": 104890, "instantiated": 46238, "intervals": 47335, "pcs": 70671, "onchain": 67910, "humanonly": 42557, "exhausted": 31493, "collusion": 15929, "jump": 48205, "supercomputers": 92619, "flatness": 35415, "behalf": 9952, "auditor": 8506, "rounding": 84875, "fp32": 35994, "resnet50": 82929, "hessian": 41330, "examples include": 31228, "dnn models": 26189, "model utility": 61565, "faster algorithms": 33902, "memory cost": 59027, "datasets utility": 22458, "gpt2small gpt2medium": 39382, "gpt2medium gpt2large": 39378, "gpt2large gpt2xl": 39375, "better maintain": 10744, "maintain accuracy": 57871, "method encoding": 59281, "evidence security": 30987, "explore tradeoffs": 32749, "strike balance": 90985, "attacks maintaining": 8223, "maintaining utility": 57905, "set using": 86950, "attacks used": 8240, "better traditional": 10798, "compression recent": 17372, "cost models": 19870, "deployed specific": 23573, "compression propose": 17367, "sparsity levels": 89563, "glue benchmarks": 39030, "models setting": 64168, "benchmarks future": 10345, "hidden state": 41350, "provide affirmative": 77401, "time overhead": 97000, "network layer": 66149, "results private": 83778, "learning memoryefficient": 53261, "fast training": 33900, "training epoch": 98093, "explore limits": 32702, "175 billionparameter": 403, "multiple devices": 65172, "gpt2 summarization": 39353, "task analyzing": 93936, "leak information": 52913, "case law": 12461, "reduces risk": 80846, "candidates potential": 11814, "ranking based": 79266, "success training": 92242, "attacks challenging": 8205, "approach step": 7037, "algorithms language": 4972, "distribution generated": 25941, "data generative": 21272, "models gaining": 62529, "perspective explore": 71948, "needs overcome": 66038, "tasks solved": 95125, "discuss llms": 25669, "developments deep": 24741, "techniques potential": 95574, "aim demonstrate": 4701, "llms guiding": 56118, "instructiontuned generative": 46582, "rely large": 81580, "data pose": 21483, "preserving privacy": 74197, "sets instructions": 86963, "offers foundational": 67834, "foundational framework": 35972, "federated finetuning": 34051, "clip demonstrated": 14954, "finetuning federated": 35067, "power edge": 73370, "prompt training": 76437, "strategies increase": 90827, "benchmark 13b": 10062, "achieve different": 2511, "rate reduction": 79398, "explores cultural": 32800, "implications privacy": 43397, "privacy intellectual": 74901, "article argues": 7532, "sensitivity data": 86473, "learn prompt": 52961, "ensemble llms": 29420, "presented different": 74091, "large ai": 51382, "working principles": 104331, "paradigm specifically": 70056, "key characteristics": 48279, "framework preserves": 36233, "task addressing": 93928, "texts demonstrate": 96554, "demonstrate viability": 23224, "generations results": 38520, "robust detection": 84650, "chatgpt detectors": 13708, "french text": 36371, "schemes proposed": 85533, "detectors effectively": 24387, "detect chatgptgenerated": 24210, "opensource resources": 68405, "privacy challenges": 74888, "identify chatgpt": 42852, "rest responses": 83361, "responses answers": 83176, "vast quantities": 102691, "designed empower": 23898, "llmbased services": 55358, "gelu softmax": 37051, "design secure": 23839, "gpt3 improve": 39475, "works suggest": 104390, "methods gpt3": 59665, "finetuned classification": 34873, "context findings": 18773, "scientific technological": 85667, "including poor": 44446, "models joint": 62825, "tsinghua university": 98984, "exploring tradeoffs": 32870, "inference demand": 45235, "softmax layer": 88972, "people interested": 70737, "transformers reason": 98633, "ai like": 4454, "results minimal": 83726, "minimal computational": 60086, "text systems": 96454, "strategy used": 90926, "text additionally": 96072, "process discovering": 75295, "prompts introduce": 76757, "robustness evaluated": 84712, "evaluated leading": 30345, "challenges managing": 13070, "users data": 101091, "framework tested": 36301, "annotated legal": 5875, "legal experts": 53561, "examining users": 31149, "risks benefits": 84510, "requires indepth": 82389, "realworld chatgpt": 79652, "conversations conducted": 19411, "users users": 101194, "ability navigate": 1727, "approach bridge": 6762, "privacy gap": 74899, "data exposure": 21217, "mitigate safety": 60282, "blackbox attacks": 11130, "model hidden": 60973, "editing method": 27102, "methods protect": 59766, "implications realworld": 43398, "years artificial": 104590, "blockchain technology": 11200, "llama glm": 54753, "face main": 33447, "llms adopted": 55451, "fedllm using": 34056, "preserves data": 74187, "communication costs": 16261, "comprises key": 17385, "llms extraction": 55956, "address privacy": 3467, "revision attacks": 84307, "text perturbation": 96356, "demonstrate text": 23212, "times higher": 97075, "privacy preserving": 74907, "framework generative": 36149, "extract critical": 33224, "article proposes": 7552, "process largescale": 75348, "various performance": 102520, "measures model": 58768, "training latency": 98174, "believe proposed": 10038, "particularly resourceconstrained": 70498, "commonly employ": 16188, "generative process": 38710, "enhanced security": 29251, "personal identifiable": 71883, "discovery new": 25617, "association task": 8110, "privacy preservation": 74906, "llms reinforcement": 56681, "rl human": 84557, "review generation": 84257, "achieve alignment": 2478, "models mobile": 63634, "mobile edge": 60421, "edge computing": 27079, "novel inferencetime": 67185, "18 opensource": 423, "engineering accuracy": 28942, "accuracy 86": 2188, "make annotated": 57963, "needed finetune": 66013, "public advent": 77905, "concerns limit": 17687, "specifically users": 89890, "user model": 101009, "evaluation help": 30631, "understanding finetuned": 99736, "release corpus": 81361, "geographic location": 38783, "electronic devices": 27956, "specific geographic": 89701, "geospatial information": 38799, "online data": 67981, "sharing information": 87206, "ai widespread": 4611, "data rate": 21534, "practical attacks": 73503, "techniques eliminate": 95505, "learning general": 53173, "abilities achieved": 1490, "taxonomy based": 95316, "works based": 104347, "proposed taxonomy": 77261, "critical concerns": 20314, "emerged dominant": 28128, "provider paper": 77636, "solution called": 89080, "challenge approach": 12856, "demanding high": 22972, "gpt35turbo datasets": 39699, "code compare": 15158, "benchmarks variety": 10427, "code vulnerable": 15568, "vulnerable data": 103282, "extent phenomenon": 33169, "models extraction": 62431, "order build": 68692, "zerothorder optimization": 104891, "method finetuning": 59310, "use random": 100667, "step size": 90658, "gaussian noise": 37040, "encompassing rich": 28767, "texts specific": 96601, "llm form": 55090, "potential superiority": 73277, "regarding privacy": 81065, "conversations gpt": 19417, "hosted cloud": 41990, "risks inherent": 84517, "models subjected": 64282, "robustness proposed": 84739, "yields substantial": 104683, "draw communitys": 26798, "communitys attention": 16343, "models decentralized": 62160, "fields data": 34423, "data contributes": 21122, "paper offer": 69815, "data owners": 21461, "alignment aligning": 5054, "gpt4 significant": 40085, "demonstrating strong": 23449, "fl code": 35374, "increases large": 44805, "tasks poses": 94945, "result model": 83398, "gpt4 displays": 39841, "models secure": 64151, "models transferring": 64418, "sharing parameters": 87207, "experiments cloud": 32127, "cloud computing": 15057, "service platform": 86806, "desired utility": 24014, "instructions showing": 46562, "leverage technology": 53763, "detailed insights": 24176, "insights architectural": 46056, "solution existing": 89089, "setting text": 87030, "training conduct": 97969, "chatgpt differential": 13716, "degradation paper": 22889, "holistic framework": 41919, "weights layers": 103556, "dimension size": 25383, "model estimate": 60819, "conclude potential": 17740, "demands ai": 22975, "methods consider": 59573, "process key": 75341, "intermediate computation": 47206, "based adaptive": 9430, "nvidia gpus": 67455, "achieve exact": 2515, "exact training": 31072, "gpt2 117m": 39249, "scheme significantly": 85529, "secondorder information": 85971, "llama gemini": 54751, "using gradient": 101498, "information hessian": 45500, "network dnn models": 66138, "used improve performance": 100823, "results smaller models": 83854, "gpt2small gpt2medium gpt2large": 39383, "gpt2medium gpt2large gpt2xl": 39379, "gpt2 model trained": 39317, "data work introduce": 21760, "samples language models": 85125, "model compression propose": 60689, "language models advance": 49629, "task existing methods": 94049, "previous work shown": 74734, "second step use": 85956, "algorithms language models": 4973, "data various domains": 21745, "end conduct extensive": 28818, "instructiontuned generative large": 46583, "data pose significant": 21484, "performance llms compared": 71365, "offers foundational framework": 67835, "federated finetuning llms": 34052, "discuss potential benefits": 25678, "privacy intellectual property": 74902, "models llms excellent": 63133, "security privacy ethical": 86028, "detection language model": 24310, "generated text chatgpt": 37798, "processing nlp led": 75529, "nlp led development": 66744, "chatgpt paper proposes": 14063, "effectively detect chatgptgenerated": 27415, "detect chatgptgenerated text": 24211, "sensitive personal data": 86464, "context findings reveal": 18774, "large ai models": 51383, "model performance work": 61239, "performance work propose": 71724, "softmax layer normalization": 88973, "minimal computational overhead": 60087, "metrics assess accuracy": 59881, "second dataset consists": 85925, "allows users experience": 5215, "downstream applications improving": 26685, "model editing methods": 60786, "recent years artificial": 80424, "years artificial intelligence": 104591, "generated content paper": 37683, "llms face main": 55960, "face main challenges": 33448, "address privacy concerns": 3468, "data privacy risks": 21505, "data security privacy": 21602, "security privacy challenges": 86027, "personal identifiable information": 71884, "using zero shot": 101856, "language models reinforcement": 50743, "llms reinforcement learning": 56682, "rl human feedback": 84558, "validate effectiveness approach": 102095, "language models contextual": 49750, "prompt engineering accuracy": 76286, "understanding finetuned model": 99737, "finetuned model achieves": 34937, "model achieves 80": 60493, "achieves 80 accuracy": 2700, "model prior knowledge": 61277, "emergent abilities achieved": 28191, "opportunities future research": 68496, "services like chatgpt": 86816, "various tasks particularly": 102602, "present novel solution": 74026, "address challenge approach": 3361, "software engineering large": 89001, "models trained natural": 64401, "tasks model sizes": 94868, "draw communitys attention": 26799, "potential misuse models": 73196, "generative ai agents": 38530, "extensive empirical results": 33020, "finetuning llama 7b": 35126, "supervised finetuning models": 92707, "leading opensource models": 52873, "attention various domains": 8384, "training conduct comprehensive": 97970, "concerns associated use": 17678, "intermediate computation steps": 47207, "challenging previous work": 13211, "neural network dnn models": 66252, "gpt2small gpt2medium gpt2large gpt2xl": 39384, "training data work introduce": 98064, "language models including gpt2": 49980, "language model training data": 49563, "instructiontuned generative large language": 46584, "data pose significant challenges": 21485, "models foundation models fms": 62508, "language models llms excellent": 50198, "language processing nlp led": 51013, "processing nlp led development": 75530, "use large language model": 100596, "recent years artificial intelligence": 80425, "llms face main challenges": 55961, "personal identifiable information pii": 71885, "large language models ranging": 52123, "language models reinforcement learning": 50744, "large models like gpt3": 52263, "model achieves 80 accuracy": 60494, "paper present novel solution": 69840, "ability generate humanlike text": 1662, "language models trained natural": 50876, "models trained natural language": 64402, "language models like openais": 50053, "deep neural network dnn models": 22795, "instructiontuned generative large language models": 46585, "learning large language models large": 53240, "large language models llms excellent": 51849, "natural language processing nlp led": 65675, "language processing nlp led development": 51014, "large language models recent years": 52138, "large language models trained natural": 52206, "language models trained natural language": 50877, "imitated": 43159, "selfattentionbased": 86201, "fingerprinting": 35300, "fancy": 33861, "spacing": 89474, "disseminating": 25792, "humanproduced": 42560, "216": 598, "bigrams": 11001, "bigram": 11000, "rf": 84397, "indexes": 44969, "errorbased": 29797, "billionscale": 11042, "chaotic": 13310, "unavoidable": 99375, "tampered": 93847, "transparently": 98781, "abrupt": 1898, "capabilities deep": 11875, "enhance social": 29213, "media messages": 58839, "dataset real": 22049, "lstm gpt2": 57648, "lastly evaluated": 52610, "method control": 59248, "given news": 38921, "spread false": 90037, "written language": 104517, "using twitter": 101829, "obtained accuracy": 67666, "impact finetuning": 43208, "representations neural": 82112, "based exclusively": 9519, "observe finetuning": 67580, "states output": 90524, "attention based": 8286, "combination gpt2": 15951, "led promising": 53530, "results experimental": 83597, "span tokens": 89483, "models wild": 64543, "approaches detect": 7124, "corpus used": 19655, "transformer methods": 98525, "according semantic": 2154, "progress generative": 75982, "models rising": 64122, "distinguish machinegenerated": 25897, "currently benchmark": 20805, "gpt3 current": 39433, "detect machinegenerated": 24223, "experiments leveraging": 32239, "rise development": 84472, "stateoftheart capabilities": 90319, "online texts": 68016, "showing capabilities": 87411, "specifically demonstrate": 89801, "random perturbations": 79108, "growing unprecedented": 40670, "hand hand": 40898, "text especially": 96197, "employ explainable": 28396, "models decisions": 62163, "decisions determine": 22614, "specific patterns": 89732, "comparing humangenerated": 16679, "humangenerated chatgptgenerated": 42487, "second experiment": 85931, "resulting lack": 83431, "methodologies furthermore": 59477, "furthermore remains": 36656, "detection powerful": 24340, "number words": 67399, "words general": 103954, "ai significant": 4547, "developed method": 24512, "methods focused": 59654, "ones built": 67924, "documents compared": 26244, "writing large": 104477, "improve detection": 43689, "tools framework": 97407, "increasingly essential": 44879, "detection methodologies": 24321, "chatgpt detection": 13707, "popular social": 72683, "essential numerous": 29952, "empirical data": 28315, "data related": 21553, "openai attracted": 68142, "attracted considerable": 8414, "powerful gpt35": 73440, "gptgenerated texts": 40216, "reached 100": 79472, "generated scientific": 37776, "chatgpt marked": 14005, "peoples everyday": 70752, "generate scientific": 37584, "methods combined": 59567, "research shed": 82773, "detect aigenerated": 24208, "contexts introduce": 18908, "based experimental": 9524, "designed implemented": 23920, "showcase models": 87358, "important insights": 43514, "model need": 61153, "relies observation": 81556, "likelihood function": 54248, "models interestingly": 62801, "generator trained": 38740, "opt125m model": 68547, "text existing": 96201, "capable accurately": 12218, "failing meet": 33696, "tool source": 97319, "proxy perplexity": 77840, "llms determine": 55791, "performance ensuring": 71181, "text current": 96158, "domains lack": 26537, "novel trainingfree": 67273, "significant discrepancies": 87739, "discrepancies distribution": 25624, "detection aigenerated": 24260, "recurrent model": 80723, "enrich training": 29407, "intelligence numerous": 46879, "advantages generative": 3940, "model comes": 60676, "process tested": 75408, "gpt35 proposed": 39658, "text research": 96397, "used academic": 100727, "academic setting": 1995, "efforts field": 27909, "research methodology": 82671, "document set": 26220, "coverage tools": 20064, "discusses implications": 25708, "detection experiments": 24299, "theoretical explanation": 96735, "adversarial learning": 3981, "fairness fake": 33734, "uses feedback": 101224, "identify strong": 42905, "cases recent": 12555, "work inform": 104129, "approach fails": 6858, "texts addressing": 96542, "corpora comprising": 19569, "significant task": 87860, "size task": 88530, "text particularly": 96353, "evolving area": 31047, "area automatic": 7417, "rarely explored": 79361, "collaboratively written": 15851, "content encoder": 18618, "size leading": 88485, "22 improvement": 606, "aigenerated humanwritten": 4669, "written student": 104525, "use combination": 100510, "empirical insights": 28332, "summarization translation": 92573, "text online": 96344, "leverage expertise": 53722, "generated vast": 37822, "widespread accessibility": 103777, "text appears": 96085, "particularly significant": 70501, "law education": 52701, "approaches employed": 7133, "general insights": 37132, "testing stateoftheart": 96026, "created study": 20203, "text identification": 96291, "investigate zeroshot": 47715, "textdavinci003 gpt35": 96516, "using observation": 101653, "challenges prospects": 13111, "work comprehensive": 104017, "digital information": 25362, "content relevant": 18681, "particular situation": 70422, "chatgpt written": 14362, "extract features": 33230, "different techniques": 25223, "analysis increasingly": 5552, "character ngram": 13320, "shallow learning": 87170, "rate humans": 79388, "bertbased classifiers": 10570, "specific authors": 89664, "predictive results": 73768, "ways difficult": 103412, "detection recent": 24347, "capable distinguishing": 12231, "text humanauthored": 96290, "range 05": 79134, "restricted specific": 83373, "domains making": 26549, "effective chatgpt": 27270, "critical factors": 20328, "biases text": 10956, "incorporates novel": 44685, "ii use": 42978, "humans encompassing": 42592, "directly finetune": 25494, "experiments compared": 32131, "shows exceptional": 87578, "simplicity efficiency": 88262, "demonstrated good": 23261, "construct robust": 18436, "ongoing discussions": 67968, "approaches datasets": 7122, "laying foundation": 52768, "findings results": 34731, "methods attempted": 59539, "identification nli": 42813, "research rapid": 82750, "texts semantic": 96596, "inappropriate use": 44205, "humanwritten texts": 42679, "human author": 42097, "brittle face": 11478, "different approach": 24998, "leverage representations": 53759, "machine authors": 57683, "including stateoftheart": 44484, "hinders practical": 41843, "pair texts": 69475, "spans diverse": 89507, "neglecting nuanced": 66082, "encoder combined": 28687, "models thought": 64364, "thought hard": 96854, "calculations using": 11747, "number text": 67385, "trained chatgpt": 97802, "developed various": 24537, "text sampling": 96404, "new sampling": 66520, "sampling produces": 85164, "llmassisted writing": 55328, "writing scientific": 104491, "scientific communication": 85628, "involves employing": 47840, "detection necessary": 24333, "modify text": 64641, "datasets typically": 22448, "ensure reproducibility": 29458, "findings code": 34645, "identification techniques": 42818, "sufficient level": 92338, "approach builds": 6765, "models algorithmic": 61818, "orders magnitudes": 68727, "challenging distinguish": 13167, "respectively extensive": 83067, "gpt2 chatgpt": 39264, "scientific content": 85631, "perceptron mlp": 70805, "networks cnn": 66175, "representations linguistic": 82109, "statistical features": 90548, "sequential patterns": 86709, "model fuses": 60917, "method natural": 59365, "applications services": 6572, "importance paper": 43468, "including linguistic": 44404, "serves resource": 86799, "ai presence": 4515, "arxiv submissions": 7696, "despite immense": 24065, "contributions address": 19176, "physics mathematics": 72088, "dataset following": 21950, "llms expose": 55941, "engineering interesting": 28985, "tasks suggest": 95156, "advancement capabilities": 3770, "infeasible practice": 45193, "eagle effectively": 26956, "effectively achieves": 27392, "text generative models": 96282, "social media messages": 88887, "model obtained accuracy": 61162, "hidden states output": 41353, "results experimental results": 83598, "language models wild": 50922, "text corpus used": 96154, "language processing study": 51044, "models gpt2 model": 62591, "recent progress generative": 80315, "progress generative language": 75983, "language models tested": 50861, "stateoftheart capabilities variety": 90320, "queries second experiment": 78512, "proposed approach achieves": 77176, "increasingly crucial llms": 44874, "detection powerful llms": 24341, "extensive evaluations public": 33035, "evaluations public datasets": 30878, "need development robust": 65933, "machine learning tools": 57730, "models gpt4 llama": 62619, "attracted considerable attention": 8415, "recall precision f1": 80116, "publicly available chatgpt": 77968, "chatgpt marked significant": 14006, "peoples everyday lives": 70753, "research shed light": 82774, "light capabilities limitations": 53995, "extraordinary performance large": 33370, "llms paper raise": 56491, "proposed method requires": 77230, "insights effective use": 46081, "detect machinegenerated text": 24224, "models llms heralds": 63220, "failing meet requirements": 33697, "given text current": 38973, "experiments advanced llms": 32102, "exhibits stateoftheart performance": 31632, "provide reasonable explanations": 77556, "ai generated content": 4416, "widely used academic": 103731, "broad coverage tools": 11490, "detect aigenerated text": 24209, "use chatgpt data": 100502, "datasets empirically investigate": 22229, "model large number": 61051, "recent efforts focused": 80249, "including chatgpt gpt35": 44294, "conduct extensive studies": 17887, "capabilities advanced large": 11824, "research aims build": 82486, "analysis increasingly crucial": 5553, "tasks primarily focused": 94965, "paper propose effective": 69881, "transformer t5 model": 98548, "large number studies": 52288, "multiple datasets including": 65170, "future research evaluate": 36767, "research findings results": 82600, "native language identification": 65539, "language identification nli": 49270, "including chatgpt bard": 44292, "thought hard llms": 96855, "propose novel llm": 77071, "llms capable identifying": 55555, "introduce new metric": 47458, "language models algorithmic": 49640, "remarkable performance llms": 81790, "multilayer perceptron mlp": 64935, "neural networks cnn": 66263, "text experiments conducted": 96204, "method natural language": 59366, "generated responses chatgpt": 37773, "despite immense potential": 24066, "prompt engineering interesting": 76302, "detection paper presents": 24337, "advancement capabilities large": 3771, "tackle problem propose": 93736, "natural language processing study": 65698, "recent progress generative language": 80316, "progress generative language models": 75984, "extensive evaluations public datasets": 33036, "language models gpt4 llama": 49947, "shed light capabilities limitations": 87214, "language models llms heralds": 50272, "texts generated chatgpt human": 96570, "human large language model": 42282, "capabilities advanced large language": 11825, "language models generate synthetic": 49913, "generative models like gpt3": 38664, "native language identification nli": 65540, "large language models algorithmic": 51569, "content large language models": 18654, "convolutional neural networks cnn": 19474, "advancement capabilities large language": 3772, "recent progress generative language models": 80317, "large language models gpt4 llama": 51717, "large language models llms heralds": 51891, "human large language model llm": 42283, "capabilities advanced large language models": 11826, "stateoftheart large language models like": 90369, "content large language models llms": 18655, "advancement capabilities large language models": 3773, "427": 940, "underinvestigated": 99478, "acr": 2929, "gray": 40459, "mrg": 64828, "4050": 917, "consolidation": 18351, "22000": 610, "discounted": 25575, "ndcg": 65835, "nineteen": 66678, "molecule": 64697, "bestinclass": 10662, "electron": 27951, "microscopy": 59996, "sem": 86287, "datasetspecific": 22468, "manuallywritten": 58323, "840": 1359, "synergize": 93152, "preselected": 73916, "neuroimaging": 66302, "odyssey": 67721, "cnns": 15092, "iqa": 47888, "overemphasize": 69373, "designated": 23867, "microscopic": 59995, "mistral7binstructv02": 60230, "accurate clear": 2399, "prior reports": 74853, "hallucinations occur": 40878, "directly remove": 25520, "improvement expect": 43908, "correct complete": 19665, "processing images": 75486, "presents method": 74146, "systems future": 93460, "better prompt": 10771, "prediction errors": 73689, "improving prediction": 44145, "according evaluation": 2146, "suggestions based": 92423, "chatgpt presents": 14101, "compared newly": 16597, "showing gpt4": 87414, "brought new": 11532, "era deep": 29727, "identify seven": 42899, "including bioinformatics": 44284, "answer chatgpt": 5988, "level consistency": 53650, "highly knowledgeable": 41701, "knowledgeable assistants": 48817, "models special": 64236, "accurate efficient": 2408, "timely accurate": 97064, "exciting area": 31411, "resource researchers": 82975, "optimizing framework": 68658, "remains underinvestigated": 81718, "learn contextual": 52936, "emerged gained": 28133, "processing despite": 75475, "samples conduct": 85104, "challenges aiassisted": 12960, "demonstrates better": 23367, "physics knowledge": 72087, "chatgpt4 able": 14377, "potential chatgpt4": 73052, "need verified": 66005, "propose retrieval": 77102, "diagnosis report": 24799, "test image": 95901, "image results": 43062, "offering significant": 67810, "capabilities firstly": 11909, "tasks conventional": 94495, "time growing": 96970, "multitask ai": 65348, "opensource generalist": 68337, "tasks 26": 94330, "26 datasets": 670, "notably outperformed": 67043, "demonstrates effective": 23370, "lead practical": 52815, "additional challenges": 3227, "language prior": 50958, "obtain language": 67652, "ai demonstrated": 4360, "remarkable promise": 81818, "costefficient approach": 19901, "openended research": 68266, "vocabulary using": 103202, "enables train": 28617, "participating systems": 70386, "systems task": 93585, "generation mrg": 38286, "great challenges": 40468, "blip2 stateoftheart": 11192, "based bertscore": 9453, "summarization using": 92574, "models bard": 61893, "bard gpt4": 9359, "pairs diverse": 69491, "indicative potential": 45050, "development healthcare": 24652, "performance trustworthiness": 71648, "evaluate decisionmaking": 30164, "spanning entire": 89501, "systematic errors": 93326, "classification critical": 14734, "result recent": 83404, "recognition framework": 80595, "inherently multimodal": 45751, "impactful applications": 43276, "concepts tasks": 17639, "tasks positive": 94946, "cases suggesting": 12560, "requires synthesis": 82415, "synthesis information": 93210, "generative visionlanguage": 38728, "significant limitation": 87786, "problems furthermore": 75146, "images paired": 43106, "normalized discounted": 66978, "discounted cumulative": 25576, "cumulative gain": 20616, "gain ndcg": 36815, "construction model": 18472, "cleaned version": 14874, "different public": 25172, "checkpoint publicly": 14489, "classification simple": 14796, "vlms gpt4": 103185, "classification scores": 14788, "investigate degree": 47634, "data particular": 21472, "modalities natural": 60438, "alignment finetuning": 5070, "human significantly": 42366, "imaging data": 43145, "llms creates": 55698, "utility work": 101904, "illustrates potential": 43003, "models transform": 64419, "domain scientific": 26445, "deep comprehension": 22747, "materials study": 58540, "framework approach": 36040, "refined data": 80982, "underscores considerable": 99558, "multilingual natural": 64987, "model summarize": 61471, "incorporate data": 44664, "english portuguese": 29094, "summaries quality": 92507, "humanwritten summaries": 42675, "reliability furthermore": 81497, "instead desired": 46244, "concepts gpt4": 17626, "method mitigate": 59359, "offers great": 67837, "generalizable representations": 37239, "dataset utilized": 22121, "comprehensive results": 17295, "results engineering": 83583, "facilitate robust": 33507, "battery tests": 9905, "changed natural": 13279, "processing paradigm": 75555, "unified foundation": 100017, "domains applications": 26489, "llm far": 55081, "textbased applications": 96492, "approx 10": 7260, "accuracy natural": 2318, "gpt4 outputs": 40004, "comparable existing": 16370, "potential autonomous": 73032, "performance test": 71627, "set models": 86900, "complete details": 16867, "input modalities": 45922, "gpt4 given": 39907, "individual scores": 45096, "textbased data": 96493, "lexical metrics": 53921, "practices information": 73565, "potential textbased": 73285, "using domainadapted": 101422, "training 400": 97937, "used openais": 100863, "identify relevant": 42896, "difference statistically": 24966, "large gpt4": 51444, "runtime costs": 84961, "training scenarios": 98276, "capabilities dynamic": 11882, "efficacy incontext": 27638, "building general": 11630, "using inhouse": 101521, "inhouse developed": 45760, "purpose ai": 78033, "synthetic errors": 93277, "data respectively": 21574, "did achieve": 24951, "demonstrated comparable": 23241, "impressive efficacy": 43598, "suffers issues": 92325, "ignore structural": 42963, "learning graph": 53186, "based concepts": 9477, "networks cnns": 66176, "learning capacities": 53056, "effectively incorporate": 27445, "comprising 1000": 17393, "quality levels": 78309, "professionally annotated": 75766, "semantically rich": 86370, "generate quality": 37563, "descriptions users": 23732, "multichoice questions": 64881, "knowledge stepbystep": 48768, "results confirmed": 83520, "reveal key": 84156, "techniques foundation": 95522, "tasks proving": 94989, "versatile framework": 102789, "detailed comparisons": 24157, "accuracy future": 2270, "approach included": 6897, "recognition knowledge": 80598, "model inspired": 61013, "highly susceptible": 41719, "like rouge": 54218, "similarity testing": 88153, "closely aligned": 15023, "domains opensource": 26563, "models materials": 63586, "llama213b llama270b": 54857, "techniques results": 95586, "analysis empirical": 5497, "integrates large": 46698, "gptbased text": 40210, "improved readability": 43856, "utilizing openais": 102040, "aspect based": 7754, "relevance factual": 81430, "motivate development": 64768, "applications frontier": 6485, "using attention": 101301, "single v100": 88403, "tool realworld": 97309, "investigate application": 47620, "finetuning phi2": 35184, "avenues enhancing": 9112, "model equipped": 60813, "influenced chatgpt": 45362, "generation applications": 38030, "framework adapt": 36019, "adapt llama27b": 3046, "cloud services": 15063, "like model": 54199, "pipeline extract": 72154, "nlp transformerbased": 66826, "format accuracy": 35816, "achieve notable": 2552, "great potential using": 40483, "paper presents method": 69864, "utilizing generative pretrained": 102017, "experiments validate proposed": 32333, "language using chatgpt": 51195, "era deep learning": 29728, "chatgpt gpt35 chatgpt": 13886, "gpt35 gpt4 showed": 39629, "high level consistency": 41424, "chatgpt gpt4 using": 13915, "highly knowledgeable assistants": 41702, "concepts language models": 17629, "language models special": 50820, "researchers explore potential": 82856, "efficient language models": 27783, "useful resource researchers": 100955, "llms applied wide": 55484, "various domains exploring": 102407, "language processing despite": 50979, "assessing performance large": 7928, "samples conduct comprehensive": 85105, "results gpt4 outperforms": 83632, "solving various tasks": 89260, "propose retrieval augmented": 77103, "tasks 26 datasets": 94331, "zeroshot transfer learning": 104882, "fewshot learning problems": 34266, "demonstrated remarkable promise": 23332, "openended research questions": 68267, "largescale neural networks": 52553, "llms finetuning process": 55988, "largescale annotated data": 52487, "models wide margin": 64536, "generative visionlanguage models": 38729, "normalized discounted cumulative": 66979, "discounted cumulative gain": 25577, "cumulative gain ndcg": 20617, "data study aim": 21660, "codes data model": 15627, "training data particular": 98042, "modalities natural language": 60439, "codes datasets available": 15631, "trained large dataset": 97857, "specialized domains like": 89624, "multilingual natural language": 64988, "models lack interpretability": 62840, "datasets verify effectiveness": 22464, "rapid advancements llm": 79303, "offers great potential": 67838, "chatgpt gpt35turbo gpt4": 13890, "model generalization performance": 60924, "changed natural language": 13280, "language processing paradigm": 51038, "unified foundation model": 100018, "accuracy natural language": 2319, "leveraging recent advances": 53900, "achieving average f1": 2829, "incontext learning enhance": 44593, "challenging task significantly": 13240, "based different input": 9502, "difference statistically significant": 24967, "efficacy incontext learning": 27639, "contributes understanding ai": 19153, "witnessed remarkable progress": 103869, "using inhouse developed": 101522, "general purpose ai": 37178, "better baseline model": 10691, "demonstrated comparable performance": 23242, "demonstrated impressive efficacy": 23280, "downstream tasks nonetheless": 26739, "ignore structural information": 42964, "issues introduce novel": 47995, "specifically leverage gpt4": 89846, "neural networks cnns": 66264, "recently large visionlanguage": 80522, "leverage capabilities llms": 53713, "using prompt template": 101697, "techniques foundation models": 95523, "experiments demonstrate superiority": 32165, "metrics like rouge": 59944, "highly specialized domains": 41715, "ability large models": 1699, "integrates large language": 46699, "domains code available": 26497, "llms generating accurate": 56058, "guiding future development": 40776, "stateoftheart pretrained models": 90456, "novel approach using": 67106, "understanding reasoning coding": 99857, "new avenues enhancing": 66338, "nlp transformerbased models": 66827, "compared widely used": 16662, "models like chatgpt improve": 62908, "chatgpt gpt35 chatgpt gpt4": 13887, "llms applied wide range": 55485, "assessing performance large language": 7929, "utilization large language model": 101914, "generative visionlanguage models vlms": 38730, "normalized discounted cumulative gain": 66980, "discounted cumulative gain ndcg": 25578, "propose new evaluation benchmark": 77043, "language models specifically designed": 50826, "rapid advancements llm capabilities": 79304, "changed natural language processing": 13281, "natural language processing paradigm": 65692, "achieving average f1 score": 2830, "models wide range downstream": 64538, "tackle issues introduce novel": 93731, "convolutional neural networks cnns": 19475, "impressive capabilities various tasks": 43595, "recently large visionlanguage models": 80523, "extensive experiments demonstrate superiority": 33065, "visual question answering tasks": 103107, "large visual language models": 52388, "language understanding reasoning coding": 51185, "gpt35 large language model": 39638, "language models like chatgpt improve": 50044, "assessing performance large language models": 7930, "normalized discounted cumulative gain ndcg": 66981, "remarkable performance wide range downstream": 81806, "models wide range downstream tasks": 64539, "demonstrated impressive capabilities various tasks": 23279, "recently large visionlanguage models vlms": 80524, "slows": 88661, "converging": 19311, "sustains": 93082, "redundancies": 80911, "modelparallel": 61699, "v3": 102068, "dgx": 24782, "photonic": 72051, "accelerator": 2030, "serverless": 86788, "width": 103806, "freeze": 36361, "synchronous": 93146, "lamb": 49091, "28x": 709, "samplewise": 85149, "chimera": 14529, "backprop": 9278, "multistream": 65344, "mobilenet": 60425, "expeditious": 31901, "decouples": 22710, "paddlepaddle": 69458, "15x": 356, "recomputed": 80678, "mixedprecision": 60336, "fullstack": 36434, "rc": 79457, "nonlinearly": 66924, "soaring": 88839, "swintransformer": 93102, "opted": 68554, "flexgen": 35423, "tensors": 95767, "underutilize": 99928, "asic": 7707, "onchip": 67911, "die": 24957, "bitwidth": 11118, "saturates": 85211, "microlevel": 59994, "checkpointing": 14490, "outofmemory": 68895, "interdependent": 47138, "locality": 57211, "gpucpu": 40272, "4090": 921, "gpubased": 40271, "flash": 35409, "60times": 1125, "smoothquant": 88830, "tp": 97608, "sublayers": 91970, "devicespecific": 24766, "jetson": 48131, "flawlessly": 35421, "unlike training": 100190, "performance transformer": 71645, "original number": 68793, "settings original": 87079, "test loss": 95914, "proposed heuristics": 77209, "combined achieve": 15977, "finally speculate": 34567, "30 peak": 747, "advance state": 3668, "parameter transformer": 70130, "similar gpt2": 88073, "bertlike models": 10577, "increased performance": 44799, "trillion parameter": 98881, "billions trillions": 11040, "trillions parameters": 98888, "efficiency analysis": 27667, "networks using": 66209, "novel neural": 67218, "performance reliability": 71532, "way express": 103356, "prior art": 74841, "weights computation": 103547, "increased data": 44791, "nvidia dgx": 67454, "addresses limitation": 3518, "multiple nodes": 65230, "industrial settings": 45157, "pipeline data": 72148, "alternative training": 5278, "backward pass": 9284, "demonstrate benchmark": 23031, "resources compared": 83002, "size transformer": 88535, "175b training": 412, "efficient distributed": 27751, "freezing layers": 36365, "layers training": 52761, "bert glue": 10517, "glue squad": 39032, "speedup compared": 89988, "design develop": 23770, "training modern": 98207, "possible perform": 72910, "thanks autoregressive": 96714, "calculate optimal": 11735, "speed training": 89982, "size neural": 88496, "models continues": 62115, "parallelism techniques": 70089, "accelerate training": 2009, "existing compression": 31687, "end design": 28822, "training computation": 97967, "grown rapidly": 40677, "gshard switch": 40687, "requiring large": 82437, "large computational": 51408, "key metric": 48321, "chimera novel": 14530, "activation memory": 2979, "improves training": 44085, "gpu utilization": 40270, "operations propose": 68466, "algorithms based": 4957, "computation parameter": 17425, "networks including": 66194, "hardware design": 41003, "requires enormous": 82375, "efficiency model": 27701, "convergence paper": 19308, "layers demonstrate": 52744, "practical adoption": 73492, "different hyperparameters": 25074, "resourceefficient manner": 82990, "memory hierarchy": 59041, "single commodity": 88350, "commodity gpu": 16124, "evaluate endtoend": 30180, "endtoend performance": 28881, "efficient neural": 27806, "growing size": 40666, "datasets given": 22282, "hardware unlike": 41016, "spanning 1000": 89494, "time order": 96999, "framework tensor": 36298, "satisfy requirements": 85208, "dynamic changes": 26908, "applications production": 6547, "production environments": 75733, "260 billion": 673, "model recommender": 61321, "era software": 29744, "gpt3 recently": 39521, "powerful cloud": 73428, "lifecycle training": 53986, "fix patterns": 35350, "potentially facilitate": 73341, "techniques help": 95528, "peak memory": 70678, "empirical observation": 28336, "algorithm uses": 4938, "uses decoder": 101218, "popular autoregressive": 72616, "results perplexity": 83765, "modeling reducing": 61672, "reducing activation": 80857, "activation recomputation": 2983, "compute work": 17518, "conjunction tensor": 18084, "reduces activation": 80823, "support data": 92798, "different computational": 25021, "algorithm optimal": 4926, "allocation strategy": 5158, "strategy conduct": 90869, "faster prior": 33910, "stateoftheart training": 90503, "parameters different": 70200, "traditional training": 97712, "models simultaneously": 64208, "using qualitative": 101715, "single node": 88384, "robust approach": 84642, "demands computing": 22976, "transformers generate": 98610, "code runs": 15491, "use everincreasing": 100540, "everincreasing number": 30951, "parameters necessary": 70256, "parameters factor": 70210, "footprint reduction": 35720, "remedy issue": 81855, "layers reducing": 52758, "leading efficient": 52845, "training implement": 98133, "baseline optimizing": 9800, "communication problem": 16280, "result different": 83393, "50 respectively": 1018, "number gpus": 67344, "reduce gpu": 80777, "gpu clusters": 40253, "directly deploying": 25489, "leads suboptimal": 52910, "potential hardware": 73116, "training based": 97948, "throughput experiments": 96905, "speedup gpt2": 89989, "satellite operations": 85192, "approach promising": 6985, "supporting flexible": 92856, "growing model": 40659, "dnn model": 26188, "better memory": 10747, "design generation": 23784, "35x speedup": 850, "solutions like": 89149, "models hierarchical": 62661, "key designs": 48289, "gpu high": 40257, "running llms": 84954, "compresses weights": 17346, "negligible accuracy": 66088, "achieves significantly": 2787, "generation throughput": 38472, "hours code": 42001, "chatgpt graph": 13916, "networks deep": 66179, "represents promising": 82181, "gpu kernels": 40262, "processing units": 75591, "dividing computation": 26175, "cuda kernels": 20576, "demonstrated unprecedented": 23357, "overcome data": 69350, "modifications model": 64635, "existing design": 31698, "sizes paper": 88561, "scalable approach": 85235, "approach exploring": 6851, "map large": 58335, "efficient streaming": 27824, "ondevice inference": 67916, "revolution machine": 84321, "range machine": 79172, "devices memory": 24762, "reduces size": 80847, "substantial memory": 92094, "memory savings": 59065, "baseline solutions": 9807, "generates output": 37843, "times lead": 97079, "improvements inference": 43975, "a6000 gpu": 1481, "endtoend throughput": 28886, "depth width": 23635, "paper shared": 69951, "update scheme": 100352, "versatility scalability": 102801, "model deep": 60739, "modalities finetuning": 60433, "computational load": 17467, "leads models": 52900, "combine automated": 15969, "demands hinder": 22977, "community address": 16299, "gpu just": 40261, "modelling research": 61695, "implementations make": 43345, "identify issues": 42874, "optimizing resource": 68662, "llms edge": 55824, "interact data": 46974, "study network": 91753, "contribution twofold": 19173, "second comparing": 85920, "consequently crucial": 18119, "boost search": 11280, "groups address": 40620, "inspired design": 46169, "input design": 45888, "robust zeroshot": 84692, "llama t5": 54799, "model states": 61450, "improvement training": 43950, "hardware accelerators": 40998, "study possible": 91776, "efficiency practical": 27707, "methods lowrank": 59718, "model adaptive": 60514, "llama chatglm": 54731, "llms unprecedented": 56989, "hardware cost": 41000, "hardware designs": 41005, "new bottleneck": 66355, "choices compared": 14599, "realworld hardware": 79671, "parameter search": 70124, "training clusters": 97959, "typically training": 99307, "optimizing training": 68663, "frontier large": 36395, "forward backward": 35887, "computations time": 17500, "inherent model": 45738, "overall training": 69334, "adaptive model": 3144, "strategy improves": 90891, "improves throughput": 44083, "rlhf pipeline": 84571, "gpu paper": 40266, "personal computer": 71879, "fast access": 33888, "reducing gpu": 80871, "attains average": 8249, "rtx 4090": 84914, "memory accesses": 59009, "comprehensive analytical": 17200, "performance spatial": 71582, "increase computational": 44755, "systems specific": 93576, "focus inference": 35525, "multiple software": 65258, "llms deep": 55722, "model layers": 61054, "having multiple": 41123, "models difficult": 62231, "highend gpus": 41482, "running large": 84953, "strategy accelerates": 90859, "using strategy": 101795, "flash attention": 35410, "llms efficiency": 55832, "memory overheads": 59054, "challenges low": 13066, "highlight innovative": 41593, "overhead llms": 69389, "support different": 92802, "sparsity patterns": 89565, "realworld llms": 79681, "reduces resource": 80845, "moe architecture": 64688, "24gb memory": 645, "observe proposed": 67595, "perform extremely": 70873, "finetuned curated": 34877, "transparency model": 98771, "a100 40gb": 1473, "instructions covering": 46484, "stochastic gradient": 90722, "consumer gpu": 18497, "llms stand": 56856, "llms resourceconstrained": 56715, "resourceconstrained hardware": 82984, "models termed": 64349, "nvidia jetson": 67456, "using costeffective": 101388, "consumergrade gpus": 18501, "point failure": 72477, "performance transformer language": 71646, "large transformer models": 52356, "advance state art": 3669, "language model similar": 49544, "trillion parameter models": 98882, "large deep learning": 51421, "billions trillions parameters": 11041, "neural networks using": 66280, "methods work propose": 59844, "vast amounts training": 102672, "stateoftheart results natural": 90467, "requires substantial engineering": 82414, "efficient distributed training": 27752, "compared previous work": 16615, "training transformerbased language": 98338, "models continues grow": 62116, "large neural network": 52283, "gshard switch transformer": 40688, "key metric evaluating": 48322, "hardware design large": 41004, "hundreds billions trillions": 42687, "model training requires": 61532, "simple training strategy": 88247, "parameter model single": 70117, "single commodity gpu": 88351, "evaluate endtoend performance": 30181, "260 billion parameters": 674, "models transformer architecture": 64422, "tradeoff task performance": 97641, "language modeling reducing": 49594, "method reduces activation": 59405, "reduces activation memory": 80824, "use everincreasing number": 100541, "memory footprint reduction": 59037, "larger batch sizes": 52432, "reducing memory usage": 80885, "reduce gpu memory": 80778, "memory usage memory": 59073, "outperforms existing systems": 69052, "generative inference large": 38622, "negligible accuracy loss": 66089, "significantly higher throughput": 87934, "hours code available": 42002, "address issue present": 3428, "demonstrated unprecedented capabilities": 23358, "model sizes paper": 61430, "sizes paper propose": 88562, "range machine learning": 79173, "memory computational efficiency": 59023, "neural networks deep": 66265, "framework pretraining finetuning": 36236, "efficient pretraining finetuning": 27814, "language modelling research": 49599, "largescale ai models": 52484, "deep learning applications": 22757, "llm development particularly": 55042, "gpu memory consumption": 40264, "language models requires": 50755, "comprehensive ablation study": 17194, "stateoftheart training efficiency": 90504, "llms demonstrated outstanding": 55747, "performance diverse domains": 71154, "methods lowrank adaptation": 59719, "models llms unprecedented": 63498, "range tasks training": 79218, "conducted comprehensive experiments": 17945, "overall training efficiency": 69335, "training efficiency address": 98085, "efficiency address issues": 27664, "propose adaptive model": 76925, "achieve notable improvements": 2553, "reducing gpu memory": 80872, "nvidia rtx 4090": 67458, "existing approaches rely": 31658, "models increasingly complex": 62754, "largescale transformer models": 52578, "proposed address issue": 77171, "compression techniques like": 17377, "efficient llms inference": 27795, "huge model sizes": 42043, "gpu paper propose": 40267, "framework designed automatically": 36091, "architecture search space": 7372, "finetuning single gpu": 35251, "massive number parameters": 58463, "models llms stand": 63462, "computational cost paper": 17448, "pretraining finetuning large": 74532, "llms study introduce": 56876, "experiments using different": 32328, "large deep learning models": 51422, "vast amounts training data": 102673, "stateoftheart results natural language": 90468, "training transformerbased language models": 98339, "hundreds billions trillions parameters": 42688, "efficient language models transformer": 27784, "autoregressive language modeling reducing": 8963, "method reduces activation memory": 59406, "generative inference large language": 38623, "deep neural networks require": 22798, "model sizes paper propose": 61431, "ai models like gpt4": 4474, "large language models requires": 52147, "models llms demonstrated outstanding": 63075, "llms demonstrated outstanding performance": 55748, "methods lowrank adaptation lora": 59720, "language models like llama": 50052, "language models llms unprecedented": 50501, "overall training efficiency address": 69336, "training efficiency address issues": 98086, "efficiency address issues propose": 27665, "efficient large language model": 27787, "novel framework designed automatically": 67167, "language models llms stand": 50469, "pretraining finetuning large language": 74533, "stateoftheart results natural language processing": 90469, "years large language models achieved": 104602, "generative inference large language models": 38624, "language models llms demonstrated outstanding": 50152, "models llms demonstrated outstanding performance": 63076, "large language models llms unprecedented": 52033, "overall training efficiency address issues": 69337, "training efficiency address issues propose": 98087, "large language models llms stand": 52010, "pretraining finetuning large language models": 74534, "briefs": 11456, "shorten": 87328, "booklength": 11257, "027": 22, "hotel": 41994, "745": 1243, "aspectbased": 7762, "counterarguments": 19988, "overcorrection": 69372, "debatable": 22519, "profits": 75816, "troubleshooting": 98905, "questiongeneration": 78756, "24x": 649, "probingbased": 74987, "constitution": 18369, "centrality": 12738, "disasterrelated": 25550, "monot5": 64720, "queryrelevant": 78564, "pythia28b": 78093, "document summarization": 26221, "summarization methods": 92546, "long legal": 57316, "legal briefs": 53552, "pretrained abstractive": 74228, "compress long": 17339, "baselines furthermore": 9833, "summarization automatic": 92516, "ideas task": 42798, "russian news": 84970, "set metrics": 86898, "assist humans": 8016, "task collect": 93975, "instead learning": 46250, "learning scratch": 53404, "models codebert": 62023, "sequencetosequence learning": 86692, "representations transformer": 82127, "complexity respect": 17051, "long range": 57319, "structure enables": 91130, "range long": 79171, "efficient transformers": 27831, "types different": 99229, "experiments performed": 32260, "challenges addressed": 12958, "represented using": 82170, "summarization evaluation": 92533, "gpt3 led": 39488, "benchmark domain": 10145, "referencefree automatic": 80950, "summarization specifically": 92563, "promptbased models": 76470, "1k human": 474, "allowing direct": 5171, "iterative distillation": 48054, "ratios empirical": 79444, "tasks known": 94789, "hallucinate information": 40813, "specifically benchmark": 89785, "validate usefulness": 102106, "content unfaithful": 18700, "metrics evaluated": 59910, "news domain": 66624, "poorly human": 72604, "given findings": 38888, "indomain dataset": 45122, "unlikelihood training": 100192, "development fewshot": 24643, "samples task": 85143, "model prompted": 61289, "methods applying": 59532, "applying gpt35": 6685, "systems automatic": 93395, "using collected": 101367, "collected human": 15878, "implications evaluating": 43380, "taskspecific pretraining": 95298, "similarly supervised": 88160, "quality summary": 78368, "recently created": 80465, "highlight unique": 41616, "directions area": 25458, "performance experimental": 71194, "explosion data": 32880, "data helpful": 21288, "concern existing": 17661, "methods generated": 59660, "limited high": 54429, "chatgpt generally": 13849, "metrics tasks": 59969, "abstractive summaries": 1947, "evaluated chatgpts": 30328, "benchmark scientific": 10245, "performance design": 71131, "diverse experiments": 26021, "capabilities discuss": 11879, "extractive summarization": 33353, "observations highlight": 67564, "dataset terms": 22102, "efficiently improve": 27853, "finding propose": 34631, "efficient mixture": 27801, "significantly decreasing": 87905, "xsum dataset": 104570, "finetuning costs": 35039, "metrics tend": 59970, "comparable zeroshot": 16414, "complex generative": 16935, "evaluation dimensions": 30576, "analysis investigate": 5563, "automatic evaluators": 8784, "summaries large": 92501, "including vanilla": 44513, "systems ranging": 93542, "demonstrate prompting": 23162, "finegrained atomic": 34785, "mixture supported": 60357, "pieces information": 72106, "timeconsuming costly": 97042, "atomic facts": 8149, "evaluation obtain": 30698, "commercial lms": 16084, "lms instructgpt": 57137, "chatgpt retrievalaugmented": 14187, "essential details": 29939, "process drafting": 75297, "depend specific": 23529, "functions natural": 36523, "develop unified": 24488, "framework alignment": 36032, "datasets seen": 22410, "scores standard": 85781, "approach standard": 7034, "single document": 88357, "gpt3 follow": 39463, "serve inspiration": 86768, "human editors": 42160, "proposed hybrid": 77210, "retaining core": 83939, "written spoken": 104524, "varying quality": 102658, "reveal different": 84143, "unexplored area": 99962, "endtoend models": 28879, "finally test": 34572, "documents chatgpt": 26243, "alpaca llama": 5232, "drop significantly": 26865, "1024 tokens": 164, "articles previous": 7570, "correlation analyses": 19766, "40 diverse": 905, "summaries despite": 92494, "importance task": 43480, "summaries 100": 92489, "hours human": 42003, "evaluation costs": 30557, "terms efficiency": 95813, "propose methodology": 77023, "methodology useful": 59503, "effectively evaluation": 27426, "evaluation score": 30767, "highquality opensource": 41779, "current baseline": 20666, "use text": 100709, "task applications": 93937, "experiment performed": 31972, "evaluation understudy": 30816, "consistent output": 18266, "chatgpt inconsistency": 13948, "control generative": 19206, "merging existing": 59114, "certain automated": 12749, "unreliable measures": 100247, "summaries paper": 92505, "progress text": 76011, "hallucinations challenging": 40859, "poses great": 72772, "llms way": 57041, "specialized generating": 89627, "similar studies": 88112, "form dialogue": 35771, "comprehension general": 17165, "average 27": 9129, "contain factual": 18511, "conversation challenging": 19318, "people propose": 70743, "datasets collected": 22172, "methods alleviate": 59524, "method needs": 59367, "examples perform": 31263, "extracting essential": 33265, "scientific discourse": 85635, "suffer inherent": 92309, "gpt4 reveals": 40060, "llms measuring": 56384, "findings lead": 34696, "speech given": 89948, "single groundtruth": 88361, "multiple human": 65197, "summaries finetuning": 92495, "asked develop": 7732, "retrieval reranking": 84019, "retrieval pipeline": 84007, "pipeline relies": 72172, "like social": 54224, "customer feedback": 20841, "texts neglecting": 96586, "evaluating hallucinations": 30435, "regardless models": 81080, "analysis hallucination": 5536, "nonllm based": 66927, "importantly work": 43554, "gpt4 claude21": 39795, "summary original": 92597, "absence effective": 1903, "research llmbased": 82660, "employing natural": 28460, "achieved competitive": 2619, "long document summarization": 57309, "methods based deep": 59548, "summarization automatic summarization": 92517, "machine learning training": 57731, "inference time model": 45312, "models pretrained massive": 63876, "models infer latent": 62772, "latent representations transformer": 52639, "quadratic complexity respect": 78174, "wide range long": 103669, "abstractive summarization models": 1950, "detect factual errors": 24217, "performance varies significantly": 71664, "text summarization model": 96445, "encoderdecoder model using": 28726, "text summarization tasks": 96449, "framework symbolic knowledge": 36291, "model families including": 60867, "correlate poorly human": 19757, "language model propose": 49523, "introduce new metrics": 47459, "generation task using": 38445, "existing human evaluation": 31722, "implications evaluating llms": 43381, "evaluating llms llms": 30452, "exploring limits chatgpt": 32857, "text summarization text": 96450, "used benchmark datasets": 100752, "different target language": 25218, "provide preliminary evaluation": 77545, "performance experimental results": 71195, "evaluation metrics tasks": 30686, "impressive performance variety": 43624, "variety tasks chatgpt": 102333, "tasks chatgpt developed": 94431, "presents thorough evaluation": 74178, "experimental analysis reveals": 31987, "analysis reveals chatgpt": 5650, "paper present methodology": 69835, "larger models like": 52460, "complex generative tasks": 16936, "work conduct extensive": 104022, "used automatic metrics": 100749, "summaries large language": 92502, "different llms gpt": 25101, "human evaluation obtain": 42184, "strong language model": 91040, "furthermore explore potential": 36615, "text generation applications": 96237, "functions natural language": 36524, "language models considerable": 49745, "new evaluation framework": 66396, "incontext learning based": 44579, "capture diverse opinions": 12352, "new era llms": 66392, "information news articles": 45557, "llms human evaluation": 56146, "generate coherent text": 37401, "generation leveraging large": 38240, "bilingual evaluation understudy": 11007, "models llms applied": 62988, "advanced generative ai": 3697, "article generation task": 7543, "findings indicate gpt": 34686, "gpt models produce": 39226, "gpt models exhibit": 39216, "gpt models following": 39217, "llms despite recent": 55788, "poses great challenges": 72773, "models llms interact": 63255, "average error rate": 9150, "groups people propose": 40627, "using multiple metrics": 101626, "results experiments demonstrate": 83600, "quantitative qualitative analysis": 78419, "summary original document": 92598, "models llms recent": 63380, "employing natural language": 28461, "language processing tasks including": 51050, "framework symbolic knowledge distillation": 36292, "widely used benchmark datasets": 103733, "chatgpts performance comparable traditional": 14440, "attention impressive performance variety": 8322, "impressive performance variety tasks": 43625, "performance variety tasks chatgpt": 71675, "variety tasks chatgpt developed": 102334, "tasks chatgpt developed openai": 94432, "paper presents thorough evaluation": 69874, "summaries large language models": 92503, "propose new evaluation framework": 77044, "pretrained language models led": 74321, "paper propose new task": 69892, "generation leveraging large language": 38241, "language models llms applied": 50086, "language models llms interact": 50304, "results experiments demonstrate proposed": 83601, "model achieves new stateoftheart": 60500, "language models llms recent": 50405, "natural language processing tasks including": 65703, "models llms like gpt3 chatgpt": 63287, "algorithms large language models llms": 4977, "significant attention impressive performance variety": 87688, "attention impressive performance variety tasks": 8323, "impressive performance variety tasks chatgpt": 43626, "performance variety tasks chatgpt developed": 71676, "variety tasks chatgpt developed openai": 102335, "framework based large language models": 36053, "large language models llms requires": 51989, "generation leveraging large language models": 38242, "large language models llms applied": 51786, "large language models llms interact": 51909, "large language models llms recent": 51979, "334": 804, "competently": 16772, "reciprocity": 80582, "unrolling": 100251, "juncture": 48206, "suboptimally": 91995, "handdesigned": 40910, "dispute": 25777, "imaginative": 43141, "imaginary": 43139, "monopoly": 64719, "cocreative": 15111, "king": 48391, "fate": 33921, "opponent": 68483, "n11": 65446, "charge": 13354, "reactstyle": 79494, "matthew": 58628, "selfawareness": 86203, "twolayer": 99166, "thinker": 96795, "allocating": 5152, "irrational": 47896, "languagedriven": 51216, "widelyrecognized": 103751, "1993": 460, "melting": 58982, "pots": 73360, "0613": 51, "fabric": 33426, "nonstationary": 66954, "train generative": 97741, "28 million": 698, "anticipate future": 6240, "capture underlying": 12369, "distinct traditional": 25880, "surveys study": 93059, "contained text": 18526, "model creates": 60723, "vanilla gpt2": 102230, "specific issues": 89713, "bug detectors": 11555, "testing requires": 96023, "testing human": 96008, "human testers": 42392, "virtual worlds": 102945, "worlds work": 104430, "processes create": 75431, "incredibly effective": 44922, "creative tasks": 20257, "pieces music": 72107, "music paper": 65413, "framework process": 36238, "designs generated": 23984, "process providing": 75382, "human designers": 42151, "plms increasingly": 72426, "manner important": 58240, "cooperation problems": 19493, "behaviour interaction": 10018, "competition platform": 16780, "intersection artificial": 47323, "intelligence machine": 46871, "maximizing reward": 58645, "results agents": 83461, "agents act": 4162, "economics study": 27063, "based conditioned": 9480, "crucial investigate": 20497, "cooperative behaviors": 19497, "agents minimal": 4206, "demonstrations improve": 23471, "playing different": 72365, "agents consistently": 4175, "corpus challenge": 19600, "superhuman models": 92628, "consistency checks": 18229, "reasoning decisionmaking": 79859, "tasks correctness": 94496, "agents study": 4237, "modeling offering": 61662, "gpt4 assisted": 39768, "platform designed": 72305, "responses potentially": 83277, "intersection large": 47325, "realworld social": 79703, "interactions previously": 47075, "specific scenario": 89750, "utilizing gpt": 102018, "reducing likelihood": 80881, "tested large": 95980, "personas models": 71935, "strategies relatively": 90844, "recommendation paper": 80648, "uses word": 101262, "game features": 36889, "design assistant": 23750, "conceptual level": 17645, "evaluation identifies": 30635, "strategic behavior": 90781, "sensitive contextual": 86458, "structure context": 91127, "exhibits nuanced": 31620, "changes prompt": 13298, "hope article": 41946, "game environment": 36888, "discussed findings": 25698, "humanlike attributes": 42520, "leverages novel": 53806, "ideal training": 42792, "analysis advanced": 5423, "everyday communication": 30955, "create testbed": 20181, "quantify performance": 78393, "setups finally": 87113, "play different": 72338, "algorithms designed": 4962, "produce incorrect": 75642, "clarification questions": 14683, "cloning bc": 14971, "using demonstrations": 101406, "use reinforcement": 100675, "agents trained": 4244, "benchmark incorporates": 10192, "chatgpt playing": 14083, "agent frameworks": 4133, "environments llms": 29651, "scenarios involve": 85445, "simulations using": 88335, "human agents": 42071, "interactions crucial": 47053, "complex social": 17007, "achieve complex": 2502, "goal completion": 39048, "improving social": 44157, "important mechanism": 43521, "economy paper": 27065, "agents propose": 4221, "social learning": 88876, "matthew effect": 58629, "paradigm based": 70024, "specific public": 89741, "seamlessly incorporated": 85844, "high flexibility": 41416, "reduces complexity": 80826, "candidate recommendations": 11808, "multiagent settings": 64866, "processing speech": 75570, "architecture large": 7353, "core based": 19534, "decisionmaking ability": 22592, "grow dramatically": 40637, "provided large": 77620, "agent called": 4118, "agents interact": 4196, "physical plausibility": 72063, "gm handle": 39036, "integrate external": 46658, "applications scientific": 6566, "performance real": 71517, "chatgpt reached": 14146, "players game": 72360, "llms game": 56027, "substituting human": 92154, "interactions humans": 47060, "agents behavior": 4169, "focusing gpt4": 35626, "applications social": 6574, "evaluating social": 30488, "behavior multiple": 9985, "knowledge databases": 48495, "employs various": 28486, "scale largescale": 85279, "15 billion": 322, "policy value": 72555, "extensive series": 33128, "tools model": 97446, "fundamental question": 36551, "focus critical": 35513, "behaviors llm": 10007, "agents high": 4190, "addition probe": 3204, "including advanced": 44267, "act agents": 2932, "llms behaviors": 55522, "abilities roleplaying": 1565, "technologies understanding": 95635, "approach suggests": 7045, "promote active": 76213, "scenarios using": 85491, "evaluations large": 30860, "investigate key": 47659, "regarding various": 81078, "scenarios opensource": 85464, "benefits strategic": 10488, "llms behavior": 55521, "reasoning effective": 79867, "gpt4 various": 40147, "difficult llms": 25300, "various limitations": 102472, "generation finally": 38164, "effects performance": 27619, "related information": 81197, "required enable": 82310, "discussing ethical": 25712, "llms implementation": 56160, "development includes": 24656, "melting pots": 58983, "discussing limitations": 25713, "llms decisionmaking": 55719, "theory focus": 96761, "relatively limited": 81315, "update code": 100347, "important component": 43496, "large range": 52333, "80 stories": 1319, "results wellknown": 83920, "study online": 91761, "development llmbased": 24673, "applications better": 6415, "theoretical insights": 96742, "certain assumptions": 12748, "human decisionmakers": 42147, "gpt4 fail": 39885, "behaviors propose": 10011, "minimizing loss": 60121, "model generates valid": 60935, "gpt2 model generates": 39313, "design process providing": 23828, "language models play": 50647, "chatgpt gpt4 recently": 13905, "intersection artificial intelligence": 47324, "artificial intelligence machine": 7650, "intelligence machine learning": 46872, "provide evidence llms": 77465, "advanced llms like": 3715, "incontext learning ai": 44577, "ai agents minimal": 4293, "agents minimal human": 4207, "incontext demonstrations improve": 44560, "playing different roles": 72366, "hope work provides": 41971, "models llms transforming": 63492, "potential llms support": 73185, "remarkable abilities generate": 81730, "simulate human conversation": 88306, "provide intriguing insights": 77512, "incomplete information paper": 44539, "recommendation paper introduces": 80649, "uses word embeddings": 101263, "language models abilities": 49607, "gpt4 exhibits promising": 39871, "training data scarce": 98050, "mind tom capacity": 60065, "models systematically evaluate": 64322, "significant differences performance": 87737, "behavior cloning bc": 9965, "use reinforcement learning": 100676, "like chatgpt playing": 54091, "evaluation social intelligence": 30787, "social intelligence language": 88870, "intelligence language agents": 46862, "language agents humans": 49134, "improving social intelligence": 44158, "behaviors large language": 10005, "propose general framework": 76989, "investigation large language": 47790, "processing speech recognition": 75571, "language understanding paper": 51181, "architecture large language": 7354, "provided large language": 77621, "applications scientific research": 6567, "dialogues humans llms": 24933, "conduct user study": 17932, "llms hold great": 56141, "models llms extensively": 63155, "paper presents innovative": 69863, "models llms external": 63156, "parameter transformer model": 70131, "study provides new": 91801, "promote active learning": 76214, "evaluations large language": 30861, "perform ablation study": 70815, "including gpt4 struggle": 44372, "provide better results": 77414, "systems paper explores": 93523, "evaluations various llms": 30893, "code experimental results": 15252, "advanced llms gpt4": 3714, "artificial intelligence machine learning": 7651, "intelligence machine learning natural": 46873, "advanced llms like gpt4": 3716, "ai agents minimal human": 4294, "language models llms transforming": 50496, "shown remarkable abilities generate": 87530, "llms gpt35 gpt4 llama2": 56093, "language models llms agents": 50083, "theory mind tom capacity": 96771, "language models systematically evaluate": 50852, "social intelligence language agents": 88871, "intelligence large language model": 46867, "provided large language models": 77622, "experimental results indicate current": 32048, "language models llms extensively": 50215, "language models llms external": 50216, "evaluations large language models": 30862, "models including gpt4 struggle": 62734, "design large language models llms": 23804, "artificial intelligence machine learning natural": 7652, "intelligence machine learning natural language": 46874, "large language models llms transforming": 52028, "behavior large language models llms": 9978, "large language models llms agents": 51784, "provided large language models llms": 77623, "large language models llms extensively": 51859, "large language models llms external": 51860, "evaluations large language models llms": 30863, "layerbylayer": 52737, "resourcedemanding": 82987, "21x": 603, "multiplied": 65307, "memoryintensive": 59080, "int": 46648, "concentration": 17596, "floating": 35443, "astronomical": 8134, "sensitivitybased": 86480, "convnext": 19467, "imagenet1k": 43078, "traintime": 98369, "bfloat16": 10822, "lion": 54622, "higherprecision": 41537, "dataaware": 21766, "wikitext2": 103820, "algorithmsystem": 4985, "skews": 88578, "normalize": 66976, "a10080gb": 1478, "sram": 90071, "bytes": 11724, "attentionaware": 8389, "diagonal": 24811, "1802": 425, "llama30b": 54885, "set pretrained": 86918, "model approaches": 60558, "phase training": 72016, "despite various": 24140, "underlying difficulty": 99493, "reduced capacity": 80812, "distribution weights": 25954, "transformers efficiently": 98606, "cloud servers": 15062, "requirements work": 82355, "weights activations": 103541, "attention module": 8344, "better efficiency": 10706, "quantization techniques": 78449, "overall inference": 69300, "high compression": 41384, "quantization efficient": 78439, "significant gpu": 87756, "needed inference": 66018, "feature dimensions": 33964, "adaptation model": 3088, "gpt opt": 39232, "modelling tasks": 61696, "based approximate": 9441, "inside single": 46038, "compute memoryintensive": 17510, "activation outliers": 2980, "negligible loss": 66091, "4bit precision": 995, "different zeroshot": 25260, "improve scaling": 43801, "families bloom": 33831, "improvements use": 44006, "use small": 100690, "linear layers": 54529, "reduction 80": 80897, "common method": 16151, "finetuning skills": 35252, "method mitigates": 59360, "mitigates data": 60292, "eliminating requirement": 28014, "embedding matrix": 28058, "multiplication gelu": 65300, "normalization intermediate": 66973, "models equivalent": 62341, "propose fast": 76975, "changes brought": 13285, "floating point": 35444, "llms necessitates": 56425, "scenarios tested": 85487, "complex hyperparameter": 16942, "overhead compared": 69388, "reduces memory": 80836, "4bit quantized": 997, "24 hours": 633, "theoretically optimal": 96751, "qlora finetuning": 78170, "analysis chatbot": 5453, "model independent": 61003, "support long": 92820, "13b 30b": 284, "compressing largescale": 17349, "methods taskspecific": 59818, "individual task": 45097, "freeze parameters": 36362, "stage work": 90126, "light efficacy": 54002, "propose search": 77105, "domains modalities": 26553, "model mobile": 61136, "enabling personalized": 28653, "personalized use": 71922, "parameter range": 70121, "compression llms": 17360, "quantization errors": 78440, "provide efficient": 77458, "llms memory": 56390, "performance memory": 71397, "information ii": 45503, "memory requirement": 59061, "adopted various": 3619, "years especially": 104595, "cost significant": 19882, "attention matrix": 8336, "larger larger": 52447, "empirically models": 28381, "present ongoing": 74028, "architecture performance": 7364, "including hardware": 44377, "algorithm complexity": 4906, "processing sequences": 75567, "mapping present": 58345, "instructions computing": 46481, "analyze convergence": 5750, "approach applicable": 6738, "memory costs": 59029, "train limited": 97753, "especially recent": 29908, "gradient calculation": 40291, "subsets used": 92047, "successfully distill": 92274, "including instruction": 44391, "requirements recent": 82350, "effective reducing": 27359, "parameters leading": 70242, "maintaining computational": 57885, "optimizing various": 68664, "quantization process": 78447, "challenges deployment": 12992, "compression technique": 17375, "issue mainly": 47942, "size llms": 88488, "regression large": 81099, "large memory": 52250, "propose memoryefficient": 77020, "individual layers": 45085, "solutions complex": 89131, "matrix vector": 58623, "achieve near": 2547, "temperature variations": 95687, "inference speeds": 45295, "consistently yield": 18314, "challenging deploy": 13165, "solutions provide": 89154, "basic insight": 9878, "sparse data": 89528, "rank decomposition": 79248, "speedup modern": 89990, "models reduced": 64030, "gains parameter": 36865, "implemented lines": 43348, "original lora": 68790, "memoryefficient finetuning": 59078, "introduces adaptive": 47514, "efficiency additionally": 27662, "optimal number": 68565, "lowrank weights": 57611, "hours single": 42004, "zeroshot tasks": 104879, "efficient local": 27796, "prompt processing": 76398, "majority inference": 57951, "accuracy achieve": 2196, "transformers propose": 98632, "depends choice": 23547, "bert vision": 10564, "inference cpus": 45233, "demand large": 22967, "accelerate llm": 2006, "llama gptneox": 54759, "channel equalization": 13308, "demands paper": 22979, "remains fixed": 81657, "weight reconstruction": 103527, "reconstruction objective": 80688, "compression setting": 17374, "including lowrank": 44414, "enabling fast": 28633, "reducing llm": 80882, "endtoend speedup": 28883, "75 compared": 1246, "time based": 96932, "model quantized": 61306, "pruning technique": 77858, "scales llms": 85312, "accuracy given": 2273, "improvement relative": 43938, "best prior": 10635, "release implementation": 81373, "algorithmsystem codesign": 4986, "preserve model": 74184, "quantized llm": 78454, "million context": 60030, "length llm": 53601, "inference kv": 45252, "growing use": 40671, "use applications": 100473, "solutions fail": 89139, "increases memory": 44808, "additionally inference": 3318, "cache size": 11729, "lack indepth": 49021, "exhibit exceptional": 31517, "capabilities come": 11859, "requirements existing": 82339, "weight distribution": 103523, "llms families": 55973, "llm billion": 54990, "models yielding": 64557, "priori knowledge": 74875, "accurate compact": 2402, "hardware existing": 41007, "llms lora": 56362, "retain original": 83936, "transformation diverse": 98465, "llama2 families": 54830, "llama7b achieves": 54892, "lora rank": 57449, "trained predefined": 97887, "enables finetuning": 28588, "llms parameters": 56493, "layers transformer": 52762, "respectively resulting": 83089, "exploit lowrank": 32568, "allowing inference": 5179, "c4 dataset": 11726, "updates remaining": 100359, "improved latency": 43843, "quantized large": 78451, "ranging 125m": 79230, "longcontext tasks": 57357, "maintaining efficiency": 57888, "datasets illustrate": 22294, "stateoftheart benchmark": 90316, "use models inference": 100630, "remains unclear paper": 81710, "language models practice": 50667, "downstream tasks achieving": 26715, "language modelling tasks": 49600, "methods reduce number": 59777, "zeroshot performance large": 104838, "llm families bloom": 55078, "huge memory footprint": 42040, "embedding matrix multiplication": 28059, "matrix multiplication gelu": 58619, "multiplication gelu softmax": 65301, "gelu softmax layer": 37052, "layer normalization intermediate": 52725, "normalization intermediate results": 66974, "intermediate results case": 47218, "various tasks demonstrate": 102592, "establish new stateoftheart": 29974, "models llms necessitates": 63314, "complex hyperparameter tuning": 16943, "efficient finetuning approach": 27760, "approach reduces memory": 7003, "reduces memory usage": 80837, "models providing detailed": 63938, "multiple model types": 65225, "using smaller models": 101777, "7b 13b 30b": 1278, "stage work propose": 90127, "provide empirical investigation": 77460, "sheds light efficacy": 87234, "llms shown excellent": 56772, "excellent performance various": 31355, "different domains modalities": 25053, "various language modeling": 102458, "demonstrated remarkable results": 23333, "come cost significant": 16030, "modern transformer models": 64624, "present ongoing work": 74029, "techniques like knowledge": 95552, "distillation pruning quantization": 25827, "generative models suffer": 38673, "high inference costs": 41419, "decoding process address": 22673, "pretrained model approach": 74390, "stateoftheart deep neural": 90334, "recent popular large": 80307, "subsets used training": 92048, "training best knowledge": 97951, "maintaining computational efficiency": 57886, "language models era": 49832, "era largescale language": 29739, "significant challenges deployment": 87711, "model achieving significant": 60507, "language models size": 50811, "key factor success": 48296, "commercial models chatgpt": 16087, "general llms particular": 37160, "llama2 series models": 54850, "speedup modern hardware": 89991, "lowrank adaptation large": 57598, "implemented lines code": 43349, "scenarios code available": 85405, "wide spectrum natural": 103697, "outperforming previous stateoftheart": 69007, "models opt llama2": 63719, "points code available": 72494, "llm inference cpus": 55126, "high memory bandwidth": 41430, "accelerate llm inference": 2007, "method requires additional": 59413, "techniques significantly boost": 95591, "models approach uses": 61845, "llama2 7b 70b": 54818, "tackle challenges propose": 93716, "language models resulting": 50761, "best prior work": 10636, "million context length": 60031, "llm inference kv": 55129, "outperforming existing approaches": 68997, "llama7b model context": 54896, "significantly increases memory": 87966, "kv cache size": 48883, "llama2 falcon mistral": 54829, "llms exhibit exceptional": 55903, "hours single gpu": 42005, "llms extensively studied": 55951, "resourceconstrained hardware existing": 82985, "reduce number trainable": 80797, "reduce number parameters": 80796, "models llms method": 63304, "quantized large language": 78452, "empirical results various tasks": 28350, "zeroshot performance large language": 104839, "embedding matrix multiplication gelu": 28060, "matrix multiplication gelu softmax": 58620, "multiplication gelu softmax layer": 65302, "gelu softmax layer normalization": 37053, "softmax layer normalization intermediate": 88974, "layer normalization intermediate results": 52726, "normalization intermediate results case": 66975, "large language models efficient": 51650, "language models llms necessitates": 50344, "approach reduces memory usage": 7004, "sizes 7b 13b 30b": 88546, "models llms shown excellent": 63421, "llms shown excellent performance": 56773, "knowledge distillation pruning quantization": 48516, "stateoftheart deep neural networks": 90335, "large language models era": 51662, "era largescale language models": 29740, "large language models size": 52167, "lowrank adaptation large language": 57599, "wide spectrum natural language": 103698, "spectrum natural language processing": 89926, "efficient llm inference cpus": 27793, "reduce number trainable parameters": 80798, "language models llms method": 50336, "quantized large language models": 78453, "cost large language models": 19860, "zeroshot performance large language models": 104840, "embedding matrix multiplication gelu softmax": 28061, "matrix multiplication gelu softmax layer": 58621, "multiplication gelu softmax layer normalization": 65303, "gelu softmax layer normalization intermediate": 37054, "softmax layer normalization intermediate results": 88975, "layer normalization intermediate results case": 52727, "large language models llms necessitates": 51935, "language models llms shown excellent": 50440, "models llms shown excellent performance": 63422, "lowrank adaptation large language models": 57600, "wide spectrum natural language processing": 103699, "large language models llms method": 51929, "nbest": 65831, "cushman": 20836, "773": 1266, "356": 845, "underpins": 99533, "semanticaware": 86374, "investigative": 47803, "transcends": 98384, "289": 706, "longlora": 57393, "db": 22505, "august": 8609, "gpt35turbo16k": 39716, "perform empirical": 70864, "model translates": 61538, "intent instead": 46956, "high predictive": 41440, "reranking promising": 82459, "nbest hypotheses": 65832, "coherence correctness": 15770, "generating query": 37961, "obtain consistent": 67646, "progress task": 76010, "focuses english": 35603, "facilitate translation": 33512, "questions chinese": 78795, "based hypothesis": 9565, "contain complex": 18510, "specifically develop": 89806, "stateoftheart conversational": 90329, "ability tackle": 1781, "main task": 57841, "prompts boost": 76658, "light new": 54012, "plan model": 72241, "reranking results": 82460, "improvements 10": 43955, "sota baseline": 89304, "rely data": 81570, "framework delivers": 36087, "limitation paper": 54286, "involves developing": 47839, "management proposed": 58188, "management process": 58187, "process reduce": 75387, "chatgpt clean": 13622, "audience explore": 8473, "tasks instruction": 94758, "introduce straightforward": 47488, "tasks reveal": 95071, "average 13": 9126, "requires new": 82404, "retrieve similar": 84073, "allows detailed": 5192, "applications mitigate": 6527, "total size": 97565, "investigation paper": 47796, "insurance case": 46647, "knowledge helps": 48615, "understand new": 99631, "tasks unique": 95223, "format content": 35824, "benchmark evaluations": 10163, "evaluations propose": 30875, "promising improvements": 76168, "current highperforming": 20692, "information scale": 45615, "attributes relations": 8458, "achieves 773": 2698, "relevant subset": 81481, "subset overall": 92042, "deliver competitive": 22937, "improvement emergence": 43903, "models popularity": 63829, "achieve low": 2543, "domains small": 26587, "scientific databases": 85633, "environments new": 29653, "achieve precise": 2561, "order better": 68691, "instances design": 46225, "method guide": 59321, "select optimal": 86126, "methods 10": 59506, "management tutorial": 58191, "discuss recent": 25686, "pioneering endeavor": 72132, "pretraining enhance": 74529, "emerged recent": 28154, "propose retrievalaugmented": 77104, "retrievalaugmented prompting": 84058, "design dynamic": 23771, "traditional query": 97693, "using query": 101717, "different relational": 25180, "able process": 1874, "ideas improve": 42797, "capabilities todays": 12101, "todays language": 97120, "good generating": 39116, "outputs study": 69257, "gptneox 20b": 40236, "areas potential": 7449, "ability map": 1719, "suggests promising": 92445, "knowledge capabilities": 48459, "maintains competitive": 57907, "consistently outperforming": 18305, "commercial ones": 16089, "emerged claiming": 28125, "largescale benchmark": 52493, "detection correction": 24282, "intelligence use": 46903, "language computer": 49168, "fuzzy logic": 36804, "benchmarks tailored": 10419, "accuracy 16": 2175, "highlighting important": 41630, "evidence large": 30978, "observed highlighting": 67613, "types simplifying": 99265, "model showing": 61399, "generalizability opensource": 37234, "primary bottlenecks": 74797, "academic peerreview": 1989, "employing lora": 28458, "gpt4 codellama": 39799, "model performing": 61243, "results cases": 83485, "multiagent collaborative": 64860, "methods usually": 59836, "complex user": 17026, "llms utilizing": 57014, "tools effective": 97391, "parsing framework": 70338, "framework finetune": 36138, "models conventional": 62123, "values ensure": 102212, "order answer": 68688, "combining different": 16008, "90 times": 1405, "generated queries": 37764, "answering data": 6091, "queries information": 78492, "performance vulnerability": 71708, "module generates": 64664, "methods robust": 59791, "robust noise": 84677, "widespread practice": 103791, "model textdavinci003": 61508, "expensive inference": 31913, "series pretrained": 86750, "challenges building": 12972, "model larger": 61052, "accuracy achieving": 2198, "queries essential": 78486, "based solely": 9721, "model comprehensive": 60687, "fewshot open": 34280, "documents extracting": 26248, "rag enhances": 79038, "additional contexts": 3232, "codex language model": 15669, "able generate correct": 1851, "active research area": 2994, "accuracy benchmark datasets": 2211, "llms requires expensive": 56709, "benchmark datasets using": 10132, "models existing work": 62395, "specifically develop new": 89807, "shed light new": 87219, "explores use chatgpt": 32823, "chatgpt aipowered chatbot": 13513, "address limitation paper": 3446, "presents comprehensive analysis": 74123, "comprehensive analysis chatgpts": 17197, "demonstrate chatgpt assist": 23039, "tasks instruction tuning": 94759, "demonstration examples prompt": 23462, "models demonstrates strong": 62194, "learning finetuning settings": 53162, "prompting approach designed": 76501, "different prompt designs": 25161, "relevant subset overall": 81482, "natural language sql": 65733, "generated using gpt3": 37815, "achieve low performance": 2544, "training test data": 98321, "novel task automatic": 67259, "generation models applied": 38276, "requirements existing work": 82340, "consists key components": 18334, "datasets finally discuss": 22262, "capabilities todays language": 12102, "todays language models": 97121, "language models discerning": 49791, "efforts developing effective": 27903, "maintains competitive performance": 57908, "training data finally": 98011, "models gpt35 chatgpt": 62604, "diverse human instructions": 26033, "covering zeroshot fewshot": 20090, "natural language user": 65763, "artificial intelligence use": 7670, "current methods require": 20731, "understanding strengths limitations": 99880, "novel approach finetuning": 67099, "language sql queries": 51111, "compared baseline gpt4": 16508, "results underscore effectiveness": 83899, "multiagent collaborative framework": 64861, "utilizing external tools": 102014, "llms gained considerable": 56022, "llm program synthesis": 55213, "question answering data": 78584, "queries information retrieval": 78493, "comprehensive dataset consisting": 17227, "gpt35 model textdavinci003": 39646, "promising performance task": 76181, "task translating natural": 94276, "stateoftheart sota approaches": 90478, "language model achieves": 49324, "incontext learning scenarios": 44643, "generation rag enhances": 38380, "leverages large pretrained language": 53802, "paper presents comprehensive analysis": 69854, "incontext learning finetuning settings": 44597, "capabilities todays language models": 12103, "language models gpt35 chatgpt": 49943, "covering zeroshot fewshot scenarios": 20091, "understanding strengths limitations current": 99881, "natural language sql queries": 65734, "models llms gained considerable": 63173, "retrievalaugmented generation rag enhances": 84042, "models large language models zeroshot": 62861, "language models llms gained considerable": 50232, "contextualize": 18960, "kd": 48251, "merchandise": 59104, "mothers": 64761, "listwise": 54634, "bulk": 11683, "minilm": 60075, "accentuated": 2035, "ice": 42752, "inaccuracy": 44185, "chronicles": 14617, "gpt41106preview": 40162, "collects": 15921, "tuner": 99010, "extraordinarily": 33366, "retrieval ranking": 84014, "revisit generative": 84312, "corpora different": 19574, "gpt code": 39188, "directly apply": 25484, "expensive computations": 31907, "especially long": 29896, "innovative paradigm": 45863, "improve usability": 43823, "intents used": 46969, "finetuning representation": 35223, "form knowledge": 35774, "distillation kd": 25814, "teacher using": 95349, "recalling relevant": 80120, "upstream data": 100385, "uses update": 101261, "outperforms nonretrieval": 69090, "inference stateoftheart": 45300, "t5 approach": 93616, "incurs significant": 44933, "way efficient": 103352, "past studies": 70570, "based product": 9671, "leveraging gpt3": 53847, "knowledge question": 48726, "memory allows": 59010, "research proposing": 82736, "using ground": 101501, "zeroshot slot": 104876, "knowledge retrieving": 48753, "retrieving external": 84108, "specifically utilizing": 89893, "improvements different": 43968, "demonstrate retrieval": 23181, "reranking tasks": 82461, "t5 text": 93653, "classification rely": 14784, "pairwise listwise": 69535, "listwise ranking": 54635, "models ranking": 63964, "performance faster": 71210, "speed inference": 89980, "range inference": 79164, "rely proprietary": 81587, "pairs training": 69524, "compared proprietary": 16620, "average gain": 9157, "lm simple": 57079, "design easily": 23772, "applied existing": 6610, "finally improve": 34539, "knowledge conflicts": 48480, "queries introduce": 78494, "smaller amounts": 88741, "representations query": 82119, "training propose": 98248, "used dense": 100775, "require dedicated": 82239, "dedicated hardware": 22725, "gains transformer": 36874, "recent encoderdecoder": 80255, "models generic": 62572, "larger target": 52476, "various target": 102590, "estimated model": 30014, "ranking metrics": 79273, "efficiency possible": 27706, "knowledge example": 48556, "models utility": 64482, "elements large": 27966, "architectures language": 7394, "generalization reasoning": 37280, "research sought": 82786, "evolution research": 31034, "insights comprehensive": 46066, "api endpoints": 6270, "results reproducible": 83814, "shortcoming present": 87320, "necessary reproduce": 65874, "combination structured": 15959, "structured unstructured": 91187, "aforementioned problem": 4089, "problem developing": 75014, "search framework": 85875, "context documents": 18754, "framework speech": 36281, "use internal": 100583, "positional bias": 72808, "prompt order": 76387, "robustness method": 84731, "presence random": 73925, "furthermore evaluations": 36610, "number retrieved": 67374, "queries considered": 78477, "dynamic data": 26911, "verification approach": 102739, "problem deploying": 75010, "llms mitigate": 56398, "inconsistent answers": 44548, "models retrievalaugmented": 64102, "challenges introduces": 13049, "scenarios core": 85411, "relevance given": 81433, "information formulate": 45486, "create training": 20183, "augmenting language": 8596, "sparked application": 89512, "encoderdecoder plms": 28729, "suggest continual": 92355, "reliance proprietary": 81548, "models listwise": 62941, "findings hold": 34675, "fetch relevant": 34181, "improves tool": 44084, "reduces hallucination": 80832, "lms solve": 57170, "ranging 125": 79228, "125 million": 239, "original task": 68815, "knowledge overcome": 48688, "llms properly": 56602, "context sizes": 18853, "methods efficient": 59612, "eliminating reliance": 28013, "aim reduce": 4733, "remove need": 81863, "operation robustness": 68451, "integration retrieval": 46781, "evaluate rag": 30272, "brazilian portuguese": 11368, "quality retriever": 78351, "multiple pieces": 65238, "accuracy language": 2299, "popular solution": 72685, "various knowledgeintensive": 102456, "ranking ability": 79263, "directly learning": 25505, "encoderdecoder t5": 28730, "text enabling": 96189, "directions rapidly": 25476, "lm using": 57086, "usefulness retrieved": 100964, "texts model": 96584, "texts end": 96558, "dialogue code": 24850, "achieving efficient": 2843, "benchmark serves": 10246, "influencing user": 45368, "meteor scores": 59178, "efficiency search": 27719, "existing blackbox": 31679, "language models experiment": 49853, "recently deep generative": 80467, "generative models gpt2": 38658, "evaluation benchmarks method": 30531, "knowledge distillation kd": 48509, "paves way efficient": 70651, "using ground truth": 101502, "knowledge retrieving external": 48754, "retrieving external corpus": 84109, "knowledgeintensive nlp tasks": 48833, "pairwise listwise ranking": 69536, "performance gains different": 71238, "compared model finetuned": 16589, "wide range inference": 103666, "train language models": 97747, "performance gpt3 175b": 71267, "languagerelated tasks including": 51224, "including search engines": 44471, "incontext learning process": 44638, "findings suggest generative": 34759, "data training propose": 21705, "training propose use": 98249, "improve effectiveness existing": 43694, "language models generic": 49925, "llms fully understand": 56012, "achieve competitive results": 2501, "elements large language": 27967, "language models information": 49994, "recent research sought": 80345, "systems given rapid": 93466, "given rapid evolution": 38943, "rapid evolution research": 79326, "necessary reproduce results": 65875, "based knowledge retrieval": 9586, "improvements stateoftheart llms": 44001, "handle longer contexts": 40928, "parameters significantly outperforms": 70286, "factual consistency language": 33625, "language models retrievalaugmented": 50766, "language models notably": 50609, "opendomain qa benchmarks": 68242, "significantly outperform standard": 87982, "llms sparked application": 56838, "suggest continual pretraining": 92356, "llms gpt4 opensource": 56106, "gpt4 opensource counterparts": 39994, "research rapidly evolving": 82752, "tuning significantly enhances": 99097, "ranging 125 million": 79229, "models llms given": 63192, "brazilian portuguese language": 11369, "models retrievalaugmented generation": 64103, "aims provide comprehensive": 4823, "humanlike text enabling": 42541, "future directions rapidly": 36718, "significantly outperforming existing": 87985, "dialogue code generation": 24851, "generation ability llm": 38003, "integrating external knowledge": 46719, "impressive zeroshot performance": 43656, "parameters finetuning large": 70216, "validated extensive experiments": 102111, "knowledge retrieving external corpus": 48755, "data training propose use": 21706, "elements large language models": 27968, "large language models information": 51738, "systems given rapid evolution": 93467, "given rapid evolution research": 38944, "retrievalaugmented language models retrievalaugmented": 84051, "models llms sparked application": 63454, "llms gpt4 opensource counterparts": 56107, "language models llms given": 50247, "language models retrievalaugmented generation": 50767, "models retrievalaugmented generation rag": 64104, "paper aims provide comprehensive": 69607, "parameters finetuning large language": 70217, "systems given rapid evolution research": 93468, "language models llms sparked application": 50461, "large language models llms given": 51879, "language models retrievalaugmented generation rag": 50768, "parameters finetuning large language models": 70218, "boring": 11312, "enwik8": 29665, "53x": 1062, "sparselyactivated": 89550, "mpo": 64821, "manybody": 58328, "curved": 20834, "reads": 79530, "24times": 647, "bf": 10819, "1n": 476, "llmpruner": 55385, "inserts": 46035, "h2o": 40791, "337": 807, "sliding": 88626, "swa": 93089, "hardwareaware": 41017, "aggressively": 4259, "unitary": 100100, "born": 11313, "tensorized": 95766, "parameterization": 70158, "100times": 154, "bpfree": 11351, "flashattention2": 35412, "recurrences": 80719, "loses": 57454, "adamw": 3032, "entire field": 29519, "attention results": 8376, "experiments transformer": 32320, "use popular": 100651, "vanilla attention": 102227, "accurate approximation": 2393, "process queries": 75384, "important paradigm": 43527, "choice method": 14586, "training convergence": 97975, "2x computational": 737, "quantum manybody": 78458, "manybody physics": 58329, "switch transformers": 93105, "attentionbased models": 8394, "critical challenges": 20310, "layers dense": 52745, "weight update": 103530, "parameterefficient sparsity": 70150, "challenges computational": 12980, "despite training": 24135, "algorithm faster": 4914, "24times speedup": 648, "context transformers": 18868, "better perplexity": 10765, "length 16k": 53582, "step contrast": 90621, "directly conditioned": 25488, "comparable gpt3": 16371, "tuning pet": 99076, "model sequentially": 61391, "complexity theory": 17056, "fundamental changes": 36534, "theoretical study": 96747, "bf 1n": 10820, "vast model": 102686, "scale computational": 85254, "network pruning": 66157, "pruning offers": 77855, "unstructured pruning": 100293, "weights gradients": 103552, "models instance": 62787, "successful approach": 92259, "finetuning negligible": 35154, "prompt module": 76380, "unified mathematical": 100031, "achieving superior": 2890, "learning theory": 53451, "gap theory": 36982, "theory practice": 96772, "trajectory arbitrary": 98379, "particularly applications": 70432, "size paper": 88502, "input activations": 45873, "proposed integrate": 77213, "encoders decoders": 28739, "tradeoffs propose": 97646, "initial tokens": 45790, "trained finite": 97831, "sliding window": 88627, "sparse linear": 89534, "architecture driven": 7343, "modeling pairwise": 61664, "retraining scratch": 83955, "resourcelimited devices": 82995, "bound present": 11333, "different attention": 25004, "length models": 53603, "handle sequences": 40933, "reduced inference": 80816, "computation token": 17430, "technique deep": 95440, "algorithm significantly": 4934, "llms hundreds": 56152, "time speedup": 97028, "inputs layer": 45998, "2x compared": 736, "models computation": 62073, "multitask scenarios": 65367, "lora modules": 57446, "outperforms single": 69112, "requiring modification": 82440, "methods paramount": 59746, "finetuning terms": 35277, "generalization error": 37258, "costs scaling": 19936, "focused knowledge": 35587, "capturing common": 12379, "experts mitigating": 32415, "mixed datasets": 60325, "finetuning stateoftheart": 35262, "time additionally": 96929, "efficient optimizers": 27808, "transformers pretrained": 98631, "plms effectively": 72414, "studies revealed": 91440, "pruned models": 77844, "information single": 45627, "single hidden": 88362, "parameters little": 70245, "pretraining resulting": 74592, "ensuring consistent": 29477, "datasets opensourced": 22359, "direction finetuning": 25446, "minimize number": 60115, "training stability": 98306, "maintaining model": 57896, "llama27b models": 54870, "enjoys better": 29385, "benchmark evolving": 10164, "gradient computation": 40292, "issue crucial": 47926, "initial concept": 45766, "forward gradient": 35888, "gradient method": 40296, "training gradient": 98125, "complexity model": 17047, "adaptability large": 3058, "application largescale": 6368, "peft approaches": 70706, "representation produced": 82073, "including roberta": 44464, "t5 llama2": 93640, "peft approach": 70705, "training memoryefficient": 98194, "models updating": 64461, "simple architecture": 88169, "attention efficient": 8301, "based competitive": 9474, "local attention": 57193, "hybrid model": 42707, "efficiency transformers": 27731, "attentionbased llms": 8393, "16k context": 388, "length results": 53608, "1b 7b": 466, "glue tasks": 39034, "head attention": 41137, "compute experiments": 17507, "memory bottleneck": 59014, "attention weight": 8385, "score function": 85715, "usage compromising": 100427, "encode sequential": 28675, "data latent": 21370, "perspective additionally": 71941, "learning long": 53256, "accelerating large": 2017, "come dominate": 16031, "increasing memory": 44838, "new token": 66558, "loss level": 57466, "faster inference speed": 33907, "downstream tasks compared": 26718, "quantum manybody physics": 78459, "transformers language modeling": 98618, "improves language modeling": 44034, "training downstream tasks": 98081, "training small number": 98299, "language model downstream": 49380, "gpt2 gpt3 chatgpt": 39291, "fundamental changes human": 36535, "gap theory practice": 36983, "increase computational overhead": 44756, "parameterefficient tuning pet": 70156, "training sequence length": 98282, "achieves better perplexity": 2721, "long context transformers": 57302, "different attention heads": 25005, "reduced inference cost": 80817, "technique deep learning": 95441, "models llms hundreds": 63227, "llms hundreds billions": 56153, "quality incontext learning": 78295, "models era large": 62343, "sheer number parameters": 87242, "downstream tasks experiments": 26726, "maintaining competitive performance": 57884, "single hidden state": 88363, "pretraining resulting model": 74593, "finetuning pretrained large": 35194, "adaptability large language": 3059, "significant attention ability": 87681, "addressing challenges propose": 3530, "including roberta gpt2": 44465, "field machine learning": 34389, "models inference time": 62776, "tokens using novel": 97241, "accelerating large language": 2018, "developing large language": 24586, "solution address challenges": 89075, "pretrained language model downstream": 74286, "paper investigate effectiveness using": 69784, "finetuning pretrained language model": 35191, "conduct extensive experiments multiple": 17884, "models llms recently gained": 63388, "llms recently gained popularity": 56663, "language models llms hundreds": 50277, "models llms hundreds billions": 63228, "general natural language processing": 37167, "language models specific tasks": 50823, "language models era large": 49833, "models era large language": 62344, "finetuning pretrained large language": 35195, "adaptability large language models": 3060, "challenges propose novel approach": 13109, "foundation models like gpt4": 35955, "accelerating large language model": 2019, "developing large language models": 24587, "language models llms recently gained": 50412, "models llms recently gained popularity": 63389, "large language models llms hundreds": 51894, "language models llms hundreds billions": 50278, "general natural language processing nlp": 37168, "large language models specific tasks": 52173, "language models era large language": 49834, "models era large language models": 62345, "finetuning pretrained large language models": 35196, "developing large language models llms": 24588, "court": 20040, "proceedings": 75260, "sponsor": 90022, "legislation": 53571, "ifthen": 42958, "lawyers": 52711, "securities": 85996, "deeplearningbased": 22820, "rulings": 84943, "lights": 54029, "subsection": 92008, "litigants": 54670, "templatedriven": 95695, "finalized": 34504, "endeavour": 28852, "interchunk": 47130, "revolutionising": 84331, "domainspecialized": 26610, "preceded": 73584, "define metric": 22864, "metric measure": 59866, "problem following": 75021, "shows effectiveness": 87577, "leverages recent": 53812, "work initial": 104130, "using prior": 101693, "ranking approach": 79264, "based transformers": 9743, "area context": 7421, "documents achieved": 26242, "advance current": 3662, "ideas written": 42799, "legal standards": 53566, "behavior difficult": 9967, "specify desired": 89913, "case language": 12460, "specification languages": 89896, "73 accuracy": 1237, "step framework": 90642, "assistant based": 8036, "gpt3 performs": 39511, "large legal": 52239, "inspire researchers": 46165, "research objectives": 82685, "largescale text": 52575, "paper employs": 69691, "analysis apply": 5437, "million sentences": 60040, "sentences prompt": 86565, "classification evaluate": 14742, "models confront": 62091, "inject domain": 45816, "llms legal": 56291, "known generate": 48844, "pretrained pile": 74443, "specialized data": 89621, "analysis abilities": 5417, "legal services": 53565, "intelligence leveraging": 46870, "law paper": 52705, "ai governance": 4423, "court cases": 20041, "module used": 64669, "context model": 18814, "model form": 60910, "issue hallucination": 47934, "hallucination models": 40844, "findings open": 34709, "improvement efficiency": 43901, "propose causal": 76945, "support analysis": 92788, "predictions findings": 73741, "context tasks": 18860, "errors present": 29834, "hallucinations model": 40877, "aims support": 4830, "tools approaches": 97356, "corpus provide": 19650, "retrieval tools": 84034, "structure text": 91149, "opening possibility": 68281, "patterns observed": 70637, "neural framework": 66225, "sensitivity model": 86475, "model explain": 60842, "research consists": 82522, "utilizes gpt4": 101988, "answers question": 6210, "exploration methodology": 32597, "using insights": 101523, "legal rulings": 53564, "paradigms zeroshot": 70066, "series different": 86730, "gap computational": 36918, "potential domainspecific": 73073, "law domain": 52700, "similar cases": 88057, "llms recall": 56649, "present intriguing": 74001, "limited gains": 54423, "task numerous": 94161, "domainspecific entities": 26624, "semantics syntax": 86396, "inconsistent performance": 44552, "lms demonstrate": 57114, "tasks unknown": 95224, "shed lights": 87222, "elicitation techniques": 27992, "bert encoder": 10509, "phase thematic": 72014, "information process": 45577, "able automatically": 1828, "surge large": 92889, "handle lengthy": 40925, "casts doubt": 12572, "nearperfect performance": 65862, "performance related": 71529, "suggest simple": 92393, "crucial work": 20548, "perspectives different": 71965, "sentences comparing": 86547, "approaches automating": 7109, "reproducibility provide": 82198, "provide guidelines": 77489, "given characteristics": 38862, "text entailment": 96195, "model robust": 61365, "robust natural": 84675, "gpt4 training": 40134, "intelligence resulted": 46888, "respect various": 83045, "datasets potential": 22370, "improving usability": 44168, "challenging endeavour": 13171, "cases based": 12513, "cases enabling": 12524, "step employing": 90629, "hierarchical framework": 41362, "test methods": 95917, "extraction key": 33303, "evaluated gpt4s": 30340, "extracting critical": 33262, "corresponding labels": 19798, "supreme court": 92878, "code novel": 15421, "ar decoder": 7297, "decoder based": 22628, "solutions current": 89133, "example used": 31179, "key concept": 48282, "rulebased approaches": 84925, "alternative existing": 5263, "llama increasingly": 54761, "domain poses": 26429, "future researchers explore": 36778, "gpt2 model way": 39318, "language models prompts": 50693, "approach using generative": 7078, "analysis apply approach": 5438, "inject domain knowledge": 45817, "methods recent years": 59775, "quality generated summaries": 78282, "models pretrained pile": 63878, "compare performance baseline": 16478, "textual data tasks": 96665, "improve performance model": 43757, "method enhance ability": 59284, "enhance ability large": 29130, "models results llms": 64095, "models strengths weaknesses": 64262, "evaluation metrics like": 30681, "llms legal tasks": 56292, "models outperform models": 63737, "bridging gap computational": 11448, "downstream tasks limited": 26737, "tasks unknown llms": 95225, "research directions improve": 82559, "large pretrained generative": 52306, "pretrained generative transformer": 74270, "phase thematic analysis": 72015, "surge large language": 92890, "provide new opportunities": 77528, "like gpt4 claude": 54153, "based case studies": 9458, "language model robust": 49535, "robust natural language": 84676, "artificial intelligence resulted": 7660, "language models hierarchical": 49962, "extraction key information": 33304, "extracting critical information": 33263, "highlighting potential llms": 41638, "pretrained model set": 74395, "language model scratch": 49538, "does make use": 26309, "error analysis reveals": 29770, "novel approach using generative": 67107, "powered large language model": 73413, "surge large language models": 92891, "area natural language processing nlp": 7430, "powered large language model llm": 73414, "surge large language models llms": 92892, "intensifies": 46943, "tears": 95390, "280b": 699, "crms": 20392, "rltrained": 84580, "sacrifice": 84975, "alpaca7b": 5236, "rlhfbased": 84578, "periodically": 71833, "ema": 28035, "weaktostrong": 103462, "correctional": 19710, "selfrewarding": 86263, "cl": 14660, "cf": 12793, "69b": 1199, "agent trained": 4149, "showing model": 87420, "different people": 25140, "result models": 83399, "better aligned": 10681, "aligned user": 5032, "normative challenges": 66985, "challenges defining": 12990, "benefits risks": 10487, "implementation making": 43335, "scale larger": 85278, "paradigm called": 70025, "score human": 85719, "rlhf rely": 84573, "research largescale": 82655, "corpus product": 19648, "predominantly rely": 73785, "prompt diversity": 76280, "learning demonstrations": 53106, "queries finetune": 78489, "original llm": 68788, "desirable responses": 23995, "lines human": 54548, "distillation proprietary": 25825, "respectively analyses": 83055, "like write": 54241, "pro outperforms": 74941, "formulation tasks": 35874, "size extensive": 88468, "2x 10x": 735, "finetuned individual": 34907, "datasets applied": 22147, "helpful honest": 41294, "honest harmless": 41938, "measure human": 58739, "agent training": 4150, "chatgpt absence": 13483, "investigation llms": 47791, "alignment presented": 5104, "ensure agents": 29440, "conflicts caused": 18055, "typically pretrained": 99297, "essential aspects": 29936, "aspects ai": 7765, "agent principal": 4144, "clear evidence": 14881, "learning consider": 53084, "vanilla pretrained": 102232, "range abilities": 79135, "techniques mitigate": 95560, "evidence corroborates": 30971, "evaluate generation": 30190, "truthfulqa dataset": 98969, "specifically consider": 89795, "tool utilization": 97330, "tools experimental": 97401, "outperforms gopher": 69059, "gopher 280b": 39159, "tool apis": 97264, "community current": 16306, "varying strengths": 102661, "explore data": 32663, "model tuned": 61540, "preferences using": 73831, "diverse preferences": 26068, "limitations stemming": 54373, "set attributes": 86840, "datasets generates": 22280, "improved controllability": 43835, "altering landscape": 5254, "setting gpt4": 86995, "rlhf aligned": 84565, "stability effectiveness": 90083, "feedback common": 34067, "rlhf sft": 84574, "simple supervised": 88240, "degrades model": 22900, "produce smaller": 75657, "impressive success": 43651, "training extra": 98112, "users intents": 101124, "data rlhf": 21582, "finetuning alpaca": 35012, "strongest llms": 91101, "humanannotated preference": 42441, "key improving": 48308, "presents quantitative": 74164, "alpaca7b model": 5237, "prominent method": 76103, "argue commonlyused": 7457, "moving average": 64810, "average ema": 9148, "correction based": 19696, "importance recent": 43474, "remain unanswered": 81631, "optimal use": 68576, "results desired": 83572, "remain scarce": 81628, "applied domainspecific": 6606, "models probabilistic": 63894, "framework emphasizing": 36108, "engineering importantly": 28981, "advantages firstly": 3939, "weaktostrong generalization": 103463, "learn user": 52972, "user representations": 101032, "summarization data": 92527, "information finetune": 45484, "policy learning": 72543, "represent diverse": 82033, "robustness fairness": 84715, "composition using": 17112, "significantly alter": 87883, "interactive demo": 47096, "prompt pairs": 76390, "utilized improve": 101971, "learning cl": 53068, "forgetting cf": 35754, "including different": 44326, "llm simulations": 55261, "ensure robust": 29462, "method considerably": 59240, "humans research": 42635, "challenge hindering": 12881, "applications address": 6401, "method adopted": 59196, "objectives comparison": 67517, "algorithm particular": 4928, "begin introducing": 9940, "introducing lightweight": 47546, "create multiple": 20168, "pairs given": 69499, "dpo training": 26767, "training according": 97938, "similar parameter": 88096, "notable gains": 67003, "remains imperative": 81662, "eliminating necessity": 28010, "empirically theoretically": 28384, "sizes 125m": 88543, "feedback present": 34119, "direct alignment": 25409, "mitigates weaknesses": 60293, "models human preferences": 62685, "techniques like rlhf": 95553, "feedback aligning large": 34061, "llms requires significant": 56710, "experimental results suggest": 32069, "helpful honest harmless": 41295, "stepbystep reasoning capabilities": 90669, "ai alignment presented": 4298, "incontext learning consider": 44589, "vanilla pretrained language": 102233, "human preference data": 42329, "results evaluated gpt4": 83590, "outperforms gopher 280b": 69060, "matches outperforms existing": 58509, "ai capable generating": 4321, "achieving superior performance": 2891, "llms witnessed remarkable": 57050, "demonstrate superior ability": 23201, "maintaining good performance": 57893, "downstream tasks importantly": 26730, "moving average ema": 64811, "importance recent years": 43475, "questions remain unanswered": 78933, "success current llms": 92187, "7b language model": 1290, "continual learning cl": 18992, "catastrophic forgetting cf": 12589, "llms gpt4 exhibit": 56100, "significantly reduces training": 88019, "generative models demonstrated": 38657, "feedback aligning large language": 34062, "models llms witnessed remarkable": 63515, "optimization large language models": 68599, "large language models diverse": 51641, "models llms remains significant": 63396, "llms remains significant challenge": 56698, "output large language models llms": 69168, "feedback aligning large language models": 34063, "large language models like llama": 51764, "language models llms witnessed remarkable": 50517, "language models llms remains significant": 50418, "models llms remains significant challenge": 63397, "inventories": 47605, "inabilities": 44177, "attest": 8401, "toolset": 97483, "lrs": 57643, "great transferability": 40501, "factors training": 33607, "domains ecommerce": 26511, "ecommerce products": 27053, "reduce demand": 80772, "employ techniques": 28413, "late interaction": 52618, "continue face": 19006, "face great": 33443, "broad deployment": 11491, "recommendation using": 80655, "examples despite": 31203, "identified major": 42828, "generate candidate": 37386, "systems shown": 93571, "fully leveraging": 36459, "capabilities nlp": 12023, "works used": 104392, "recommendation proposed": 80651, "task designs": 94014, "easily adapt": 27008, "requirements allowing": 82334, "contents generated": 18717, "generate clearer": 37391, "learning involves": 53224, "tasks inadequate": 94719, "fewer 100": 34187, "unit cost": 100097, "start problem": 90254, "fundamental principles": 36549, "corresponding testing": 19804, "behavior findings": 9971, "chatgpt fair": 13807, "engage realtime": 28912, "unprecedented ability": 100223, "ability converse": 1619, "knowledge commonsense": 48474, "effectively leveraging": 27452, "provide roadmap": 77565, "particular propose": 70416, "design prompting": 23833, "promising zeroshot": 76210, "issues alleviated": 47968, "using specially": 101782, "challenge conventional": 12864, "focus using": 35567, "lms remains": 57165, "thinking regarding": 96808, "scenarios users": 85490, "mistakes errors": 60214, "errors automatic": 29804, "compared graph": 16561, "better measure": 10746, "assess existing": 7847, "compare baseline": 16449, "certain users": 12782, "datasets convert": 22193, "synthesize corresponding": 93231, "establish foundation": 29972, "pioneering research": 72133, "capture user": 12370, "content emergence": 18617, "making recommendations": 58137, "detection chatgpt": 24274, "investigate specific": 47700, "tools diverse": 97388, "llm directly": 55044, "score candidate": 85708, "explorations field": 32612, "difficulties understanding": 25317, "generation impressive": 38201, "learning representations": 53384, "delve capabilities": 22950, "aim study": 4741, "llms persuasive": 56520, "generation review": 38404, "models impressive": 62711, "recognition despite": 80591, "information similar": 45625, "recommendation algorithms": 80642, "investigates large": 47746, "interactions especially": 47058, "data simply": 21629, "scenario mainstream": 85393, "llm particular": 55190, "innovative manner": 45859, "suitable dataset": 92457, "challenging issue": 13181, "nlp vision": 66828, "personalized generative": 71912, "output propose": 69183, "sequential recommender": 86710, "representations encode": 82095, "image audio": 43017, "sequence text": 86668, "remain consistent": 81615, "shift realm": 87258, "systems survey": 93584, "challenges comprehensive": 12979, "incontext demonstration": 44558, "examples following": 31220, "fully harness": 36454, "generation product": 38346, "introduce dynamic": 47419, "mitigate hallucination": 60263, "popularity ease": 72697, "chatgpt simulate": 14247, "bias chatgpts": 10833, "analysis recently": 5636, "literature propose": 54655, "capabilities inherent": 11947, "design strategies": 23850, "imply potential": 43434, "study verifies": 91894, "candidate ranking": 11807, "experiments testing": 32315, "various traditional": 102612, "metrics use": 59974, "technical aspects": 95399, "datasets explore": 22255, "tasks concepts": 94472, "effective exploration": 27298, "quality public": 78339, "goal develop": 39053, "length sequences": 53609, "training compute": 97968, "lives providing": 54699, "approaches limitations": 7167, "capabilities basic": 11845, "direction field": 25445, "items given": 48039, "strong text": 91077, "potential hallucination": 73113, "users experimental": 101104, "empowered llms": 28499, "prompting based": 76503, "recommendation reasoning": 80652, "order address": 68686, "aimed evaluating": 4751, "individually combination": 45107, "gap conduct": 36919, "subset challenging": 92038, "aims determine": 4792, "discuss evaluate": 25658, "directly employing": 25491, "ways make": 103419, "make fundamental": 57994, "recognition language models": 80600, "factors training data": 33608, "face great challenges": 33444, "offers novel approach": 67851, "propose prompting strategy": 77095, "prompting strategy called": 76621, "performance current models": 71117, "capabilities nlp models": 12024, "leverages pretrained language": 53810, "design set prompts": 23841, "incontext learning involves": 44615, "cold start problem": 15806, "extensive experiments tasks": 33089, "knowledge commonsense reasoning": 48475, "work aims investigate": 103986, "using specially designed": 101783, "recommendation using chatgpt": 80656, "framework based chatgpt": 36050, "way users interact": 103406, "aims establish foundation": 4799, "approach used models": 7071, "future explorations field": 36728, "understanding generation impressive": 99750, "language models impressive": 49971, "available github repository": 9045, "paper investigates large": 69795, "investigates large language": 47747, "llms garnered considerable": 56030, "token embedding space": 97131, "tasks previous studies": 94961, "paradigm shift realm": 70055, "gpt4 shown promising": 40081, "chatgpt showcased remarkable": 14215, "analyze impact different": 5767, "capabilities inherent biases": 11948, "prompt design strategies": 76277, "language models baseline": 49670, "complex realworld datasets": 16987, "users experimental results": 101105, "sequential recommender systems": 86711, "attributes gender age": 8454, "training data long": 98031, "long training time": 57344, "zeroshot performance various natural": 104846, "propose prompting strategy called": 77096, "leverages pretrained language models": 53811, "remarkable performance diverse domains": 81785, "language understanding generation impressive": 51165, "code available github repository": 15133, "paper investigates large language": 69796, "investigates large language models": 47748, "models llms garnered considerable": 63179, "zeroshot performance various natural language": 104847, "paper investigates large language models": 69797, "investigates large language models llms": 47749, "language models llms garnered considerable": 50236, "visualizing": 103146, "tokenfree": 97162, "depthwise": 23638, "biologically": 11081, "integrateandfire": 46672, "parameterize": 70159, "stationary": 90541, "relax": 81339, "eeg": 27231, "neverbeforeseen": 66319, "extrapolated": 33372, "identically": 42804, "astronomers": 8133, "cortical": 19819, "rope": 84848, "analyze structure": 5785, "example use": 31177, "competitive perplexity": 16817, "fixed context": 35355, "capacity compared": 12286, "compute budget": 17502, "models operate": 63716, "corresponding word": 19808, "sequences longer": 86683, "tasks sensitive": 95090, "models grown": 62638, "identify architecture": 42845, "larger later": 52448, "allows produce": 5207, "efficient architecture": 27743, "desired inference": 24003, "latency speedup": 52627, "bertbase gpt2": 10567, "latency experimental": 52624, "suggested approach": 92400, "125m 175b": 241, "examples inputoutput": 31234, "input generate": 45901, "understanding incontext": 99768, "incontext learn": 44571, "validation perplexity": 102125, "205 points": 576, "nli systems": 66697, "survey deep": 93027, "seen rising": 86090, "classification popular": 14773, "learning bert": 53046, "including embedding": 44334, "chatgpt parameter": 14064, "predict based": 73646, "perspective based": 71943, "study incontext": 91675, "task evaluation": 94043, "score finetuning": 85714, "transformer recent": 98545, "models implicitly": 62707, "model linear": 61072, "particular introduce": 70411, "techniques allow": 95474, "conduct endtoend": 17860, "layer dropping": 52717, "protocol enables": 77355, "limitations proposed": 54365, "networks survey": 66204, "convergence behavior": 19305, "lm types": 57084, "algorithm guaranteed": 4918, "guaranteed optimal": 40700, "form representation": 35782, "loss value": 57478, "directly finetuned": 25495, "applied finetuning": 6611, "pretraining test": 74612, "dataset mixture": 22005, "thousand tokens": 96866, "powerlaw scaling": 73480, "downstream evaluation": 26691, "learn salient": 52964, "opt pythia": 68545, "algorithms ability": 4954, "causal intervention": 12654, "visualization uses": 103139, "dynamics chatgpt": 26950, "crucial question": 20516, "paper contend": 69658, "popular deep": 72625, "demonstrates great": 23377, "understanding mechanisms": 99812, "icl capabilities": 42755, "models fields": 62465, "absence unified": 1904, "graphical illustrations": 40427, "time capabilities": 96934, "attention crucial": 8299, "neural activity": 66212, "models exponentially": 62419, "example use cases": 31178, "training inference time": 98143, "training transformer language": 98335, "achieved impressive success": 2639, "extremely large batch": 33393, "reduces training time": 80855, "stateoftheart transformer models": 90506, "parameters training data": 70297, "inference latency experimental": 45261, "latency experimental results": 52625, "open pretrained transformer": 68093, "examples inputoutput pairs": 31235, "understanding incontext learning": 99769, "task automatically identifying": 93948, "models openais gpt4": 63710, "gpt3 trained using": 39549, "study incontext learning": 91676, "networks large pretrained": 66196, "paper explore different": 69714, "language understanding text": 51189, "language models implicitly": 49969, "processing nlp impressive": 75521, "algorithm guaranteed optimal": 4919, "vision language transformers": 102986, "solve single task": 89195, "llms llama2 gpt4": 56347, "deep learning architecture": 22760, "recent years especially": 80427, "extremely large batch sizes": 33394, "widelyused pretrained language models": 103760, "large language models impressive": 51727, "inference latency experimental results": 45262, "transformer language models large": 98521, "bert gpt3 trained using": 10528, "language processing nlp impressive": 51007, "pretrained vision language transformers": 74493, "pretrained transformer language models large": 74477, "natural language processing nlp impressive": 65671, "crt": 20465, "paradoxically": 70067, "fallacy": 33793, "tribute": 98866, "70m": 1226, "young": 104685, "abc": 1485, "netherlands": 66125, "endogenous": 28857, "semanticbased": 86375, "exposition": 32896, "psychoanalysis": 77870, "illusion": 42992, "psychoanalytic": 77871, "llms fact": 55966, "brain data": 11357, "applications ability": 6399, "associative learning": 8113, "domain contrast": 26367, "array domains": 7507, "reason relationships": 79731, "participants social": 70375, "nlp approaches": 66709, "effective neural": 27340, "display emergent": 25768, "drawing analogies": 26806, "real people": 79551, "people know": 70738, "largely ignored": 52409, "gap novel": 36950, "underscoring significance": 99586, "capabilities scientific": 12072, "realistic setup": 79573, "relational structures": 81261, "capabilities particular": 12036, "cognitive reflection": 15753, "humans study": 42641, "methods psychology": 59768, "based rule": 9708, "previously considered": 74748, "making spatial": 58139, "conduct pilot": 17903, "rational decisionmaking": 79432, "able draw": 1841, "briefly comment": 11455, "challenges involved": 13050, "remarkable capacities": 81761, "characteristics language": 13332, "reasonable inferences": 79737, "gpt4 remarkably": 40051, "reliance ai": 81542, "survey respondents": 93047, "humans gpt35": 42603, "preferences demonstrate": 73815, "explain decisions": 32430, "problems introduce": 75156, "studies chatgpt": 91367, "similar effects": 88064, "fundamental cognitive": 36537, "2023 evaluate": 554, "human biases": 42113, "experimental techniques": 32082, "responses responses": 83301, "information exploration": 45462, "response score": 83160, "evidence knowledge": 30977, "surface similarity": 92883, "novel concepts": 67132, "attention previous": 8365, "faced llms": 33461, "abilities does": 1503, "exhibit certain": 31505, "examples indicating": 31232, "benchmark testing": 10267, "psychological tests": 77883, "prompts test": 76837, "inconsistent behaviors": 44550, "addition paper": 3202, "human behaviour": 42109, "allows interesting": 5196, "reasoning biases": 79792, "evidence finetuned": 30975, "examine extent": 31109, "range cognitive": 79143, "behaviour paper": 10019, "field develop": 34365, "understand latent": 99621, "structure implications": 91135, "lies identifying": 53974, "effect chatgpt": 27235, "chatgpt tendency": 14304, "insights building": 46058, "learning prompts": 53363, "like children": 54104, "results implications": 83655, "able distinguish": 1840, "tested gpt4": 95977, "emerge llm": 28123, "characterize human": 13340, "behavior analyze": 9959, "certain properties": 12773, "chainofthought fewshot": 12829, "sensory experience": 86487, "results scaling": 83830, "scenarios ii": 85440, "framework encompassing": 36117, "gpt4 lag": 39946, "capabilities comparable": 11860, "personalities llms": 71893, "dark triad": 20929, "personality tests": 71896, "traits llms": 98374, "manner enabling": 58233, "explore concept": 32660, "graph ii": 40385, "issues potential": 48008, "llms lose": 56363, "infer latent variables": 45200, "largest language models": 52596, "domains using dataset": 26607, "present preliminary evidence": 74039, "data enabling generate": 21182, "study human participants": 91665, "play role generating": 72350, "causal reasoning tasks": 12671, "challenges faced llms": 13017, "faced llms including": 33462, "crucial role social": 20530, "better assess llms": 10687, "assess llms ability": 7859, "spanning multiple domains": 89503, "models exhibit emergent": 62380, "finetuned models exhibit": 34943, "human behaviour paper": 42110, "extensive experiments evaluate": 33070, "drawing inspiration psychological": 26811, "llms using prompts": 57010, "reasoning capabilities findings": 79799, "personality traits llms": 71899, "challenges faced llms including": 13018, "language models exhibit emergent": 49847, "test large language models llms": 95910, "stateoftheart large language models gpt4": 90367, "dereference": 23639, "dire": 25406, "apr": 7290, "auditors": 8507, "natures": 65820, "encompassed": 28752, "stunning": 91903, "cents": 12741, "delved": 22953, "promptengineered": 76490, "autocompleting": 8639, "scs": 85833, "293": 713, "transactions": 98381, "maliciousness": 58170, "ac": 1965, "repair large": 81891, "repair bugs": 81889, "numerous ways": 67444, "assistants understanding": 8060, "assisted llms": 8066, "security bugs": 86001, "interaction behavior": 46997, "security performance": 86023, "particular ai": 70393, "chatgpt aware": 13557, "robust certain": 84644, "automatically repair": 8892, "repair software": 81898, "version code": 102806, "20 50": 481, "need automation": 65914, "pretrained source": 74453, "repair apr": 81886, "apr techniques": 7291, "fix software": 35351, "software bugs": 88979, "realworld java": 79677, "code transformations": 15550, "llms apr": 55487, "model 20": 60462, "examined influence": 31133, "handle complicated": 40923, "complicated tasks": 17067, "formal model": 35796, "reports associated": 82007, "adopting llms": 3627, "given different": 38879, "detecting software": 24250, "maintenance recently": 57914, "received considerable": 80137, "design tailored": 23853, "comes numerous": 16039, "patches vulnerable": 70580, "far costeffective": 33867, "solution finally": 89092, "improve time": 43816, "llms mature": 56382, "huge attention": 42032, "instructions providing": 46553, "python source": 78112, "results widely": 83925, "development smart": 24712, "gained great": 36825, "limited furthermore": 54422, "code passed": 15435, "gpt35turbo finetuned": 39701, "significantly recent": 88011, "created tools": 20206, "tool support": 97320, "explored various": 32789, "tests achieving": 96034, "tests help": 96045, "adversarial framework": 3978, "stages generation": 90133, "assessment employing": 7946, "maintaining focus": 57889, "generated tools": 37809, "absence benchmarks": 1901, "management tasks": 58190, "comments paper": 16069, "bug reports": 11558, "guiding chatgpt": 40774, "analysis deep": 5480, "commands natural": 16056, "assistant tools": 8045, "little understood": 54689, "settings developers": 87049, "professional developers": 75758, "repair benchmarks": 81888, "consistently identify": 18291, "repair using": 81902, "automated repair": 8734, "repair techniques": 81900, "efficiency research": 27716, "using test": 101811, "repair tasks": 81899, "repair paving": 81895, "study does": 91586, "does highlight": 26298, "repair approaches": 81885, "repair methods": 81894, "llms codet5": 55634, "improves em": 44022, "potential software": 73266, "pro gpt4": 74937, "llm starcoder": 55273, "investigate optimal": 47675, "training regimes": 98259, "fed llm": 34047, "examine hypothesis": 31113, "cases training": 12563, "utilized various": 101975, "identifying background": 42914, "60 cases": 1113, "github recent": 38845, "software code": 88980, "overall exploratory": 69290, "repair tools": 81901, "fixing code": 35368, "functionality end": 36510, "synthesis stateoftheart": 93216, "javascript code": 48127, "programmers make": 75869, "automatic bug": 8756, "finding fixing": 34624, "implications trend": 43403, "empirically comparing": 28372, "existing java": 31728, "indicates gpt4": 45031, "output finetuned": 69151, "evaluation facilitate": 30598, "representative realworld": 82152, "repair large language": 81892, "does introduce new": 26304, "dataset natural language": 22014, "ai generate code": 4414, "pretrained source code": 74454, "program repair apr": 75841, "repair apr techniques": 81887, "fix software bugs": 35352, "llms using benchmark": 57004, "conduct qualitative analysis": 17907, "quality correctness code": 78244, "llms particularly openais": 56498, "particularly openais gpt4": 70490, "maintenance recently large": 57915, "received considerable attention": 80138, "using chatgpt different": 101340, "detection conduct extensive": 24280, "python source code": 78113, "results widely used": 83926, "study investigate performance": 91698, "investigate performance chatgpt": 47677, "provides insights strengths": 77682, "generation generated tests": 38177, "strong correlation human": 91019, "terms performance explainability": 95828, "demonstrates strong capability": 23409, "realworld settings developers": 79700, "models finetuned datasets": 62476, "code repair tasks": 15475, "repair paving way": 81896, "study does highlight": 91587, "results future directions": 83620, "lack indepth understanding": 49022, "gemini pro gpt4": 37064, "results using llms": 83906, "various applications code": 102350, "overall exploratory study": 69291, "programmers make mistakes": 75870, "llms demonstrated substantial": 55771, "automatic bug fixing": 8757, "research shown large": 82778, "language models far": 49876, "repair large language models": 81893, "automated program repair apr": 8728, "program repair apr techniques": 75842, "garnered significant attention ability": 37014, "models llms particularly openais": 63341, "llms particularly openais gpt4": 56499, "maintenance recently large language": 57916, "detection conduct extensive experiments": 24281, "models llms automatically generate": 62996, "tools large language models": 97433, "repair paving way future": 81897, "experimental results indicate gpt4": 32049, "models llms demonstrated substantial": 63091, "recent research shown large": 80342, "research shown large language": 82779, "automated program repair apr techniques": 8729, "code analysis large language models": 15124, "language models llms particularly openais": 50369, "models llms particularly openais gpt4": 63342, "maintenance recently large language models": 57917, "language models llms demonstrated substantial": 50159, "ai particularly large language models": 4499, "recent research shown large language": 80343, "research shown large language models": 82780, "motifs": 64762, "crystallization": 20559, "crystal": 20558, "lighting": 54028, "r2": 79001, "periodic": 71832, "magnetic": 57800, "346": 816, "hallucinationfree": 40854, "alloy": 5217, "sampling algorithm": 85151, "preference terms": 73810, "improvement downstream": 43899, "approach represents": 7007, "just hours": 48219, "key unlocking": 48353, "data growing": 21284, "address complexities": 3380, "learning curves": 53095, "agent autonomously": 4116, "including llm": 44410, "expert assessments": 32352, "surprisingly gpt4": 93000, "research pathways": 82704, "advancements conversational": 3806, "facilitate systematic": 33509, "performance 33": 70958, "science finance": 85585, "findings comprehensive": 34646, "learning technology": 53448, "knowledge unstructured": 48800, "range scientific": 79203, "scientific fields": 85644, "reasoning provides": 79995, "literature effectively": 54648, "development workflow": 24733, "furthermore dataset": 36596, "86 accuracy": 1373, "models comes": 62042, "task adopting": 93929, "scored human": 85743, "ai frameworks": 4404, "network gnn": 66142, "collected instruction": 15879, "predict properties": 73656, "collected using": 15882, "accurately recent": 2464, "material knowledge": 58532, "material synthesis": 58533, "verifier module": 102763, "refinement study": 80988, "engineering example": 28968, "parse understand": 70329, "science high": 85587, "barriers adoption": 9379, "new users": 66570, "enables lm": 28601, "understand text": 99653, "context scientific": 18844, "accelerating scientific": 2022, "rich dynamic": 84417, "assist researchers": 8023, "providing instant": 77765, "science computer": 85571, "essential features": 29946, "solutions involving": 89147, "performances obtained": 71742, "capabilities domain": 11881, "science information": 85591, "finetuning gpt4": 35084, "approach exploits": 6849, "emerging task": 28234, "end develop": 28823, "data general": 21252, "reducing hallucination": 80873, "memory making": 59046, "domainspecific literature": 26637, "future autonomous": 36701, "communicate cooperate": 16249, "text aim": 96076, "presented major": 74095, "training adapter": 97939, "evaluation focuses": 30605, "embeddings results": 28096, "promise advancing": 76109, "science text": 85616, "challenging materials": 13192, "experimental protocol": 32010, "avenue exploration": 9107, "new frontier": 66411, "results comprehensive": 83514, "outperforming advanced": 68989, "facilitating translation": 33548, "ultimately provide": 99346, "format performance": 35825, "ii automatic": 42969, "steps demonstrating": 90682, "improvement downstream tasks": 43900, "complex scientific text": 17000, "llms exhibit different": 55902, "models llms scientific": 63414, "neural network gnn": 66253, "collected instruction tuning": 15880, "fields including computer": 34428, "models tailored specific": 64332, "ability parse understand": 1735, "evaluates models capacity": 30386, "models demonstrated substantial": 62192, "demonstrates remarkable ability": 23396, "work highlights potential": 104121, "science computer science": 85572, "generated pretrained language": 37753, "great success general": 40497, "multiple llm agents": 65216, "model finetuned llama2": 60896, "large language models master": 52053, "language models llms scientific": 50434, "graph neural network gnn": 40396, "machine learning models trained": 57715, "generated pretrained language models": 37754, "large language models llms scientific": 51996, "153x": 340, "096": 88, "humanagent": 42425, "manuallydesigned": 58320, "demystify": 23490, "sellers": 86286, "imp": 43183, "selfplanning": 86248, "entangled": 29500, "sideeffects": 87632, "setting realworld": 87020, "capable translating": 12271, "tasks autonomous": 94393, "knowledge current": 48491, "focus investigate": 35526, "capture abstract": 12343, "design reinforcement": 23837, "demonstrations instead": 23475, "rl agents": 84547, "task tasks": 94263, "users objectives": 101149, "implications diverse": 43374, "existing ai": 31648, "solving ai": 89215, "step artificial": 90612, "relies human": 81554, "potential building": 73046, "chat agents": 13358, "feedback previous": 34120, "obtain researchers": 67658, "makes novel": 58069, "novel discoveries": 67147, "gpt4 blackbox": 39788, "blackbox queries": 11148, "performance online": 71440, "posterior distribution": 72944, "comparing human": 16678, "current open": 20749, "leading disconnect": 52844, "weights remaining": 103566, "consistent enhancement": 18257, "explore emerging": 32677, "traditional adaptive": 97652, "require long": 82269, "networks create": 66177, "potential humanlike": 73124, "adhering instructions": 3579, "generalized llm": 37307, "tasksolving capabilities": 95276, "feedback information": 34096, "robust llms": 84667, "exhibit powerful": 31540, "benchmark human": 10187, "behavior example": 9970, "work simple": 104277, "fundamental challenge": 36532, "problem scenarios": 75071, "models lacking": 62842, "decrease general": 22715, "strategy large": 90900, "communication generation": 16267, "source channel": 89342, "models argue": 61853, "context referred": 18837, "based target": 9731, "yields better": 104662, "level secondly": 53678, "does instruction": 26302, "effectiveness reducing": 27576, "executing complex": 31447, "information responses": 45596, "engines llms": 29046, "finish task": 35303, "compared solely": 16633, "step paper": 90651, "train lms": 97756, "motivated recent": 64781, "llm current": 55030, "rl methods": 84559, "low coverage": 57511, "increasing coverage": 44828, "coverage test": 20063, "building language": 11634, "qa ability": 78118, "learning interaction": 53223, "based reinforcement": 9695, "skills weak": 88612, "distribution pretraining": 25947, "hallucinations based": 40858, "issues based": 47976, "established evaluation": 29986, "requires considerable": 82367, "gradient methods": 40297, "language models interactive": 50000, "design reinforcement learning": 23838, "solving ai tasks": 89216, "step artificial general": 90613, "ai models solve": 4478, "text similarity metrics": 96418, "achieve promising performance": 2563, "generative ai potential": 38563, "explore emerging capabilities": 32678, "capabilities open source": 12029, "extensive experiments confirm": 33053, "experiments different llms": 32172, "llm training work": 55299, "experiments various stateoftheart": 32338, "complex multistep tasks": 16961, "llms long context": 56358, "expensive training costs": 31930, "search engines llms": 85873, "finetuned smaller models": 34968, "effective test cases": 27377, "based reinforcement learning": 9696, "prompt llm generate": 76370, "llm given task": 55107, "providing feedback llm": 77749, "llms achieved great": 55423, "pretraining data llms": 74517, "requires considerable human": 82368, "considerable human effort": 18160, "large language models interactive": 51742, "step artificial general intelligence": 90614, "extensive experiments various stateoftheart": 33096, "experiments various stateoftheart llms": 32339, "models llms achieved great": 62971, "llms achieved great success": 55424, "requires considerable human effort": 82369, "extensive experiments various stateoftheart llms": 33097, "language models llms achieved great": 50074, "models llms achieved great success": 62972, "quixbugs": 78994, "pynguin": 78089, "27x": 695, "antipatterns": 6252, "2615": 675, "feedbackdriven": 34159, "misleadingly": 60191, "crash": 20134, "help write": 41288, "starting explored": 90258, "focused automatic": 35572, "goal benchmark": 39044, "fix syntactic": 35353, "student assignments": 91244, "average analysis": 9137, "techniques introduced": 95538, "patch generation": 70578, "feedback help": 34091, "hardware description": 41001, "prompts augmented": 76653, "conversational style": 19402, "codex gpt35turbo": 15667, "learningbased prompt": 53492, "engineering assess": 28948, "research industrial": 82634, "fields chatgpt": 34422, "improved prompting": 43854, "approach known": 6918, "differential testing": 25266, "chatgpt pynguin": 14136, "tremendous advances": 98836, "vary lot": 102639, "performance bug": 71029, "uses prompt": 101251, "software version": 89045, "focus predicting": 35546, "potentially vast": 73355, "reveals performance": 84221, "challenges seek": 13125, "management practices": 58186, "promise multiple": 76128, "unclear gap": 99402, "length code": 53587, "context affect": 18728, "chatgpt4s performance": 14388, "reliability engineers": 81494, "work orders": 104193, "set finetuned": 86877, "mask prediction": 58422, "generation correct": 38102, "focus study": 35557, "reports used": 82019, "inherent difficulty": 45727, "considering chatgpt": 18208, "metrics address": 59877, "experiment dataset": 31963, "generate syntactically": 37607, "llm achieving": 54940, "chatgpt design": 13702, "single iteration": 88368, "identifying root": 42934, "continuous interaction": 19028, "reveals consistent": 84205, "correction capability": 19697, "approaches detecting": 7125, "length limit": 53598, "effective bug": 27268, "multiple benchmark": 65144, "suitable tools": 92465, "include set": 44235, "substantial time effort": 92112, "propose use large": 77156, "unclear paper evaluate": 99407, "hardware description language": 41002, "prompt engineering assess": 76289, "framework outperforms conventional": 36223, "remains unclear gap": 81708, "set finetuned model": 86878, "bug reports used": 11559, "generate syntactically correct": 37608, "incontext learning techniques": 44651, "language using neural": 51199, "study systematically investigate": 91860, "using gpt35 based": 101488, "solve problem propose": 89187, "based stateoftheart llm": 9724, "multiple benchmark datasets": 65145, "propose use large language": 77157, "large language models novel": 52081, "work present novel approach": 104210, "potential llms like chatgpt": 73182, "linearised": 54540, "pervasively": 72001, "bibliographic": 10963, "shortest": 87331, "unsurprisingly": 100321, "heralded": 41320, "chainofthoughtbased": 12844, "problem lies": 75041, "sentencelevel semantic": 86537, "product description": 75721, "representations pretrained": 82113, "model encodes": 60803, "visualizations natural": 103141, "algorithms llms": 4981, "accurately characterize": 2444, "external graph": 33185, "api tools": 6282, "descriptions graphs": 23706, "perform structured": 70926, "approaches enhance": 7134, "framework prompting": 36241, "research performance": 82708, "extensive investigation": 33109, "data employing": 21178, "analysis encompasses": 5498, "models graph": 62629, "data offer": 21448, "information transformerbased": 45659, "finetuned teacher": 34984, "teacher forcing": 95339, "information learned": 45529, "information encoder": 45449, "knowledge crucial": 48489, "crucial realworld": 20518, "generate faithful": 37452, "hallucination generated": 40836, "llms speak": 56840, "work formal": 104108, "engineering workflows": 29036, "understand paper": 99634, "offers multiple": 67846, "including answering": 44269, "ability generalized": 1656, "new heterogeneous": 66419, "challenges process": 13105, "task introduces": 94108, "demonstrated various": 23360, "particular design": 70400, "limitations biases": 54301, "valid solution": 102087, "notable increase": 67007, "work reveal": 104254, "order graph": 68700, "predefined tasks": 73633, "billionscale llms": 11043, "input approach": 45876, "selfsupervised representation": 86275, "undergone supervised": 99467, "investigation offers": 47795, "inference propose": 45287, "token limitations": 97143, "improve performance particular": 43758, "text generation important": 96246, "product description generation": 75722, "visualizations natural language": 103142, "llms small language": 56818, "language models graph": 49951, "information learned representations": 45530, "data release code": 21555, "generation approach leverages": 38035, "evaluating generative models": 30429, "performance finetuned llm": 71223, "generating fluent coherent": 37909, "gpt models generate": 39218, "gpt35 gpt4 claude": 39609, "domain knowledge design": 26403, "exploring application large": 32835, "models various settings": 64496, "domain knowledge graph": 26405, "text generation ability": 96234, "generative capabilities create": 38604, "remains limited work": 81677, "boosting large language": 11292, "models including roberta": 62738, "selfsupervised representation learning": 86276, "applied various fields": 6639, "capabilities llms gpt4": 11990, "llms small language model": 56819, "small language model trained": 88686, "method achieves stateoftheart results": 59191, "generating fluent coherent text": 37910, "exploring application large language": 32836, "language models achieved stateoftheart": 49623, "language models including roberta": 49983, "applied various fields including": 6640, "using language models lms": 101539, "large language models graph": 51719, "exploring application large language models": 32837, "foundation models like chatgpt gpt4": 35954, "switchboard": 93106, "prosodic": 77327, "wav2vec20": 103336, "acoustic": 2899, "slowly": 88660, "voiced": 103209, "segmentlevel": 86113, "perceivable": 70756, "whispering": 103626, "cosmic": 19824, "bat": 9894, "results argue": 83469, "classification improved": 14754, "gpt2 accounts": 39251, "modeling generation": 61641, "generates utterances": 37856, "method directly": 59265, "parameters prime": 70264, "demonstrate consistent": 23048, "enable parallel": 28561, "text selfsupervised": 96409, "pretrained speech": 74455, "possibility utilizing": 72888, "crossmodal representation": 20434, "relatively weaker": 81338, "architecture text": 7376, "getting closer": 38818, "leveraging context": 53832, "information solve": 45631, "tasks inputoutput": 94753, "llm allows": 54958, "mixing training": 60338, "task exhibit": 94047, "tokens remains": 97225, "evaluate effects": 30178, "test perplexity": 95925, "multimodal architecture": 65032, "training smaller": 98300, "interesting option": 47157, "experiments generative": 32204, "results indicating": 83689, "corrected sentences": 19692, "generate controllable": 37414, "audio present": 8485, "prepending sequence": 73899, "monolingual baselines": 64710, "multilingual asr": 64941, "pairs expensive": 69495, "asr models": 7801, "using decoderonly": 101403, "architecture autoregressive": 7330, "training experimental": 98106, "obtain paper": 67655, "llama 20": 54708, "grammatical errors": 40342, "integration yields": 46783, "yields promising": 104671, "improvements approach": 43959, "llms generalise": 56035, "understanding humans": 99763, "external linguistic": 33196, "derived pretrained": 23654, "language music": 50938, "music audio": 65410, "speech comprehension": 89942, "follow given": 35646, "audio modalities": 8484, "llms perception": 56503, "performance making": 71389, "autoregressive nature": 8973, "size context": 88457, "reason spatial": 79733, "address lack": 3443, "aspects spatial": 7790, "comprehension recently": 17184, "audio challenging": 8478, "model complex": 60684, "lms different architectures": 57118, "models spoken language": 64248, "speech language models": 89952, "crossmodal representation alignment": 20435, "speech classification tasks": 89941, "available project website": 9081, "using chatgpt generative": 101347, "datasets chatgpt gpt4": 22161, "leveraging llms incontext": 53873, "paper provides detailed": 69925, "language models spoken": 50827, "expensive obtain paper": 31919, "evaluate models incontext": 30231, "language models spatial": 50819, "models spoken language understanding": 64249, "processing nlp tasks inspired": 75546, "llms incontext learning capabilities": 56196, "leveraging llms incontext learning": 53874, "large language models spoken": 52176, "evaluate models incontext learning": 30232, "boosting large language model": 11293, "large language models spatial": 52170, "language processing nlp tasks inspired": 51029, "presumptions": 74212, "nonprofessional": 66935, "skillfully": 88588, "emphasises": 28280, "checklists": 14486, "changer": 13282, "authoritarian": 8625, "envisioning": 29664, "disguised": 25748, "err": 29759, "295": 714, "demographically": 23005, "algorithm gpt2": 4917, "narrowly defined": 65517, "sustainable design": 93079, "nonprofessional users": 66936, "raised ethical": 79065, "importance ethical": 43453, "science human": 85590, "best uses": 10657, "posed new": 72759, "chatbots range": 13456, "validation method": 102123, "forward ai": 35886, "recently studies": 80562, "sentiments chatgpt": 86614, "concerning ethics": 17669, "goal building": 39046, "strongly agreed": 91106, "labs conduct": 48974, "model usage": 61552, "concerns chatgpt": 17680, "environment paper": 29624, "analysis challenges": 5450, "aim spur": 4737, "general data": 37117, "address crucial": 3385, "era digital": 29729, "realtime voice": 79631, "information cause": 45415, "point paper": 72483, "paper explains": 69705, "recommendations finally": 80659, "use technique": 100703, "challenges concerns": 12982, "intelligence impact": 46859, "concerns job": 17685, "job replacement": 48138, "problems rely": 75198, "observe capable": 67573, "software use": 89044, "game changer": 36881, "ai platform": 4507, "powerful gpt4": 73441, "approach seeks": 7015, "discussing ai": 25711, "chatgpt successors": 14282, "including artificial": 44272, "level llms": 53668, "informed ai": 45690, "normative values": 66986, "humanai alignment": 42427, "designed require": 23944, "methodology delve": 59487, "effects emerging": 27606, "perspectives review": 71973, "tools address": 97351, "chatbots information": 13444, "public opinions": 77938, "behavior alignment": 9958, "ai article": 4308, "use chatgpt similar": 100503, "raised ethical concerns": 79066, "emphasizes importance ethical": 28293, "importance ethical considerations": 43454, "finally paper discusses": 34552, "artificial intelligence impact": 7642, "results reveal key": 83823, "concerns job replacement": 17686, "including artificial intelligence": 44273, "development usage llms": 24727, "work explore opportunities": 104080, "emphasizes importance ethical considerations": 28294, "llama2chat7b": 54883, "mbti": 58677, "estimations": 30033, "sexism": 87140, "stick": 90706, "myersbriggs": 65437, "abbreviated": 1483, "big personality": 10988, "data observed": 21446, "type indicator": 99207, "indicator mbti": 45052, "different subjects": 25214, "demonstrate achieve": 23011, "gpt3 train": 39547, "llms creating": 55699, "people perceive": 70742, "perception chatgpt": 70783, "design processes": 23829, "llms examining": 55889, "llms matter": 56381, "personalization llms": 71902, "users social": 101178, "suggest ways": 92398, "projects results": 76070, "product recommendation": 75727, "corresponding stateoftheart": 19803, "argue llm": 7460, "work outline": 104194, "llms presenting": 56555, "making judgments": 58110, "east west": 27026, "various recent": 102554, "developed measure": 24509, "experiments introduce": 32226, "tests chatgpt": 96038, "llms mere": 56391, "challenges proposed": 13110, "details performing": 24200, "chatgpt read": 14148, "emerging area": 28216, "topics research": 97533, "able engage": 1843, "dark factor": 20927, "factor test": 33580, "tests investigate": 96047, "little differences": 54677, "literature multiple": 54652, "gpt3 suffer": 39538, "studies sought": 91449, "interview questions": 47348, "exhibit minor": 31533, "human daily": 42145, "twitter posts": 99161, "posts comments": 72964, "instructing llms": 46303, "game characters": 36882, "myersbriggs type": 65438, "ability reasoning": 1758, "big personality traits": 10989, "type indicator mbti": 99208, "results demonstrate achieve": 83533, "models results suggest": 64096, "language models testing": 50862, "models recent research": 64007, "little known performance": 54682, "propose novel tool": 77080, "software projects results": 89027, "implications work outline": 43410, "experiments involving various": 32232, "involving various baselines": 47878, "llms enhance capabilities": 55863, "contributes broader understanding": 19138, "models llms limited": 63295, "dark factor test": 20928, "models exhibit minor": 62383, "integrated human daily": 46687, "regarding behavior llms": 81048, "model size paper": 61424, "myersbriggs type indicator": 65439, "large language models testing": 52196, "language models recent research": 50731, "provide preliminary evaluation chatgpt": 77546, "experiments involving various baselines": 32233, "remarkable zeroshot performance various": 81839, "language models llms limited": 50327, "large language models recent research": 52136, "large language models llms limited": 51921, "receptive": 80572, "32768": 790, "fulllength": 36427, "skipping": 88615, "buckets": 11548, "demonstrating stability": 23447, "llms revealing": 56729, "irrespective models": 47910, "trained fixed": 97832, "design particular": 23822, "weak ability": 103428, "anomalous behaviors": 5978, "existing 3b": 31647, "models helping": 62658, "length 8192": 53584, "attention needed": 8350, "dataset effective": 21916, "require humanannotated": 82261, "various design": 102399, "performance empirically": 71174, "importantly demonstrate": 43549, "llms regardless": 56680, "model retrievalaugmented": 61358, "models longer": 63554, "inputs propose": 46007, "llm smaller": 55264, "incorporated llms": 44677, "32k code": 794, "alignment flexible": 5071, "embeddings capture": 28075, "allocation large": 5154, "semantic expansion": 86309, "context combined": 18739, "extend model": 32943, "big challenge": 10984, "plugin module": 72454, "encoding method": 28746, "good starting": 39125, "performance specialized": 71583, "crucial numerous": 20510, "limited generalization": 54425, "tokens continual": 97187, "various tasks require": 102604, "memory cost inference": 59028, "evaluation llms comprehensive": 30656, "context length 8192": 18802, "models achieve consistent": 61756, "llama2 7b 13b": 54817, "allocation large language": 5155, "window size context": 103832, "efficiency training inference": 27730, "good starting point": 39126, "training transformer language model": 98336, "tasks remains unclear paper": 95040, "allocation large language models": 5156, "various tasks demonstrate effectiveness": 102593, "scenarios large language models llms": 85452, "advances natural language processing tasks": 3892, "allocation large language models llms": 5157, "bibliometric": 10964, "cites": 14650, "deftly": 22879, "amateurs": 5299, "productions": 75738, "crossdisciplinary": 20404, "archival": 7409, "ref": 80919, "agreeable": 4274, "scholarly manuscripts": 85538, "chatgpt term": 14306, "bibliometric analysis": 10965, "analysis scientific": 5662, "users worldwide": 101203, "exhibits preference": 31623, "interestingly findings": 47163, "text davinci": 96166, "visually appealing": 103150, "work carry": 104010, "measurement validity": 58760, "effective current": 27280, "scholarly work": 85539, "components text": 17098, "tailoring specific": 93794, "relevance review": 81439, "focused chatgpt": 35574, "ai topics": 4602, "benchmarking methodology": 10298, "writing computer": 104472, "science physics": 85602, "array research": 7510, "mechanical engineering": 58786, "indispensable role": 45065, "chatgpt scientific": 14197, "explore applications": 32639, "impacts society": 43287, "efficient analysis": 27741, "distinguishing chatgptgenerated": 25903, "continue evolve": 19004, "grammar spelling": 40329, "use restricted": 100677, "ai compose": 4342, "research manuscripts": 82667, "models area": 61850, "used simulate": 100895, "chatgpt4 produce": 14384, "tool built": 97273, "analysis scientific literature": 5663, "interestingly findings suggest": 47164, "development llm applications": 24672, "diverse research fields": 26092, "present comprehensive review": 73961, "need research development": 65987, "diverse applications chatgpt": 25983, "emergent abilities large": 28192, "llms used simulate": 56999, "journal articles using": 48166, "chatgpt generative ai technologies": 13865, "emergent abilities large language": 28193, "emergent abilities large language models": 28194, "positivenegative": 72845, "algorithm results": 4933, "learns examples": 53499, "task inference": 94097, "sampling variance": 85173, "efficiently resulting": 27860, "publicly unavailable": 78000, "llms recognize": 56670, "biases better": 10915, "anchors information": 5829, "grasp task": 40456, "task studies": 94256, "gptj gpt3": 40222, "learning contrastive": 53088, "increasingly relevant": 44905, "light growing": 54008, "data validate": 21742, "parameters enables": 70206, "underlying llms": 99506, "generate seemingly": 37587, "random numbers": 79107, "improvement zeroshot": 43953, "weights input": 103553, "limitations supporting": 54375, "learning extending": 53154, "llm makes": 55166, "mechanism existing": 58796, "llama2 various": 54853, "task performance paper": 94183, "selection incontext demonstrations": 86157, "ability llms perform": 1711, "eliminating need training": 28012, "number tokens model": 67387, "inductive biases better": 45147, "based insights introduce": 9579, "fewshot learning settings": 34269, "llm performance work": 55195, "llms hidden states": 56127, "work offers unique": 104189, "different types models": 25242, "learning icl capabilities": 53200, "work offers unique perspective": 104190, "incontext learning icl capabilities": 44605, "tdd": 95330, "kld": 48395, "oos": 68035, "joy": 48173, "sadness": 84980, "divergence kld": 25970, "generated topic": 37810, "analysis involves": 5565, "way model": 103387, "practitioners interested": 73576, "techniques sentiment": 95587, "method introduces": 59339, "examples chatgpt": 31195, "shift evaluation": 87255, "models reality": 63982, "leveraged different": 53772, "investigation capabilities": 47783, "texts task": 96605, "task predict": 94194, "utilize various": 101958, "distillation additional": 25809, "yielded exceptional": 104652, "capture range": 12363, "new product": 66497, "evaluated distinct": 30335, "specifically compared": 89793, "advanced gpt35": 3699, "classification research": 14785, "limitations additionally": 54297, "light common": 53997, "context detecting": 18751, "taken findings": 93805, "ai analyze": 4300, "data technique": 21687, "individual words": 45101, "overall text": 69332, "datasets building": 22157, "language sentiment": 51098, "errors make": 29825, "sentiments related": 86623, "results include": 83663, "model addressing": 60520, "performance extraction": 71204, "validation performance": 102124, "results validated": 83910, "new media": 66450, "set established": 86868, "task boost": 93959, "strategies using": 90855, "opinions expressed": 68481, "chatgpt endtoend": 13754, "kullbackleibler divergence kld": 48878, "sentiment analysis involves": 86583, "researchers practitioners interested": 82879, "techniques sentiment analysis": 95588, "knowledge distillation additional": 48507, "approach yielded exceptional": 7091, "yielded exceptional results": 104653, "mitigate problem propose": 60278, "study explores use": 91629, "setting stage future": 87026, "study finetuned models": 91641, "human performance furthermore": 42322, "reducing computational cost": 80863, "compared transformer models": 16653, "task boost performance": 93960, "approach yielded exceptional results": 7092, "plurality": 72462, "multinational": 65120, "arose": 7499, "covariates": 20043, "homogenized": 41936, "stress tested": 90972, "tools limited": 97440, "large surveys": 52349, "like language": 54179, "subjects argue": 91964, "search automated": 85856, "treatment group": 98805, "followup study": 35710, "step ensuring": 90635, "improvement large": 43918, "manifesting significant": 58211, "knowledge areas": 48428, "produce insights": 75644, "stress need": 90971, "validity llmbased": 102139, "values gpt4": 102218, "exhibited highest": 31577, "responses particular": 83272, "experimental participants": 32007, "human perceptions": 42320, "basic reasoning": 9887, "potential transformative": 73291, "augmenting human": 8595, "models causal": 61972, "causal structures": 12677, "political debates": 72565, "llms culture": 55703, "including cultural": 44314, "investigating cultural": 47764, "collective outcomes": 15917, "discuss specific": 25690, "specific topics": 89766, "strongly influence": 91112, "controlled trial": 19253, "ethical concerns regarding": 30063, "improvement large language": 43919, "potential transformative impact": 73292, "language models causal": 49698, "randomized controlled trial": 79119, "improvement large language models": 43920, "improvement large language models llms": 43921, "underestimating": 99439, "effectiveness gpt35": 27526, "adoption models": 3645, "literature demonstrate": 54646, "framework referred": 36256, "tool generation": 97293, "costs maintaining": 19931, "compact language": 16345, "corpus employed": 19615, "employed finetune": 28425, "unseen apis": 100259, "models immense": 62701, "new sources": 66531, "quality inference": 78296, "smaller opensourced": 88784, "correctness outputs": 19740, "using llama213b": 101572, "developing testing": 24598, "utilizing complex": 102006, "investigated address": 47717, "development using": 24729, "analysis errors": 5504, "approach test": 7058, "multilevel benchmark": 64938, "specifically establish": 89814, "enriches diversity": 29412, "efficiency language": 27691, "time gpt4": 96969, "understanding robustness": 99871, "biologically inspired": 11082, "prompting exploration": 76531, "assessing capability": 7907, "llms recent research": 56652, "90 success rate": 1404, "compact language models": 16346, "corpus employed finetune": 19616, "evaluate ability models": 30135, "models llm use": 62963, "impact llms performance": 43228, "provide evaluation framework": 77463, "llms represent revolution": 56703, "gpt4 outperforms llms": 40002, "systems increasingly popular": 93487, "llms open source": 56452, "necessitates comprehensive understanding": 65884, "address problem introduce": 3471, "language understanding code": 51158, "language models llm use": 50069, "models llms represent revolution": 63401, "natural language understanding code": 65748, "language understanding code generation": 51159, "large language models llm use": 51775, "language models llms represent revolution": 50422, "natural language understanding code generation": 65749, "equivariance": 29713, "permuted": 71847, "step addressing": 90610, "hallucination evaluation": 40833, "present model": 74012, "challenge crucial": 12866, "eliminate hallucinations": 28000, "hallucinations generation": 40863, "output values": 69204, "check correctness": 14472, "technique achieves": 95430, "reduces hallucinations": 80833, "tests designed": 96041, "consider types": 18144, "types hallucinations": 99238, "errors construct": 29812, "evaluation design": 30572, "errors automatically": 29805, "hallucinations abstractive": 40856, "summarizing multiple": 92591, "propagate downstream": 76879, "crucial insights": 20496, "developed specialized": 24532, "error function": 29781, "models latent": 62881, "decoding icd": 22666, "tasks suffer": 95155, "hallucinations introduce": 40867, "hallucination prevention": 40847, "tasks experienced": 94605, "finegrained hallucination": 34791, "llama2chat 70b": 54877, "finegrained hallucinations": 34792, "text hallucination": 96288, "hallucination refers": 40852, "introduce experimental": 47424, "react differently": 79485, "designed induce": 23923, "challenge reliability": 12926, "interaction datasets": 47002, "evaluate hallucination": 30199, "hallucination rates": 40851, "rates various": 79420, "enhancing comprehension": 29315, "hallucination detection dataset": 40832, "generate hallucinated content": 37469, "hallucinations generation process": 40864, "generation process specifically": 38342, "generative ai including": 38548, "ai including large": 4433, "models comprehensively understand": 62072, "recent advances field": 80199, "pretrained models latent": 74415, "hallucination evaluation benchmarks": 40834, "significant challenge reliability": 87709, "hallucinations generation process specifically": 40865, "generative ai including large": 38549, "ai including large language": 4434, "pose significant challenge reliability": 72749, "generative ai including large language": 38550, "ai including large language models": 4435, "using stateoftheart large language models": 101790, "poem": 72469, "humanoutoftheloop": 42558, "catches": 12598, "gais": 36878, "govern": 39163, "poetic": 72471, "discord": 25572, "gone": 39102, "30th": 770, "data story": 21653, "design highly": 23789, "difficult grasp": 25294, "analyzing large": 5816, "work facilitate": 104093, "lastly evaluate": 52609, "tasks assigned": 94388, "effect evaluation": 27241, "evaluation creative": 30558, "humans specifically": 42639, "humans creative": 42586, "creative process": 20256, "complex art": 16913, "users compose": 101082, "models visualization": 64513, "aigc products": 4660, "humancentric design": 42457, "block future": 11197, "efforts support": 27921, "help people": 41271, "applied problem": 6627, "tasks unclear": 95217, "creativity using": 20270, "creative endeavors": 20254, "ai exposure": 4393, "adopt ai": 3605, "come new": 16033, "game designer": 36885, "compared creative": 16527, "models llms develop": 63098, "group used chatgpt": 40611, "explore effect different": 32670, "language models llms develop": 50165, "large language models llms develop": 51823, "musical": 65418, "constructivist": 18486, "attracts": 8433, "album": 4890, "melody": 58981, "explanations prompted": 32513, "improvements quality": 43991, "methods evaluation": 59628, "edit distance": 27084, "performance controllability": 71114, "raters chatgpt": 79410, "different spatial": 25203, "creating music": 20228, "pairs lack": 69505, "model bloom176b": 60616, "human activities": 42066, "attracted research": 8422, "complex structure": 17010, "fixed length": 35356, "decoder layers": 22633, "understanding music": 99820, "framework experimental": 36131, "increased dramatically": 44793, "demonstrating substantial": 23451, "stateoftheart models gpt3": 90402, "model code available": 60659, "human raters chatgpt": 42343, "language model bloom176b": 49352, "stable diffusion model": 90092, "framework experimental results": 36132, "surpasses performance current": 92940, "multimodal understanding generation": 65108, "multimodal understanding generation tasks": 65109, "doubled": 26672, "335m": 806, "restart": 83362, "collapses": 15855, "reaches accuracy": 79477, "performance final": 71216, "big science": 10990, "deep networks": 22790, "scaling course": 85321, "remains high": 81661, "experiments pythia": 32278, "opt family": 68535, "perplexity levels": 71856, "tokens achieve": 97176, "decrease test": 22717, "results intersection": 83694, "timeseries forecasting": 97090, "size original": 88501, "pretraining ultimately": 74619, "precise scaling": 73602, "arbitrary batch": 7316, "data existing work": 21208, "size number tokens": 88499, "language model train": 49560, "arbitrary batch size": 7317, "language model downstream task": 49381, "indistinguishability": 45067, "restructure": 83381, "jupyter": 48212, "practiced": 73557, "chatgpt project": 14110, "perception results": 70794, "learning student": 53427, "chatgpt sensitive": 14205, "chatgpt science": 14196, "problems accuracy": 75108, "group dynamics": 40608, "differences distribution": 24977, "settings highlights": 87060, "risks limitations": 84524, "propose specific": 77122, "leading questions": 52880, "questions domain": 78833, "responses student": 83311, "theoretical framework using": 96740, "performance llms human": 71370, "potential future improvements": 73098, "costeffectively": 19897, "long sentences": 57322, "testing capabilities": 95998, "languages educational": 51262, "utilized data": 101965, "editing tool": 27110, "editing process": 27106, "llms correct": 55690, "conventional design": 19276, "sentence simplification": 86523, "simplified versions": 88276, "simpler alternatives": 88251, "samples using": 85148, "edit trigger": 27086, "evaluate generative": 30191, "correcting errors": 19694, "gpt4 result": 40057, "directly modify": 25510, "crucial realworld applications": 20519, "evaluation methods fail": 30670, "answer questions based": 6049, "trained general corpus": 97834, "recent work using": 80413, "model ensemble methods": 60810, "pretrained language models gpt3 shown": 74315, "typed": 99216, "development support": 24717, "read understand": 79497, "compare test": 16497, "largescale empirical": 52513, "effect context": 27237, "sensitive changes": 86457, "represent complex": 82031, "execution paths": 31459, "semantic insights": 86316, "practice involves": 73548, "create opportunities": 20171, "research automated": 82500, "task generating code": 94079, "generating code solutions": 37877, "previous stateoftheart results": 74710, "strengths weaknesses llms": 90968, "generation study explore": 38433, "syntactically correct code": 93189, "conduct empirical evaluation": 17856, "evaluation using chatgpt": 30820, "generation using generative": 38495, "ablation study demonstrates": 1815, "models llms automate": 62993, "task generating code solutions": 94080, "language models llms automate": 50091, "large language models llms automate": 51791, "nm": 66842, "size presents": 88513, "learning ssl": 53422, "llms motivated": 56406, "algorithm llm": 4923, "maintaining original": 57899, "sparsity ratios": 89566, "high work": 41473, "sampled data": 85094, "llms costly": 55693, "backpropagation finetuning": 9280, "input feature": 45898, "inherent llms": 45737, "diverse complex": 25998, "teacher student": 95346, "performance efficiently": 71171, "gpt natural": 39230, "surpasses current": 92930, "used method": 100850, "approaches lead": 7160, "models combinatorial": 62037, "models opt13b": 63720, "language models grown": 49954, "selfsupervised learning ssl": 86270, "training smaller models": 98301, "gpt natural language": 39231, "surpasses current stateoftheart": 92931, "language models combinatorial": 49730, "language models opt13b": 50622, "paper conduct comprehensive evaluation": 69642, "529": 1055, "selfsupervised manner": 86271, "task believe": 93953, "knowledge containing": 48482, "new unseen": 66567, "set plausible": 86915, "model teacher": 61494, "student different": 91247, "05 parameters": 40, "report knowledge": 81979, "effectively answer": 27402, "answer commonsense": 5991, "questions identifying": 78870, "knowledge descriptions": 48501, "tackling task": 93757, "model constructing": 60704, "knowledge grounded": 48610, "paper investigate commonsense": 69781, "questions chatgpt effectively": 78794, "pretrained language models exploit": 74309, "fourstage": 35989, "conducted validate": 17991, "mitigating limitations": 60303, "model sees": 61384, "blackbox scenario": 11149, "precise responses": 73601, "instead feeding": 46246, "better paper": 10755, "generation attracted": 38040, "estimation framework": 30024, "traditional knowledge": 97671, "advanced knowledge": 3701, "survey navigates": 93037, "forgetting address issues": 35753, "large number taskspecific": 52290, "compared gradientbased methods": 16560, "previous works focused": 74737, "catastrophic forgetting address issues": 12588, "historical figures": 41862, "quantitative benchmarking": 78404, "plugin generates": 72453, "types based": 99221, "forgetting model": 35757, "t2i generation": 93612, "related objects": 81207, "guidance capabilities": 40714, "fundamental concepts": 36540, "parsing key": 70339, "research developed": 82545, "optimization algorithms": 68586, "especially visual": 29926, "hallucination additionally": 40825, "attribute relation": 8440, "data computation": 21095, "regarding perception": 81063, "recent mllms": 80296, "generate plausiblesounding": 37553, "texttoimage generative model": 96625, "novel approach designed": 67094, "approach designed reduce": 6800, "novel approach designed reduce": 67095, "relationbased": 81262, "robustness various": 84748, "greater challenges": 40505, "users successfully": 101185, "universal prompt": 100114, "data integrating": 21336, "previously unattainable": 74763, "intelligencegenerated content aigc": 46913, "llms paper demonstrate": 56483, "artificial intelligencegenerated content aigc": 7678, "4gb": 998, "perform case": 70828, "random number": 79106, "categories compared": 12605, "llms instead": 56230, "specific design": 89681, "leveraging new": 53885, "cloud systems": 15064, "devices significant": 24764, "perform case study": 70829, "explore capability large": 32649, "facility": 33552, "openstreetmap": 68435, "streets": 90945, "geoscience": 38797, "language handle": 49267, "geographic information": 38782, "broader audience": 11512, "human mobility": 42303, "addition providing": 3207, "prompt performance": 76395, "advanced machine": 3717, "transformerbased lstmbased": 98573, "lstmbased models": 57653, "finetuning open": 35159, "scenarios potentially": 85470, "data enable": 21179, "poorly represented": 72605, "advanced machine learning": 3718, "transformerbased lstmbased models": 98574, "finetuning open source": 35160, "autoregressive language model gpt2": 8961, "sluggish": 88663, "problem data": 75006, "model mt0": 61140, "scale thousands": 85296, "llms parameterefficient": 56492, "answer following": 6006, "affirmative answer": 4071, "quality proposed": 78338, "encoderdecoder model mt0": 28725, "parameterefficient finetuning using": 70148, "llms llms exhibit": 56354, "potential large language models like": 73159, "diversitybased": 26162, "approaches finally": 7140, "ecommerce applications": 27047, "tasks tested": 95191, "prompted significantly": 76487, "approaches strong": 7207, "using modern": 101620, "methodological validity": 59472, "arbitrarily chosen": 7312, "improvement current": 43896, "set data samples": 86859, "promising future research": 76166, "2007": 510, "338": 808, "effects prediction": 27620, "large highperformance": 51445, "trained selfsupervised": 97903, "gpt4 sentence": 40070, "pairs benchmark": 69484, "language models reveal": 50770, "models trained selfsupervised": 64407, "models accurately predict": 61751, "demonstrating strong correlation": 23450, "play essential": 72339, "model watermarking": 61581, "valuable model": 102167, "schemes mitigate": 85532, "sampling scheme": 85166, "play essential role": 72340, "various text generation models": 102609, "formalizes": 35809, "perform indepth": 70885, "surrounding artificial": 93012, "chatgpt public": 14133, "effect source": 27255, "ai source": 4554, "surrounding artificial intelligence": 93013, "context generating": 18779, "astronomy large": 8136, "types need": 99252, "far chatgpt": 33866, "knowledge exploring": 48561, "safety related": 85050, "astronomy large language": 8137, "astronomy large language models": 8138, "time produce": 97006, "trained instructions": 97847, "model benefit": 60603, "multimodal nature": 65092, "score 08": 85690, "knowledge language model": 48644, "software data": 88981, "model domainspecific": 60778, "gpt4 extract": 39882, "analyze important": 5768, "paper model": 69812, "feat previously": 33956, "llms scientific research": 56750, "editable": 27088, "beginners": 9942, "special cases": 89602, "networks method": 66199, "interconnected nature": 47133, "diverse nature": 26058, "adversely affects": 4021, "traffic data": 97722, "based algorithm": 9434, "significant memory consumption": 87796, "method proven": 59395, "ai computational": 4343, "sentence previous": 86513, "regularity": 81110, "business impact": 11700, "training extremely": 98113, "issues implement": 47992, "novel sampling": 67244, "conjugate": 18082, "selection mechanism": 86164, "llm verify": 55316, "objective questions": 67506, "subjective questions": 91957, "tasks comprehensively": 94469, "moderate level": 64576, "questions align": 78773, "objective subjective questions": 67512, "objective questions align": 67507, "questions align human": 78774, "objective questions align human": 67508, "methods existing": 59630, "extra memory": 33216 } } }