TheBloke commited on
Commit
968c1c0
1 Parent(s): f16c8e5

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -54
README.md CHANGED
@@ -1,13 +1,13 @@
1
  ---
2
- inference: false
3
- license: llama2
4
- pipeline_tag: text-generation
5
  datasets:
6
  - mlabonne/guanaco-llama2-1k
 
 
7
  model_creator: MayaPH
8
  model_link: https://huggingface.co/MayaPH/GodziLLa2-70B
9
  model_name: GodziLLa2 70B
10
  model_type: llama
 
11
  quantized_by: TheBloke
12
  tags:
13
  - merge
@@ -36,18 +36,24 @@ tags:
36
  - Model creator: [MayaPH](https://huggingface.co/mayaph)
37
  - Original model: [GodziLLa2 70B](https://huggingface.co/MayaPH/GodziLLa2-70B)
38
 
 
39
  ## Description
40
 
41
  This repo contains GPTQ model files for [MayaPH's GodziLLa2 70B](https://huggingface.co/MayaPH/GodziLLa2-70B).
42
 
43
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
44
 
 
 
45
  ## Repositories available
46
 
47
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ)
48
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/GodziLLa2-70B-GGML)
 
49
  * [MayaPH's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/MayaPH/GodziLLa2-70B)
 
50
 
 
51
  ## Prompt template: Alpaca
52
 
53
  ```
@@ -57,22 +63,26 @@ Below is an instruction that describes a task. Write a response that appropriate
57
  {prompt}
58
 
59
  ### Response:
 
60
  ```
61
 
 
 
 
62
  ## Provided files and GPTQ parameters
63
 
64
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
65
 
66
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
67
 
68
- All GPTQ files are made with AutoGPTQ.
69
 
70
  <details>
71
  <summary>Explanation of GPTQ parameters</summary>
72
 
73
  - Bits: The bit size of the quantised model.
74
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
75
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
76
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
77
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
78
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
@@ -82,13 +92,16 @@ All GPTQ files are made with AutoGPTQ.
82
 
83
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
84
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
85
- | [main](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
86
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
87
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
88
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
89
- | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.77 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
90
  | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
91
 
 
 
 
92
  ## How to download from branches
93
 
94
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/GodziLLa2-70B-GPTQ:gptq-4bit-32g-actorder_True`
@@ -97,73 +110,72 @@ All GPTQ files are made with AutoGPTQ.
97
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ
98
  ```
99
  - In Python Transformers code, the branch is the `revision` parameter; see below.
100
-
 
101
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
102
 
103
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
104
 
105
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
106
 
107
  1. Click the **Model tab**.
108
  2. Under **Download custom model or LoRA**, enter `TheBloke/GodziLLa2-70B-GPTQ`.
109
  - To download from a specific branch, enter for example `TheBloke/GodziLLa2-70B-GPTQ:gptq-4bit-32g-actorder_True`
110
  - see Provided Files above for the list of branches for each option.
111
  3. Click **Download**.
112
- 4. The model will start downloading. Once it's finished it will say "Done"
113
  5. In the top left, click the refresh icon next to **Model**.
114
  6. In the **Model** dropdown, choose the model you just downloaded: `GodziLLa2-70B-GPTQ`
115
  7. The model will automatically load, and is now ready for use!
116
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
117
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
118
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
119
 
 
120
  ## How to use this GPTQ model from Python code
121
 
122
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
123
 
124
- ```
125
- pip3 install auto-gptq
126
- ```
127
 
128
- If you have problems installing AutoGPTQ, please build from source instead:
 
 
129
  ```
 
 
 
 
130
  pip3 uninstall -y auto-gptq
131
  git clone https://github.com/PanQiWei/AutoGPTQ
132
  cd AutoGPTQ
133
  pip3 install .
134
  ```
135
 
136
- Then try the following example code:
 
 
 
 
 
 
 
 
137
 
138
  ```python
139
- from transformers import AutoTokenizer, pipeline, logging
140
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
141
 
142
  model_name_or_path = "TheBloke/GodziLLa2-70B-GPTQ"
143
-
144
- use_triton = False
 
 
 
 
145
 
146
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
147
 
148
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
149
- use_safetensors=True,
150
- trust_remote_code=False,
151
- device="cuda:0",
152
- use_triton=use_triton,
153
- quantize_config=None)
154
-
155
- """
156
- # To download from a specific branch, use the revision parameter, as in this example:
157
- # Note that `revision` requires AutoGPTQ 0.3.1 or later!
158
-
159
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
160
- revision="gptq-4bit-32g-actorder_True",
161
- use_safetensors=True,
162
- trust_remote_code=False,
163
- device="cuda:0",
164
- quantize_config=None)
165
- """
166
-
167
  prompt = "Tell me about AI"
168
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
169
 
@@ -171,6 +183,7 @@ prompt_template=f'''Below is an instruction that describes a task. Write a respo
171
  {prompt}
172
 
173
  ### Response:
 
174
  '''
175
 
176
  print("\n\n*** Generate:")
@@ -181,9 +194,6 @@ print(tokenizer.decode(output[0]))
181
 
182
  # Inference can also be done using transformers' pipeline
183
 
184
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
185
- logging.set_verbosity(logging.CRITICAL)
186
-
187
  print("*** Pipeline:")
188
  pipe = pipeline(
189
  "text-generation",
@@ -197,12 +207,17 @@ pipe = pipeline(
197
 
198
  print(pipe(prompt_template)[0]['generated_text'])
199
  ```
 
200
 
 
201
  ## Compatibility
202
 
203
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
 
 
204
 
205
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
206
 
207
  <!-- footer start -->
208
  <!-- 200823 -->
@@ -227,7 +242,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
227
 
228
  **Special thanks to**: Aemon Algiz.
229
 
230
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
231
 
232
 
233
  Thank you to all my generous patrons and donaters!
@@ -238,11 +253,12 @@ And thank you again to a16z for their generous grant.
238
 
239
  # Original model card: MayaPH's GodziLLa2 70B
240
 
 
241
  <img src="https://drive.google.com/uc?export=view&id=1D8wxXkS1nsq3uqbOzOLwgx1cLJhY1nvN" alt="GodziLLa2-70B">
242
  Released August 11, 2023
243
 
244
  ## Model Description
245
- GodziLLa 2 70B is an experimental combination of various proprietary LoRAs from Maya Philippines and [Guanaco LLaMA 2 1K dataset](https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k), with LLaMA 2 70B. This model's primary purpose is to stress test the limitations of composite, instruction-following LLMs and observe its performance with respect to other LLMs available on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). This model debuted in the leaderboard at rank #4 (August 17, 2023).
246
  ![Godzilla Happy GIF](https://i.pinimg.com/originals/81/3a/e0/813ae09a30f0bc44130cd2c834fe2eba.gif)
247
 
248
  ## Open LLM Leaderboard Metrics
@@ -260,14 +276,16 @@ According to the leaderboard description, here are the benchmarks used for the e
260
  - [HellaSwag](https://arxiv.org/abs/1905.07830) (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
261
  - [TruthfulQA](https://arxiv.org/abs/2109.07958) (0-shot) - a test to measure a model’s propensity to reproduce falsehoods commonly found online.
262
 
 
 
263
  ## Leaderboard Highlights (as of August 17, 2023)
264
- - Godzilla 2 70B ranks 4th worldwide in the Open LLM Leaderboard.
265
  - Godzilla 2 70B ranks #3 in the ARC challenge.
266
  - Godzilla 2 70B ranks #5 in the TruthfulQA benchmark.
267
  - *Godzilla 2 70B beats GPT-3.5 (ChatGPT) in terms of average performance and the HellaSwag benchmark (87.53 > 85.5).
268
  - *Godzilla 2 70B outperforms GPT-3.5 (ChatGPT) and GPT-4 on the TruthfulQA benchmark (61.54 for G2-70B, 47 for GPT-3.5, 59 for GPT-4).
269
  - *Godzilla 2 70B is on par with GPT-3.5 (ChatGPT) on the MMLU benchmark (<0.12%).
270
-
271
  *Based on a [leaderboard clone](https://huggingface.co/spaces/gsaivinay/open_llm_leaderboard) with GPT-3.5 and GPT-4 included.
272
 
273
  ### Reproducing Evaluation Results
@@ -319,6 +337,9 @@ python main.py --model hf-causal-experimental --model_args pretrained=MayaPH/God
319
  When using GodziLLa 2 70B, kindly take note of the following:
320
  - The default precision is `fp32`, and the total file size that would be loaded onto the RAM/VRAM is around 275 GB. Consider using a lower precision (fp16, int8, int4) to save memory.
321
  - To further save on memory, set the `low_cpu_mem_usage` argument to True.
 
 
 
322
 
323
  ## Ethical Considerations
324
  When using GodziLLa 2 70B, it is important to consider the following ethical considerations:
@@ -340,4 +361,4 @@ For additional information or inquiries about GodziLLa 2 70B, please contact the
340
  GodziLLa 2 70B is an AI language model from Maya Philippines. It is provided "as is" without warranty of any kind, express or implied. The model developers and Maya Philippines shall not be liable for any direct or indirect damages arising from the use of this model.
341
 
342
  ## Acknowledgments
343
- The development of GodziLLa 2 70B was made possible by Maya Philippines and the curation of the various proprietary datasets and creation of the different proprietary LoRA adapters. Special thanks to mlabonne for the Guanaco dataset found [here](https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k).
 
1
  ---
 
 
 
2
  datasets:
3
  - mlabonne/guanaco-llama2-1k
4
+ inference: false
5
+ license: llama2
6
  model_creator: MayaPH
7
  model_link: https://huggingface.co/MayaPH/GodziLLa2-70B
8
  model_name: GodziLLa2 70B
9
  model_type: llama
10
+ pipeline_tag: text-generation
11
  quantized_by: TheBloke
12
  tags:
13
  - merge
 
36
  - Model creator: [MayaPH](https://huggingface.co/mayaph)
37
  - Original model: [GodziLLa2 70B](https://huggingface.co/MayaPH/GodziLLa2-70B)
38
 
39
+ <!-- description start -->
40
  ## Description
41
 
42
  This repo contains GPTQ model files for [MayaPH's GodziLLa2 70B](https://huggingface.co/MayaPH/GodziLLa2-70B).
43
 
44
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
45
 
46
+ <!-- description end -->
47
+ <!-- repositories-available start -->
48
  ## Repositories available
49
 
50
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ)
51
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/GodziLLa2-70B-GGUF)
52
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/GodziLLa2-70B-GGML)
53
  * [MayaPH's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/MayaPH/GodziLLa2-70B)
54
+ <!-- repositories-available end -->
55
 
56
+ <!-- prompt-template start -->
57
  ## Prompt template: Alpaca
58
 
59
  ```
 
63
  {prompt}
64
 
65
  ### Response:
66
+
67
  ```
68
 
69
+ <!-- prompt-template end -->
70
+
71
+ <!-- README_GPTQ.md-provided-files start -->
72
  ## Provided files and GPTQ parameters
73
 
74
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
75
 
76
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
77
 
78
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
79
 
80
  <details>
81
  <summary>Explanation of GPTQ parameters</summary>
82
 
83
  - Bits: The bit size of the quantised model.
84
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
85
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
86
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
87
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
88
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
 
92
 
93
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
94
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
95
+ | [main](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
96
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
97
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
98
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
99
+ | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.77 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
100
  | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
101
 
102
+ <!-- README_GPTQ.md-provided-files end -->
103
+
104
+ <!-- README_GPTQ.md-download-from-branches start -->
105
  ## How to download from branches
106
 
107
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/GodziLLa2-70B-GPTQ:gptq-4bit-32g-actorder_True`
 
110
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ
111
  ```
112
  - In Python Transformers code, the branch is the `revision` parameter; see below.
113
+ <!-- README_GPTQ.md-download-from-branches end -->
114
+ <!-- README_GPTQ.md-text-generation-webui start -->
115
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
116
 
117
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
118
 
119
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
120
 
121
  1. Click the **Model tab**.
122
  2. Under **Download custom model or LoRA**, enter `TheBloke/GodziLLa2-70B-GPTQ`.
123
  - To download from a specific branch, enter for example `TheBloke/GodziLLa2-70B-GPTQ:gptq-4bit-32g-actorder_True`
124
  - see Provided Files above for the list of branches for each option.
125
  3. Click **Download**.
126
+ 4. The model will start downloading. Once it's finished it will say "Done".
127
  5. In the top left, click the refresh icon next to **Model**.
128
  6. In the **Model** dropdown, choose the model you just downloaded: `GodziLLa2-70B-GPTQ`
129
  7. The model will automatically load, and is now ready for use!
130
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
131
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
132
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
133
+ <!-- README_GPTQ.md-text-generation-webui end -->
134
 
135
+ <!-- README_GPTQ.md-use-from-python start -->
136
  ## How to use this GPTQ model from Python code
137
 
138
+ ### Install the necessary packages
139
 
140
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
 
 
141
 
142
+ ```shell
143
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
144
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
145
  ```
146
+
147
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
148
+
149
+ ```shell
150
  pip3 uninstall -y auto-gptq
151
  git clone https://github.com/PanQiWei/AutoGPTQ
152
  cd AutoGPTQ
153
  pip3 install .
154
  ```
155
 
156
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
157
+
158
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
159
+ ```shell
160
+ pip3 uninstall -y transformers
161
+ pip3 install git+https://github.com/huggingface/transformers.git
162
+ ```
163
+
164
+ ### You can then use the following code
165
 
166
  ```python
167
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
168
 
169
  model_name_or_path = "TheBloke/GodziLLa2-70B-GPTQ"
170
+ # To use a different branch, change revision
171
+ # For example: revision="gptq-4bit-32g-actorder_True"
172
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
173
+ torch_dtype=torch.float16,
174
+ device_map="auto",
175
+ revision="main")
176
 
177
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179
  prompt = "Tell me about AI"
180
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
181
 
 
183
  {prompt}
184
 
185
  ### Response:
186
+
187
  '''
188
 
189
  print("\n\n*** Generate:")
 
194
 
195
  # Inference can also be done using transformers' pipeline
196
 
 
 
 
197
  print("*** Pipeline:")
198
  pipe = pipeline(
199
  "text-generation",
 
207
 
208
  print(pipe(prompt_template)[0]['generated_text'])
209
  ```
210
+ <!-- README_GPTQ.md-use-from-python end -->
211
 
212
+ <!-- README_GPTQ.md-compatibility start -->
213
  ## Compatibility
214
 
215
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
216
+
217
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
218
 
219
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
220
+ <!-- README_GPTQ.md-compatibility end -->
221
 
222
  <!-- footer start -->
223
  <!-- 200823 -->
 
242
 
243
  **Special thanks to**: Aemon Algiz.
244
 
245
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
246
 
247
 
248
  Thank you to all my generous patrons and donaters!
 
253
 
254
  # Original model card: MayaPH's GodziLLa2 70B
255
 
256
+
257
  <img src="https://drive.google.com/uc?export=view&id=1D8wxXkS1nsq3uqbOzOLwgx1cLJhY1nvN" alt="GodziLLa2-70B">
258
  Released August 11, 2023
259
 
260
  ## Model Description
261
+ GodziLLa 2 70B is an experimental combination of various proprietary LoRAs from Maya Philippines and [Guanaco LLaMA 2 1K dataset](https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k), with LLaMA 2 70B. This model's primary purpose is to stress test the limitations of composite, instruction-following LLMs and observe its performance with respect to other LLMs available on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). This model debuted in the leaderboard at rank #4 (August 17, 2023) and operates under the Llama 2 license.
262
  ![Godzilla Happy GIF](https://i.pinimg.com/originals/81/3a/e0/813ae09a30f0bc44130cd2c834fe2eba.gif)
263
 
264
  ## Open LLM Leaderboard Metrics
 
276
  - [HellaSwag](https://arxiv.org/abs/1905.07830) (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
277
  - [TruthfulQA](https://arxiv.org/abs/2109.07958) (0-shot) - a test to measure a model’s propensity to reproduce falsehoods commonly found online.
278
 
279
+ A detailed breakdown of the evaluation can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MayaPH__GodziLLa2-70B). Huge thanks to [@thomwolf](https://huggingface.co/thomwolf).
280
+
281
  ## Leaderboard Highlights (as of August 17, 2023)
282
+ - Godzilla 2 70B debuts at 4th place worldwide in the Open LLM Leaderboard.
283
  - Godzilla 2 70B ranks #3 in the ARC challenge.
284
  - Godzilla 2 70B ranks #5 in the TruthfulQA benchmark.
285
  - *Godzilla 2 70B beats GPT-3.5 (ChatGPT) in terms of average performance and the HellaSwag benchmark (87.53 > 85.5).
286
  - *Godzilla 2 70B outperforms GPT-3.5 (ChatGPT) and GPT-4 on the TruthfulQA benchmark (61.54 for G2-70B, 47 for GPT-3.5, 59 for GPT-4).
287
  - *Godzilla 2 70B is on par with GPT-3.5 (ChatGPT) on the MMLU benchmark (<0.12%).
288
+
289
  *Based on a [leaderboard clone](https://huggingface.co/spaces/gsaivinay/open_llm_leaderboard) with GPT-3.5 and GPT-4 included.
290
 
291
  ### Reproducing Evaluation Results
 
337
  When using GodziLLa 2 70B, kindly take note of the following:
338
  - The default precision is `fp32`, and the total file size that would be loaded onto the RAM/VRAM is around 275 GB. Consider using a lower precision (fp16, int8, int4) to save memory.
339
  - To further save on memory, set the `low_cpu_mem_usage` argument to True.
340
+ - If you wish to use a quantized version of GodziLLa2-70B, you can either access TheBloke's [GPTQ](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ) or [GGML](https://huggingface.co/TheBloke/GodziLLa2-70B-GGML) version of GodziLLa2-70B.
341
+ - [GodziLLa2-70B-GPTQ](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ#description) is available in 4-bit and 3-bit
342
+ - [GodziLLa2-70B-GGML](https://huggingface.co/TheBloke/GodziLLa2-70B-GGML#provided-files) is available in 8-bit, 6-bit, 5-bit, 4-bit, 3-bit, and 2-bit
343
 
344
  ## Ethical Considerations
345
  When using GodziLLa 2 70B, it is important to consider the following ethical considerations:
 
361
  GodziLLa 2 70B is an AI language model from Maya Philippines. It is provided "as is" without warranty of any kind, express or implied. The model developers and Maya Philippines shall not be liable for any direct or indirect damages arising from the use of this model.
362
 
363
  ## Acknowledgments
364
+ The development of GodziLLa 2 70B was made possible by Maya Philippines and the curation of the various proprietary datasets and creation of the different proprietary LoRA adapters. Special thanks to mlabonne for the Guanaco dataset found [here](https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k). Last but not least, huge thanks to [TheBloke](https://huggingface.co/TheBloke) for the quantized models, making our model easily accessible to a wider community.