TheBloke commited on
Commit
a09c1e0
·
1 Parent(s): a597749

Upload new k-quant GGML quantised models.

Browse files
Files changed (1) hide show
  1. README.md +73 -36
README.md CHANGED
@@ -1,9 +1,8 @@
1
  ---
2
- license: other
3
- datasets:
4
- - ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered
5
  inference: false
 
6
  ---
 
7
  <!-- header start -->
8
  <div style="width: 100%;">
9
  <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
@@ -18,48 +17,82 @@ inference: false
18
  </div>
19
  <!-- header end -->
20
 
21
- # WizardLM - uncensored: An Instruction-following LLM Using Evol-Instruct
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
- These files are GGML format model files for [Eric Hartford's 'uncensored' version of WizardLM](https://huggingface.co/ehartford/WizardLM-7B-Uncensored).
24
 
25
- GGML files are for CPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp).
26
 
27
- Eric did a fresh 7B training using the WizardLM method, on [a dataset edited to remove all the "I'm sorry.." type ChatGPT responses](https://huggingface.co/datasets/ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered).
28
 
29
- ## Other repositories available
30
 
31
- * [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/WizardLM-7B-uncensored-GPTQ)
32
- * [4bit and 5bit GGML models for CPU inference](https://huggingface.co/TheBloke/WizardLM-7B-uncensored-GGML)
33
- * [Eric's unquantised model in HF format](https://huggingface.co/ehartford/WizardLM-7B-Uncensored)
34
 
35
- ## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)!
36
 
37
- llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508
38
 
39
- I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 19th or later (commit `2d5db48` or later) to use them.
 
 
 
 
 
 
40
 
41
- For files compatible with the previous version of llama.cpp, please see branch `previous_llama_ggmlv2`.
 
42
 
43
  ## Provided files
44
- | Name | Quant method | Bits | Size | RAM required | Use case |
45
  | ---- | ---- | ---- | ---- | ---- | ----- |
46
- `WizardLM-7B-uncensored.q4_0.bin` | q4_0 | 4bit | 4.2GB | 6GB | 4-bit. |
47
- `WizardLM-7B-uncensored.q4_1.bin` | q4_1 | 4bit | 4.63GB | 6GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.|
48
- `WizardLM-7B-uncensored.q5_0.bin` | q5_0 | 5bit | 4.63GB | 7GB | 5-bit. Higher accuracy, higher resource usage and slower inference. |
49
- `WizardLM-7B-uncensored.q5_1.bin` | q5_1 | 5bit | 5.0GB | 7GB | 5-bit. Even higher accuracy, resource usage and slower inference.|
50
- `WizardLM-7B-uncensored.q8_0.bin` | q8_0 | 5bit | 9.0GB | 11 | 5-bit. Even higher accuracy, resource usage and slower inference.|
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  ## How to run in `llama.cpp`
53
 
54
  I use the following command line; adjust for your tastes and needs:
55
 
56
  ```
57
- ./main -t 12 -m WizardLM-7B-uncensored.ggmlv3.q4_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.
58
- ### Instruction:
59
- Write a story about llamas
60
- ### Response:"
61
  ```
62
- Change `-t 12` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
 
 
63
 
64
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
65
 
@@ -67,8 +100,6 @@ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argumen
67
 
68
  Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
69
 
70
- Note: at this time text-generation-webui may not support the new May 19th llama.cpp quantisation methods for q4_0, q4_1 and q8_0 files.
71
-
72
  <!-- footer start -->
73
  ## Discord
74
 
@@ -89,20 +120,26 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
89
  * Patreon: https://patreon.com/TheBlokeAI
90
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
91
 
92
- **Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.
 
 
93
 
94
  Thank you to all my generous patrons and donaters!
 
95
  <!-- footer end -->
96
- # Eric's original model card
 
97
 
98
  This is WizardLM trained with a subset of the dataset - responses that contained alignment / moralizing were removed. The intent is to train a WizardLM that doesn't have alignment built-in, so that alignment (of any sort) can be added separately with for example with a RLHF LoRA.
99
 
100
- Shout out to the open source AI/ML community, and everyone who helped me out, including Rohan, TheBloke, and Caseus
 
 
 
 
101
 
102
- # WizardLM's original model card
103
 
104
- Overview of Evol-Instruct
105
- Evol-Instruct is a novel method using LLMs instead of humans to automatically mass-produce open-domain instructions of various difficulty levels and skills range, to improve the performance of LLMs.
106
 
107
- ![info](https://github.com/nlpxucan/WizardLM/raw/main/imgs/git_overall.png)
108
- ![info](https://github.com/nlpxucan/WizardLM/raw/main/imgs/git_running.png)
 
1
  ---
 
 
 
2
  inference: false
3
+ license: other
4
  ---
5
+
6
  <!-- header start -->
7
  <div style="width: 100%;">
8
  <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
 
17
  </div>
18
  <!-- header end -->
19
 
20
+ # Eric Hartford's WizardLM 7B Uncensored GGML
21
+
22
+ These files are GGML format model files for [Eric Hartford's WizardLM 7B Uncensored](https://huggingface.co/ehartford/WizardLM-7B-Uncensored).
23
+
24
+ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
25
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
26
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp)
27
+ * [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui)
28
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
29
+ * [ctransformers](https://github.com/marella/ctransformers)
30
+
31
+ ## Repositories available
32
+
33
+ * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/WizardLM-7B-uncensored-GPTQ)
34
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardLM-7B-uncensored-GGML)
35
+ * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/WizardLM-7B-Uncensored)
36
+
37
+ <!-- compatibility_ggml start -->
38
+ ## Compatibility
39
 
40
+ ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
41
 
42
+ I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`.
43
 
44
+ They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README.
45
 
46
+ ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
47
 
48
+ These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`.
 
 
49
 
50
+ They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days.
51
 
52
+ ## Explanation of the new k-quant methods
53
 
54
+ The new methods available are:
55
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
56
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
57
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
58
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
59
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
60
+ * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
61
 
62
+ Refer to the Provided Files table below to see what files use which methods, and how.
63
+ <!-- compatibility_ggml end -->
64
 
65
  ## Provided files
66
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
67
  | ---- | ---- | ---- | ---- | ---- | ----- |
68
+ | WizardLM-7B-uncensored.ggmlv3.q2_K.bin | q2_K | 2 | 2.80 GB | 5.30 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
69
+ | WizardLM-7B-uncensored.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 3.55 GB | 6.05 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
70
+ | WizardLM-7B-uncensored.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 3.23 GB | 5.73 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
71
+ | WizardLM-7B-uncensored.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 2.90 GB | 5.40 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
72
+ | WizardLM-7B-uncensored.ggmlv3.q4_0.bin | q4_0 | 4 | 3.79 GB | 6.29 GB | Original llama.cpp quant method, 4-bit. |
73
+ | WizardLM-7B-uncensored.ggmlv3.q4_1.bin | q4_1 | 4 | 4.21 GB | 6.71 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
74
+ | WizardLM-7B-uncensored.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 4.05 GB | 6.55 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
75
+ | WizardLM-7B-uncensored.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 3.79 GB | 6.29 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
76
+ | WizardLM-7B-uncensored.ggmlv3.q5_0.bin | q5_0 | 5 | 4.63 GB | 7.13 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
77
+ | WizardLM-7B-uncensored.ggmlv3.q5_1.bin | q5_1 | 5 | 5.06 GB | 7.56 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
78
+ | WizardLM-7B-uncensored.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 4.77 GB | 7.27 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
79
+ | WizardLM-7B-uncensored.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 4.63 GB | 7.13 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
80
+ | WizardLM-7B-uncensored.ggmlv3.q6_K.bin | q6_K | 6 | 5.53 GB | 8.03 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
81
+ | WizardLM-7B-uncensored.ggmlv3.q8_0.bin | q8_0 | 8 | 7.16 GB | 9.66 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
82
+
83
+
84
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
85
 
86
  ## How to run in `llama.cpp`
87
 
88
  I use the following command line; adjust for your tastes and needs:
89
 
90
  ```
91
+ ./main -t 10 -ngl 32 -m WizardLM-7B-uncensored.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
 
 
 
92
  ```
93
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
94
+
95
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
96
 
97
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
98
 
 
100
 
101
  Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
102
 
 
 
103
  <!-- footer start -->
104
  ## Discord
105
 
 
120
  * Patreon: https://patreon.com/TheBlokeAI
121
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
122
 
123
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
124
+
125
+ **Patreon special mentions**: Oscar Rangel, Eugene Pentland, Talal Aujan, Cory Kujawski, Luke, Asp the Wyvern, Ai Maven, Pyrater, Alps Aficionado, senxiiz, Willem Michiel, Junyu Yang, trip7s trip, Sebastain Graf, Joseph William Delisle, Lone Striker, Jonathan Leane, Johann-Peter Hartmann, David Flickinger, Spiking Neurons AB, Kevin Schuppel, Mano Prime, Dmitriy Samsonov, Sean Connelly, Nathan LeClaire, Alain Rossmann, Fen Risland, Derek Yates, Luke Pendergrass, Nikolai Manek, Khalefa Al-Ahmad, Artur Olbinski, John Detwiler, Ajan Kanaga, Imad Khwaja, Trenton Dambrowitz, Kalila, vamX, webtim, Illia Dulskyi.
126
 
127
  Thank you to all my generous patrons and donaters!
128
+
129
  <!-- footer end -->
130
+
131
+ # Original model card: Eric Hartford's WizardLM 7B Uncensored
132
 
133
  This is WizardLM trained with a subset of the dataset - responses that contained alignment / moralizing were removed. The intent is to train a WizardLM that doesn't have alignment built-in, so that alignment (of any sort) can be added separately with for example with a RLHF LoRA.
134
 
135
+ Shout out to the open source AI/ML community, and everyone who helped me out.
136
+
137
+ Note:
138
+
139
+ An uncensored model has no guardrails.
140
 
141
+ You are responsible for anything you do with the model, just as you are responsible for anything you do with any dangerous object such as a knife, gun, lighter, or car.
142
 
143
+ Publishing anything this model generates is the same as publishing it yourself.
 
144
 
145
+ You are responsible for the content you publish, and you cannot blame the model any more than you can blame the knife, gun, lighter, or car for what you do with it.