Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,567 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: PAIXAI/Astrid-Mistral-7B
|
3 |
+
inference: false
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
library_name: transformers
|
7 |
+
license: apache-2.0
|
8 |
+
model_creator: PAIX
|
9 |
+
model_name: Astrid Mistral 7B
|
10 |
+
model_type: mistral
|
11 |
+
prompt_template: '<|im_start|>system
|
12 |
+
|
13 |
+
{system_message}<|im_end|>
|
14 |
+
|
15 |
+
<|im_start|>user
|
16 |
+
|
17 |
+
{prompt}<|im_end|>
|
18 |
+
|
19 |
+
<|im_start|>assistant
|
20 |
+
|
21 |
+
'
|
22 |
+
quantized_by: TheBloke
|
23 |
+
tags:
|
24 |
+
- gpt
|
25 |
+
- llm
|
26 |
+
- large language model
|
27 |
+
- PAIX.Cloud
|
28 |
+
thumbnail: https://static.wixstatic.com/media/bdee4e_8aa5cefc86024bc88f7e20e3e19d9ff3~mv2.png/v1/fill/w_192%2Ch_192%2Clg_1%2Cusm_0.66_1.00_0.01/bdee4e_8aa5cefc86024bc88f7e20e3e19d9ff3~mv2.png
|
29 |
+
---
|
30 |
+
<!-- markdownlint-disable MD041 -->
|
31 |
+
|
32 |
+
<!-- header start -->
|
33 |
+
<!-- 200823 -->
|
34 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
35 |
+
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
36 |
+
</div>
|
37 |
+
<div style="display: flex; justify-content: space-between; width: 100%;">
|
38 |
+
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
39 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
|
40 |
+
</div>
|
41 |
+
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
42 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
|
43 |
+
</div>
|
44 |
+
</div>
|
45 |
+
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
|
46 |
+
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
|
47 |
+
<!-- header end -->
|
48 |
+
|
49 |
+
# Astrid Mistral 7B - AWQ
|
50 |
+
- Model creator: [PAIX](https://huggingface.co/PAIXAI)
|
51 |
+
- Original model: [Astrid Mistral 7B](https://huggingface.co/PAIXAI/Astrid-Mistral-7B)
|
52 |
+
|
53 |
+
<!-- description start -->
|
54 |
+
## Description
|
55 |
+
|
56 |
+
This repo contains AWQ model files for [PAIX's Astrid Mistral 7B](https://huggingface.co/PAIXAI/Astrid-Mistral-7B).
|
57 |
+
|
58 |
+
These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
|
59 |
+
|
60 |
+
|
61 |
+
### About AWQ
|
62 |
+
|
63 |
+
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
|
64 |
+
|
65 |
+
It is supported by:
|
66 |
+
|
67 |
+
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
|
68 |
+
- [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
|
69 |
+
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
|
70 |
+
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
|
71 |
+
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
|
72 |
+
|
73 |
+
<!-- description end -->
|
74 |
+
<!-- repositories-available start -->
|
75 |
+
## Repositories available
|
76 |
+
|
77 |
+
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Astrid-Mistral-7B-AWQ)
|
78 |
+
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Astrid-Mistral-7B-GPTQ)
|
79 |
+
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Astrid-Mistral-7B-GGUF)
|
80 |
+
* [PAIX's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/PAIXAI/Astrid-Mistral-7B)
|
81 |
+
<!-- repositories-available end -->
|
82 |
+
|
83 |
+
<!-- prompt-template start -->
|
84 |
+
## Prompt template: ChatML
|
85 |
+
|
86 |
+
```
|
87 |
+
<|im_start|>system
|
88 |
+
{system_message}<|im_end|>
|
89 |
+
<|im_start|>user
|
90 |
+
{prompt}<|im_end|>
|
91 |
+
<|im_start|>assistant
|
92 |
+
|
93 |
+
```
|
94 |
+
|
95 |
+
<!-- prompt-template end -->
|
96 |
+
|
97 |
+
|
98 |
+
<!-- README_AWQ.md-provided-files start -->
|
99 |
+
## Provided files, and AWQ parameters
|
100 |
+
|
101 |
+
I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
|
102 |
+
|
103 |
+
Models are released as sharded safetensors files.
|
104 |
+
|
105 |
+
| Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
|
106 |
+
| ------ | ---- | -- | ----------- | ------- | ---- |
|
107 |
+
| [main](https://huggingface.co/TheBloke/Astrid-Mistral-7B-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.15 GB
|
108 |
+
|
109 |
+
<!-- README_AWQ.md-provided-files end -->
|
110 |
+
|
111 |
+
<!-- README_AWQ.md-text-generation-webui start -->
|
112 |
+
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
113 |
+
|
114 |
+
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
115 |
+
|
116 |
+
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
|
117 |
+
|
118 |
+
1. Click the **Model tab**.
|
119 |
+
2. Under **Download custom model or LoRA**, enter `TheBloke/Astrid-Mistral-7B-AWQ`.
|
120 |
+
3. Click **Download**.
|
121 |
+
4. The model will start downloading. Once it's finished it will say "Done".
|
122 |
+
5. In the top left, click the refresh icon next to **Model**.
|
123 |
+
6. In the **Model** dropdown, choose the model you just downloaded: `Astrid-Mistral-7B-AWQ`
|
124 |
+
7. Select **Loader: AutoAWQ**.
|
125 |
+
8. Click Load, and the model will load and is now ready for use.
|
126 |
+
9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
|
127 |
+
10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
|
128 |
+
<!-- README_AWQ.md-text-generation-webui end -->
|
129 |
+
|
130 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
131 |
+
## Multi-user inference server: vLLM
|
132 |
+
|
133 |
+
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
|
134 |
+
|
135 |
+
- Please ensure you are using vLLM version 0.2 or later.
|
136 |
+
- When using vLLM as a server, pass the `--quantization awq` parameter.
|
137 |
+
|
138 |
+
For example:
|
139 |
+
|
140 |
+
```shell
|
141 |
+
python3 -m vllm.entrypoints.api_server --model TheBloke/Astrid-Mistral-7B-AWQ --quantization awq --dtype auto
|
142 |
+
```
|
143 |
+
|
144 |
+
- When using vLLM from Python code, again set `quantization=awq`.
|
145 |
+
|
146 |
+
For example:
|
147 |
+
|
148 |
+
```python
|
149 |
+
from vllm import LLM, SamplingParams
|
150 |
+
|
151 |
+
prompts = [
|
152 |
+
"Tell me about AI",
|
153 |
+
"Write a story about llamas",
|
154 |
+
"What is 291 - 150?",
|
155 |
+
"How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
|
156 |
+
]
|
157 |
+
prompt_template=f'''<|im_start|>system
|
158 |
+
{system_message}<|im_end|>
|
159 |
+
<|im_start|>user
|
160 |
+
{prompt}<|im_end|>
|
161 |
+
<|im_start|>assistant
|
162 |
+
'''
|
163 |
+
|
164 |
+
prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
|
165 |
+
|
166 |
+
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
167 |
+
|
168 |
+
llm = LLM(model="TheBloke/Astrid-Mistral-7B-AWQ", quantization="awq", dtype="auto")
|
169 |
+
|
170 |
+
outputs = llm.generate(prompts, sampling_params)
|
171 |
+
|
172 |
+
# Print the outputs.
|
173 |
+
for output in outputs:
|
174 |
+
prompt = output.prompt
|
175 |
+
generated_text = output.outputs[0].text
|
176 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
177 |
+
```
|
178 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
179 |
+
|
180 |
+
<!-- README_AWQ.md-use-from-tgi start -->
|
181 |
+
## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
|
182 |
+
|
183 |
+
Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
|
184 |
+
|
185 |
+
Example Docker parameters:
|
186 |
+
|
187 |
+
```shell
|
188 |
+
--model-id TheBloke/Astrid-Mistral-7B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
|
189 |
+
```
|
190 |
+
|
191 |
+
Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
|
192 |
+
|
193 |
+
```shell
|
194 |
+
pip3 install huggingface-hub
|
195 |
+
```
|
196 |
+
|
197 |
+
```python
|
198 |
+
from huggingface_hub import InferenceClient
|
199 |
+
|
200 |
+
endpoint_url = "https://your-endpoint-url-here"
|
201 |
+
|
202 |
+
prompt = "Tell me about AI"
|
203 |
+
prompt_template=f'''<|im_start|>system
|
204 |
+
{system_message}<|im_end|>
|
205 |
+
<|im_start|>user
|
206 |
+
{prompt}<|im_end|>
|
207 |
+
<|im_start|>assistant
|
208 |
+
'''
|
209 |
+
|
210 |
+
client = InferenceClient(endpoint_url)
|
211 |
+
response = client.text_generation(prompt,
|
212 |
+
max_new_tokens=128,
|
213 |
+
do_sample=True,
|
214 |
+
temperature=0.7,
|
215 |
+
top_p=0.95,
|
216 |
+
top_k=40,
|
217 |
+
repetition_penalty=1.1)
|
218 |
+
|
219 |
+
print(f"Model output: ", response)
|
220 |
+
```
|
221 |
+
<!-- README_AWQ.md-use-from-tgi end -->
|
222 |
+
|
223 |
+
<!-- README_AWQ.md-use-from-python start -->
|
224 |
+
## Inference from Python code using Transformers
|
225 |
+
|
226 |
+
### Install the necessary packages
|
227 |
+
|
228 |
+
- Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
|
229 |
+
- Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
|
230 |
+
|
231 |
+
```shell
|
232 |
+
pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
|
233 |
+
```
|
234 |
+
|
235 |
+
Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
|
236 |
+
|
237 |
+
If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
|
238 |
+
|
239 |
+
```shell
|
240 |
+
pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
|
241 |
+
```
|
242 |
+
|
243 |
+
If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
|
244 |
+
|
245 |
+
```shell
|
246 |
+
pip3 uninstall -y autoawq
|
247 |
+
git clone https://github.com/casper-hansen/AutoAWQ
|
248 |
+
cd AutoAWQ
|
249 |
+
pip3 install .
|
250 |
+
```
|
251 |
+
|
252 |
+
### Transformers example code (requires Transformers 4.35.0 and later)
|
253 |
+
|
254 |
+
```python
|
255 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
256 |
+
|
257 |
+
model_name_or_path = "TheBloke/Astrid-Mistral-7B-AWQ"
|
258 |
+
|
259 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
260 |
+
model = AutoModelForCausalLM.from_pretrained(
|
261 |
+
model_name_or_path,
|
262 |
+
low_cpu_mem_usage=True,
|
263 |
+
device_map="cuda:0"
|
264 |
+
)
|
265 |
+
|
266 |
+
# Using the text streamer to stream output one token at a time
|
267 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
268 |
+
|
269 |
+
prompt = "Tell me about AI"
|
270 |
+
prompt_template=f'''<|im_start|>system
|
271 |
+
{system_message}<|im_end|>
|
272 |
+
<|im_start|>user
|
273 |
+
{prompt}<|im_end|>
|
274 |
+
<|im_start|>assistant
|
275 |
+
'''
|
276 |
+
|
277 |
+
# Convert prompt to tokens
|
278 |
+
tokens = tokenizer(
|
279 |
+
prompt_template,
|
280 |
+
return_tensors='pt'
|
281 |
+
).input_ids.cuda()
|
282 |
+
|
283 |
+
generation_params = {
|
284 |
+
"do_sample": True,
|
285 |
+
"temperature": 0.7,
|
286 |
+
"top_p": 0.95,
|
287 |
+
"top_k": 40,
|
288 |
+
"max_new_tokens": 512,
|
289 |
+
"repetition_penalty": 1.1
|
290 |
+
}
|
291 |
+
|
292 |
+
# Generate streamed output, visible one token at a time
|
293 |
+
generation_output = model.generate(
|
294 |
+
tokens,
|
295 |
+
streamer=streamer,
|
296 |
+
**generation_params
|
297 |
+
)
|
298 |
+
|
299 |
+
# Generation without a streamer, which will include the prompt in the output
|
300 |
+
generation_output = model.generate(
|
301 |
+
tokens,
|
302 |
+
**generation_params
|
303 |
+
)
|
304 |
+
|
305 |
+
# Get the tokens from the output, decode them, print them
|
306 |
+
token_output = generation_output[0]
|
307 |
+
text_output = tokenizer.decode(token_output)
|
308 |
+
print("model.generate output: ", text_output)
|
309 |
+
|
310 |
+
# Inference is also possible via Transformers' pipeline
|
311 |
+
from transformers import pipeline
|
312 |
+
|
313 |
+
pipe = pipeline(
|
314 |
+
"text-generation",
|
315 |
+
model=model,
|
316 |
+
tokenizer=tokenizer,
|
317 |
+
**generation_params
|
318 |
+
)
|
319 |
+
|
320 |
+
pipe_output = pipe(prompt_template)[0]['generated_text']
|
321 |
+
print("pipeline output: ", pipe_output)
|
322 |
+
|
323 |
+
```
|
324 |
+
<!-- README_AWQ.md-use-from-python end -->
|
325 |
+
|
326 |
+
<!-- README_AWQ.md-compatibility start -->
|
327 |
+
## Compatibility
|
328 |
+
|
329 |
+
The files provided are tested to work with:
|
330 |
+
|
331 |
+
- [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
|
332 |
+
- [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
|
333 |
+
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
|
334 |
+
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
|
335 |
+
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
|
336 |
+
|
337 |
+
<!-- README_AWQ.md-compatibility end -->
|
338 |
+
|
339 |
+
<!-- footer start -->
|
340 |
+
<!-- 200823 -->
|
341 |
+
## Discord
|
342 |
+
|
343 |
+
For further support, and discussions on these models and AI in general, join us at:
|
344 |
+
|
345 |
+
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
|
346 |
+
|
347 |
+
## Thanks, and how to contribute
|
348 |
+
|
349 |
+
Thanks to the [chirper.ai](https://chirper.ai) team!
|
350 |
+
|
351 |
+
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
|
352 |
+
|
353 |
+
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
|
354 |
+
|
355 |
+
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
|
356 |
+
|
357 |
+
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
|
358 |
+
|
359 |
+
* Patreon: https://patreon.com/TheBlokeAI
|
360 |
+
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
361 |
+
|
362 |
+
**Special thanks to**: Aemon Algiz.
|
363 |
+
|
364 |
+
**Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
|
365 |
+
|
366 |
+
|
367 |
+
Thank you to all my generous patrons and donaters!
|
368 |
+
|
369 |
+
And thank you again to a16z for their generous grant.
|
370 |
+
|
371 |
+
<!-- footer end -->
|
372 |
+
|
373 |
+
# Original model card: PAIX's Astrid Mistral 7B
|
374 |
+
|
375 |
+
# Model Card
|
376 |
+
## Summary
|
377 |
+
|
378 |
+
- Base model: [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
379 |
+
|
380 |
+
This model, Astrid-7B-Assistant is a Mistral-7B base model for causal language modeling, designed to generate human-like text.
|
381 |
+
It's part of our mission to make AI technology accessible to everyone, focusing on personalization, data privacy, and transparent AI governance.
|
382 |
+
Trained in English, it's a versatile tool for a variety of applications.
|
383 |
+
This model is one of the many models available on our platform, and we currently have a 1B and 7B open-source model.
|
384 |
+
|
385 |
+
This model was trained by [PAIX.Cloud](https://www.paix.cloud/).
|
386 |
+
- Wait list: [Wait List](https://www.paix.cloud/join-waitlist)
|
387 |
+
|
388 |
+
|
389 |
+
## Usage
|
390 |
+
|
391 |
+
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` library installed.
|
392 |
+
|
393 |
+
```bash
|
394 |
+
pip install transformers==4.34.0
|
395 |
+
```
|
396 |
+
|
397 |
+
Also make sure you are providing your huggingface token to the pipeline if the model is lying in a private repo.
|
398 |
+
- Either leave `token=True` in the `pipeline` and login to hugginface_hub by running
|
399 |
+
```python
|
400 |
+
import huggingface_hub
|
401 |
+
huggingface_hub.login(<ACCES_TOKEN>)
|
402 |
+
```
|
403 |
+
- Or directly pass your <ACCES_TOKEN> to `token` in the `pipeline`
|
404 |
+
|
405 |
+
```python
|
406 |
+
from transformers import pipeline
|
407 |
+
|
408 |
+
generate_text = pipeline(
|
409 |
+
model="PAIXAI/Astrid-Mistral-7B",
|
410 |
+
torch_dtype="auto",
|
411 |
+
trust_remote_code=True,
|
412 |
+
use_fast=True,
|
413 |
+
device_map={"": "cuda:0"},
|
414 |
+
token=True,
|
415 |
+
)
|
416 |
+
|
417 |
+
res = generate_text(
|
418 |
+
"Why is drinking water so healthy?",
|
419 |
+
min_new_tokens=2,
|
420 |
+
max_new_tokens=256,
|
421 |
+
do_sample=False,
|
422 |
+
num_beams=1,
|
423 |
+
temperature=float(0.3),
|
424 |
+
repetition_penalty=float(1.2),
|
425 |
+
renormalize_logits=True
|
426 |
+
)
|
427 |
+
print(res[0]["generated_text"])
|
428 |
+
```
|
429 |
+
|
430 |
+
You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer:
|
431 |
+
|
432 |
+
```python
|
433 |
+
print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"])
|
434 |
+
```
|
435 |
+
|
436 |
+
```bash
|
437 |
+
<|prompt|>Why is drinking water so healthy?<|im_end|><|answer|>
|
438 |
+
```
|
439 |
+
|
440 |
+
Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`.
|
441 |
+
|
442 |
+
```python
|
443 |
+
from h2oai_pipeline import H2OTextGenerationPipeline
|
444 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
445 |
+
|
446 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
447 |
+
"PAIXAI/Astrid-Mistral-7B",
|
448 |
+
use_fast=True,
|
449 |
+
padding_side="left",
|
450 |
+
trust_remote_code=True,
|
451 |
+
)
|
452 |
+
model = AutoModelForCausalLM.from_pretrained(
|
453 |
+
"PAIXAI/Astrid-Mistral-7B",
|
454 |
+
torch_dtype="auto",
|
455 |
+
device_map={"": "cuda:0"},
|
456 |
+
trust_remote_code=True,
|
457 |
+
)
|
458 |
+
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
|
459 |
+
|
460 |
+
res = generate_text(
|
461 |
+
"Why is drinking water so healthy?",
|
462 |
+
min_new_tokens=2,
|
463 |
+
max_new_tokens=256,
|
464 |
+
do_sample=False,
|
465 |
+
num_beams=1,
|
466 |
+
temperature=float(0.3),
|
467 |
+
repetition_penalty=float(1.2),
|
468 |
+
renormalize_logits=True
|
469 |
+
)
|
470 |
+
print(res[0]["generated_text"])
|
471 |
+
```
|
472 |
+
|
473 |
+
|
474 |
+
You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:
|
475 |
+
|
476 |
+
```python
|
477 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
478 |
+
|
479 |
+
model_name = "PAIXAI/Astrid-Mistral-7B" # either local folder or huggingface model name
|
480 |
+
# Important: The prompt needs to be in the same format the model was trained with.
|
481 |
+
# You can find an example prompt in the experiment logs.
|
482 |
+
prompt = "<|prompt|>How are you?<|im_end|><|answer|>"
|
483 |
+
|
484 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
485 |
+
model_name,
|
486 |
+
use_fast=True,
|
487 |
+
trust_remote_code=True,
|
488 |
+
)
|
489 |
+
model = AutoModelForCausalLM.from_pretrained(
|
490 |
+
model_name,
|
491 |
+
torch_dtype="auto",
|
492 |
+
device_map={"": "cuda:0"},
|
493 |
+
trust_remote_code=True,
|
494 |
+
)
|
495 |
+
model.cuda().eval()
|
496 |
+
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
|
497 |
+
|
498 |
+
# generate configuration can be modified to your needs
|
499 |
+
tokens = model.generate(
|
500 |
+
input_ids=inputs["input_ids"],
|
501 |
+
attention_mask=inputs["attention_mask"],
|
502 |
+
min_new_tokens=2,
|
503 |
+
max_new_tokens=256,
|
504 |
+
do_sample=False,
|
505 |
+
num_beams=1,
|
506 |
+
temperature=float(0.3),
|
507 |
+
repetition_penalty=float(1.2),
|
508 |
+
renormalize_logits=True
|
509 |
+
)[0]
|
510 |
+
|
511 |
+
tokens = tokens[inputs["input_ids"].shape[1]:]
|
512 |
+
answer = tokenizer.decode(tokens, skip_special_tokens=True)
|
513 |
+
print(answer)
|
514 |
+
```
|
515 |
+
|
516 |
+
## Quantization and sharding
|
517 |
+
|
518 |
+
You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```.
|
519 |
+
|
520 |
+
## Model Architecture
|
521 |
+
|
522 |
+
```
|
523 |
+
MistralForCausalLM(
|
524 |
+
(model): MistralModel(
|
525 |
+
(embed_tokens): Embedding(32002, 4096, padding_idx=0)
|
526 |
+
(layers): ModuleList(
|
527 |
+
(0-31): 32 x MistralDecoderLayer(
|
528 |
+
(self_attn): MistralAttention(
|
529 |
+
(q_proj): Linear(in_features=4096, out_features=4096, bias=False)
|
530 |
+
(k_proj): Linear(in_features=4096, out_features=1024, bias=False)
|
531 |
+
(v_proj): Linear(in_features=4096, out_features=1024, bias=False)
|
532 |
+
(o_proj): Linear(in_features=4096, out_features=4096, bias=False)
|
533 |
+
(rotary_emb): MistralRotaryEmbedding()
|
534 |
+
)
|
535 |
+
(mlp): MistralMLP(
|
536 |
+
(gate_proj): Linear(in_features=4096, out_features=14336, bias=False)
|
537 |
+
(up_proj): Linear(in_features=4096, out_features=14336, bias=False)
|
538 |
+
(down_proj): Linear(in_features=14336, out_features=4096, bias=False)
|
539 |
+
(act_fn): SiLUActivation()
|
540 |
+
)
|
541 |
+
(input_layernorm): MistralRMSNorm()
|
542 |
+
(post_attention_layernorm): MistralRMSNorm()
|
543 |
+
)
|
544 |
+
)
|
545 |
+
(norm): MistralRMSNorm()
|
546 |
+
)
|
547 |
+
(lm_head): Linear(in_features=4096, out_features=32002, bias=False)
|
548 |
+
)
|
549 |
+
```
|
550 |
+
|
551 |
+
## Model Configuration
|
552 |
+
|
553 |
+
This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
|
554 |
+
|
555 |
+
|
556 |
+
## Disclaimer
|
557 |
+
|
558 |
+
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
|
559 |
+
|
560 |
+
- Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
|
561 |
+
- Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
|
562 |
+
- Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
|
563 |
+
- Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
|
564 |
+
- Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
|
565 |
+
- Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.
|
566 |
+
|
567 |
+
By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
|