Upload README.md
Browse files
README.md
CHANGED
@@ -42,15 +42,12 @@ quantized_by: TheBloke
|
|
42 |
<!-- description start -->
|
43 |
# Description
|
44 |
|
45 |
-
This repo contains
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
To test, please build AutoGPTQ from source using that PR. You also need Transformers version 4.36.0, released December 11th.
|
52 |
-
|
53 |
-
Transformers support has just arrived also via two PRs - and is expected in main Transformers + Optimum tomorrow (Dec 12th).
|
54 |
|
55 |
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
|
56 |
|
@@ -58,6 +55,7 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
|
|
58 |
<!-- repositories-available start -->
|
59 |
## Repositories available
|
60 |
|
|
|
61 |
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ)
|
62 |
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF)
|
63 |
* [Mistral AI_'s original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)
|
@@ -74,6 +72,16 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
|
|
74 |
<!-- prompt-template end -->
|
75 |
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
<!-- README_GPTQ.md-provided-files start -->
|
78 |
## Provided files, and GPTQ parameters
|
79 |
|
@@ -98,13 +106,13 @@ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with T
|
|
98 |
|
99 |
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
|
100 |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
|
101 |
-
| main | 4 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 23.81 GB | No | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
|
102 |
-
| gptq-4bit-128g-actorder_True | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 24.70 GB | No | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
|
103 |
-
| gptq-4bit-32g-actorder_True | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 27.42 GB | No | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
|
104 |
-
| gptq-3bit--1g-actorder_True | 3 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 18.01 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
|
105 |
-
| gptq-3bit-128g-actorder_True | 3 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 18.85 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
|
106 |
-
| gptq-8bit--1g-actorder_True | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 47.04 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
|
107 |
-
| gptq-8bit-128g-actorder_True | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 48.10 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
|
108 |
|
109 |
<!-- README_GPTQ.md-provided-files end -->
|
110 |
|
@@ -178,7 +186,11 @@ Note that using Git with HF repos is strongly discouraged. It will be much slowe
|
|
178 |
<!-- README_GPTQ.md-text-generation-webui start -->
|
179 |
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
180 |
|
181 |
-
**NOTE**:
|
|
|
|
|
|
|
|
|
182 |
|
183 |
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
184 |
|
@@ -203,15 +215,21 @@ It is strongly recommended to use the text-generation-webui one-click-installers
|
|
203 |
|
204 |
<!-- README_GPTQ.md-text-generation-webui end -->
|
205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
<!-- README_GPTQ.md-use-from-python start -->
|
207 |
## Python code example: inference from this GPTQ model
|
208 |
|
209 |
### Install the necessary packages
|
210 |
|
211 |
-
Requires: Transformers 4.
|
212 |
|
213 |
```shell
|
214 |
-
pip3 install --upgrade transformers optimum
|
215 |
# If using PyTorch 2.1 + CUDA 12.x:
|
216 |
pip3 install --upgrade auto-gptq
|
217 |
# or, if using PyTorch 2.1 + CUDA 11.x:
|
@@ -224,35 +242,28 @@ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Lik
|
|
224 |
pip3 uninstall -y auto-gptq
|
225 |
git clone https://github.com/PanQiWei/AutoGPTQ
|
226 |
cd AutoGPTQ
|
227 |
-
|
228 |
-
pip3 install .
|
229 |
```
|
230 |
|
231 |
### Example Python code
|
232 |
|
233 |
```python
|
234 |
-
from transformers import AutoTokenizer
|
235 |
-
from auto_gptq import AutoGPTQForCausalLM
|
236 |
|
237 |
model_name_or_path = "TheBloke/Mixtral-8x7B-v0.1-GPTQ"
|
238 |
-
|
239 |
-
model_name_or_path = args.model_dir
|
240 |
# To use a different branch, change revision
|
241 |
-
# For example: revision="gptq-4bit-
|
242 |
-
model =
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
prompt = "Tell me about AI"
|
255 |
-
prompt_template=f'''{prompt}'''
|
256 |
|
257 |
print("\n\n*** Generate:")
|
258 |
|
@@ -260,9 +271,31 @@ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
|
|
260 |
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
|
261 |
print(tokenizer.decode(output[0]))
|
262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
```
|
264 |
<!-- README_GPTQ.md-use-from-python end -->
|
265 |
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
<!-- footer start -->
|
268 |
<!-- 200823 -->
|
|
|
42 |
<!-- description start -->
|
43 |
# Description
|
44 |
|
45 |
+
This repo contains GPTQ model files for [Mistral AI_'s Mixtral 8X7B v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1).
|
46 |
|
47 |
+
Mixtral GPTQs currently require:
|
48 |
+
* Transformers 4.36.0 or later
|
49 |
+
* either, AutoGPTQ 0.6 compiled from source, or
|
50 |
+
* Transformers 4.37.0.dev0 compiled from Github with: `pip3 install git+https://github.com/huggingface/transformers`
|
|
|
|
|
|
|
51 |
|
52 |
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
|
53 |
|
|
|
55 |
<!-- repositories-available start -->
|
56 |
## Repositories available
|
57 |
|
58 |
+
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/mixtral-8x7b-v0.1-AWQ)
|
59 |
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ)
|
60 |
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF)
|
61 |
* [Mistral AI_'s original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)
|
|
|
72 |
<!-- prompt-template end -->
|
73 |
|
74 |
|
75 |
+
|
76 |
+
<!-- README_GPTQ.md-compatible clients start -->
|
77 |
+
## Known compatible clients / servers
|
78 |
+
|
79 |
+
GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
|
80 |
+
|
81 |
+
Mixtral GPTQs currently have special requirements - see Description above.
|
82 |
+
|
83 |
+
<!-- README_GPTQ.md-compatible clients end -->
|
84 |
+
|
85 |
<!-- README_GPTQ.md-provided-files start -->
|
86 |
## Provided files, and GPTQ parameters
|
87 |
|
|
|
106 |
|
107 |
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
|
108 |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
|
109 |
+
| [main](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 23.81 GB | No | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
|
110 |
+
| [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 24.70 GB | No | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
|
111 |
+
| [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 27.42 GB | No | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
|
112 |
+
| [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 18.01 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
|
113 |
+
| [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 18.85 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
|
114 |
+
| [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 47.04 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
|
115 |
+
| [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 48.10 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
|
116 |
|
117 |
<!-- README_GPTQ.md-provided-files end -->
|
118 |
|
|
|
186 |
<!-- README_GPTQ.md-text-generation-webui start -->
|
187 |
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
188 |
|
189 |
+
**NOTE**: Requires:
|
190 |
+
|
191 |
+
* Transformers 4.36.0, or Transformers 4.37.0.dev0 from Github
|
192 |
+
* Either AutoGPTQ 0.6 compiled from source and `Loader: AutoGPTQ`,
|
193 |
+
* or, `Loader: Transformers`, if you installed Transformers from Github: `pip3 install git+https://github.com/huggingface/transformers`
|
194 |
|
195 |
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
196 |
|
|
|
215 |
|
216 |
<!-- README_GPTQ.md-text-generation-webui end -->
|
217 |
|
218 |
+
<!-- README_GPTQ.md-use-from-tgi start -->
|
219 |
+
## Serving this model from Text Generation Inference (TGI)
|
220 |
+
|
221 |
+
Not currently supported for Mixtral models.
|
222 |
+
|
223 |
+
<!-- README_GPTQ.md-use-from-tgi end -->
|
224 |
<!-- README_GPTQ.md-use-from-python start -->
|
225 |
## Python code example: inference from this GPTQ model
|
226 |
|
227 |
### Install the necessary packages
|
228 |
|
229 |
+
Requires: Transformers 4.37.0.dev0 from Github, Optimum 1.16.0 or later, and AutoGPTQ 0.5.1 or later.
|
230 |
|
231 |
```shell
|
232 |
+
pip3 install --upgrade "git+https://github.com/huggingface/transformers" optimum
|
233 |
# If using PyTorch 2.1 + CUDA 12.x:
|
234 |
pip3 install --upgrade auto-gptq
|
235 |
# or, if using PyTorch 2.1 + CUDA 11.x:
|
|
|
242 |
pip3 uninstall -y auto-gptq
|
243 |
git clone https://github.com/PanQiWei/AutoGPTQ
|
244 |
cd AutoGPTQ
|
245 |
+
DISABLE_QIGEN=1 pip3 install .
|
|
|
246 |
```
|
247 |
|
248 |
### Example Python code
|
249 |
|
250 |
```python
|
251 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
252 |
|
253 |
model_name_or_path = "TheBloke/Mixtral-8x7B-v0.1-GPTQ"
|
|
|
|
|
254 |
# To use a different branch, change revision
|
255 |
+
# For example: revision="gptq-4bit-128g-actorder_True"
|
256 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
|
257 |
+
device_map="auto",
|
258 |
+
trust_remote_code=False,
|
259 |
+
revision="main")
|
260 |
+
|
261 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
262 |
+
|
263 |
+
prompt = "Write a story about llamas"
|
264 |
+
system_message = "You are a story writing assistant"
|
265 |
+
prompt_template=f'''{prompt}
|
266 |
+
'''
|
|
|
|
|
|
|
267 |
|
268 |
print("\n\n*** Generate:")
|
269 |
|
|
|
271 |
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
|
272 |
print(tokenizer.decode(output[0]))
|
273 |
|
274 |
+
# Inference can also be done using transformers' pipeline
|
275 |
+
|
276 |
+
print("*** Pipeline:")
|
277 |
+
pipe = pipeline(
|
278 |
+
"text-generation",
|
279 |
+
model=model,
|
280 |
+
tokenizer=tokenizer,
|
281 |
+
max_new_tokens=512,
|
282 |
+
do_sample=True,
|
283 |
+
temperature=0.7,
|
284 |
+
top_p=0.95,
|
285 |
+
top_k=40,
|
286 |
+
repetition_penalty=1.1
|
287 |
+
)
|
288 |
+
|
289 |
+
print(pipe(prompt_template)[0]['generated_text'])
|
290 |
```
|
291 |
<!-- README_GPTQ.md-use-from-python end -->
|
292 |
|
293 |
+
<!-- README_GPTQ.md-compatibility start -->
|
294 |
+
## Compatibility
|
295 |
+
|
296 |
+
The files provided are tested to work with AutoGPTQ 0.6 (compiled from source) and Transformers 4.37.0 (installed from Github).
|
297 |
+
|
298 |
+
<!-- README_GPTQ.md-compatibility end -->
|
299 |
|
300 |
<!-- footer start -->
|
301 |
<!-- 200823 -->
|