---
base_model: lemonilia/AshhLimaRP-Mistral-7B
inference: false
license: apache-2.0
model_creator: Suikamelon
model_name: AshhLimaRP Mistral 7B
model_type: mistral
prompt_template: "### Instruction:\nCharacter's Persona: bot character description\n\
\nUser's persona: user character description\n \nScenario: what happens in the\
\ story\n\nPlay the role of Character. You must engage in a roleplaying chat with\
\ User below this line. Do not write dialogues and narration for User. Character\
\ should respond with messages of medium length.\n\n### Input:\nUser: {prompt}\n\
\n### Response:\nCharacter: \n"
quantized_by: TheBloke
---
# AshhLimaRP Mistral 7B - GPTQ
- Model creator: [Suikamelon](https://huggingface.co/lemonilia)
- Original model: [AshhLimaRP Mistral 7B](https://huggingface.co/lemonilia/AshhLimaRP-Mistral-7B)
## Description
This repo contains GPTQ model files for [Suikamelon's AshhLimaRP Mistral 7B](https://huggingface.co/lemonilia/AshhLimaRP-Mistral-7B).
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
## Repositories available
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/AshhLimaRP-Mistral-7B-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/AshhLimaRP-Mistral-7B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/AshhLimaRP-Mistral-7B-GGUF)
* [Suikamelon's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/lemonilia/AshhLimaRP-Mistral-7B)
## Prompt template: LimaRP-Alpaca
```
### Instruction:
Character's Persona: bot character description
User's persona: user character description
Scenario: what happens in the story
Play the role of Character. You must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. Character should respond with messages of medium length.
### Input:
User: {prompt}
### Response:
Character:
```
## Known compatible clients / servers
These GPTQ models are known to work in the following inference servers/webuis.
- [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
- [KobaldAI United](https://github.com/henk717/koboldai)
- [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
This may not be a complete list; if you know of others, please let me know!
## Provided files, and GPTQ parameters
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
Explanation of GPTQ parameters
- Bits: The bit size of the quantised model.
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
- Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
- Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
- GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
| [main](https://huggingface.co/TheBloke/AshhLimaRP-Mistral-7B-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.16 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
| [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/AshhLimaRP-Mistral-7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.57 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
| [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/AshhLimaRP-Mistral-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.52 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
| [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/AshhLimaRP-Mistral-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.68 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
| [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/AshhLimaRP-Mistral-7B-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 8.17 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
| [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/AshhLimaRP-Mistral-7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.29 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
## How to download, including from branches
### In text-generation-webui
To download from the `main` branch, enter `TheBloke/AshhLimaRP-Mistral-7B-GPTQ` in the "Download model" box.
To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/AshhLimaRP-Mistral-7B-GPTQ:gptq-4bit-32g-actorder_True`
### From the command line
I recommend using the `huggingface-hub` Python library:
```shell
pip3 install huggingface-hub
```
To download the `main` branch to a folder called `AshhLimaRP-Mistral-7B-GPTQ`:
```shell
mkdir AshhLimaRP-Mistral-7B-GPTQ
huggingface-cli download TheBloke/AshhLimaRP-Mistral-7B-GPTQ --local-dir AshhLimaRP-Mistral-7B-GPTQ --local-dir-use-symlinks False
```
To download from a different branch, add the `--revision` parameter:
```shell
mkdir AshhLimaRP-Mistral-7B-GPTQ
huggingface-cli download TheBloke/AshhLimaRP-Mistral-7B-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir AshhLimaRP-Mistral-7B-GPTQ --local-dir-use-symlinks False
```
More advanced huggingface-cli download usage
If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
```shell
pip3 install hf_transfer
```
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
```shell
mkdir AshhLimaRP-Mistral-7B-GPTQ
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/AshhLimaRP-Mistral-7B-GPTQ --local-dir AshhLimaRP-Mistral-7B-GPTQ --local-dir-use-symlinks False
```
Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
### With `git` (**not** recommended)
To clone a specific branch with `git`, use a command like this:
```shell
git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/AshhLimaRP-Mistral-7B-GPTQ
```
Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/AshhLimaRP-Mistral-7B-GPTQ`.
- To download from a specific branch, enter for example `TheBloke/AshhLimaRP-Mistral-7B-GPTQ:gptq-4bit-32g-actorder_True`
- see Provided Files above for the list of branches for each option.
3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done".
5. In the top left, click the refresh icon next to **Model**.
6. In the **Model** dropdown, choose the model you just downloaded: `AshhLimaRP-Mistral-7B-GPTQ`
7. The model will automatically load, and is now ready for use!
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
- Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
## Serving this model from Text Generation Inference (TGI)
It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
Example Docker parameters:
```shell
--model-id TheBloke/AshhLimaRP-Mistral-7B-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
```
Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
```shell
pip3 install huggingface-hub
```
```python
from huggingface_hub import InferenceClient
endpoint_url = "https://your-endpoint-url-here"
prompt = "Tell me about AI"
prompt_template=f'''### Instruction:
Character's Persona: bot character description
User's persona: user character description
Scenario: what happens in the story
Play the role of Character. You must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. Character should respond with messages of medium length.
### Input:
User: {prompt}
### Response:
Character:
'''
client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1)
print(f"Model output: {response}")
```
## How to use this GPTQ model from Python code
### Install the necessary packages
Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
```shell
pip3 install transformers optimum
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
```
If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
```shell
pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
git checkout v0.4.2
pip3 install .
```
### You can then use the following code
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_name_or_path = "TheBloke/AshhLimaRP-Mistral-7B-GPTQ"
# To use a different branch, change revision
# For example: revision="gptq-4bit-32g-actorder_True"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
trust_remote_code=False,
revision="main")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
prompt = "Tell me about AI"
prompt_template=f'''### Instruction:
Character's Persona: bot character description
User's persona: user character description
Scenario: what happens in the story
Play the role of Character. You must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. Character should respond with messages of medium length.
### Input:
User: {prompt}
### Response:
Character:
'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))
# Inference can also be done using transformers' pipeline
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
print(pipe(prompt_template)[0]['generated_text'])
```
## Compatibility
The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
[ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
For a list of clients/servers, please see "Known compatible clients / servers", above.
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute
Thanks to the [chirper.ai](https://chirper.ai) team!
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Aemon Algiz.
**Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
# Original model card: Suikamelon's AshhLimaRP Mistral 7B
# AshhLimaRP-Mistral-7B (Alpaca, v1)
This is a version of LimaRP with 2000 training samples _up to_ about 9k tokens length
finetuned on [Ashhwriter-Mistral-7B](https://huggingface.co/lemonilia/Ashhwriter-Mistral-7B).
LimaRP is a longform-oriented, novel-style roleplaying chat model intended to replicate the experience
of 1-on-1 roleplay on Internet forums. Short-form, IRC/Discord-style RP (aka "Markdown format")
is not supported. The model does not include instruction tuning, only manually picked and
slightly edited RP conversations with persona and scenario data.
Ashhwriter, the base, is a model entirely finetuned on human-written lewd stories.
## Available versions
- Float16 HF weights
- LoRA Adapter ([adapter_config.json](https://huggingface.co/lemonilia/AshhLimaRP-Mistral-7B/resolve/main/adapter_config.json) and [adapter_model.bin](https://huggingface.co/lemonilia/AshhLimaRP-Mistral-7B/resolve/main/adapter_model.bin))
- [4bit AWQ](https://huggingface.co/lemonilia/AshhLimaRP-Mistral-7B/tree/main/AWQ)
- [Q4_K_M GGUF](https://huggingface.co/lemonilia/AshhLimaRP-Mistral-7B/resolve/main/AshhLimaRP-Mistral-7B.Q4_K_M.gguf)
- [Q6_K GGUF](https://huggingface.co/lemonilia/AshhLimaRP-Mistral-7B/resolve/main/AshhLimaRP-Mistral-7B.Q6_K.gguf)
## Prompt format
[Extended Alpaca format](https://github.com/tatsu-lab/stanford_alpaca),
with `### Instruction:`, `### Input:` immediately preceding user inputs and `### Response:`
immediately preceding model outputs. While Alpaca wasn't originally intended for multi-turn
responses, in practice this is not a problem; the format follows a pattern already used by
other models.
```
### Instruction:
Character's Persona: {bot character description}
User's Persona: {user character description}
Scenario: {what happens in the story}
Play the role of Character. You must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User.
### Input:
User: {utterance}
### Response:
Character: {utterance}
### Input
User: {utterance}
### Response:
Character: {utterance}
(etc.)
```
You should:
- Replace all text in curly braces (curly braces included) with your own text.
- Replace `User` and `Character` with appropriate names.
### Message length control
Inspired by the previously named "Roleplay" preset in SillyTavern, with this
version of LimaRP it is possible to append a length modifier to the response instruction
sequence, like this:
```
### Input
User: {utterance}
### Response: (length = medium)
Character: {utterance}
```
This has an immediately noticeable effect on bot responses. The lengths using during training are:
`micro`, `tiny`, `short`, `medium`, `long`, `massive`, `huge`, `enormous`, `humongous`, `unlimited`.
**The recommended starting length is medium**. Keep in mind that the AI can ramble or impersonate
the user with very long messages.
The length control effect is reproducible, but the messages will not necessarily follow
lengths very precisely, rather follow certain ranges on average, as seen in this table
with data from tests made with one reply at the beginning of the conversation:
![lengths](https://i.imgur.com/2WXGgaV.png)
Response length control appears to work well also deep into the conversation. **By omitting
the modifier, the model will choose the most appropriate response length** (although it might
not necessarily be what the user desires).
## Suggested settings
You can follow these instruction format settings in SillyTavern. Replace `medium` with
your desired response length:
![settings](https://files.catbox.moe/fpieug.png)
## Text generation settings
These settings could be a good general starting point:
- TFS = 0.90
- Temperature = 0.70
- Repetition penalty = ~1.11
- Repetition penalty range = ~2048
- top-k = 0 (disabled)
- top-p = 1 (disabled)
## Training procedure
[Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) was used for training
on 2x NVidia A40 GPUs.
The A40 GPUs have been graciously provided by [Arc Compute](https://www.arccompute.io/).
### Training hyperparameters
A lower learning rate than usual was employed. Due to an unforeseen issue the training
was cut short and as a result 3 epochs were trained instead of the planned 4. Using 2 GPUs,
the effective global batch size would have been 16.
Training was continued from the most recent LoRA adapter from Ashhwriter, using the same
LoRA R and LoRA alpha.
- lora_model_dir: /home/anon/bin/axolotl/OUT_mistral-stories/checkpoint-6000/
- learning_rate: 0.00005
- lr_scheduler: cosine
- noisy_embedding_alpha: 3.5
- num_epochs: 4
- sequence_len: 8750
- lora_r: 256
- lora_alpha: 16
- lora_dropout: 0.05
- lora_target_linear: True
- bf16: True
- fp16: false
- tf32: True
- load_in_8bit: True
- adapter: lora
- micro_batch_size: 2
- optimizer: adamw_bnb_8bit
- warmup_steps: 10
- optimizer: adamw_torch
- flash_attention: true
- sample_packing: true
- pad_to_sequence_len: true
### Loss graphs
Values are higher than typical because the training is performed on the entire
sample, similar to unsupervised finetuning.
#### Train loss
![Train loss](https://files.catbox.moe/ovw8c7.png)
#### Eval loss
![Eval loss](https://files.catbox.moe/yp7o0h.png)