TheBloke commited on
Commit
e8e3974
1 Parent(s): 7db9269

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -42
README.md CHANGED
@@ -32,18 +32,24 @@ tags:
32
  - Model creator: [grimpep](https://huggingface.co/grimpep)
33
  - Original model: [L2 MythoMax 22B Instruct Falseblock](https://huggingface.co/grimpep/L2-MythoMax22b-instruct-Falseblock)
34
 
 
35
  ## Description
36
 
37
  This repo contains GPTQ model files for [grimpep's L2 MythoMax 22B Instruct Falseblock](https://huggingface.co/grimpep/L2-MythoMax22b-instruct-Falseblock).
38
 
39
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
40
 
 
 
41
  ## Repositories available
42
 
43
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/L2-MythoMax22b-Instruct-Falseblock-GPTQ)
44
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/L2-MythoMax22b-Instruct-Falseblock-GGML)
 
45
  * [grimpep's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/grimpep/L2-MythoMax22b-instruct-Falseblock)
 
46
 
 
47
  ## Prompt template: Alpaca
48
 
49
  ```
@@ -53,22 +59,26 @@ Below is an instruction that describes a task. Write a response that appropriate
53
  {prompt}
54
 
55
  ### Response:
 
56
  ```
57
 
 
 
 
58
  ## Provided files and GPTQ parameters
59
 
60
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
61
 
62
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
63
 
64
- All GPTQ files are made with AutoGPTQ.
65
 
66
  <details>
67
  <summary>Explanation of GPTQ parameters</summary>
68
 
69
  - Bits: The bit size of the quantised model.
70
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
71
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
72
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
73
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
74
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
@@ -85,6 +95,9 @@ All GPTQ files are made with AutoGPTQ.
85
  | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/L2-MythoMax22b-Instruct-Falseblock-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 9.29 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
86
  | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/L2-MythoMax22b-Instruct-Falseblock-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 22.77 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
87
 
 
 
 
88
  ## How to download from branches
89
 
90
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/L2-MythoMax22b-Instruct-Falseblock-GPTQ:gptq-4bit-32g-actorder_True`
@@ -93,73 +106,72 @@ All GPTQ files are made with AutoGPTQ.
93
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/L2-MythoMax22b-Instruct-Falseblock-GPTQ
94
  ```
95
  - In Python Transformers code, the branch is the `revision` parameter; see below.
96
-
 
97
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
98
 
99
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
100
 
101
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
102
 
103
  1. Click the **Model tab**.
104
  2. Under **Download custom model or LoRA**, enter `TheBloke/L2-MythoMax22b-Instruct-Falseblock-GPTQ`.
105
  - To download from a specific branch, enter for example `TheBloke/L2-MythoMax22b-Instruct-Falseblock-GPTQ:gptq-4bit-32g-actorder_True`
106
  - see Provided Files above for the list of branches for each option.
107
  3. Click **Download**.
108
- 4. The model will start downloading. Once it's finished it will say "Done"
109
  5. In the top left, click the refresh icon next to **Model**.
110
  6. In the **Model** dropdown, choose the model you just downloaded: `L2-MythoMax22b-Instruct-Falseblock-GPTQ`
111
  7. The model will automatically load, and is now ready for use!
112
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
113
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
114
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
115
 
 
116
  ## How to use this GPTQ model from Python code
117
 
118
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
119
 
120
- ```
121
- pip3 install auto-gptq
122
- ```
123
 
124
- If you have problems installing AutoGPTQ, please build from source instead:
 
 
125
  ```
 
 
 
 
126
  pip3 uninstall -y auto-gptq
127
  git clone https://github.com/PanQiWei/AutoGPTQ
128
  cd AutoGPTQ
129
  pip3 install .
130
  ```
131
 
132
- Then try the following example code:
 
 
 
 
 
 
 
 
133
 
134
  ```python
135
- from transformers import AutoTokenizer, pipeline, logging
136
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
137
 
138
  model_name_or_path = "TheBloke/L2-MythoMax22b-Instruct-Falseblock-GPTQ"
139
-
140
- use_triton = False
 
 
 
 
141
 
142
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
143
 
144
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
145
- use_safetensors=True,
146
- trust_remote_code=False,
147
- device="cuda:0",
148
- use_triton=use_triton,
149
- quantize_config=None)
150
-
151
- """
152
- # To download from a specific branch, use the revision parameter, as in this example:
153
- # Note that `revision` requires AutoGPTQ 0.3.1 or later!
154
-
155
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
156
- revision="gptq-4bit-32g-actorder_True",
157
- use_safetensors=True,
158
- trust_remote_code=False,
159
- device="cuda:0",
160
- quantize_config=None)
161
- """
162
-
163
  prompt = "Tell me about AI"
164
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
165
 
@@ -167,6 +179,7 @@ prompt_template=f'''Below is an instruction that describes a task. Write a respo
167
  {prompt}
168
 
169
  ### Response:
 
170
  '''
171
 
172
  print("\n\n*** Generate:")
@@ -177,9 +190,6 @@ print(tokenizer.decode(output[0]))
177
 
178
  # Inference can also be done using transformers' pipeline
179
 
180
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
181
- logging.set_verbosity(logging.CRITICAL)
182
-
183
  print("*** Pipeline:")
184
  pipe = pipeline(
185
  "text-generation",
@@ -193,12 +203,17 @@ pipe = pipeline(
193
 
194
  print(pipe(prompt_template)[0]['generated_text'])
195
  ```
 
196
 
 
197
  ## Compatibility
198
 
199
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
 
 
200
 
201
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
202
 
203
  <!-- footer start -->
204
  <!-- 200823 -->
@@ -223,7 +238,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
223
 
224
  **Special thanks to**: Aemon Algiz.
225
 
226
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
227
 
228
 
229
  Thank you to all my generous patrons and donaters!
 
32
  - Model creator: [grimpep](https://huggingface.co/grimpep)
33
  - Original model: [L2 MythoMax 22B Instruct Falseblock](https://huggingface.co/grimpep/L2-MythoMax22b-instruct-Falseblock)
34
 
35
+ <!-- description start -->
36
  ## Description
37
 
38
  This repo contains GPTQ model files for [grimpep's L2 MythoMax 22B Instruct Falseblock](https://huggingface.co/grimpep/L2-MythoMax22b-instruct-Falseblock).
39
 
40
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
41
 
42
+ <!-- description end -->
43
+ <!-- repositories-available start -->
44
  ## Repositories available
45
 
46
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/L2-MythoMax22b-Instruct-Falseblock-GPTQ)
47
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/L2-MythoMax22b-Instruct-Falseblock-GGUF)
48
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/L2-MythoMax22b-Instruct-Falseblock-GGML)
49
  * [grimpep's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/grimpep/L2-MythoMax22b-instruct-Falseblock)
50
+ <!-- repositories-available end -->
51
 
52
+ <!-- prompt-template start -->
53
  ## Prompt template: Alpaca
54
 
55
  ```
 
59
  {prompt}
60
 
61
  ### Response:
62
+
63
  ```
64
 
65
+ <!-- prompt-template end -->
66
+
67
+ <!-- README_GPTQ.md-provided-files start -->
68
  ## Provided files and GPTQ parameters
69
 
70
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
71
 
72
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
73
 
74
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
75
 
76
  <details>
77
  <summary>Explanation of GPTQ parameters</summary>
78
 
79
  - Bits: The bit size of the quantised model.
80
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
81
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
82
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
83
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
84
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
 
95
  | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/L2-MythoMax22b-Instruct-Falseblock-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 9.29 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
96
  | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/L2-MythoMax22b-Instruct-Falseblock-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 22.77 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
97
 
98
+ <!-- README_GPTQ.md-provided-files end -->
99
+
100
+ <!-- README_GPTQ.md-download-from-branches start -->
101
  ## How to download from branches
102
 
103
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/L2-MythoMax22b-Instruct-Falseblock-GPTQ:gptq-4bit-32g-actorder_True`
 
106
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/L2-MythoMax22b-Instruct-Falseblock-GPTQ
107
  ```
108
  - In Python Transformers code, the branch is the `revision` parameter; see below.
109
+ <!-- README_GPTQ.md-download-from-branches end -->
110
+ <!-- README_GPTQ.md-text-generation-webui start -->
111
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
112
 
113
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
114
 
115
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
116
 
117
  1. Click the **Model tab**.
118
  2. Under **Download custom model or LoRA**, enter `TheBloke/L2-MythoMax22b-Instruct-Falseblock-GPTQ`.
119
  - To download from a specific branch, enter for example `TheBloke/L2-MythoMax22b-Instruct-Falseblock-GPTQ:gptq-4bit-32g-actorder_True`
120
  - see Provided Files above for the list of branches for each option.
121
  3. Click **Download**.
122
+ 4. The model will start downloading. Once it's finished it will say "Done".
123
  5. In the top left, click the refresh icon next to **Model**.
124
  6. In the **Model** dropdown, choose the model you just downloaded: `L2-MythoMax22b-Instruct-Falseblock-GPTQ`
125
  7. The model will automatically load, and is now ready for use!
126
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
127
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
128
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
129
+ <!-- README_GPTQ.md-text-generation-webui end -->
130
 
131
+ <!-- README_GPTQ.md-use-from-python start -->
132
  ## How to use this GPTQ model from Python code
133
 
134
+ ### Install the necessary packages
135
 
136
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
 
 
137
 
138
+ ```shell
139
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
140
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
141
  ```
142
+
143
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
144
+
145
+ ```shell
146
  pip3 uninstall -y auto-gptq
147
  git clone https://github.com/PanQiWei/AutoGPTQ
148
  cd AutoGPTQ
149
  pip3 install .
150
  ```
151
 
152
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
153
+
154
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
155
+ ```shell
156
+ pip3 uninstall -y transformers
157
+ pip3 install git+https://github.com/huggingface/transformers.git
158
+ ```
159
+
160
+ ### You can then use the following code
161
 
162
  ```python
163
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
164
 
165
  model_name_or_path = "TheBloke/L2-MythoMax22b-Instruct-Falseblock-GPTQ"
166
+ # To use a different branch, change revision
167
+ # For example: revision="gptq-4bit-32g-actorder_True"
168
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
169
+ torch_dtype=torch.float16,
170
+ device_map="auto",
171
+ revision="main")
172
 
173
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
  prompt = "Tell me about AI"
176
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
177
 
 
179
  {prompt}
180
 
181
  ### Response:
182
+
183
  '''
184
 
185
  print("\n\n*** Generate:")
 
190
 
191
  # Inference can also be done using transformers' pipeline
192
 
 
 
 
193
  print("*** Pipeline:")
194
  pipe = pipeline(
195
  "text-generation",
 
203
 
204
  print(pipe(prompt_template)[0]['generated_text'])
205
  ```
206
+ <!-- README_GPTQ.md-use-from-python end -->
207
 
208
+ <!-- README_GPTQ.md-compatibility start -->
209
  ## Compatibility
210
 
211
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
212
+
213
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
214
 
215
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
216
+ <!-- README_GPTQ.md-compatibility end -->
217
 
218
  <!-- footer start -->
219
  <!-- 200823 -->
 
238
 
239
  **Special thanks to**: Aemon Algiz.
240
 
241
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
242
 
243
 
244
  Thank you to all my generous patrons and donaters!