Update README.md
Browse files
README.md
CHANGED
@@ -23,6 +23,14 @@ These files are GPTQ 4bit model files for [Panchovix's merge of WizardLM 33B V1.
|
|
23 |
|
24 |
It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
## Repositories available
|
27 |
|
28 |
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/WizardLM-33B-V1.0-Uncensored-SuperHOT-8KGPTQ)
|
@@ -34,73 +42,20 @@ It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com
|
|
34 |
Please make sure you're using the latest version of text-generation-webui
|
35 |
|
36 |
1. Click the **Model tab**.
|
37 |
-
2. Under **Download custom model or LoRA**, enter `TheBloke/WizardLM-33B-V1.0-Uncensored-SuperHOT-
|
38 |
3. Click **Download**.
|
39 |
4. The model will start downloading. Once it's finished it will say "Done"
|
40 |
-
5.
|
41 |
-
6. In the
|
42 |
-
7.
|
43 |
-
8.
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
## How to use this GPTQ model from Python code
|
48 |
-
|
49 |
-
First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
|
50 |
-
|
51 |
-
`pip install auto-gptq`
|
52 |
-
|
53 |
-
Then try the following example code:
|
54 |
-
|
55 |
-
```python
|
56 |
-
from transformers import AutoTokenizer, pipeline, logging
|
57 |
-
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
58 |
-
import argparse
|
59 |
-
|
60 |
-
model_name_or_path = "TheBloke/WizardLM-33B-V1.0-Uncensored-SuperHOT-8KGPTQ"
|
61 |
-
model_basename = "wizardlm-33b-v1.0-uncensored-superhot-8k-GPTQ-4bit--1g.act.order"
|
62 |
-
|
63 |
-
use_triton = False
|
64 |
-
|
65 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
66 |
-
|
67 |
-
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
|
68 |
-
model_basename=model_basename,
|
69 |
-
use_safetensors=True,
|
70 |
-
trust_remote_code=False,
|
71 |
-
device="cuda:0",
|
72 |
-
use_triton=use_triton,
|
73 |
-
quantize_config=None)
|
74 |
-
|
75 |
-
# Note: check the prompt template is correct for this model.
|
76 |
-
prompt = "Tell me about AI"
|
77 |
-
prompt_template=f'''USER: {prompt}
|
78 |
-
ASSISTANT:'''
|
79 |
-
|
80 |
-
print("\n\n*** Generate:")
|
81 |
-
|
82 |
-
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
|
83 |
-
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
|
84 |
-
print(tokenizer.decode(output[0]))
|
85 |
-
|
86 |
-
# Inference can also be done using transformers' pipeline
|
87 |
-
|
88 |
-
# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
|
89 |
-
logging.set_verbosity(logging.CRITICAL)
|
90 |
|
91 |
-
|
92 |
-
pipe = pipeline(
|
93 |
-
"text-generation",
|
94 |
-
model=model,
|
95 |
-
tokenizer=tokenizer,
|
96 |
-
max_new_tokens=512,
|
97 |
-
temperature=0.7,
|
98 |
-
top_p=0.95,
|
99 |
-
repetition_penalty=1.15
|
100 |
-
)
|
101 |
|
102 |
-
|
103 |
-
```
|
104 |
|
105 |
## Provided files
|
106 |
|
|
|
23 |
|
24 |
It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
|
25 |
|
26 |
+
**This is an experimental new GPTQ which offers up to 8K context size**
|
27 |
+
|
28 |
+
The increased context is currently only tested to work with [ExLlama](https://github.com/turboderp/exllama), via the latest release of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
29 |
+
|
30 |
+
Please read carefully below to see how to use it.
|
31 |
+
|
32 |
+
**NOTE**: Using the full 8K context will exceed 24GB VRAM.
|
33 |
+
|
34 |
## Repositories available
|
35 |
|
36 |
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/WizardLM-33B-V1.0-Uncensored-SuperHOT-8KGPTQ)
|
|
|
42 |
Please make sure you're using the latest version of text-generation-webui
|
43 |
|
44 |
1. Click the **Model tab**.
|
45 |
+
2. Under **Download custom model or LoRA**, enter `TheBloke/WizardLM-33B-V1.0-Uncensored-SuperHOT-8K-GPTQ`.
|
46 |
3. Click **Download**.
|
47 |
4. The model will start downloading. Once it's finished it will say "Done"
|
48 |
+
5. Untick **Autoload the model**
|
49 |
+
6. In the top left, click the refresh icon next to **Model**.
|
50 |
+
7. In the **Model** dropdown, choose the model you just downloaded: `WizardLM-33B-V1.0-Uncensored-SuperHOT-8K-GPTQ`
|
51 |
+
8. To use the increased context, set the **Loader** to **ExLlama**, set **max_seq_len** to 8192 or 4096, and set **compress_pos_emb** to **4** for 8192 context, or to **2** for 4096 context.
|
52 |
+
9. Now click **Save Settings** followed by **Reload**
|
53 |
+
10. The model will automatically load, and is now ready for use!
|
54 |
+
11. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
## How to use this GPTQ model from Python code - TBC
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
Using this model with increased context from Python code is currently untested, so this section is removed for now.
|
|
|
59 |
|
60 |
## Provided files
|
61 |
|