Upload folder using huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- anon8231489123/ShareGPT_Vicuna_unfiltered
|
4 |
+
- ehartford/wizard_vicuna_70k_unfiltered
|
5 |
+
- ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered
|
6 |
+
- QingyiSi/Alpaca-CoT
|
7 |
+
- teknium/GPT4-LLM-Cleaned
|
8 |
+
- teknium/GPTeacher-General-Instruct
|
9 |
+
- metaeval/ScienceQA_text_only
|
10 |
+
- hellaswag
|
11 |
+
- tasksource/mmlu
|
12 |
+
- openai/summarize_from_feedback
|
13 |
+
language:
|
14 |
+
- en
|
15 |
+
library_name: transformers
|
16 |
+
pipeline_tag: text-generation
|
17 |
+
---
|
18 |
+
|
19 |
+
# Manticore 13B GPTQ
|
20 |
+
|
21 |
+
This repo contains 4bit GPTQ format quantised models of [OpenAccess AI Collective's Manticore 13B](https://huggingface.co/openaccess-ai-collective/manticore-13b).
|
22 |
+
|
23 |
+
It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
|
24 |
+
|
25 |
+
## Repositories available
|
26 |
+
|
27 |
+
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Manticore-13B-GPTQ).
|
28 |
+
* [4-bit, 5-bit 8-bit GGML models for llama.cpp CPU (+CUDA) inference](https://huggingface.co/TheBloke/Manticore-13B-GGML).
|
29 |
+
* [OpenAccess AI Collective's original float16 HF format repo for GPU inference and further conversions](https://huggingface.co/openaccess-ai-collective/manticore-13b).
|
30 |
+
|
31 |
+
## How to easily download and use this model in text-generation-webui
|
32 |
+
|
33 |
+
Open the text-generation-webui UI as normal.
|
34 |
+
|
35 |
+
1. Click the **Model tab**.
|
36 |
+
2. Under **Download custom model or LoRA**, enter `TheBloke/Manticore-13B-GPTQ`.
|
37 |
+
3. Click **Download**.
|
38 |
+
4. Wait until it says it's finished downloading.
|
39 |
+
5. Click the **Refresh** icon next to **Model** in the top left.
|
40 |
+
6. In the **Model drop-down**: choose the model you just downloaded, `Manticore-13B-GPTQ`.
|
41 |
+
7. If you see an error in the bottom right, ignore it - it's temporary.
|
42 |
+
8. Fill out the `GPTQ parameters` on the right: `Bits = 4`, `Groupsize = 128`, `model_type = Llama`
|
43 |
+
9. Click **Save settings for this model** in the top right.
|
44 |
+
10. Click **Reload the Model** in the top right.
|
45 |
+
11. Once it says it's loaded, click the **Text Generation tab** and enter a prompt!
|
46 |
+
|
47 |
+
## Provided files
|
48 |
+
|
49 |
+
**`Manticore-13B-GPTQ-4bit-128g.no-act-order.safetensors`**
|
50 |
+
|
51 |
+
This will work with all versions of GPTQ-for-LLaMa. It has maximum compatibility.
|
52 |
+
|
53 |
+
It was created without `--act-order` to ensure compatibility with all UIs out there.
|
54 |
+
|
55 |
+
* `Manticore-13B-GPTQ-4bit-128g.no-act-order.safetensors`
|
56 |
+
* Works with all versions of GPTQ-for-LLaMa code, both Triton and CUDA branches
|
57 |
+
* Works with text-generation-webui one-click-installers
|
58 |
+
* Parameters: Groupsize = 128. No act-order.
|
59 |
+
* Command used to create the GPTQ:
|
60 |
+
```
|
61 |
+
python llama.py /workspace/models/openaccess-ai-collective_manticore-13b/ wikitext2 --wbits 4 --true-sequential --groupsize 128 --save_safetensors /workspace/manticore-13b/gptq/Manticore-13B-GPTQ-4bit-128g.no-act-order.safetensors
|
62 |
+
```
|
63 |
+
|
64 |
+
|
65 |
+
# Original Model Card: Manticore 13B - Preview Release (previously Wizard Mega)
|
66 |
+
|
67 |
+
Manticore 13B is a Llama 13B model fine-tuned on the following datasets:
|
68 |
+
- [ShareGPT](https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered) - based on a cleaned and de-suped subset
|
69 |
+
- [WizardLM](https://huggingface.co/datasets/ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered)
|
70 |
+
- [Wizard-Vicuna](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered)
|
71 |
+
- [subset of QingyiSi/Alpaca-CoT for roleplay and CoT](https://huggingface.co/QingyiSi/Alpaca-CoT)
|
72 |
+
- [GPT4-LLM-Cleaned](https://huggingface.co/datasets/teknium/GPT4-LLM-Cleaned)
|
73 |
+
- [GPTeacher-General-Instruct](https://huggingface.co/datasets/teknium/GPTeacher-General-Instruct)
|
74 |
+
- ARC-Easy & ARC-Challenge - instruct augmented for detailed responses
|
75 |
+
- mmlu: instruct augmented for detailed responses subset including
|
76 |
+
- abstract_algebra
|
77 |
+
- conceptual_physics
|
78 |
+
- formal_logic
|
79 |
+
- high_school_physics
|
80 |
+
- logical_fallacies
|
81 |
+
- [hellaswag](https://huggingface.co/datasets/hellaswag) - 5K row subset of instruct augmented for concise responses
|
82 |
+
- [metaeval/ScienceQA_text_only](https://huggingface.co/datasets/metaeval/ScienceQA_text_only) - instruct for concise responses
|
83 |
+
- [openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback) - instruct augmented tl;dr summarization
|
84 |
+
|
85 |
+
|
86 |
+
# Demo
|
87 |
+
|
88 |
+
Try out the model in HF Spaces. The demo uses a quantized GGML version of the model to quickly return predictions on smaller GPUs (and even CPUs). Quantized GGML may have some minimal loss of model quality.
|
89 |
+
- https://huggingface.co/spaces/openaccess-ai-collective/manticore-ggml
|
90 |
+
|
91 |
+
## Release Notes
|
92 |
+
|
93 |
+
- https://wandb.ai/wing-lian/manticore-13b/runs/nq3u3uoh/workspace
|
94 |
+
|
95 |
+
## Build
|
96 |
+
|
97 |
+
Manticore was built with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) on 8xA100 80GB
|
98 |
+
- Preview Release: 1 epoch taking 8 hours.
|
99 |
+
- The configuration to duplicate this build is provided in this repo's [/config folder](https://huggingface.co/openaccess-ai-collective/manticore-13b/tree/main/configs).
|
100 |
+
|
101 |
+
## Bias, Risks, and Limitations
|
102 |
+
Manticore has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
|
103 |
+
Manticore was fine-tuned from the base model LlaMa 13B, please refer to its model card's Limitations Section for relevant information.
|
104 |
+
|
105 |
+
## Examples
|
106 |
+
|
107 |
+
````
|
108 |
+
### Instruction: write Python code that returns the first n numbers of the Fibonacci sequence using memoization.
|
109 |
+
|
110 |
+
### Assistant:
|
111 |
+
````
|
112 |
+
|
113 |
+
```
|
114 |
+
### Instruction: Finish the joke, a mechanic and a car salesman walk into a bar...
|
115 |
+
|
116 |
+
### Assistant:
|
117 |
+
```
|
118 |
+
|