Text Generation
Transformers
Safetensors
English
llama
text-generation-inference
4-bit precision
gptq
TheBloke commited on
Commit
a347d0b
1 Parent(s): 9b07d06

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -58
README.md CHANGED
@@ -1,10 +1,11 @@
1
  ---
2
  datasets:
3
  - garage-bAInd/Open-Platypus
 
4
  inference: false
5
  language:
6
  - en
7
- license: other
8
  model_creator: garage-bAInd
9
  model_link: https://huggingface.co/garage-bAInd/Platypus2-70B-instruct
10
  model_name: Platypus2 70B Instruct
@@ -33,18 +34,24 @@ quantized_by: TheBloke
33
  - Model creator: [garage-bAInd](https://huggingface.co/garage-bAInd)
34
  - Original model: [Platypus2 70B Instruct](https://huggingface.co/garage-bAInd/Platypus2-70B-instruct)
35
 
 
36
  ## Description
37
 
38
  This repo contains GPTQ model files for [garage-bAInd's Platypus2 70B Instruct](https://huggingface.co/garage-bAInd/Platypus2-70B-instruct).
39
 
40
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
41
 
 
 
42
  ## Repositories available
43
 
44
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ)
45
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GGML)
 
46
  * [garage-bAInd's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/garage-bAInd/Platypus2-70B-instruct)
 
47
 
 
48
  ## Prompt template: Alpaca
49
 
50
  ```
@@ -54,22 +61,26 @@ Below is an instruction that describes a task. Write a response that appropriate
54
  {prompt}
55
 
56
  ### Response:
 
57
  ```
58
 
 
 
 
59
  ## Provided files and GPTQ parameters
60
 
61
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
62
 
63
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
64
 
65
- All GPTQ files are made with AutoGPTQ.
66
 
67
  <details>
68
  <summary>Explanation of GPTQ parameters</summary>
69
 
70
  - Bits: The bit size of the quantised model.
71
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
72
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
73
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
74
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
75
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
@@ -79,13 +90,16 @@ All GPTQ files are made with AutoGPTQ.
79
 
80
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
81
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
82
- | [main](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
83
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
84
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
85
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
86
- | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.77 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
87
  | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
88
 
 
 
 
89
  ## How to download from branches
90
 
91
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Platypus2-70B-Instruct-GPTQ:gptq-4bit-32g-actorder_True`
@@ -94,73 +108,72 @@ All GPTQ files are made with AutoGPTQ.
94
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ
95
  ```
96
  - In Python Transformers code, the branch is the `revision` parameter; see below.
97
-
 
98
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
99
 
100
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
101
 
102
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
103
 
104
  1. Click the **Model tab**.
105
  2. Under **Download custom model or LoRA**, enter `TheBloke/Platypus2-70B-Instruct-GPTQ`.
106
  - To download from a specific branch, enter for example `TheBloke/Platypus2-70B-Instruct-GPTQ:gptq-4bit-32g-actorder_True`
107
  - see Provided Files above for the list of branches for each option.
108
  3. Click **Download**.
109
- 4. The model will start downloading. Once it's finished it will say "Done"
110
  5. In the top left, click the refresh icon next to **Model**.
111
  6. In the **Model** dropdown, choose the model you just downloaded: `Platypus2-70B-Instruct-GPTQ`
112
  7. The model will automatically load, and is now ready for use!
113
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
114
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
115
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
116
 
 
117
  ## How to use this GPTQ model from Python code
118
 
119
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
120
 
121
- ```
122
- pip3 install auto-gptq
123
- ```
124
 
125
- If you have problems installing AutoGPTQ, please build from source instead:
 
 
126
  ```
 
 
 
 
127
  pip3 uninstall -y auto-gptq
128
  git clone https://github.com/PanQiWei/AutoGPTQ
129
  cd AutoGPTQ
130
  pip3 install .
131
  ```
132
 
133
- Then try the following example code:
 
 
 
 
 
 
 
 
134
 
135
  ```python
136
- from transformers import AutoTokenizer, pipeline, logging
137
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
138
 
139
  model_name_or_path = "TheBloke/Platypus2-70B-Instruct-GPTQ"
140
-
141
- use_triton = False
 
 
 
 
142
 
143
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
144
 
145
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
146
- use_safetensors=True,
147
- trust_remote_code=False,
148
- device="cuda:0",
149
- use_triton=use_triton,
150
- quantize_config=None)
151
-
152
- """
153
- # To download from a specific branch, use the revision parameter, as in this example:
154
- # Note that `revision` requires AutoGPTQ 0.3.1 or later!
155
-
156
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
157
- revision="gptq-4bit-32g-actorder_True",
158
- use_safetensors=True,
159
- trust_remote_code=False,
160
- device="cuda:0",
161
- quantize_config=None)
162
- """
163
-
164
  prompt = "Tell me about AI"
165
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
166
 
@@ -168,6 +181,7 @@ prompt_template=f'''Below is an instruction that describes a task. Write a respo
168
  {prompt}
169
 
170
  ### Response:
 
171
  '''
172
 
173
  print("\n\n*** Generate:")
@@ -178,9 +192,6 @@ print(tokenizer.decode(output[0]))
178
 
179
  # Inference can also be done using transformers' pipeline
180
 
181
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
182
- logging.set_verbosity(logging.CRITICAL)
183
-
184
  print("*** Pipeline:")
185
  pipe = pipeline(
186
  "text-generation",
@@ -194,12 +205,17 @@ pipe = pipeline(
194
 
195
  print(pipe(prompt_template)[0]['generated_text'])
196
  ```
 
197
 
 
198
  ## Compatibility
199
 
200
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
201
 
202
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
203
 
204
  <!-- footer start -->
205
  <!-- 200823 -->
@@ -224,7 +240,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
224
 
225
  **Special thanks to**: Aemon Algiz.
226
 
227
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
228
 
229
 
230
  Thank you to all my generous patrons and donaters!
@@ -272,7 +288,9 @@ We use state-of-the-art [Language Model Evaluation Harness](https://github.com/E
272
 
273
  ### Training Dataset
274
 
275
- `garage-bAInd/Platypus2-70B` trained using STEM and logic based dataset [`garage-bAInd/Open-Platypus`](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) [COMING SOON!].
 
 
276
 
277
  ### Training Procedure
278
 
@@ -319,19 +337,29 @@ Llama 2 and fine-tuned variants are a new technology that carries risks with use
319
  Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/
320
 
321
  ### Citations
322
-
323
  ```bibtex
324
- @misc{touvron2023llama,
325
- title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
326
- author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
 
327
  year={2023}
328
  }
329
  ```
330
  ```bibtex
331
- @article{hu2021lora,
332
- title={LoRA: Low-Rank Adaptation of Large Language Models},
333
- author={Hu, Edward J. and Shen, Yelong and Wallis, Phillip and Allen-Zhu, Zeyuan and Li, Yuanzhi and Wang, Shean and Chen, Weizhu},
334
- journal={CoRR},
335
- year={2021}
 
 
 
 
 
 
 
 
 
 
336
  }
337
  ```
 
1
  ---
2
  datasets:
3
  - garage-bAInd/Open-Platypus
4
+ - Open-Orca/OpenOrca
5
  inference: false
6
  language:
7
  - en
8
+ license: llama2
9
  model_creator: garage-bAInd
10
  model_link: https://huggingface.co/garage-bAInd/Platypus2-70B-instruct
11
  model_name: Platypus2 70B Instruct
 
34
  - Model creator: [garage-bAInd](https://huggingface.co/garage-bAInd)
35
  - Original model: [Platypus2 70B Instruct](https://huggingface.co/garage-bAInd/Platypus2-70B-instruct)
36
 
37
+ <!-- description start -->
38
  ## Description
39
 
40
  This repo contains GPTQ model files for [garage-bAInd's Platypus2 70B Instruct](https://huggingface.co/garage-bAInd/Platypus2-70B-instruct).
41
 
42
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
43
 
44
+ <!-- description end -->
45
+ <!-- repositories-available start -->
46
  ## Repositories available
47
 
48
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ)
49
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GGUF)
50
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GGML)
51
  * [garage-bAInd's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/garage-bAInd/Platypus2-70B-instruct)
52
+ <!-- repositories-available end -->
53
 
54
+ <!-- prompt-template start -->
55
  ## Prompt template: Alpaca
56
 
57
  ```
 
61
  {prompt}
62
 
63
  ### Response:
64
+
65
  ```
66
 
67
+ <!-- prompt-template end -->
68
+
69
+ <!-- README_GPTQ.md-provided-files start -->
70
  ## Provided files and GPTQ parameters
71
 
72
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
73
 
74
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
75
 
76
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
77
 
78
  <details>
79
  <summary>Explanation of GPTQ parameters</summary>
80
 
81
  - Bits: The bit size of the quantised model.
82
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
83
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
84
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
85
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
86
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
 
90
 
91
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
92
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
93
+ | [main](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
94
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
95
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
96
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
97
+ | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.77 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
98
  | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
99
 
100
+ <!-- README_GPTQ.md-provided-files end -->
101
+
102
+ <!-- README_GPTQ.md-download-from-branches start -->
103
  ## How to download from branches
104
 
105
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Platypus2-70B-Instruct-GPTQ:gptq-4bit-32g-actorder_True`
 
108
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Platypus2-70B-Instruct-GPTQ
109
  ```
110
  - In Python Transformers code, the branch is the `revision` parameter; see below.
111
+ <!-- README_GPTQ.md-download-from-branches end -->
112
+ <!-- README_GPTQ.md-text-generation-webui start -->
113
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
114
 
115
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
116
 
117
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
118
 
119
  1. Click the **Model tab**.
120
  2. Under **Download custom model or LoRA**, enter `TheBloke/Platypus2-70B-Instruct-GPTQ`.
121
  - To download from a specific branch, enter for example `TheBloke/Platypus2-70B-Instruct-GPTQ:gptq-4bit-32g-actorder_True`
122
  - see Provided Files above for the list of branches for each option.
123
  3. Click **Download**.
124
+ 4. The model will start downloading. Once it's finished it will say "Done".
125
  5. In the top left, click the refresh icon next to **Model**.
126
  6. In the **Model** dropdown, choose the model you just downloaded: `Platypus2-70B-Instruct-GPTQ`
127
  7. The model will automatically load, and is now ready for use!
128
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
129
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
130
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
131
+ <!-- README_GPTQ.md-text-generation-webui end -->
132
 
133
+ <!-- README_GPTQ.md-use-from-python start -->
134
  ## How to use this GPTQ model from Python code
135
 
136
+ ### Install the necessary packages
137
 
138
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
 
 
139
 
140
+ ```shell
141
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
142
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
143
  ```
144
+
145
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
146
+
147
+ ```shell
148
  pip3 uninstall -y auto-gptq
149
  git clone https://github.com/PanQiWei/AutoGPTQ
150
  cd AutoGPTQ
151
  pip3 install .
152
  ```
153
 
154
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
155
+
156
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
157
+ ```shell
158
+ pip3 uninstall -y transformers
159
+ pip3 install git+https://github.com/huggingface/transformers.git
160
+ ```
161
+
162
+ ### You can then use the following code
163
 
164
  ```python
165
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
166
 
167
  model_name_or_path = "TheBloke/Platypus2-70B-Instruct-GPTQ"
168
+ # To use a different branch, change revision
169
+ # For example: revision="gptq-4bit-32g-actorder_True"
170
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
171
+ torch_dtype=torch.float16,
172
+ device_map="auto",
173
+ revision="main")
174
 
175
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177
  prompt = "Tell me about AI"
178
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
179
 
 
181
  {prompt}
182
 
183
  ### Response:
184
+
185
  '''
186
 
187
  print("\n\n*** Generate:")
 
192
 
193
  # Inference can also be done using transformers' pipeline
194
 
 
 
 
195
  print("*** Pipeline:")
196
  pipe = pipeline(
197
  "text-generation",
 
205
 
206
  print(pipe(prompt_template)[0]['generated_text'])
207
  ```
208
+ <!-- README_GPTQ.md-use-from-python end -->
209
 
210
+ <!-- README_GPTQ.md-compatibility start -->
211
  ## Compatibility
212
 
213
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
214
 
215
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
216
+
217
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
218
+ <!-- README_GPTQ.md-compatibility end -->
219
 
220
  <!-- footer start -->
221
  <!-- 200823 -->
 
240
 
241
  **Special thanks to**: Aemon Algiz.
242
 
243
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
244
 
245
 
246
  Thank you to all my generous patrons and donaters!
 
288
 
289
  ### Training Dataset
290
 
291
+ `garage-bAInd/Platypus2-70B` trained using STEM and logic based dataset [`garage-bAInd/Open-Platypus`](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).
292
+
293
+ Please see our [paper](https://arxiv.org/abs/2308.07317) and [project webpage](https://platypus-llm.github.io) for additional information.
294
 
295
  ### Training Procedure
296
 
 
337
  Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/
338
 
339
  ### Citations
 
340
  ```bibtex
341
+ @article{platypus2023,
342
+ title={Platypus: Quick, Cheap, and Powerful Refinement of LLMs},
343
+ author={Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz},
344
+ booktitle={arXiv preprint arxiv:2308.07317},
345
  year={2023}
346
  }
347
  ```
348
  ```bibtex
349
+ @misc{touvron2023llama,
350
+ title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
351
+ author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov year={2023},
352
+ eprint={2307.09288},
353
+ archivePrefix={arXiv},
354
+ }
355
+ ```
356
+ ```bibtex
357
+ @inproceedings{
358
+ hu2022lora,
359
+ title={Lo{RA}: Low-Rank Adaptation of Large Language Models},
360
+ author={Edward J Hu and Yelong Shen and Phillip Wallis and Zeyuan Allen-Zhu and Yuanzhi Li and Shean Wang and Lu Wang and Weizhu Chen},
361
+ booktitle={International Conference on Learning Representations},
362
+ year={2022},
363
+ url={https://openreview.net/forum?id=nZeVKeeFYf9}
364
  }
365
  ```