TheBloke commited on
Commit
e7aadfa
1 Parent(s): 37d67c4

Initial GPTQ model commit

Browse files
Files changed (1) hide show
  1. README.md +248 -0
README.md ADDED
@@ -0,0 +1,248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ license: other
4
+ ---
5
+
6
+ <!-- header start -->
7
+ <div style="width: 100%;">
8
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
9
+ </div>
10
+ <div style="display: flex; justify-content: space-between; width: 100%;">
11
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
12
+ <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
13
+ </div>
14
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
15
+ <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
16
+ </div>
17
+ </div>
18
+ <!-- header end -->
19
+
20
+ # Chaoyi Wu's PMC_LLAMA 7B 10 Epoch GPTQ
21
+
22
+ These files are GPTQ 4bit model files for [Chaoyi Wu's PMC_LLAMA 7B 10 Epoch](https://huggingface.co/chaoyi-wu/PMC_LLAMA_7B_10_epoch) merged with [Kaio Ken's SuperHOT 8K](https://huggingface.co/kaiokendev/superhot-7b-8k-no-rlhf-test).
23
+
24
+ It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
25
+
26
+ **This is an experimental new GPTQ which offers up to 8K context size**
27
+
28
+ The increased context is tested to work with [ExLlama](https://github.com/turboderp/exllama), via the latest release of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
29
+
30
+ It has also been tested from Python code using AutoGPTQ, and `trust_remote_code=True`.
31
+
32
+ Code credits:
33
+ - Original concept and code for increasing context length: [kaiokendev](https://huggingface.co/kaiokendev)
34
+ - Updated Llama modelling code that includes this automatically via trust_remote_code: [emozilla](https://huggingface.co/emozilla).
35
+
36
+ Please read carefully below to see how to use it.
37
+
38
+ ## Repositories available
39
+
40
+ * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/PMC_LLAMA-7B-10-Epoch-SuperHOT-8K-GPTQ)
41
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/PMC_LLAMA-7B-10-Epoch-SuperHOT-8K-GGML)
42
+ * [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/PMC_LLAMA-7B-10-Epoch-SuperHOT-8K-fp16)
43
+ * [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/chaoyi-wu/PMC_LLAMA_7B_10_epoch)
44
+
45
+ ## How to easily download and use this model in text-generation-webui with ExLlama
46
+
47
+ Please make sure you're using the latest version of text-generation-webui
48
+
49
+ 1. Click the **Model tab**.
50
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/PMC_LLAMA-7B-10-Epoch-SuperHOT-8K-GPTQ`.
51
+ 3. Click **Download**.
52
+ 4. The model will start downloading. Once it's finished it will say "Done"
53
+ 5. Untick **Autoload the model**
54
+ 6. In the top left, click the refresh icon next to **Model**.
55
+ 7. In the **Model** dropdown, choose the model you just downloaded: `PMC_LLAMA-7B-10-Epoch-SuperHOT-8K-GPTQ`
56
+ 8. To use the increased context, set the **Loader** to **ExLlama**, set **max_seq_len** to 8192 or 4096, and set **compress_pos_emb** to **4** for 8192 context, or to **2** for 4096 context.
57
+ 9. Now click **Save Settings** followed by **Reload**
58
+ 10. The model will automatically load, and is now ready for use!
59
+ 11. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
60
+
61
+ ## How to use this GPTQ model from Python code with AutoGPTQ
62
+
63
+ First make sure you have AutoGPTQ and Einops installed:
64
+
65
+ ```
66
+ pip3 install einops auto-gptq
67
+ ```
68
+
69
+ Then run the following code. Note that in order to get this to work, `config.json` has been hardcoded to a sequence length of 8192.
70
+
71
+ If you want to try 4096 instead to reduce VRAM usage, please manually edit `config.json` to set `max_position_embeddings` to the value you want.
72
+
73
+ ```python
74
+ from transformers import AutoTokenizer, pipeline, logging
75
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
76
+ import argparse
77
+
78
+ model_name_or_path = "TheBloke/PMC_LLAMA-7B-10-Epoch-SuperHOT-8K-GPTQ"
79
+ model_basename = "pmc_llama-7b-10-epoch-superhot-8k-GPTQ-4bit-128g.no-act.order"
80
+
81
+ use_triton = False
82
+
83
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
84
+
85
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
86
+ model_basename=model_basename,
87
+ use_safetensors=True,
88
+ trust_remote_code=True,
89
+ device_map='auto',
90
+ use_triton=use_triton,
91
+ quantize_config=None)
92
+
93
+ model.seqlen = 8192
94
+
95
+ # Note: check the prompt template is correct for this model.
96
+ prompt = "Tell me about AI"
97
+ prompt_template=f'''USER: {prompt}
98
+ ASSISTANT:'''
99
+
100
+ print("\n\n*** Generate:")
101
+
102
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
103
+ output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
104
+ print(tokenizer.decode(output[0]))
105
+
106
+ # Inference can also be done using transformers' pipeline
107
+
108
+ # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
109
+ logging.set_verbosity(logging.CRITICAL)
110
+
111
+ print("*** Pipeline:")
112
+ pipe = pipeline(
113
+ "text-generation",
114
+ model=model,
115
+ tokenizer=tokenizer,
116
+ max_new_tokens=512,
117
+ temperature=0.7,
118
+ top_p=0.95,
119
+ repetition_penalty=1.15
120
+ )
121
+
122
+ print(pipe(prompt_template)[0]['generated_text'])
123
+ ```
124
+
125
+ ## Using other UIs: monkey patch
126
+
127
+ Provided in the repo is `llama_rope_scaled_monkey_patch.py`, written by @kaiokendev.
128
+
129
+ It can be theoretically be added to any Python UI or custom code to enable the same result as `trust_remote_code=True`. I have not tested this, and it should be superseded by using `trust_remote_code=True`, but I include it for completeness and for interest.
130
+
131
+ ## Provided files
132
+
133
+ **pmc_llama-7b-10-epoch-superhot-8k-GPTQ-4bit-128g.no-act.order.safetensors**
134
+
135
+ This will work with AutoGPTQ, ExLlama, and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.
136
+
137
+ It was created with group_size 128 to increase inference accuracy, but without --act-order (desc_act) to increase compatibility and improve inference speed.
138
+
139
+ * `pmc_llama-7b-10-epoch-superhot-8k-GPTQ-4bit-128g.no-act.order.safetensors`
140
+ * Works for use with ExLlama with increased context (4096 or 8192)
141
+ * Works with AutoGPTQ in Python code, including with increased context, if `trust_remote_code=True` is set.
142
+ * Should work with GPTQ-for-LLaMa in CUDA mode, but unknown if increased context works - TBC. May have issues with GPTQ-for-LLaMa Triton mode.
143
+ * Works with text-generation-webui, including one-click-installers.
144
+ * Parameters: Groupsize = 128. Act Order / desc_act = False.
145
+
146
+ <!-- footer start -->
147
+ ## Discord
148
+
149
+ For further support, and discussions on these models and AI in general, join us at:
150
+
151
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
152
+
153
+ ## Thanks, and how to contribute.
154
+
155
+ Thanks to the [chirper.ai](https://chirper.ai) team!
156
+
157
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
158
+
159
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
160
+
161
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
162
+
163
+ * Patreon: https://patreon.com/TheBlokeAI
164
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
165
+
166
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
167
+
168
+ **Patreon special mentions**: RoA, Lone Striker, Gabriel Puliatti, Derek Yates, Randy H, Jonathan Leane, Eugene Pentland, Karl Bernard, Viktor Bowallius, senxiiz, Daniel P. Andersen, Pierre Kircher, Deep Realms, Cory Kujawski, Oscar Rangel, Fen Risland, Ajan Kanaga, LangChain4j, webtim, Nikolai Manek, Trenton Dambrowitz, Raven Klaugh, Kalila, Khalefa Al-Ahmad, Chris McCloskey, Luke @flexchar, Ai Maven, Dave, Asp the Wyvern, Sean Connelly, Imad Khwaja, Space Cruiser, Rainer Wilmers, subjectnull, Alps Aficionado, Willian Hasse, Fred von Graf, Artur Olbinski, Johann-Peter Hartmann, WelcomeToTheClub, Willem Michiel, Michael Levine, Iucharbius , Spiking Neurons AB, K, biorpg, John Villwock, Pyrater, Greatston Gnanesh, Mano Prime, Junyu Yang, Stephen Murray, John Detwiler, Luke Pendergrass, terasurfer , Pieter, zynix , Edmond Seymore, theTransient, Nathan LeClaire, vamX, Kevin Schuppel, Preetika Verma, ya boyyy, Alex , SuperWojo, Ghost , Joseph William Delisle, Matthew Berman, Talal Aujan, chris gileta, Illia Dulskyi.
169
+
170
+ Thank you to all my generous patrons and donaters!
171
+
172
+ <!-- footer end -->
173
+
174
+ # Original model card: Kaio Ken's SuperHOT 8K
175
+
176
+
177
+ ### SuperHOT Prototype 2 w/ 8K Context
178
+
179
+ This is a second prototype of SuperHOT, a NSFW focused LoRA, this time 7B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k).
180
+
181
+ #### Looking for Merged & Quantized Models?
182
+ Make some please :)
183
+
184
+ #### Using the monkey-patch?
185
+ You will **NEED** to **apply the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192**
186
+
187
+ The monkeypatch is only necessary if you are using a front-end/back-end that does not already support scaling and said front-end/back-end is Python-based (i.e. Huggingface Transformers). To apply the patch, you will need to copy the `llama_rope_scaled_monkey_patch.py` into your working directory and call the exported function `replace_llama_rope_with_scaled_rope` at the very start of your Python program. It will modify the Transformers library's implementation of RoPE to properly apply the scaling factor.
188
+
189
+ #### Using Oobabooga with Exllama?
190
+ Switch your loader to `exllama` or `exllama_hf` Add the arguments `max_seq_len 8192` and `compress_pos_emb 4`. **While the model may work well with `compress_pos_emb 2`, it was trained on 4, so that is what I advocate for you to use**
191
+
192
+ Example in the command-line:
193
+ - `python server.py --max_seq_len 8192 --compress_pos_emb 4 --loader exllama_hf`
194
+
195
+ In the UI, you will see the loader option in the `Models` tab. Once you select either `exllama` or `exllama_hf`, the `max_seq_len` and `compress_pos_emb` settings will appear.
196
+
197
+ #### Training Details
198
+ I trained the LoRA with the following configuration:
199
+ - 1200 samples (~400 samples over 2048 sequence length)
200
+ - learning rate of 3e-4
201
+ - 3 epochs
202
+ - The exported modules are:
203
+ - q_proj
204
+ - k_proj
205
+ - v_proj
206
+ - o_proj
207
+ - no bias
208
+ - Rank = 4
209
+ - Alpha = 8
210
+ - no dropout
211
+ - weight decay of 0.1
212
+ - AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
213
+ - Trained on 4-bit base model
214
+ - Cutoff length: 4096
215
+
216
+ # Original model card: Chaoyi Wu's PMC_LLAMA 7B 10 Epoch
217
+
218
+
219
+ This repo contains the latest version of PMC_LLaMA_7B, which is LLaMA-7b finetuned on the PMC papers in the S2ORC dataset.
220
+
221
+ Notably, different from `chaoyi-wu/PMC_LLAMA_7B`, this model is further trained for 10 epochs.
222
+
223
+ The model was trained with the following hyperparameters:
224
+
225
+ * Epochs: **10**
226
+ * Batch size: 128
227
+ * Cutoff length: 512
228
+ * Learning rate: 2e-5
229
+
230
+ Each epoch we sample 512 tokens per paper for training.
231
+
232
+ The model can be loaded as follows:
233
+
234
+ ```
235
+ import transformers
236
+ import torch
237
+ tokenizer = transformers.LlamaTokenizer.from_pretrained('chaoyi-wu/PMC_LLAMA_7B_10_epoch')
238
+ model = transformers.LlamaForCausalLM.from_pretrained('chaoyi-wu/PMC_LLAMA_7B_10_epoch')
239
+ sentence = 'Hello, doctor'
240
+ batch = tokenizer(
241
+ sentence,
242
+ return_tensors="pt",
243
+ add_special_tokens=False
244
+ )
245
+ with torch.no_grad():
246
+ generated = model.generate(inputs = batch["input_ids"], max_length=200, do_sample=True, top_k=50)
247
+ print('model predict: ',tokenizer.decode(generated[0]))
248
+ ```