TheBloke's picture
GPTQ model commit
f67f655
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from transformers import AutoTokenizer, LlamaForCausalLM
from torch.nn.parallel import DistributedDataParallel as DDP
from evalplus.data import get_human_eval_plus, write_jsonl
import os
from tqdm import tqdm # import tqdm
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
dist.init_process_group("gloo", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
def generate_one_completion(ddp_model, tokenizer, prompt: str):
tokenizer.pad_token = tokenizer.eos_token
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096)
# Generate
generate_ids = ddp_model.module.generate(inputs.input_ids.to("cuda"), max_new_tokens=384, do_sample=True, top_p=0.75, top_k=40, temperature=0.1, pad_token_id=tokenizer.eos_token_id)
completion = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
completion = completion.replace(prompt, "").split("\n\n\n")[0]
print("-------------------")
print(completion)
return completion
def run(rank, world_size):
setup(rank, world_size)
model_path = "Nondzu/Mistral-7B-codealpaca-lora"
model = LlamaForCausalLM.from_pretrained(model_path,load_in_8bit=True)
ddp_model = DDP(model, device_ids=[rank])
tokenizer = AutoTokenizer.from_pretrained(model_path)
problems = get_human_eval_plus()
num_samples_per_task = 1
samples = [
dict(task_id=task_id, completion=generate_one_completion(ddp_model, tokenizer, problems[task_id]["prompt"]))
for task_id in tqdm(problems) # add tqdm here
for _ in range(num_samples_per_task)
]
write_jsonl(f"samples-Nondzu-Mistral-7B-codealpaca-lora-rank{rank}.jsonl", samples)
cleanup()
def main():
world_size = 1
mp.spawn(run, args=(world_size,), nprocs=world_size, join=True)
if __name__=="__main__":
main()