TheBloke commited on
Commit
dd53890
1 Parent(s): e91c110

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +382 -0
README.md ADDED
@@ -0,0 +1,382 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: https://huggingface.co/BramVanroy/Llama-2-13b-chat-dutch
3
+ datasets:
4
+ - BramVanroy/dutch_chat_datasets
5
+ inference: false
6
+ language:
7
+ - nl
8
+ license: cc-by-nc-sa-4.0
9
+ model-index:
10
+ - name: Llama-2-13b-chat-dutch
11
+ results: []
12
+ model_creator: Bram Vanroy
13
+ model_name: Llama 2 13B Chat Dutch
14
+ model_type: llama
15
+ prompt_template: '[INST] <<SYS>>
16
+
17
+ You are a helpful, respectful and honest assistant. Always answer as helpfully as
18
+ possible, while being safe. Your answers should not include any harmful, unethical,
19
+ racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses
20
+ are socially unbiased and positive in nature. If a question does not make any sense,
21
+ or is not factually coherent, explain why instead of answering something not correct.
22
+ If you don''t know the answer to a question, please don''t share false information.
23
+
24
+ <</SYS>>
25
+
26
+ {prompt}[/INST]
27
+
28
+ '
29
+ quantized_by: TheBloke
30
+ tags:
31
+ - generated_from_trainer
32
+ - llama
33
+ - lora
34
+ - adapters
35
+ ---
36
+
37
+ <!-- header start -->
38
+ <!-- 200823 -->
39
+ <div style="width: auto; margin-left: auto; margin-right: auto">
40
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
41
+ </div>
42
+ <div style="display: flex; justify-content: space-between; width: 100%;">
43
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
44
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
45
+ </div>
46
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
47
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
48
+ </div>
49
+ </div>
50
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
51
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
52
+ <!-- header end -->
53
+
54
+ # Llama 2 13B Chat Dutch - AWQ
55
+ - Model creator: [Bram Vanroy](https://huggingface.co/BramVanroy)
56
+ - Original model: [Llama 2 13B Chat Dutch](https://huggingface.co/BramVanroy/Llama-2-13b-chat-dutch)
57
+
58
+ <!-- description start -->
59
+ ## Description
60
+
61
+ This repo contains AWQ model files for [Bram Vanroy's Llama 2 13B Chat Dutch](https://huggingface.co/BramVanroy/Llama-2-13b-chat-dutch).
62
+
63
+
64
+ ### About AWQ
65
+
66
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
67
+
68
+ It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
69
+ <!-- description end -->
70
+ <!-- repositories-available start -->
71
+ ## Repositories available
72
+
73
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Llama-2-13B-Chat-Dutch-AWQ)
74
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-13B-Chat-Dutch-GPTQ)
75
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Llama-2-13B-Chat-Dutch-GGUF)
76
+ * [Bram Vanroy's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/BramVanroy/Llama-2-13b-chat-dutch)
77
+ <!-- repositories-available end -->
78
+
79
+ <!-- prompt-template start -->
80
+ ## Prompt template: Llama-2-Chat
81
+
82
+ ```
83
+ [INST] <<SYS>>
84
+ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
85
+ <</SYS>>
86
+ {prompt}[/INST]
87
+
88
+ ```
89
+
90
+ <!-- prompt-template end -->
91
+ <!-- licensing start -->
92
+ ## Licensing
93
+
94
+ The creator of the source model has listed its license as `cc-by-nc-sa-4.0`, and this quantization has therefore used that same license.
95
+
96
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
97
+
98
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Bram Vanroy's Llama 2 13B Chat Dutch](https://huggingface.co/BramVanroy/Llama-2-13b-chat-dutch).
99
+ <!-- licensing end -->
100
+ <!-- README_AWQ.md-provided-files start -->
101
+ ## Provided files and AWQ parameters
102
+
103
+ For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
104
+
105
+ Models are released as sharded safetensors files.
106
+
107
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
108
+ | ------ | ---- | -- | ----------- | ------- | ---- |
109
+ | [main](https://huggingface.co/TheBloke/Llama-2-13B-Chat-Dutch-AWQ/tree/main) | 4 | 128 | [Dolly 15K Dutch](https://huggingface.co/datasets/BramVanroy/dolly-15k-dutch) | 4096 | 7.25 GB
110
+
111
+ <!-- README_AWQ.md-provided-files end -->
112
+
113
+ <!-- README_AWQ.md-use-from-vllm start -->
114
+ ## Serving this model from vLLM
115
+
116
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
117
+
118
+ - When using vLLM as a server, pass the `--quantization awq` parameter, for example:
119
+
120
+ ```shell
121
+ python3 python -m vllm.entrypoints.api_server --model TheBloke/Llama-2-13B-Chat-Dutch-AWQ --quantization awq
122
+ ```
123
+
124
+ When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
125
+
126
+ ```python
127
+ from vllm import LLM, SamplingParams
128
+
129
+ prompts = [
130
+ "Hello, my name is",
131
+ "The president of the United States is",
132
+ "The capital of France is",
133
+ "The future of AI is",
134
+ ]
135
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
136
+
137
+ llm = LLM(model="TheBloke/Llama-2-13B-Chat-Dutch-AWQ", quantization="awq")
138
+
139
+ outputs = llm.generate(prompts, sampling_params)
140
+
141
+ # Print the outputs.
142
+ for output in outputs:
143
+ prompt = output.prompt
144
+ generated_text = output.outputs[0].text
145
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
146
+ ```
147
+ <!-- README_AWQ.md-use-from-vllm start -->
148
+
149
+ <!-- README_AWQ.md-use-from-python start -->
150
+ ## How to use this AWQ model from Python code
151
+
152
+ ### Install the necessary packages
153
+
154
+ Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later
155
+
156
+ ```shell
157
+ pip3 install autoawq
158
+ ```
159
+
160
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
161
+
162
+ ```shell
163
+ pip3 uninstall -y autoawq
164
+ git clone https://github.com/casper-hansen/AutoAWQ
165
+ cd AutoAWQ
166
+ pip3 install .
167
+ ```
168
+
169
+ ### You can then try the following example code
170
+
171
+ ```python
172
+ from awq import AutoAWQForCausalLM
173
+ from transformers import AutoTokenizer
174
+
175
+ model_name_or_path = "TheBloke/Llama-2-13B-Chat-Dutch-AWQ"
176
+
177
+ # Load model
178
+ model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
179
+ trust_remote_code=False, safetensors=True)
180
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
181
+
182
+ prompt = "Tell me about AI"
183
+ prompt_template=f'''[INST] <<SYS>>
184
+ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
185
+ <</SYS>>
186
+ {prompt}[/INST]
187
+
188
+ '''
189
+
190
+ print("\n\n*** Generate:")
191
+
192
+ tokens = tokenizer(
193
+ prompt_template,
194
+ return_tensors='pt'
195
+ ).input_ids.cuda()
196
+
197
+ # Generate output
198
+ generation_output = model.generate(
199
+ tokens,
200
+ do_sample=True,
201
+ temperature=0.7,
202
+ top_p=0.95,
203
+ top_k=40,
204
+ max_new_tokens=512
205
+ )
206
+
207
+ print("Output: ", tokenizer.decode(generation_output[0]))
208
+
209
+ # Inference can also be done using transformers' pipeline
210
+ from transformers import pipeline
211
+
212
+ print("*** Pipeline:")
213
+ pipe = pipeline(
214
+ "text-generation",
215
+ model=model,
216
+ tokenizer=tokenizer,
217
+ max_new_tokens=512,
218
+ do_sample=True,
219
+ temperature=0.7,
220
+ top_p=0.95,
221
+ top_k=40,
222
+ repetition_penalty=1.1
223
+ )
224
+
225
+ print(pipe(prompt_template)[0]['generated_text'])
226
+ ```
227
+ <!-- README_AWQ.md-use-from-python end -->
228
+
229
+ <!-- README_AWQ.md-compatibility start -->
230
+ ## Compatibility
231
+
232
+ The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm).
233
+
234
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781).
235
+ <!-- README_AWQ.md-compatibility end -->
236
+
237
+ <!-- footer start -->
238
+ <!-- 200823 -->
239
+ ## Discord
240
+
241
+ For further support, and discussions on these models and AI in general, join us at:
242
+
243
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
244
+
245
+ ## Thanks, and how to contribute
246
+
247
+ Thanks to the [chirper.ai](https://chirper.ai) team!
248
+
249
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
250
+
251
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
252
+
253
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
254
+
255
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
256
+
257
+ * Patreon: https://patreon.com/TheBlokeAI
258
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
259
+
260
+ **Special thanks to**: Aemon Algiz.
261
+
262
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
263
+
264
+
265
+ Thank you to all my generous patrons and donaters!
266
+
267
+ And thank you again to a16z for their generous grant.
268
+
269
+ <!-- footer end -->
270
+
271
+ # Original model card: Bram Vanroy's Llama 2 13B Chat Dutch
272
+
273
+
274
+
275
+ # Llama-2-13b-chat-dutch
276
+
277
+ This model is a fine-tuned version of [BramVanroy/llama2-13b-ft-mc4_nl_cleaned_tiny](https://huggingface.co/BramVanroy/llama2-13b-ft-mc4_nl_cleaned_tiny)
278
+ on the [BramVanroy/dutch_chat_datasets](https://huggingface.co/datasets/BramVanroy/dutch_chat_datasets) dataset on a context of 4096 tokens.
279
+ See the original [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) for more information, intended use, and biases.
280
+
281
+ If you use this model or refer to it, please use the following citation:
282
+
283
+ Bram Vanroy. (2023). Llama v2 13b: Finetuned on Dutch Conversational Data. Hugging Face. https://doi.org/10.57967/HF/1018
284
+
285
+ ```bibtex
286
+ @misc{https://doi.org/10.57967/hf/1018,
287
+ doi = {10.57967/HF/1018},
288
+ url = {https://huggingface.co/BramVanroy/Llama-2-13b-chat-dutch},
289
+ author = {{Bram Vanroy}},
290
+ title = {{Llama} v2 13b: {Finetuned} on {Dutch} Conversational Data},
291
+ publisher = {{Hugging} {Face}},
292
+ year = {2023}
293
+ }
294
+ ```
295
+
296
+ ## Model description
297
+
298
+ I could not get the original Llama 2 13B to produce much Dutch, even though the description paper indicates that it was trained on a (small) portion of Dutch data. I therefore
299
+ continued training the original Llama 2 13B checkpoint on Dutch data [in regular CLM](https://huggingface.co/BramVanroy/llama2-13b-ft-mc4_nl_cleaned_tiny). In a second
300
+ step I finetuned that model on a collection of synthetic (translated) instruction and chat datasets that I have [collected](https://huggingface.co/datasets/BramVanroy/dutch_chat_datasets).
301
+ See their pages for licensing, usage, creation, and citation information.
302
+
303
+ - https://huggingface.co/datasets/BramVanroy/dolly-15k-dutch
304
+ - https://huggingface.co/datasets/BramVanroy/alpaca-cleaned-dutch-baize
305
+ - https://huggingface.co/datasets/BramVanroy/stackoverflow-chat-dutch
306
+ - https://huggingface.co/datasets/BramVanroy/quora-chat-dutch
307
+
308
+ This model is the result of that process. While not perfect by any means, it can perform reasonably well in Dutch depending on the prompts. It is also decent at helping with programming tasks.
309
+
310
+
311
+ ## Intended uses & limitations
312
+
313
+ Depending on the prompt, the model can return good results considering that it is only 13B in size and was only marginally pretrained on Dutch. That being said, the
314
+ model was not trained on human feedback and contains no safe-guards so it may produce unexpected and even offensive content depending on the query. The only attempt
315
+ of a safe-guard is the default prompt that it was trained on, which was
316
+
317
+ > Je bent een behulpzame, respectvolle en eerlijke assistent. Antwoord altijd zo behulpzaam mogelijk. Je antwoorden mogen geen schadelijke, onethische, racistische, seksistische, gevaarlijke of illegale inhoud bevatten. Zorg ervoor dat je antwoorden sociaal onbevooroordeeld en positief van aard zijn.\n\nAls een vraag nergens op slaat of feitelijk niet coherent is, leg dan uit waarom in plaats van iets niet correct te antwoorden. Als je het antwoord op een vraag niet weet, deel dan geen onjuiste informatie.\
318
+
319
+ Use with caution and at your own risk!
320
+
321
+ Because the model was trained on synthetic data, translated with OpenAI's API, you cannot use this model to create a competitive product to theirs.
322
+
323
+ ## Training procedure
324
+
325
+ Trained with 4096 tokens context length. The dataset was preprocessed so that as many as possible dialogs were put in a single batch, without disrupting
326
+ dialogs. In other words, a dialog was never split up over different sequences or batches. During training, the human prompts were ignored in back propagation.
327
+
328
+ Trained with LoRA targetting ["q_proj", "v_proj"] in 4 bit and merged before upload. Trained with Flash Attention as borrowed from [here](https://github.com/philschmid/deep-learning-pytorch-huggingface/blob/main/training/utils/llama_patch.py).
329
+
330
+ The adapters are in the `adapters` branch.
331
+
332
+ ### Training hyperparameters
333
+
334
+ The following hyperparameters were used during training:
335
+ - learning_rate: 0.0002
336
+ - train_batch_size: 2
337
+ - eval_batch_size: 2
338
+ - seed: 42
339
+ - distributed_type: multi-GPU
340
+ - num_devices: 4
341
+ - gradient_accumulation_steps: 8
342
+ - total_train_batch_size: 64
343
+ - total_eval_batch_size: 8
344
+ - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
345
+ - lr_scheduler_type: cosine
346
+ - lr_scheduler_warmup_ratio: 0.03
347
+ - num_epochs: 2
348
+
349
+ ### Training results
350
+
351
+ | Training Loss | Epoch | Step | Validation Loss |
352
+ |:-------------:|:-----:|:----:|:---------------:|
353
+ | 1.0193 | 0.09 | 20 | 1.1583 |
354
+ | 0.9743 | 0.17 | 40 | 1.1339 |
355
+ | 0.9159 | 0.26 | 60 | 1.1218 |
356
+ | 0.9131 | 0.35 | 80 | 1.1153 |
357
+ | 0.8816 | 0.44 | 100 | 1.1130 |
358
+ | 0.8977 | 0.52 | 120 | 1.1069 |
359
+ | 0.9061 | 0.61 | 140 | 1.1025 |
360
+ | 0.8672 | 0.7 | 160 | 1.1024 |
361
+ | 0.8956 | 0.79 | 180 | 1.0971 |
362
+ | 0.8514 | 0.87 | 200 | 1.0995 |
363
+ | 0.8357 | 0.96 | 220 | 1.0952 |
364
+ | 0.8294 | 1.05 | 240 | 1.0964 |
365
+ | 0.8531 | 1.13 | 260 | 1.0947 |
366
+ | 0.8321 | 1.22 | 280 | 1.0951 |
367
+ | 0.8365 | 1.31 | 300 | 1.0910 |
368
+ | 0.8616 | 1.4 | 320 | 1.0894 |
369
+ | 0.8397 | 1.48 | 340 | 1.0904 |
370
+ | 0.861 | 1.57 | 360 | 1.0880 |
371
+ | 0.8116 | 1.66 | 380 | 1.0871 |
372
+ | 0.8285 | 1.74 | 400 | 1.0855 |
373
+ | 0.8603 | 1.83 | 420 | 1.0856 |
374
+ | 0.8126 | 1.92 | 440 | 1.0848 |
375
+
376
+
377
+ ### Framework versions
378
+
379
+ - Transformers 4.31.0
380
+ - Pytorch 2.0.1+cu117
381
+ - Datasets 2.14.4
382
+ - Tokenizers 0.13.3