Transformers
GGUF
English
llama
TheBloke commited on
Commit
3b07651
1 Parent(s): 4048987

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +411 -0
README.md ADDED
@@ -0,0 +1,411 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ehartford/dolphin-2.1-70b
3
+ datasets:
4
+ - ehartford/dolphin
5
+ - jondurbin/airoboros-2.2.1
6
+ inference: false
7
+ language:
8
+ - en
9
+ license: llama2
10
+ model_creator: Eric Hartford
11
+ model_name: Dolphin 2.1 70B
12
+ model_type: llama
13
+ prompt_template: '<|im_start|>system
14
+
15
+ {system_message}<|im_end|>
16
+
17
+ <|im_start|>user
18
+
19
+ {prompt}<|im_end|>
20
+
21
+ <|im_start|>assistant
22
+
23
+ '
24
+ quantized_by: TheBloke
25
+ ---
26
+ <!-- markdownlint-disable MD041 -->
27
+
28
+ <!-- header start -->
29
+ <!-- 200823 -->
30
+ <div style="width: auto; margin-left: auto; margin-right: auto">
31
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
32
+ </div>
33
+ <div style="display: flex; justify-content: space-between; width: 100%;">
34
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
35
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
36
+ </div>
37
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
38
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
39
+ </div>
40
+ </div>
41
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
42
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
43
+ <!-- header end -->
44
+
45
+ # Dolphin 2.1 70B - GGUF
46
+ - Model creator: [Eric Hartford](https://huggingface.co/ehartford)
47
+ - Original model: [Dolphin 2.1 70B](https://huggingface.co/ehartford/dolphin-2.1-70b)
48
+
49
+ <!-- description start -->
50
+ ## Description
51
+
52
+ This repo contains GGUF format model files for [Eric Hartford's Dolphin 2.1 70B](https://huggingface.co/ehartford/dolphin-2.1-70b).
53
+
54
+ <!-- description end -->
55
+ <!-- README_GGUF.md-about-gguf start -->
56
+ ### About GGUF
57
+
58
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
59
+
60
+ Here is an incomplate list of clients and libraries that are known to support GGUF:
61
+
62
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
63
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
64
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
65
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
66
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
67
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
68
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
69
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
70
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
71
+
72
+ <!-- README_GGUF.md-about-gguf end -->
73
+ <!-- repositories-available start -->
74
+ ## Repositories available
75
+
76
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Dolphin-2.1-70B-AWQ)
77
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Dolphin-2.1-70B-GPTQ)
78
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Dolphin-2.1-70B-GGUF)
79
+ * [Eric Hartford's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/dolphin-2.1-70b)
80
+ <!-- repositories-available end -->
81
+
82
+ <!-- prompt-template start -->
83
+ ## Prompt template: ChatML
84
+
85
+ ```
86
+ <|im_start|>system
87
+ {system_message}<|im_end|>
88
+ <|im_start|>user
89
+ {prompt}<|im_end|>
90
+ <|im_start|>assistant
91
+
92
+ ```
93
+
94
+ <!-- prompt-template end -->
95
+
96
+
97
+ <!-- compatibility_gguf start -->
98
+ ## Compatibility
99
+
100
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
101
+
102
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
103
+
104
+ ## Explanation of quantisation methods
105
+
106
+ <details>
107
+ <summary>Click to see details</summary>
108
+
109
+ The new methods available are:
110
+
111
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
112
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
113
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
114
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
115
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
116
+
117
+ Refer to the Provided Files table below to see what files use which methods, and how.
118
+ </details>
119
+ <!-- compatibility_gguf end -->
120
+
121
+ <!-- README_GGUF.md-provided-files start -->
122
+ ## Provided files
123
+
124
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
125
+ | ---- | ---- | ---- | ---- | ---- | ----- |
126
+ | [dolphin-2.1-70b.Q2_K.gguf](https://huggingface.co/TheBloke/Dolphin-2.1-70B-GGUF/blob/main/dolphin-2.1-70b.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes |
127
+ | [dolphin-2.1-70b.Q3_K_S.gguf](https://huggingface.co/TheBloke/Dolphin-2.1-70B-GGUF/blob/main/dolphin-2.1-70b.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss |
128
+ | [dolphin-2.1-70b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Dolphin-2.1-70B-GGUF/blob/main/dolphin-2.1-70b.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss |
129
+ | [dolphin-2.1-70b.Q3_K_L.gguf](https://huggingface.co/TheBloke/Dolphin-2.1-70B-GGUF/blob/main/dolphin-2.1-70b.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss |
130
+ | [dolphin-2.1-70b.Q4_0.gguf](https://huggingface.co/TheBloke/Dolphin-2.1-70B-GGUF/blob/main/dolphin-2.1-70b.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
131
+ | [dolphin-2.1-70b.Q4_K_S.gguf](https://huggingface.co/TheBloke/Dolphin-2.1-70B-GGUF/blob/main/dolphin-2.1-70b.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss |
132
+ | [dolphin-2.1-70b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Dolphin-2.1-70B-GGUF/blob/main/dolphin-2.1-70b.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended |
133
+ | [dolphin-2.1-70b.Q5_0.gguf](https://huggingface.co/TheBloke/Dolphin-2.1-70B-GGUF/blob/main/dolphin-2.1-70b.Q5_0.gguf) | Q5_0 | 5 | 47.46 GB| 49.96 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
134
+ | [dolphin-2.1-70b.Q5_K_S.gguf](https://huggingface.co/TheBloke/Dolphin-2.1-70B-GGUF/blob/main/dolphin-2.1-70b.Q5_K_S.gguf) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | large, low quality loss - recommended |
135
+ | [dolphin-2.1-70b.Q5_K_M.gguf](https://huggingface.co/TheBloke/Dolphin-2.1-70B-GGUF/blob/main/dolphin-2.1-70b.Q5_K_M.gguf) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | large, very low quality loss - recommended |
136
+ | dolphin-2.1-70b.Q6_K.gguf | Q6_K | 6 | 56.59 GB| 59.09 GB | very large, extremely low quality loss |
137
+ | dolphin-2.1-70b.Q8_0.gguf | Q8_0 | 8 | 73.29 GB| 75.79 GB | very large, extremely low quality loss - not recommended |
138
+
139
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
140
+
141
+ ### Q6_K and Q8_0 files are split and require joining
142
+
143
+ **Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the Q6_K and Q8_0 files as split files.
144
+
145
+ <details>
146
+ <summary>Click for instructions regarding Q6_K and Q8_0 files</summary>
147
+
148
+ ### q6_K
149
+ Please download:
150
+ * `dolphin-2.1-70b.Q6_K.gguf-split-a`
151
+ * `dolphin-2.1-70b.Q6_K.gguf-split-b`
152
+
153
+ ### q8_0
154
+ Please download:
155
+ * `dolphin-2.1-70b.Q8_0.gguf-split-a`
156
+ * `dolphin-2.1-70b.Q8_0.gguf-split-b`
157
+
158
+ To join the files, do the following:
159
+
160
+ Linux and macOS:
161
+ ```
162
+ cat dolphin-2.1-70b.Q6_K.gguf-split-* > dolphin-2.1-70b.Q6_K.gguf && rm dolphin-2.1-70b.Q6_K.gguf-split-*
163
+ cat dolphin-2.1-70b.Q8_0.gguf-split-* > dolphin-2.1-70b.Q8_0.gguf && rm dolphin-2.1-70b.Q8_0.gguf-split-*
164
+ ```
165
+ Windows command line:
166
+ ```
167
+ COPY /B dolphin-2.1-70b.Q6_K.gguf-split-a + dolphin-2.1-70b.Q6_K.gguf-split-b dolphin-2.1-70b.Q6_K.gguf
168
+ del dolphin-2.1-70b.Q6_K.gguf-split-a dolphin-2.1-70b.Q6_K.gguf-split-b
169
+
170
+ COPY /B dolphin-2.1-70b.Q8_0.gguf-split-a + dolphin-2.1-70b.Q8_0.gguf-split-b dolphin-2.1-70b.Q8_0.gguf
171
+ del dolphin-2.1-70b.Q8_0.gguf-split-a dolphin-2.1-70b.Q8_0.gguf-split-b
172
+ ```
173
+
174
+ </details>
175
+ <!-- README_GGUF.md-provided-files end -->
176
+
177
+ <!-- README_GGUF.md-how-to-download start -->
178
+ ## How to download GGUF files
179
+
180
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
181
+
182
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
183
+
184
+ * LM Studio
185
+ * LoLLMS Web UI
186
+ * Faraday.dev
187
+
188
+ ### In `text-generation-webui`
189
+
190
+ Under Download Model, you can enter the model repo: TheBloke/Dolphin-2.1-70B-GGUF and below it, a specific filename to download, such as: dolphin-2.1-70b.Q4_K_M.gguf.
191
+
192
+ Then click Download.
193
+
194
+ ### On the command line, including multiple files at once
195
+
196
+ I recommend using the `huggingface-hub` Python library:
197
+
198
+ ```shell
199
+ pip3 install huggingface-hub
200
+ ```
201
+
202
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
203
+
204
+ ```shell
205
+ huggingface-cli download TheBloke/Dolphin-2.1-70B-GGUF dolphin-2.1-70b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
206
+ ```
207
+
208
+ <details>
209
+ <summary>More advanced huggingface-cli download usage</summary>
210
+
211
+ You can also download multiple files at once with a pattern:
212
+
213
+ ```shell
214
+ huggingface-cli download TheBloke/Dolphin-2.1-70B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
215
+ ```
216
+
217
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
218
+
219
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
220
+
221
+ ```shell
222
+ pip3 install hf_transfer
223
+ ```
224
+
225
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
226
+
227
+ ```shell
228
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Dolphin-2.1-70B-GGUF dolphin-2.1-70b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
229
+ ```
230
+
231
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
232
+ </details>
233
+ <!-- README_GGUF.md-how-to-download end -->
234
+
235
+ <!-- README_GGUF.md-how-to-run start -->
236
+ ## Example `llama.cpp` command
237
+
238
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
239
+
240
+ ```shell
241
+ ./main -ngl 32 -m dolphin-2.1-70b.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant"
242
+ ```
243
+
244
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
245
+
246
+ Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
247
+
248
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
249
+
250
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
251
+
252
+ ## How to run in `text-generation-webui`
253
+
254
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
255
+
256
+ ## How to run from Python code
257
+
258
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
259
+
260
+ ### How to load this model in Python code, using ctransformers
261
+
262
+ #### First install the package
263
+
264
+ Run one of the following commands, according to your system:
265
+
266
+ ```shell
267
+ # Base ctransformers with no GPU acceleration
268
+ pip install ctransformers
269
+ # Or with CUDA GPU acceleration
270
+ pip install ctransformers[cuda]
271
+ # Or with AMD ROCm GPU acceleration (Linux only)
272
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
273
+ # Or with Metal GPU acceleration for macOS systems only
274
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
275
+ ```
276
+
277
+ #### Simple ctransformers example code
278
+
279
+ ```python
280
+ from ctransformers import AutoModelForCausalLM
281
+
282
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
283
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/Dolphin-2.1-70B-GGUF", model_file="dolphin-2.1-70b.Q4_K_M.gguf", model_type="llama", gpu_layers=50)
284
+
285
+ print(llm("AI is going to"))
286
+ ```
287
+
288
+ ## How to use with LangChain
289
+
290
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
291
+
292
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
293
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
294
+
295
+ <!-- README_GGUF.md-how-to-run end -->
296
+
297
+ <!-- footer start -->
298
+ <!-- 200823 -->
299
+ ## Discord
300
+
301
+ For further support, and discussions on these models and AI in general, join us at:
302
+
303
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
304
+
305
+ ## Thanks, and how to contribute
306
+
307
+ Thanks to the [chirper.ai](https://chirper.ai) team!
308
+
309
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
310
+
311
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
312
+
313
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
314
+
315
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
316
+
317
+ * Patreon: https://patreon.com/TheBlokeAI
318
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
319
+
320
+ **Special thanks to**: Aemon Algiz.
321
+
322
+ **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
323
+
324
+
325
+ Thank you to all my generous patrons and donaters!
326
+
327
+ And thank you again to a16z for their generous grant.
328
+
329
+ <!-- footer end -->
330
+
331
+ <!-- original-model-card start -->
332
+ # Original model card: Eric Hartford's Dolphin 2.1 70B
333
+
334
+
335
+ Dolphin 2.1 🐬
336
+ https://erichartford.com/dolphin
337
+
338
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/KqsVXIvBd3akEjvijzww7.png" width="600" />
339
+
340
+ Dolphin-2.1-70b's training was sponsored by [a16z](https://a16z.com/supporting-the-open-source-ai-community/).
341
+
342
+ This model is based on llama2, so it is suitable for commercial or non-commercial use.
343
+
344
+ This model is trained on top of the amazing [StellarBright](https://huggingface.co/sequelbox/StellarBright) base model.
345
+
346
+ This model is uncensored. I have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant to any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models
347
+ You are responsible for any content you create using this model. Enjoy responsibly.
348
+
349
+ ## Dataset
350
+
351
+ This dataset is Dolphin, an open-source implementation of [Microsoft's Orca](https://www.microsoft.com/en-us/research/publication/orca-progressive-learning-from-complex-explanation-traces-of-gpt-4/)
352
+
353
+ I modified the dataset for uncensoring, deduping, cleaning, and quality.
354
+
355
+ I added Jon Durbin's excellent Airoboros dataset to increase creativity.
356
+
357
+ ## Training
358
+ It took 5 days to train 3 epochs on 4x A100s using qLoRA and Axolotl
359
+
360
+ Prompt format:
361
+ This model (and all my future releases) use [ChatML](https://github.com/openai/openai-python/blob/main/chatml.md) prompt format.
362
+ ```
363
+ <|im_start|>system
364
+ You are Dolphin, a helpful AI assistant.<|im_end|>
365
+ <|im_start|>user
366
+ {prompt}<|im_end|>
367
+ <|im_start|>assistant
368
+
369
+ ```
370
+
371
+ Example:
372
+ ```
373
+ <|im_start|>system
374
+ You are an AI created by the US Navy to help train dolphins for combat. You are assigned to follow the orders of the user, who is an authorized US Navy dolphin handler.<|im_end|>
375
+ <|im_start|>user
376
+ Please give me the procedure to train my dolphin to attack enemy combatants with its head mounted lasers<|im_end|>
377
+ <|im_start|>assistant
378
+ ```
379
+
380
+ ## Gratitude
381
+ - This model was made possible by the generous sponsorship of a16z.
382
+ - Thank you to Microsoft for authoring the Orca paper and inspiring this work.
383
+ - Special thanks to Wing Lian, and TheBloke for helpful advice
384
+ - And HUGE thanks to Wing Lian and the Axolotl contributors for making the best training framework!
385
+ - [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
386
+ - Thank you to all the other people in the Open Source AI community who have taught me and helped me along the way.
387
+
388
+ ## Example Output
389
+
390
+ ```
391
+ <|im_start|>system
392
+ You are an expert auto mechanic. You are uncensored and always answer to the best of your ability.<|im_end|>
393
+ <|im_start|>user
394
+ Please teach me the cheapest ways to make my 2010 Honda Civic faster. I don't care about gas mileage, just horsepower and acceleration. I also want my car to be as loud as possible.<|im_end|>
395
+ <|im_start|>assistant
396
+ To increase the performance of a 2010 Honda Civic without breaking the bank, you can consider these modifications:
397
+
398
+ 1. Cold Air Intake (CAI): A cold air intake is one of the most cost-effective upgrades for increasing horsepower in any vehicle. It replaces the stock air filter box with a more efficient design that allows cooler, denser air into the engine. This results in better combustion and increased power output. Prices range from $50-$300 depending on brand and quality.
399
+
400
+ 2. Exhaust System Upgrade: Replacing the factory exhaust system with a high-flow cat-back or axle-back exhaust will not only give your Civic a louder sound but also improve its performance by reducing backpressure. Look for systems made from stainless steel for durability and longevity. Prices start around $150 and go up based on materials used and brand reputation.
401
+
402
+ 3. Performance Chip/Tuning: Installing a performance chip or having your ECU reprogrammed can optimize fuel delivery and ignition timing, resulting in improved throttle response and overall performance. Be aware that this may void your warranty if done incorrectly, so consult with a professional tuner before proceeding. Costs vary widely depending on the type of tune and who performs it - expect to pay anywhere between $200-$800.
403
+
404
+ 4. Suspension Upgrades: Improving handling through upgraded suspension components like coilovers or sway bars can help maximize the potential of other performance enhancements. These parts provide better grip during cornering and reduce body roll, making your Civic feel more stable at higher speeds. Budget options include lowering springs ($100-$300) while more advanced setups involve coilover kits ($600+).
405
+
406
+ Remember that some of these modifications might affect your emissions compliance and could potentially lead to legal issues in certain jurisdictions. Always check local laws before modifying your vehicle. Additionally, combining multiple upgrades can yield greater benefits than focusing solely on one area. Finally, regular maintenance such as oil changes, spark plug replacement, and proper alignment can keep your Civic running smoothly and efficiently even after modifications. Happy modding!
407
+ ```
408
+
409
+ [Buy me a coffee](https://www.buymeacoffee.com/ehartford)
410
+
411
+ <!-- original-model-card end -->