Text Generation
Transformers
Safetensors
English
llama
text-generation-inference
4-bit precision
gptq
TheBloke commited on
Commit
274923a
1 Parent(s): 0099753

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -17
README.md CHANGED
@@ -1,15 +1,27 @@
1
  ---
 
2
  datasets:
3
  - garage-bAInd/Open-Platypus
4
  - Open-Orca/OpenOrca
5
  inference: false
6
  language:
7
  - en
8
- license: llama2
9
  model_creator: garage-bAInd
10
- model_link: https://huggingface.co/garage-bAInd/Platypus2-70B-instruct
11
  model_name: Platypus2 70B Instruct
12
  model_type: llama
 
 
 
 
 
 
 
 
 
 
 
 
13
  quantized_by: TheBloke
14
  ---
15
 
@@ -45,9 +57,9 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
45
  <!-- repositories-available start -->
46
  ## Repositories available
47
 
 
48
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ)
49
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GGUF)
50
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GGML)
51
  * [garage-bAInd's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/garage-bAInd/Platypus2-70B-instruct)
52
  <!-- repositories-available end -->
53
 
@@ -65,7 +77,15 @@ Below is an instruction that describes a task. Write a response that appropriate
65
  ```
66
 
67
  <!-- prompt-template end -->
 
 
 
 
68
 
 
 
 
 
69
  <!-- README_GPTQ.md-provided-files start -->
70
  ## Provided files and GPTQ parameters
71
 
@@ -90,22 +110,22 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
90
 
91
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
92
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
93
- | [main](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
94
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
95
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
96
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
97
  | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.77 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
98
- | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
99
 
100
  <!-- README_GPTQ.md-provided-files end -->
101
 
102
  <!-- README_GPTQ.md-download-from-branches start -->
103
  ## How to download from branches
104
 
105
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Platypus2-70B-Instruct-GPTQ:gptq-4bit-32g-actorder_True`
106
  - With Git, you can clone a branch with:
107
  ```
108
- git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ
109
  ```
110
  - In Python Transformers code, the branch is the `revision` parameter; see below.
111
  <!-- README_GPTQ.md-download-from-branches end -->
@@ -118,7 +138,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
118
 
119
  1. Click the **Model tab**.
120
  2. Under **Download custom model or LoRA**, enter `TheBloke/Platypus2-70B-Instruct-GPTQ`.
121
- - To download from a specific branch, enter for example `TheBloke/Platypus2-70B-Instruct-GPTQ:gptq-4bit-32g-actorder_True`
122
  - see Provided Files above for the list of branches for each option.
123
  3. Click **Download**.
124
  4. The model will start downloading. Once it's finished it will say "Done".
@@ -166,10 +186,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
166
 
167
  model_name_or_path = "TheBloke/Platypus2-70B-Instruct-GPTQ"
168
  # To use a different branch, change revision
169
- # For example: revision="gptq-4bit-32g-actorder_True"
170
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
171
- torch_dtype=torch.float16,
172
  device_map="auto",
 
173
  revision="main")
174
 
175
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
@@ -187,7 +207,7 @@ prompt_template=f'''Below is an instruction that describes a task. Write a respo
187
  print("\n\n*** Generate:")
188
 
189
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
190
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
191
  print(tokenizer.decode(output[0]))
192
 
193
  # Inference can also be done using transformers' pipeline
@@ -198,9 +218,11 @@ pipe = pipeline(
198
  model=model,
199
  tokenizer=tokenizer,
200
  max_new_tokens=512,
 
201
  temperature=0.7,
202
  top_p=0.95,
203
- repetition_penalty=1.15
 
204
  )
205
 
206
  print(pipe(prompt_template)[0]['generated_text'])
@@ -225,10 +247,12 @@ For further support, and discussions on these models and AI in general, join us
225
 
226
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
227
 
228
- ## Thanks, and how to contribute.
229
 
230
  Thanks to the [chirper.ai](https://chirper.ai) team!
231
 
 
 
232
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
233
 
234
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -240,7 +264,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
240
 
241
  **Special thanks to**: Aemon Algiz.
242
 
243
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
244
 
245
 
246
  Thank you to all my generous patrons and donaters!
 
1
  ---
2
+ base_model: https://huggingface.co/garage-bAInd/Platypus2-70B-instruct
3
  datasets:
4
  - garage-bAInd/Open-Platypus
5
  - Open-Orca/OpenOrca
6
  inference: false
7
  language:
8
  - en
9
+ license: cc-by-nc-4.0
10
  model_creator: garage-bAInd
 
11
  model_name: Platypus2 70B Instruct
12
  model_type: llama
13
+ prompt_template: 'Below is an instruction that describes a task. Write a response
14
+ that appropriately completes the request.
15
+
16
+
17
+ ### Instruction:
18
+
19
+ {prompt}
20
+
21
+
22
+ ### Response:
23
+
24
+ '
25
  quantized_by: TheBloke
26
  ---
27
 
 
57
  <!-- repositories-available start -->
58
  ## Repositories available
59
 
60
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-AWQ)
61
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ)
62
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GGUF)
 
63
  * [garage-bAInd's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/garage-bAInd/Platypus2-70B-instruct)
64
  <!-- repositories-available end -->
65
 
 
77
  ```
78
 
79
  <!-- prompt-template end -->
80
+ <!-- licensing start -->
81
+ ## Licensing
82
+
83
+ The creator of the source model has listed its license as `cc-by-nc-4.0`, and this quantization has therefore used that same license.
84
 
85
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
86
+
87
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [garage-bAInd's Platypus2 70B Instruct](https://huggingface.co/garage-bAInd/Platypus2-70B-instruct).
88
+ <!-- licensing end -->
89
  <!-- README_GPTQ.md-provided-files start -->
90
  ## Provided files and GPTQ parameters
91
 
 
110
 
111
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
112
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
113
+ | [main](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
114
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
115
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
116
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
117
  | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.77 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
118
+ | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
119
 
120
  <!-- README_GPTQ.md-provided-files end -->
121
 
122
  <!-- README_GPTQ.md-download-from-branches start -->
123
  ## How to download from branches
124
 
125
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Platypus2-70B-Instruct-GPTQ:main`
126
  - With Git, you can clone a branch with:
127
  ```
128
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ
129
  ```
130
  - In Python Transformers code, the branch is the `revision` parameter; see below.
131
  <!-- README_GPTQ.md-download-from-branches end -->
 
138
 
139
  1. Click the **Model tab**.
140
  2. Under **Download custom model or LoRA**, enter `TheBloke/Platypus2-70B-Instruct-GPTQ`.
141
+ - To download from a specific branch, enter for example `TheBloke/Platypus2-70B-Instruct-GPTQ:main`
142
  - see Provided Files above for the list of branches for each option.
143
  3. Click **Download**.
144
  4. The model will start downloading. Once it's finished it will say "Done".
 
186
 
187
  model_name_or_path = "TheBloke/Platypus2-70B-Instruct-GPTQ"
188
  # To use a different branch, change revision
189
+ # For example: revision="main"
190
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
 
191
  device_map="auto",
192
+ trust_remote_code=False,
193
  revision="main")
194
 
195
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
 
207
  print("\n\n*** Generate:")
208
 
209
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
210
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
211
  print(tokenizer.decode(output[0]))
212
 
213
  # Inference can also be done using transformers' pipeline
 
218
  model=model,
219
  tokenizer=tokenizer,
220
  max_new_tokens=512,
221
+ do_sample=True,
222
  temperature=0.7,
223
  top_p=0.95,
224
+ top_k=40,
225
+ repetition_penalty=1.1
226
  )
227
 
228
  print(pipe(prompt_template)[0]['generated_text'])
 
247
 
248
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
249
 
250
+ ## Thanks, and how to contribute
251
 
252
  Thanks to the [chirper.ai](https://chirper.ai) team!
253
 
254
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
255
+
256
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
257
 
258
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
264
 
265
  **Special thanks to**: Aemon Algiz.
266
 
267
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
268
 
269
 
270
  Thank you to all my generous patrons and donaters!