ResNet-50-ImageNet / inference.py
TharunSivamani's picture
inference.py for simple inference
db2ca82 verified
import torch
import torchvision.transforms as transforms
from PIL import Image
import os
# Define the device
device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
class Params:
def __init__(self):
self.batch_size = 512
self.name = "resnet_50"
self.workers = 16
self.lr = 0.1
self.momentum = 0.9
self.weight_decay = 1e-4
self.lr_step_size = 30
self.lr_gamma = 0.1
def __repr__(self):
return str(self.__dict__)
def __eq__(self, other):
return self.__dict__ == other.__dict__
params = Params()
# Path to the saved model checkpoint
checkpoint_path = "checkpoints/resnet_50/checkpoint.pth"
# Load the model architecture
from model import ResNet50 # Assuming resnet.py contains your model definition
num_classes = 1000 # Adjust this to match your dataset
model = ResNet50(num_classes=num_classes).to(device)
# Load the trained model weights
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint["model"])
model.eval()
# Define transformations for inference
inference_transforms = transforms.Compose([
transforms.ToTensor(),
transforms.Resize(size=256),
transforms.CenterCrop(224),
transforms.Normalize(mean=[0.485, 0.485, 0.406], std=[0.229, 0.224, 0.225]),
])
# Load class names from the text file
def load_class_names(file_path):
with open(file_path, 'r') as f:
class_names = [line.strip() for line in f]
return class_names
# Function to make predictions on a single image
def predict(image_path, model, transforms, class_names=None):
# Load and transform the image
image = Image.open(image_path).convert("RGB")
image_tensor = transforms(image).unsqueeze(0).to(device)
# Forward pass
with torch.no_grad():
output = model(image_tensor)
probabilities = torch.nn.functional.softmax(output[0], dim=0)
top_prob, top_class = probabilities.topk(5, largest=True, sorted=True)
# Display the top predictions
print("Predictions:")
for i in range(top_prob.size(0)):
class_name = class_names[top_class[i]] if class_names else f"Class {top_class[i].item()}"
print(f"{class_name}: {top_prob[i].item() * 100:.2f}%")
return top_prob, top_class
# Path to the ImageNet classes text file
imagenet_classes_file = "imagenet-classes.txt" # Replace with the actual path to your text file
class_names = load_class_names(imagenet_classes_file)
# Path to the image for inference
image_path = "dog.png" # Replace with the actual path to your test image
# Make a prediction
predict(image_path, model, inference_transforms, class_names=class_names)