TheBloke commited on
Commit
3d6f12b
·
1 Parent(s): d1594ce

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -67
README.md CHANGED
@@ -1,10 +1,10 @@
1
  ---
2
  datasets:
3
- - garage-bAInd/OpenPlatypus
4
  inference: false
5
  language:
6
  - en
7
- license: other
8
  model_creator: garage-bAInd
9
  model_link: https://huggingface.co/garage-bAInd/Platypus2-13B
10
  model_name: Platypus2
@@ -33,18 +33,24 @@ quantized_by: TheBloke
33
  - Model creator: [garage-bAInd](https://huggingface.co/garage-bAInd)
34
  - Original model: [Platypus2](https://huggingface.co/garage-bAInd/Platypus2-13B)
35
 
 
36
  ## Description
37
 
38
  This repo contains GPTQ model files for [garage-bAInd's Platypus2](https://huggingface.co/garage-bAInd/Platypus2-13B).
39
 
40
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
41
 
 
 
42
  ## Repositories available
43
 
44
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ)
45
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Platypus2-13B-GGML)
 
46
  * [garage-bAInd's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/garage-bAInd/Platypus2-13B)
 
47
 
 
48
  ## Prompt template: Alpaca
49
 
50
  ```
@@ -54,22 +60,26 @@ Below is an instruction that describes a task. Write a response that appropriate
54
  {prompt}
55
 
56
  ### Response:
 
57
  ```
58
 
 
 
 
59
  ## Provided files and GPTQ parameters
60
 
61
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
62
 
63
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
64
 
65
- All GPTQ files are made with AutoGPTQ.
66
 
67
  <details>
68
  <summary>Explanation of GPTQ parameters</summary>
69
 
70
  - Bits: The bit size of the quantised model.
71
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
72
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
73
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
74
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
75
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
@@ -79,15 +89,18 @@ All GPTQ files are made with AutoGPTQ.
79
 
80
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
81
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
82
- | [main](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
83
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
84
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
85
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
86
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
87
- | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
88
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
89
  | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
90
 
 
 
 
91
  ## How to download from branches
92
 
93
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Platypus2-13B-GPTQ:gptq-4bit-32g-actorder_True`
@@ -96,73 +109,72 @@ All GPTQ files are made with AutoGPTQ.
96
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Platypus2-13B-GPTQ
97
  ```
98
  - In Python Transformers code, the branch is the `revision` parameter; see below.
99
-
 
100
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
101
 
102
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
103
 
104
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
105
 
106
  1. Click the **Model tab**.
107
  2. Under **Download custom model or LoRA**, enter `TheBloke/Platypus2-13B-GPTQ`.
108
  - To download from a specific branch, enter for example `TheBloke/Platypus2-13B-GPTQ:gptq-4bit-32g-actorder_True`
109
  - see Provided Files above for the list of branches for each option.
110
  3. Click **Download**.
111
- 4. The model will start downloading. Once it's finished it will say "Done"
112
  5. In the top left, click the refresh icon next to **Model**.
113
  6. In the **Model** dropdown, choose the model you just downloaded: `Platypus2-13B-GPTQ`
114
  7. The model will automatically load, and is now ready for use!
115
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
116
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
117
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
118
 
 
119
  ## How to use this GPTQ model from Python code
120
 
121
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
122
 
123
- ```
124
- pip3 install auto-gptq
125
- ```
126
 
127
- If you have problems installing AutoGPTQ, please build from source instead:
 
 
128
  ```
 
 
 
 
129
  pip3 uninstall -y auto-gptq
130
  git clone https://github.com/PanQiWei/AutoGPTQ
131
  cd AutoGPTQ
132
  pip3 install .
133
  ```
134
 
135
- Then try the following example code:
 
 
 
 
 
 
 
 
136
 
137
  ```python
138
- from transformers import AutoTokenizer, pipeline, logging
139
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
140
 
141
  model_name_or_path = "TheBloke/Platypus2-13B-GPTQ"
142
-
143
- use_triton = False
 
 
 
 
144
 
145
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
146
 
147
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
148
- use_safetensors=True,
149
- trust_remote_code=False,
150
- device="cuda:0",
151
- use_triton=use_triton,
152
- quantize_config=None)
153
-
154
- """
155
- # To download from a specific branch, use the revision parameter, as in this example:
156
- # Note that `revision` requires AutoGPTQ 0.3.1 or later!
157
-
158
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
159
- revision="gptq-4bit-32g-actorder_True",
160
- use_safetensors=True,
161
- trust_remote_code=False,
162
- device="cuda:0",
163
- quantize_config=None)
164
- """
165
-
166
  prompt = "Tell me about AI"
167
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
168
 
@@ -170,6 +182,7 @@ prompt_template=f'''Below is an instruction that describes a task. Write a respo
170
  {prompt}
171
 
172
  ### Response:
 
173
  '''
174
 
175
  print("\n\n*** Generate:")
@@ -180,9 +193,6 @@ print(tokenizer.decode(output[0]))
180
 
181
  # Inference can also be done using transformers' pipeline
182
 
183
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
184
- logging.set_verbosity(logging.CRITICAL)
185
-
186
  print("*** Pipeline:")
187
  pipe = pipeline(
188
  "text-generation",
@@ -196,12 +206,17 @@ pipe = pipeline(
196
 
197
  print(pipe(prompt_template)[0]['generated_text'])
198
  ```
 
199
 
 
200
  ## Compatibility
201
 
202
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
 
 
203
 
204
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
205
 
206
  <!-- footer start -->
207
  <!-- 200823 -->
@@ -226,7 +241,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
226
 
227
  **Special thanks to**: Aemon Algiz.
228
 
229
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
230
 
231
 
232
  Thank you to all my generous patrons and donaters!
@@ -248,11 +263,11 @@ Platypus-13B is an instruction fine-tuned model based on the LLaMA2-13B transfor
248
 
249
  | Metric | Value |
250
  |-----------------------|-------|
251
- | MMLU (5-shot) | - |
252
- | ARC (25-shot) | - |
253
- | HellaSwag (10-shot) | - |
254
- | TruthfulQA (0-shot) | - |
255
- | Avg. | - |
256
 
257
  We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard. Please see below for detailed instructions on reproducing benchmark results.
258
 
@@ -274,7 +289,9 @@ We use state-of-the-art [Language Model Evaluation Harness](https://github.com/E
274
 
275
  ### Training Dataset
276
 
277
- STEM and logic based dataset [`garage-bAInd/OpenPlatypus`](https://huggingface.co/datasets/garage-bAInd/OpenPlatypus) [COMING SOON!]
 
 
278
 
279
  ### Training Procedure
280
 
@@ -293,7 +310,7 @@ cd lm-evaluation-harness
293
  # install
294
  pip install -e .
295
  ```
296
- Each task was evaluated on a single A100 80GB GPU.
297
 
298
  ARC:
299
  ```
@@ -321,21 +338,29 @@ Llama 2 and fine-tuned variants are a new technology that carries risks with use
321
  Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/
322
 
323
  ### Citations
324
-
 
 
 
 
 
 
 
325
  ```bibtex
326
  @misc{touvron2023llama,
327
- title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
328
- author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
329
- year={2023},
330
  eprint={2307.09288},
331
  archivePrefix={arXiv},
332
  }
333
  ```
334
  ```bibtex
335
- @article{hu2021lora,
336
- title={LoRA: Low-Rank Adaptation of Large Language Models},
337
- author={Hu, Edward J. and Shen, Yelong and Wallis, Phillip and Allen-Zhu, Zeyuan and Li, Yuanzhi and Wang, Shean and Chen, Weizhu},
338
- journal={CoRR},
339
- year={2021}
 
 
340
  }
341
  ```
 
1
  ---
2
  datasets:
3
+ - garage-bAInd/Open-Platypus
4
  inference: false
5
  language:
6
  - en
7
+ license: llama2
8
  model_creator: garage-bAInd
9
  model_link: https://huggingface.co/garage-bAInd/Platypus2-13B
10
  model_name: Platypus2
 
33
  - Model creator: [garage-bAInd](https://huggingface.co/garage-bAInd)
34
  - Original model: [Platypus2](https://huggingface.co/garage-bAInd/Platypus2-13B)
35
 
36
+ <!-- description start -->
37
  ## Description
38
 
39
  This repo contains GPTQ model files for [garage-bAInd's Platypus2](https://huggingface.co/garage-bAInd/Platypus2-13B).
40
 
41
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
42
 
43
+ <!-- description end -->
44
+ <!-- repositories-available start -->
45
  ## Repositories available
46
 
47
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ)
48
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Platypus2-13B-GGUF)
49
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Platypus2-13B-GGML)
50
  * [garage-bAInd's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/garage-bAInd/Platypus2-13B)
51
+ <!-- repositories-available end -->
52
 
53
+ <!-- prompt-template start -->
54
  ## Prompt template: Alpaca
55
 
56
  ```
 
60
  {prompt}
61
 
62
  ### Response:
63
+
64
  ```
65
 
66
+ <!-- prompt-template end -->
67
+
68
+ <!-- README_GPTQ.md-provided-files start -->
69
  ## Provided files and GPTQ parameters
70
 
71
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
72
 
73
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
74
 
75
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
76
 
77
  <details>
78
  <summary>Explanation of GPTQ parameters</summary>
79
 
80
  - Bits: The bit size of the quantised model.
81
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
82
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
83
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
84
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
85
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
 
89
 
90
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
91
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
92
+ | [main](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
93
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
94
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
95
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
96
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
97
+ | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
98
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
99
  | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
100
 
101
+ <!-- README_GPTQ.md-provided-files end -->
102
+
103
+ <!-- README_GPTQ.md-download-from-branches start -->
104
  ## How to download from branches
105
 
106
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Platypus2-13B-GPTQ:gptq-4bit-32g-actorder_True`
 
109
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Platypus2-13B-GPTQ
110
  ```
111
  - In Python Transformers code, the branch is the `revision` parameter; see below.
112
+ <!-- README_GPTQ.md-download-from-branches end -->
113
+ <!-- README_GPTQ.md-text-generation-webui start -->
114
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
115
 
116
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
117
 
118
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
119
 
120
  1. Click the **Model tab**.
121
  2. Under **Download custom model or LoRA**, enter `TheBloke/Platypus2-13B-GPTQ`.
122
  - To download from a specific branch, enter for example `TheBloke/Platypus2-13B-GPTQ:gptq-4bit-32g-actorder_True`
123
  - see Provided Files above for the list of branches for each option.
124
  3. Click **Download**.
125
+ 4. The model will start downloading. Once it's finished it will say "Done".
126
  5. In the top left, click the refresh icon next to **Model**.
127
  6. In the **Model** dropdown, choose the model you just downloaded: `Platypus2-13B-GPTQ`
128
  7. The model will automatically load, and is now ready for use!
129
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
130
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
131
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
132
+ <!-- README_GPTQ.md-text-generation-webui end -->
133
 
134
+ <!-- README_GPTQ.md-use-from-python start -->
135
  ## How to use this GPTQ model from Python code
136
 
137
+ ### Install the necessary packages
138
 
139
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
 
 
140
 
141
+ ```shell
142
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
143
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
144
  ```
145
+
146
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
147
+
148
+ ```shell
149
  pip3 uninstall -y auto-gptq
150
  git clone https://github.com/PanQiWei/AutoGPTQ
151
  cd AutoGPTQ
152
  pip3 install .
153
  ```
154
 
155
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
156
+
157
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
158
+ ```shell
159
+ pip3 uninstall -y transformers
160
+ pip3 install git+https://github.com/huggingface/transformers.git
161
+ ```
162
+
163
+ ### You can then use the following code
164
 
165
  ```python
166
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
167
 
168
  model_name_or_path = "TheBloke/Platypus2-13B-GPTQ"
169
+ # To use a different branch, change revision
170
+ # For example: revision="gptq-4bit-32g-actorder_True"
171
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
172
+ torch_dtype=torch.float16,
173
+ device_map="auto",
174
+ revision="main")
175
 
176
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
  prompt = "Tell me about AI"
179
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
180
 
 
182
  {prompt}
183
 
184
  ### Response:
185
+
186
  '''
187
 
188
  print("\n\n*** Generate:")
 
193
 
194
  # Inference can also be done using transformers' pipeline
195
 
 
 
 
196
  print("*** Pipeline:")
197
  pipe = pipeline(
198
  "text-generation",
 
206
 
207
  print(pipe(prompt_template)[0]['generated_text'])
208
  ```
209
+ <!-- README_GPTQ.md-use-from-python end -->
210
 
211
+ <!-- README_GPTQ.md-compatibility start -->
212
  ## Compatibility
213
 
214
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
215
+
216
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
217
 
218
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
219
+ <!-- README_GPTQ.md-compatibility end -->
220
 
221
  <!-- footer start -->
222
  <!-- 200823 -->
 
241
 
242
  **Special thanks to**: Aemon Algiz.
243
 
244
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
245
 
246
 
247
  Thank you to all my generous patrons and donaters!
 
263
 
264
  | Metric | Value |
265
  |-----------------------|-------|
266
+ | MMLU (5-shot) | 56.70 |
267
+ | ARC (25-shot) | 61.26 |
268
+ | HellaSwag (10-shot) | 82.56 |
269
+ | TruthfulQA (0-shot) | 44.86 |
270
+ | Avg. | 61.35 |
271
 
272
  We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard. Please see below for detailed instructions on reproducing benchmark results.
273
 
 
289
 
290
  ### Training Dataset
291
 
292
+ `garage-bAInd/Platypus2-13B` trained using STEM and logic based dataset [`garage-bAInd/Open-Platypus`](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).
293
+
294
+ Please see our [paper](https://arxiv.org/abs/2308.07317) and [project webpage](https://platypus-llm.github.io) for additional information.
295
 
296
  ### Training Procedure
297
 
 
310
  # install
311
  pip install -e .
312
  ```
313
+ Each task was evaluated on 1 A100 80GB GPU.
314
 
315
  ARC:
316
  ```
 
338
  Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/
339
 
340
  ### Citations
341
+ ```bibtex
342
+ @article{platypus2023,
343
+ title={Platypus: Quick, Cheap, and Powerful Refinement of LLMs},
344
+ author={Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz},
345
+ booktitle={arXiv preprint arxiv:2308.07317},
346
+ year={2023}
347
+ }
348
+ ```
349
  ```bibtex
350
  @misc{touvron2023llama,
351
+ title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
352
+ author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov year={2023},
 
353
  eprint={2307.09288},
354
  archivePrefix={arXiv},
355
  }
356
  ```
357
  ```bibtex
358
+ @inproceedings{
359
+ hu2022lora,
360
+ title={Lo{RA}: Low-Rank Adaptation of Large Language Models},
361
+ author={Edward J Hu and Yelong Shen and Phillip Wallis and Zeyuan Allen-Zhu and Yuanzhi Li and Shean Wang and Lu Wang and Weizhu Chen},
362
+ booktitle={International Conference on Learning Representations},
363
+ year={2022},
364
+ url={https://openreview.net/forum?id=nZeVKeeFYf9}
365
  }
366
  ```