Transformers
English
llama
TheBloke commited on
Commit
4c73859
1 Parent(s): 05d6b1c

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +480 -0
README.md ADDED
@@ -0,0 +1,480 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepnight-research/Saily_220B
3
+ datasets:
4
+ - tiiuae/falcon-refinedweb
5
+ - EleutherAI/pile
6
+ - meta-math/MetaMathQA
7
+ inference: false
8
+ language:
9
+ - en
10
+ library_name: transformers
11
+ license: llama2
12
+ model_creator: DEEPNIGHT
13
+ model_name: Saily 220B
14
+ model_type: llama
15
+ prompt_template: 'Below is an instruction that describes a task. Write a response
16
+ that appropriately completes the request.
17
+
18
+
19
+ ### Instruction:
20
+
21
+ {prompt}
22
+
23
+
24
+ ### Response:
25
+
26
+ '
27
+ quantized_by: TheBloke
28
+ ---
29
+ <!-- markdownlint-disable MD041 -->
30
+
31
+ <!-- header start -->
32
+ <!-- 200823 -->
33
+ <div style="width: auto; margin-left: auto; margin-right: auto">
34
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
35
+ </div>
36
+ <div style="display: flex; justify-content: space-between; width: 100%;">
37
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
38
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
39
+ </div>
40
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
41
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
42
+ </div>
43
+ </div>
44
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
45
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
46
+ <!-- header end -->
47
+
48
+ # Saily 220B - GGUF
49
+ - Model creator: [DEEPNIGHT](https://huggingface.co/deepnight-research)
50
+ - Original model: [Saily 220B](https://huggingface.co/deepnight-research/Saily_220B)
51
+
52
+ <!-- description start -->
53
+ ## Description
54
+
55
+ This repo contains GGUF format model files for [DEEPNIGHT's Saily 220B](https://huggingface.co/deepnight-research/Saily_220B).
56
+
57
+ <!-- description end -->
58
+ <!-- README_GGUF.md-about-gguf start -->
59
+ ### About GGUF
60
+
61
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
62
+
63
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
64
+
65
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
66
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
67
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
68
+ * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
69
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
70
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
71
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
72
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
73
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
74
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
75
+
76
+ <!-- README_GGUF.md-about-gguf end -->
77
+ <!-- repositories-available start -->
78
+ ## Repositories available
79
+
80
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Saily_220B-AWQ)
81
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Saily_220B-GPTQ)
82
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Saily_220B-GGUF)
83
+ * [DEEPNIGHT's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/deepnight-research/Saily_220B)
84
+ <!-- repositories-available end -->
85
+
86
+ <!-- prompt-template start -->
87
+ ## Prompt template: Alpaca
88
+
89
+ ```
90
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
91
+
92
+ ### Instruction:
93
+ {prompt}
94
+
95
+ ### Response:
96
+
97
+ ```
98
+
99
+ <!-- prompt-template end -->
100
+
101
+
102
+ <!-- compatibility_gguf start -->
103
+ ## Compatibility
104
+
105
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
106
+
107
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
108
+
109
+ ## Explanation of quantisation methods
110
+
111
+ <details>
112
+ <summary>Click to see details</summary>
113
+
114
+ The new methods available are:
115
+
116
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
117
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
118
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
119
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
120
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
121
+
122
+ Refer to the Provided Files table below to see what files use which methods, and how.
123
+ </details>
124
+ <!-- compatibility_gguf end -->
125
+
126
+ <!-- README_GGUF.md-provided-files start -->
127
+ ## Provided files
128
+
129
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
130
+ | ---- | ---- | ---- | ---- | ---- | ----- |
131
+ | saily_220b.Q2_K.gguf | Q2_K | 2 | 87.80 GB| 90.30 GB | smallest, significant quality loss - not recommended for most purposes |
132
+ | saily_220b.Q3_K_S.gguf | Q3_K_S | 3 | 89.69 GB| 92.19 GB | very small, high quality loss |
133
+ | saily_220b.Q3_K_M.gguf | Q3_K_M | 3 | 99.76 GB| 102.26 GB | very small, high quality loss |
134
+ | saily_220b.Q3_K_L.gguf | Q3_K_L | 3 | 109.13 GB| 111.63 GB | small, substantial quality loss |
135
+ | saily_220b.Q4_0.gguf | Q4_0 | 4 | 117.34 GB| 119.84 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
136
+ | saily_220b.Q4_K_S.gguf | Q4_K_S | 4 | 117.46 GB| 119.96 GB | small, greater quality loss |
137
+ | saily_220b.Q4_K_M.gguf | Q4_K_M | 4 | 124.92 GB| 127.42 GB | medium, balanced quality - recommended |
138
+ | saily_220b.Q5_0.gguf | Q5_0 | 5 | 143.36 GB| 145.86 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
139
+ | saily_220b.Q5_K_S.gguf | Q5_K_S | 5 | 143.36 GB| 145.86 GB | large, low quality loss - recommended |
140
+ | saily_220b.Q5_K_M.gguf | Q5_K_M | 5 | 147.27 GB| 149.77 GB | large, very low quality loss - recommended |
141
+ | saily_220b.Q6_K.gguf | Q6_K | 6 | 171.01 GB| 173.51 GB | very large, extremely low quality loss |
142
+ | saily_220b.Q8_0.gguf | Q8_0 | 8 | 221.49 GB| 223.99 GB | very large, extremely low quality loss - not recommended |
143
+
144
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
145
+
146
+ ### Q6_K and Q8_0 files are split and require joining
147
+
148
+ **Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the Q6_K and Q8_0 files as split files.
149
+
150
+ <details>
151
+ <summary>Click for instructions regarding Q6_K and Q8_0 files</summary>
152
+
153
+ ### q6_K
154
+ Please download:
155
+ * `saily_220b.Q6_K.gguf-split-a`
156
+ * `saily_220b.Q6_K.gguf-split-b`
157
+
158
+ ### q8_0
159
+ Please download:
160
+ * `saily_220b.Q8_0.gguf-split-a`
161
+ * `saily_220b.Q8_0.gguf-split-b`
162
+
163
+ To join the files, do the following:
164
+
165
+ Linux and macOS:
166
+ ```
167
+ cat saily_220b.Q6_K.gguf-split-* > saily_220b.Q6_K.gguf && rm saily_220b.Q6_K.gguf-split-*
168
+ cat saily_220b.Q8_0.gguf-split-* > saily_220b.Q8_0.gguf && rm saily_220b.Q8_0.gguf-split-*
169
+ ```
170
+ Windows command line:
171
+ ```
172
+ COPY /B saily_220b.Q6_K.gguf-split-a + saily_220b.Q6_K.gguf-split-b saily_220b.Q6_K.gguf
173
+ del saily_220b.Q6_K.gguf-split-a saily_220b.Q6_K.gguf-split-b
174
+
175
+ COPY /B saily_220b.Q8_0.gguf-split-a + saily_220b.Q8_0.gguf-split-b saily_220b.Q8_0.gguf
176
+ del saily_220b.Q8_0.gguf-split-a saily_220b.Q8_0.gguf-split-b
177
+ ```
178
+
179
+ </details>
180
+ <!-- README_GGUF.md-provided-files end -->
181
+
182
+ <!-- README_GGUF.md-how-to-download start -->
183
+ ## How to download GGUF files
184
+
185
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
186
+
187
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
188
+
189
+ * LM Studio
190
+ * LoLLMS Web UI
191
+ * Faraday.dev
192
+
193
+ ### In `text-generation-webui`
194
+
195
+ Under Download Model, you can enter the model repo: TheBloke/Saily_220B-GGUF and below it, a specific filename to download, such as: saily_220b.Q4_K_M.gguf.
196
+
197
+ Then click Download.
198
+
199
+ ### On the command line, including multiple files at once
200
+
201
+ I recommend using the `huggingface-hub` Python library:
202
+
203
+ ```shell
204
+ pip3 install huggingface-hub
205
+ ```
206
+
207
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
208
+
209
+ ```shell
210
+ huggingface-cli download TheBloke/Saily_220B-GGUF saily_220b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
211
+ ```
212
+
213
+ <details>
214
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
215
+
216
+ You can also download multiple files at once with a pattern:
217
+
218
+ ```shell
219
+ huggingface-cli download TheBloke/Saily_220B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
220
+ ```
221
+
222
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
223
+
224
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
225
+
226
+ ```shell
227
+ pip3 install hf_transfer
228
+ ```
229
+
230
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
231
+
232
+ ```shell
233
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Saily_220B-GGUF saily_220b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
234
+ ```
235
+
236
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
237
+ </details>
238
+ <!-- README_GGUF.md-how-to-download end -->
239
+
240
+ <!-- README_GGUF.md-how-to-run start -->
241
+ ## Example `llama.cpp` command
242
+
243
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
244
+
245
+ ```shell
246
+ ./main -ngl 35 -m saily_220b.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
247
+ ```
248
+
249
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
250
+
251
+ Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
252
+
253
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
254
+
255
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
256
+
257
+ ## How to run in `text-generation-webui`
258
+
259
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
260
+
261
+ ## How to run from Python code
262
+
263
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
264
+
265
+ ### How to load this model in Python code, using llama-cpp-python
266
+
267
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
268
+
269
+ #### First install the package
270
+
271
+ Run one of the following commands, according to your system:
272
+
273
+ ```shell
274
+ # Base ctransformers with no GPU acceleration
275
+ pip install llama-cpp-python
276
+ # With NVidia CUDA acceleration
277
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
278
+ # Or with OpenBLAS acceleration
279
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
280
+ # Or with CLBLast acceleration
281
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
282
+ # Or with AMD ROCm GPU acceleration (Linux only)
283
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
284
+ # Or with Metal GPU acceleration for macOS systems only
285
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
286
+
287
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
288
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
289
+ pip install llama-cpp-python
290
+ ```
291
+
292
+ #### Simple llama-cpp-python example code
293
+
294
+ ```python
295
+ from llama_cpp import Llama
296
+
297
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
298
+ llm = Llama(
299
+ model_path="./saily_220b.Q4_K_M.gguf", # Download the model file first
300
+ n_ctx=4096, # The max sequence length to use - note that longer sequence lengths require much more resources
301
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
302
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
303
+ )
304
+
305
+ # Simple inference example
306
+ output = llm(
307
+ "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:", # Prompt
308
+ max_tokens=512, # Generate up to 512 tokens
309
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
310
+ echo=True # Whether to echo the prompt
311
+ )
312
+
313
+ # Chat Completion API
314
+
315
+ llm = Llama(model_path="./saily_220b.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
316
+ llm.create_chat_completion(
317
+ messages = [
318
+ {"role": "system", "content": "You are a story writing assistant."},
319
+ {
320
+ "role": "user",
321
+ "content": "Write a story about llamas."
322
+ }
323
+ ]
324
+ )
325
+ ```
326
+
327
+ ## How to use with LangChain
328
+
329
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
330
+
331
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
332
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
333
+
334
+ <!-- README_GGUF.md-how-to-run end -->
335
+
336
+ <!-- footer start -->
337
+ <!-- 200823 -->
338
+ ## Discord
339
+
340
+ For further support, and discussions on these models and AI in general, join us at:
341
+
342
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
343
+
344
+ ## Thanks, and how to contribute
345
+
346
+ Thanks to the [chirper.ai](https://chirper.ai) team!
347
+
348
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
349
+
350
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
351
+
352
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
353
+
354
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
355
+
356
+ * Patreon: https://patreon.com/TheBlokeAI
357
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
358
+
359
+ **Special thanks to**: Aemon Algiz.
360
+
361
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
362
+
363
+
364
+ Thank you to all my generous patrons and donaters!
365
+
366
+ And thank you again to a16z for their generous grant.
367
+
368
+ <!-- footer end -->
369
+
370
+ <!-- original-model-card start -->
371
+ # Original model card: DEEPNIGHT's Saily 220B
372
+
373
+ # Saily 220B
374
+ <img src="https://i.ibb.co/rG8S6cF/Saily-220-B.png" style="width: 100%; height: auto;"/>
375
+
376
+ ---
377
+ ## Announcements
378
+ **1.** <b>Date: </b>17th December, 2023
379
+ Releasing v1. Saily_220B is a powerful AI model built on top of Llama2-70B merges.
380
+ We created 10 fine-tuned **Llama2 70B** models. The models were were fine-tuned on a part of Refined-Web Dataset (common for all)
381
+ and individually the models were finetuned on niche specific datasets:
382
+ - Code
383
+ - Humor
384
+ - Maths
385
+ - Logical Understanding
386
+ - Physics
387
+ - Reasoning
388
+ - Psychology
389
+ - Roleplay
390
+
391
+ We created 4 linear merges while keeping **Logical-Understanding** and **Reasoning** models constant in all linear merges.
392
+ and then finally we created a passthrough merge between the models.
393
+
394
+ Public Datasets used:
395
+ 1. [RefinedWeb](https://hf.co/datasets/tiiuae/falcon-refinedweb) (part of it)
396
+ 2. Pile (part of it)
397
+ 3. [MetaMathQA](https://hf.co/datasets/meta-math/MetaMathQA)
398
+ 4. Unnatural Code (Javascript, Python, C++)
399
+
400
+ ### How did we create the private dataset?
401
+ We recorded many internal brain-storming sessions where we just talked about random things.
402
+ We also invited many experts from different fields:
403
+ - Mathematicians
404
+ - Developers
405
+ - Bio-Engineers
406
+ - Authors
407
+ - Psychologists
408
+ - and others...
409
+
410
+ We talked about different things with them and recorded the sessions and then transcribed the audio to create the datasets.
411
+
412
+ ---
413
+
414
+ ### Please don't refer to the config.json in the files, it isn't accurate. You can run:
415
+ ```python
416
+ from transformers import AutoModelForCausalLM as amclm
417
+ model = amclm.from_pretrained("deepnight-research/saily_220b",
418
+ device_map="auto")
419
+
420
+ # print(model.config)
421
+ model.config
422
+ ```
423
+ to check out the model's configuration.
424
+
425
+ ---
426
+
427
+
428
+ ### Try it:
429
+
430
+ You definitely need GPUs here (that goes without saying)
431
+ * We have tried it on **4 x A100 80GB** and **2 x A100 80GB**.
432
+ * You will have to load the model in **4bit** to fit on **2 x A100 (80GB)**.
433
+
434
+ ```python
435
+ from transformers import AutoModelForCausalLM as amclm
436
+ from transformers import AutoTokenizer
437
+
438
+ model_name = "deepnight-research/saily_220b"
439
+ model = amclm.from_pretrained(model_name, device_map="auto")
440
+
441
+ # To load in 8Bit, make sure you have bitsandbytes installed.
442
+ # model = amclm.from_pretrained(model_name,
443
+ # device_map="auto",
444
+ # load_in_8bit=True
445
+ # )
446
+
447
+ # Float16
448
+ # import torch
449
+ # model = amclm.from_pretrained(model_name,
450
+ # device_map="auto",
451
+ # torch_dtype=torch.float16
452
+ # )
453
+
454
+ tokenizer = AutoTokenier.from_pretrained(model_name)
455
+
456
+ input_ids = tokenizer.encode("[INST]\nWrite a poem about cats\n[/INST]\n\n", return_tensors="pt")
457
+
458
+ output = model.generate(input_ids, max_length=128,
459
+ temperature=0.7,
460
+ repetition_penalty=1.1,
461
+ top_p=0.7, top_k=50
462
+ )
463
+
464
+ output_text = tokenizer.decode(output[0], skip_special_tokens=True)
465
+ ```
466
+
467
+ We recommend following **Alpaca Prompt Format**, and if you're trying it out in Text-Generation-WebUI, please use **INSTRUCT** or **CHAT-INSTRUCT** mode.
468
+
469
+
470
+ ---
471
+
472
+ ## Limitations and Bias
473
+ As with all language models, Saily_220B may generate incorrect or biased content. It's important to keep this in mind when using the model.
474
+
475
+ ---
476
+
477
+ ## Wanna Talk?
478
+ Reach out to us at [research@deepnight.tech](mailto:research@deepnight.tech) or [hello@deepnight.tech](mailto:hello@deepnight.tech)
479
+
480
+ <!-- original-model-card end -->