Upload README.md
Browse files
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
---
|
2 |
-
inference: false
|
3 |
-
license: llama2
|
4 |
-
pipeline_tag: text-generation
|
5 |
datasets:
|
6 |
- mlabonne/guanaco-llama2-1k
|
|
|
|
|
7 |
model_creator: MayaPH
|
8 |
model_link: https://huggingface.co/MayaPH/GodziLLa2-70B
|
9 |
model_name: GodziLLa2 70B
|
10 |
model_type: llama
|
|
|
11 |
quantized_by: TheBloke
|
12 |
tags:
|
13 |
- merge
|
@@ -36,18 +36,24 @@ tags:
|
|
36 |
- Model creator: [MayaPH](https://huggingface.co/mayaph)
|
37 |
- Original model: [GodziLLa2 70B](https://huggingface.co/MayaPH/GodziLLa2-70B)
|
38 |
|
|
|
39 |
## Description
|
40 |
|
41 |
This repo contains GPTQ model files for [MayaPH's GodziLLa2 70B](https://huggingface.co/MayaPH/GodziLLa2-70B).
|
42 |
|
43 |
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
|
44 |
|
|
|
|
|
45 |
## Repositories available
|
46 |
|
47 |
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ)
|
48 |
-
* [2, 3, 4, 5, 6 and 8-bit
|
|
|
49 |
* [MayaPH's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/MayaPH/GodziLLa2-70B)
|
|
|
50 |
|
|
|
51 |
## Prompt template: Alpaca
|
52 |
|
53 |
```
|
@@ -57,22 +63,26 @@ Below is an instruction that describes a task. Write a response that appropriate
|
|
57 |
{prompt}
|
58 |
|
59 |
### Response:
|
|
|
60 |
```
|
61 |
|
|
|
|
|
|
|
62 |
## Provided files and GPTQ parameters
|
63 |
|
64 |
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
|
65 |
|
66 |
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
|
67 |
|
68 |
-
All GPTQ files are made with AutoGPTQ.
|
69 |
|
70 |
<details>
|
71 |
<summary>Explanation of GPTQ parameters</summary>
|
72 |
|
73 |
- Bits: The bit size of the quantised model.
|
74 |
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
|
75 |
-
- Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
|
76 |
- Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
|
77 |
- GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
|
78 |
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
|
@@ -82,13 +92,16 @@ All GPTQ files are made with AutoGPTQ.
|
|
82 |
|
83 |
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
|
84 |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
|
85 |
-
| [main](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
|
86 |
-
| [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
|
87 |
-
| [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
|
88 |
-
| [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
|
89 |
-
| [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.77 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
|
90 |
| [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
|
91 |
|
|
|
|
|
|
|
92 |
## How to download from branches
|
93 |
|
94 |
- In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/GodziLLa2-70B-GPTQ:gptq-4bit-32g-actorder_True`
|
@@ -97,73 +110,72 @@ All GPTQ files are made with AutoGPTQ.
|
|
97 |
git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ
|
98 |
```
|
99 |
- In Python Transformers code, the branch is the `revision` parameter; see below.
|
100 |
-
|
|
|
101 |
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
102 |
|
103 |
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
104 |
|
105 |
-
It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
|
106 |
|
107 |
1. Click the **Model tab**.
|
108 |
2. Under **Download custom model or LoRA**, enter `TheBloke/GodziLLa2-70B-GPTQ`.
|
109 |
- To download from a specific branch, enter for example `TheBloke/GodziLLa2-70B-GPTQ:gptq-4bit-32g-actorder_True`
|
110 |
- see Provided Files above for the list of branches for each option.
|
111 |
3. Click **Download**.
|
112 |
-
4. The model will start downloading. Once it's finished it will say "Done"
|
113 |
5. In the top left, click the refresh icon next to **Model**.
|
114 |
6. In the **Model** dropdown, choose the model you just downloaded: `GodziLLa2-70B-GPTQ`
|
115 |
7. The model will automatically load, and is now ready for use!
|
116 |
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
|
117 |
-
* Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
|
118 |
9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
|
|
|
119 |
|
|
|
120 |
## How to use this GPTQ model from Python code
|
121 |
|
122 |
-
|
123 |
|
124 |
-
|
125 |
-
pip3 install auto-gptq
|
126 |
-
```
|
127 |
|
128 |
-
|
|
|
|
|
129 |
```
|
|
|
|
|
|
|
|
|
130 |
pip3 uninstall -y auto-gptq
|
131 |
git clone https://github.com/PanQiWei/AutoGPTQ
|
132 |
cd AutoGPTQ
|
133 |
pip3 install .
|
134 |
```
|
135 |
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
```python
|
139 |
-
from transformers import AutoTokenizer, pipeline
|
140 |
-
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
141 |
|
142 |
model_name_or_path = "TheBloke/GodziLLa2-70B-GPTQ"
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
145 |
|
146 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
147 |
|
148 |
-
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
|
149 |
-
use_safetensors=True,
|
150 |
-
trust_remote_code=False,
|
151 |
-
device="cuda:0",
|
152 |
-
use_triton=use_triton,
|
153 |
-
quantize_config=None)
|
154 |
-
|
155 |
-
"""
|
156 |
-
# To download from a specific branch, use the revision parameter, as in this example:
|
157 |
-
# Note that `revision` requires AutoGPTQ 0.3.1 or later!
|
158 |
-
|
159 |
-
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
|
160 |
-
revision="gptq-4bit-32g-actorder_True",
|
161 |
-
use_safetensors=True,
|
162 |
-
trust_remote_code=False,
|
163 |
-
device="cuda:0",
|
164 |
-
quantize_config=None)
|
165 |
-
"""
|
166 |
-
|
167 |
prompt = "Tell me about AI"
|
168 |
prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
169 |
|
@@ -171,6 +183,7 @@ prompt_template=f'''Below is an instruction that describes a task. Write a respo
|
|
171 |
{prompt}
|
172 |
|
173 |
### Response:
|
|
|
174 |
'''
|
175 |
|
176 |
print("\n\n*** Generate:")
|
@@ -181,9 +194,6 @@ print(tokenizer.decode(output[0]))
|
|
181 |
|
182 |
# Inference can also be done using transformers' pipeline
|
183 |
|
184 |
-
# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
|
185 |
-
logging.set_verbosity(logging.CRITICAL)
|
186 |
-
|
187 |
print("*** Pipeline:")
|
188 |
pipe = pipeline(
|
189 |
"text-generation",
|
@@ -197,12 +207,17 @@ pipe = pipeline(
|
|
197 |
|
198 |
print(pipe(prompt_template)[0]['generated_text'])
|
199 |
```
|
|
|
200 |
|
|
|
201 |
## Compatibility
|
202 |
|
203 |
-
The files provided
|
|
|
|
|
204 |
|
205 |
-
|
|
|
206 |
|
207 |
<!-- footer start -->
|
208 |
<!-- 200823 -->
|
@@ -227,7 +242,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
|
|
227 |
|
228 |
**Special thanks to**: Aemon Algiz.
|
229 |
|
230 |
-
**Patreon special mentions**:
|
231 |
|
232 |
|
233 |
Thank you to all my generous patrons and donaters!
|
@@ -238,11 +253,12 @@ And thank you again to a16z for their generous grant.
|
|
238 |
|
239 |
# Original model card: MayaPH's GodziLLa2 70B
|
240 |
|
|
|
241 |
<img src="https://drive.google.com/uc?export=view&id=1D8wxXkS1nsq3uqbOzOLwgx1cLJhY1nvN" alt="GodziLLa2-70B">
|
242 |
Released August 11, 2023
|
243 |
|
244 |
## Model Description
|
245 |
-
GodziLLa 2 70B is an experimental combination of various proprietary LoRAs from Maya Philippines and [Guanaco LLaMA 2 1K dataset](https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k), with LLaMA 2 70B. This model's primary purpose is to stress test the limitations of composite, instruction-following LLMs and observe its performance with respect to other LLMs available on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). This model debuted in the leaderboard at rank #4 (August 17, 2023).
|
246 |
![Godzilla Happy GIF](https://i.pinimg.com/originals/81/3a/e0/813ae09a30f0bc44130cd2c834fe2eba.gif)
|
247 |
|
248 |
## Open LLM Leaderboard Metrics
|
@@ -260,14 +276,16 @@ According to the leaderboard description, here are the benchmarks used for the e
|
|
260 |
- [HellaSwag](https://arxiv.org/abs/1905.07830) (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
|
261 |
- [TruthfulQA](https://arxiv.org/abs/2109.07958) (0-shot) - a test to measure a model’s propensity to reproduce falsehoods commonly found online.
|
262 |
|
|
|
|
|
263 |
## Leaderboard Highlights (as of August 17, 2023)
|
264 |
-
- Godzilla 2 70B
|
265 |
- Godzilla 2 70B ranks #3 in the ARC challenge.
|
266 |
- Godzilla 2 70B ranks #5 in the TruthfulQA benchmark.
|
267 |
- *Godzilla 2 70B beats GPT-3.5 (ChatGPT) in terms of average performance and the HellaSwag benchmark (87.53 > 85.5).
|
268 |
- *Godzilla 2 70B outperforms GPT-3.5 (ChatGPT) and GPT-4 on the TruthfulQA benchmark (61.54 for G2-70B, 47 for GPT-3.5, 59 for GPT-4).
|
269 |
- *Godzilla 2 70B is on par with GPT-3.5 (ChatGPT) on the MMLU benchmark (<0.12%).
|
270 |
-
|
271 |
*Based on a [leaderboard clone](https://huggingface.co/spaces/gsaivinay/open_llm_leaderboard) with GPT-3.5 and GPT-4 included.
|
272 |
|
273 |
### Reproducing Evaluation Results
|
@@ -319,6 +337,9 @@ python main.py --model hf-causal-experimental --model_args pretrained=MayaPH/God
|
|
319 |
When using GodziLLa 2 70B, kindly take note of the following:
|
320 |
- The default precision is `fp32`, and the total file size that would be loaded onto the RAM/VRAM is around 275 GB. Consider using a lower precision (fp16, int8, int4) to save memory.
|
321 |
- To further save on memory, set the `low_cpu_mem_usage` argument to True.
|
|
|
|
|
|
|
322 |
|
323 |
## Ethical Considerations
|
324 |
When using GodziLLa 2 70B, it is important to consider the following ethical considerations:
|
@@ -340,4 +361,4 @@ For additional information or inquiries about GodziLLa 2 70B, please contact the
|
|
340 |
GodziLLa 2 70B is an AI language model from Maya Philippines. It is provided "as is" without warranty of any kind, express or implied. The model developers and Maya Philippines shall not be liable for any direct or indirect damages arising from the use of this model.
|
341 |
|
342 |
## Acknowledgments
|
343 |
-
The development of GodziLLa 2 70B was made possible by Maya Philippines and the curation of the various proprietary datasets and creation of the different proprietary LoRA adapters. Special thanks to mlabonne for the Guanaco dataset found [here](https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k).
|
|
|
1 |
---
|
|
|
|
|
|
|
2 |
datasets:
|
3 |
- mlabonne/guanaco-llama2-1k
|
4 |
+
inference: false
|
5 |
+
license: llama2
|
6 |
model_creator: MayaPH
|
7 |
model_link: https://huggingface.co/MayaPH/GodziLLa2-70B
|
8 |
model_name: GodziLLa2 70B
|
9 |
model_type: llama
|
10 |
+
pipeline_tag: text-generation
|
11 |
quantized_by: TheBloke
|
12 |
tags:
|
13 |
- merge
|
|
|
36 |
- Model creator: [MayaPH](https://huggingface.co/mayaph)
|
37 |
- Original model: [GodziLLa2 70B](https://huggingface.co/MayaPH/GodziLLa2-70B)
|
38 |
|
39 |
+
<!-- description start -->
|
40 |
## Description
|
41 |
|
42 |
This repo contains GPTQ model files for [MayaPH's GodziLLa2 70B](https://huggingface.co/MayaPH/GodziLLa2-70B).
|
43 |
|
44 |
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
|
45 |
|
46 |
+
<!-- description end -->
|
47 |
+
<!-- repositories-available start -->
|
48 |
## Repositories available
|
49 |
|
50 |
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ)
|
51 |
+
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/GodziLLa2-70B-GGUF)
|
52 |
+
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/GodziLLa2-70B-GGML)
|
53 |
* [MayaPH's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/MayaPH/GodziLLa2-70B)
|
54 |
+
<!-- repositories-available end -->
|
55 |
|
56 |
+
<!-- prompt-template start -->
|
57 |
## Prompt template: Alpaca
|
58 |
|
59 |
```
|
|
|
63 |
{prompt}
|
64 |
|
65 |
### Response:
|
66 |
+
|
67 |
```
|
68 |
|
69 |
+
<!-- prompt-template end -->
|
70 |
+
|
71 |
+
<!-- README_GPTQ.md-provided-files start -->
|
72 |
## Provided files and GPTQ parameters
|
73 |
|
74 |
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
|
75 |
|
76 |
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
|
77 |
|
78 |
+
All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
|
79 |
|
80 |
<details>
|
81 |
<summary>Explanation of GPTQ parameters</summary>
|
82 |
|
83 |
- Bits: The bit size of the quantised model.
|
84 |
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
|
85 |
+
- Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
|
86 |
- Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
|
87 |
- GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
|
88 |
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
|
|
|
92 |
|
93 |
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
|
94 |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
|
95 |
+
| [main](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
|
96 |
+
| [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
|
97 |
+
| [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
|
98 |
+
| [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
|
99 |
+
| [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.77 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
|
100 |
| [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
|
101 |
|
102 |
+
<!-- README_GPTQ.md-provided-files end -->
|
103 |
+
|
104 |
+
<!-- README_GPTQ.md-download-from-branches start -->
|
105 |
## How to download from branches
|
106 |
|
107 |
- In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/GodziLLa2-70B-GPTQ:gptq-4bit-32g-actorder_True`
|
|
|
110 |
git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ
|
111 |
```
|
112 |
- In Python Transformers code, the branch is the `revision` parameter; see below.
|
113 |
+
<!-- README_GPTQ.md-download-from-branches end -->
|
114 |
+
<!-- README_GPTQ.md-text-generation-webui start -->
|
115 |
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
116 |
|
117 |
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
118 |
|
119 |
+
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
|
120 |
|
121 |
1. Click the **Model tab**.
|
122 |
2. Under **Download custom model or LoRA**, enter `TheBloke/GodziLLa2-70B-GPTQ`.
|
123 |
- To download from a specific branch, enter for example `TheBloke/GodziLLa2-70B-GPTQ:gptq-4bit-32g-actorder_True`
|
124 |
- see Provided Files above for the list of branches for each option.
|
125 |
3. Click **Download**.
|
126 |
+
4. The model will start downloading. Once it's finished it will say "Done".
|
127 |
5. In the top left, click the refresh icon next to **Model**.
|
128 |
6. In the **Model** dropdown, choose the model you just downloaded: `GodziLLa2-70B-GPTQ`
|
129 |
7. The model will automatically load, and is now ready for use!
|
130 |
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
|
131 |
+
* Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
|
132 |
9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
|
133 |
+
<!-- README_GPTQ.md-text-generation-webui end -->
|
134 |
|
135 |
+
<!-- README_GPTQ.md-use-from-python start -->
|
136 |
## How to use this GPTQ model from Python code
|
137 |
|
138 |
+
### Install the necessary packages
|
139 |
|
140 |
+
Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
|
|
|
|
|
141 |
|
142 |
+
```shell
|
143 |
+
pip3 install transformers>=4.32.0 optimum>=1.12.0
|
144 |
+
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
|
145 |
```
|
146 |
+
|
147 |
+
If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
|
148 |
+
|
149 |
+
```shell
|
150 |
pip3 uninstall -y auto-gptq
|
151 |
git clone https://github.com/PanQiWei/AutoGPTQ
|
152 |
cd AutoGPTQ
|
153 |
pip3 install .
|
154 |
```
|
155 |
|
156 |
+
### For CodeLlama models only: you must use Transformers 4.33.0 or later.
|
157 |
+
|
158 |
+
If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
|
159 |
+
```shell
|
160 |
+
pip3 uninstall -y transformers
|
161 |
+
pip3 install git+https://github.com/huggingface/transformers.git
|
162 |
+
```
|
163 |
+
|
164 |
+
### You can then use the following code
|
165 |
|
166 |
```python
|
167 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
168 |
|
169 |
model_name_or_path = "TheBloke/GodziLLa2-70B-GPTQ"
|
170 |
+
# To use a different branch, change revision
|
171 |
+
# For example: revision="gptq-4bit-32g-actorder_True"
|
172 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
|
173 |
+
torch_dtype=torch.float16,
|
174 |
+
device_map="auto",
|
175 |
+
revision="main")
|
176 |
|
177 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
prompt = "Tell me about AI"
|
180 |
prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
181 |
|
|
|
183 |
{prompt}
|
184 |
|
185 |
### Response:
|
186 |
+
|
187 |
'''
|
188 |
|
189 |
print("\n\n*** Generate:")
|
|
|
194 |
|
195 |
# Inference can also be done using transformers' pipeline
|
196 |
|
|
|
|
|
|
|
197 |
print("*** Pipeline:")
|
198 |
pipe = pipeline(
|
199 |
"text-generation",
|
|
|
207 |
|
208 |
print(pipe(prompt_template)[0]['generated_text'])
|
209 |
```
|
210 |
+
<!-- README_GPTQ.md-use-from-python end -->
|
211 |
|
212 |
+
<!-- README_GPTQ.md-compatibility start -->
|
213 |
## Compatibility
|
214 |
|
215 |
+
The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
|
216 |
+
|
217 |
+
[ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
|
218 |
|
219 |
+
[Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
|
220 |
+
<!-- README_GPTQ.md-compatibility end -->
|
221 |
|
222 |
<!-- footer start -->
|
223 |
<!-- 200823 -->
|
|
|
242 |
|
243 |
**Special thanks to**: Aemon Algiz.
|
244 |
|
245 |
+
**Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
|
246 |
|
247 |
|
248 |
Thank you to all my generous patrons and donaters!
|
|
|
253 |
|
254 |
# Original model card: MayaPH's GodziLLa2 70B
|
255 |
|
256 |
+
|
257 |
<img src="https://drive.google.com/uc?export=view&id=1D8wxXkS1nsq3uqbOzOLwgx1cLJhY1nvN" alt="GodziLLa2-70B">
|
258 |
Released August 11, 2023
|
259 |
|
260 |
## Model Description
|
261 |
+
GodziLLa 2 70B is an experimental combination of various proprietary LoRAs from Maya Philippines and [Guanaco LLaMA 2 1K dataset](https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k), with LLaMA 2 70B. This model's primary purpose is to stress test the limitations of composite, instruction-following LLMs and observe its performance with respect to other LLMs available on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). This model debuted in the leaderboard at rank #4 (August 17, 2023) and operates under the Llama 2 license.
|
262 |
![Godzilla Happy GIF](https://i.pinimg.com/originals/81/3a/e0/813ae09a30f0bc44130cd2c834fe2eba.gif)
|
263 |
|
264 |
## Open LLM Leaderboard Metrics
|
|
|
276 |
- [HellaSwag](https://arxiv.org/abs/1905.07830) (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
|
277 |
- [TruthfulQA](https://arxiv.org/abs/2109.07958) (0-shot) - a test to measure a model’s propensity to reproduce falsehoods commonly found online.
|
278 |
|
279 |
+
A detailed breakdown of the evaluation can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MayaPH__GodziLLa2-70B). Huge thanks to [@thomwolf](https://huggingface.co/thomwolf).
|
280 |
+
|
281 |
## Leaderboard Highlights (as of August 17, 2023)
|
282 |
+
- Godzilla 2 70B debuts at 4th place worldwide in the Open LLM Leaderboard.
|
283 |
- Godzilla 2 70B ranks #3 in the ARC challenge.
|
284 |
- Godzilla 2 70B ranks #5 in the TruthfulQA benchmark.
|
285 |
- *Godzilla 2 70B beats GPT-3.5 (ChatGPT) in terms of average performance and the HellaSwag benchmark (87.53 > 85.5).
|
286 |
- *Godzilla 2 70B outperforms GPT-3.5 (ChatGPT) and GPT-4 on the TruthfulQA benchmark (61.54 for G2-70B, 47 for GPT-3.5, 59 for GPT-4).
|
287 |
- *Godzilla 2 70B is on par with GPT-3.5 (ChatGPT) on the MMLU benchmark (<0.12%).
|
288 |
+
|
289 |
*Based on a [leaderboard clone](https://huggingface.co/spaces/gsaivinay/open_llm_leaderboard) with GPT-3.5 and GPT-4 included.
|
290 |
|
291 |
### Reproducing Evaluation Results
|
|
|
337 |
When using GodziLLa 2 70B, kindly take note of the following:
|
338 |
- The default precision is `fp32`, and the total file size that would be loaded onto the RAM/VRAM is around 275 GB. Consider using a lower precision (fp16, int8, int4) to save memory.
|
339 |
- To further save on memory, set the `low_cpu_mem_usage` argument to True.
|
340 |
+
- If you wish to use a quantized version of GodziLLa2-70B, you can either access TheBloke's [GPTQ](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ) or [GGML](https://huggingface.co/TheBloke/GodziLLa2-70B-GGML) version of GodziLLa2-70B.
|
341 |
+
- [GodziLLa2-70B-GPTQ](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ#description) is available in 4-bit and 3-bit
|
342 |
+
- [GodziLLa2-70B-GGML](https://huggingface.co/TheBloke/GodziLLa2-70B-GGML#provided-files) is available in 8-bit, 6-bit, 5-bit, 4-bit, 3-bit, and 2-bit
|
343 |
|
344 |
## Ethical Considerations
|
345 |
When using GodziLLa 2 70B, it is important to consider the following ethical considerations:
|
|
|
361 |
GodziLLa 2 70B is an AI language model from Maya Philippines. It is provided "as is" without warranty of any kind, express or implied. The model developers and Maya Philippines shall not be liable for any direct or indirect damages arising from the use of this model.
|
362 |
|
363 |
## Acknowledgments
|
364 |
+
The development of GodziLLa 2 70B was made possible by Maya Philippines and the curation of the various proprietary datasets and creation of the different proprietary LoRA adapters. Special thanks to mlabonne for the Guanaco dataset found [here](https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k). Last but not least, huge thanks to [TheBloke](https://huggingface.co/TheBloke) for the quantized models, making our model easily accessible to a wider community.
|