import torch import torch.nn as nn class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_channels, out_channels, i_downsample=None, stride=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) self.batch_norm1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1) self.batch_norm2 = nn.BatchNorm2d(out_channels) self.conv3 = nn.Conv2d(out_channels, out_channels*self.expansion, kernel_size=1, stride=1, padding=0) self.batch_norm3 = nn.BatchNorm2d(out_channels*self.expansion) self.i_downsample = i_downsample self.stride = stride self.relu = nn.ReLU() def forward(self, x): identity = x.clone() x = self.relu(self.batch_norm1(self.conv1(x))) x = self.relu(self.batch_norm2(self.conv2(x))) x = self.conv3(x) x = self.batch_norm3(x) #downsample if needed if self.i_downsample is not None: identity = self.i_downsample(identity) #add identity x+=identity x=self.relu(x) return x class Block(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, i_downsample=None, stride=1): super(Block, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, stride=stride, bias=False) self.batch_norm1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, stride=stride, bias=False) self.batch_norm2 = nn.BatchNorm2d(out_channels) self.i_downsample = i_downsample self.stride = stride self.relu = nn.ReLU() def forward(self, x): identity = x.clone() x = self.relu(self.batch_norm2(self.conv1(x))) x = self.batch_norm2(self.conv2(x)) if self.i_downsample is not None: identity = self.i_downsample(identity) print(x.shape) print(identity.shape) x += identity x = self.relu(x) return x class ResNet(nn.Module): def __init__(self, ResBlock, layer_list, num_classes, num_channels=3): super(ResNet, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(num_channels, 64, kernel_size=7, stride=2, padding=3, bias=False) self.batch_norm1 = nn.BatchNorm2d(64) self.relu = nn.ReLU() self.max_pool = nn.MaxPool2d(kernel_size = 3, stride=2, padding=1) self.layer1 = self._make_layer(ResBlock, layer_list[0], planes=64) self.layer2 = self._make_layer(ResBlock, layer_list[1], planes=128, stride=2) self.layer3 = self._make_layer(ResBlock, layer_list[2], planes=256, stride=2) self.layer4 = self._make_layer(ResBlock, layer_list[3], planes=512, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1,1)) self.fc = nn.Linear(512*ResBlock.expansion, num_classes) def forward(self, x): x = self.relu(self.batch_norm1(self.conv1(x))) x = self.max_pool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.reshape(x.shape[0], -1) x = self.fc(x) return x def _make_layer(self, ResBlock, blocks, planes, stride=1): ii_downsample = None layers = [] if stride != 1 or self.in_channels != planes*ResBlock.expansion: ii_downsample = nn.Sequential( nn.Conv2d(self.in_channels, planes*ResBlock.expansion, kernel_size=1, stride=stride), nn.BatchNorm2d(planes*ResBlock.expansion) ) layers.append(ResBlock(self.in_channels, planes, i_downsample=ii_downsample, stride=stride)) self.in_channels = planes*ResBlock.expansion for i in range(blocks-1): layers.append(ResBlock(self.in_channels, planes)) return nn.Sequential(*layers) def ResNet50(num_classes, channels=3): return ResNet(Bottleneck, [3,4,6,3], num_classes, channels)