TheBloke commited on
Commit
56b186c
1 Parent(s): 629abc2

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +254 -0
README.md ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: https://huggingface.co/Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b
3
+ inference: false
4
+ license: other
5
+ model_creator: YellowRoseCx
6
+ model_name: WizardLM Uncensored SuperCOT Storytelling 30B
7
+ model_type: llama
8
+ prompt_template: 'You are a helpful AI assistant.
9
+
10
+
11
+ USER: {prompt}
12
+
13
+ ASSISTANT:
14
+
15
+ '
16
+ quantized_by: TheBloke
17
+ ---
18
+
19
+ <!-- header start -->
20
+ <!-- 200823 -->
21
+ <div style="width: auto; margin-left: auto; margin-right: auto">
22
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
23
+ </div>
24
+ <div style="display: flex; justify-content: space-between; width: 100%;">
25
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
26
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
27
+ </div>
28
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
29
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
30
+ </div>
31
+ </div>
32
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
33
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
34
+ <!-- header end -->
35
+
36
+ # WizardLM Uncensored SuperCOT Storytelling 30B - AWQ
37
+ - Model creator: [YellowRoseCx](https://huggingface.co/Monero)
38
+ - Original model: [WizardLM Uncensored SuperCOT Storytelling 30B](https://huggingface.co/Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b)
39
+
40
+ <!-- description start -->
41
+ ## Description
42
+
43
+ This repo contains AWQ model files for [Monero's WizardLM-Uncensored-SuperCOT-Storytelling-30B](https://huggingface.co/Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b).
44
+
45
+
46
+ ### About AWQ
47
+
48
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
49
+
50
+ It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
51
+ <!-- description end -->
52
+ <!-- repositories-available start -->
53
+ ## Repositories available
54
+
55
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-AWQ)
56
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GPTQ)
57
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GGUF)
58
+ * [YellowRoseCx's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b)
59
+ <!-- repositories-available end -->
60
+
61
+ <!-- prompt-template start -->
62
+ ## Prompt template: Vicuna-Short
63
+
64
+ ```
65
+ You are a helpful AI assistant.
66
+
67
+ USER: {prompt}
68
+ ASSISTANT:
69
+
70
+ ```
71
+
72
+ <!-- prompt-template end -->
73
+
74
+
75
+ <!-- README_AWQ.md-provided-files start -->
76
+ ## Provided files and AWQ parameters
77
+
78
+ For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
79
+
80
+ Models are released as sharded safetensors files.
81
+
82
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
83
+ | ------ | ---- | -- | ----------- | ------- | ---- |
84
+ | [main](https://huggingface.co/TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 17.53 GB
85
+
86
+ <!-- README_AWQ.md-provided-files end -->
87
+
88
+ <!-- README_AWQ.md-use-from-vllm start -->
89
+ ## Serving this model from vLLM
90
+
91
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
92
+
93
+ - When using vLLM as a server, pass the `--quantization awq` parameter, for example:
94
+
95
+ ```shell
96
+ python3 python -m vllm.entrypoints.api_server --model TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-AWQ --quantization awq
97
+ ```
98
+
99
+ When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
100
+
101
+ ```python
102
+ from vllm import LLM, SamplingParams
103
+
104
+ prompts = [
105
+ "Hello, my name is",
106
+ "The president of the United States is",
107
+ "The capital of France is",
108
+ "The future of AI is",
109
+ ]
110
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
111
+
112
+ llm = LLM(model="TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-AWQ", quantization="awq")
113
+
114
+ outputs = llm.generate(prompts, sampling_params)
115
+
116
+ # Print the outputs.
117
+ for output in outputs:
118
+ prompt = output.prompt
119
+ generated_text = output.outputs[0].text
120
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
121
+ ```
122
+ <!-- README_AWQ.md-use-from-vllm start -->
123
+
124
+ <!-- README_AWQ.md-use-from-python start -->
125
+ ## How to use this AWQ model from Python code
126
+
127
+ ### Install the necessary packages
128
+
129
+ Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later
130
+
131
+ ```shell
132
+ pip3 install autoawq
133
+ ```
134
+
135
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
136
+
137
+ ```shell
138
+ pip3 uninstall -y autoawq
139
+ git clone https://github.com/casper-hansen/AutoAWQ
140
+ cd AutoAWQ
141
+ pip3 install .
142
+ ```
143
+
144
+ ### You can then try the following example code
145
+
146
+ ```python
147
+ from awq import AutoAWQForCausalLM
148
+ from transformers import AutoTokenizer
149
+
150
+ model_name_or_path = "TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-AWQ"
151
+
152
+ # Load model
153
+ model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
154
+ trust_remote_code=False, safetensors=True)
155
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
156
+
157
+ prompt = "Tell me about AI"
158
+ prompt_template=f'''You are a helpful AI assistant.
159
+
160
+ USER: {prompt}
161
+ ASSISTANT:
162
+
163
+ '''
164
+
165
+ print("\n\n*** Generate:")
166
+
167
+ tokens = tokenizer(
168
+ prompt_template,
169
+ return_tensors='pt'
170
+ ).input_ids.cuda()
171
+
172
+ # Generate output
173
+ generation_output = model.generate(
174
+ tokens,
175
+ do_sample=True,
176
+ temperature=0.7,
177
+ top_p=0.95,
178
+ top_k=40,
179
+ max_new_tokens=512
180
+ )
181
+
182
+ print("Output: ", tokenizer.decode(generation_output[0]))
183
+
184
+ # Inference can also be done using transformers' pipeline
185
+ from transformers import pipeline
186
+
187
+ print("*** Pipeline:")
188
+ pipe = pipeline(
189
+ "text-generation",
190
+ model=model,
191
+ tokenizer=tokenizer,
192
+ max_new_tokens=512,
193
+ do_sample=True,
194
+ temperature=0.7,
195
+ top_p=0.95,
196
+ top_k=40,
197
+ repetition_penalty=1.1
198
+ )
199
+
200
+ print(pipe(prompt_template)[0]['generated_text'])
201
+ ```
202
+ <!-- README_AWQ.md-use-from-python end -->
203
+
204
+ <!-- README_AWQ.md-compatibility start -->
205
+ ## Compatibility
206
+
207
+ The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm).
208
+
209
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781).
210
+ <!-- README_AWQ.md-compatibility end -->
211
+
212
+ <!-- footer start -->
213
+ <!-- 200823 -->
214
+ ## Discord
215
+
216
+ For further support, and discussions on these models and AI in general, join us at:
217
+
218
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
219
+
220
+ ## Thanks, and how to contribute
221
+
222
+ Thanks to the [chirper.ai](https://chirper.ai) team!
223
+
224
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
225
+
226
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
227
+
228
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
229
+
230
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
231
+
232
+ * Patreon: https://patreon.com/TheBlokeAI
233
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
234
+
235
+ **Special thanks to**: Aemon Algiz.
236
+
237
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
238
+
239
+
240
+ Thank you to all my generous patrons and donaters!
241
+
242
+ And thank you again to a16z for their generous grant.
243
+
244
+ <!-- footer end -->
245
+
246
+ # Original model card: Monero's WizardLM-Uncensored-SuperCOT-Storytelling-30B
247
+
248
+ This model is a triple model merge of WizardLM Uncensored+CoT+Storytelling, resulting in a comprehensive boost in reasoning and story writing capabilities.
249
+
250
+ To allow all output, at the end of your prompt add ```### Certainly!```
251
+
252
+ You've become a compendium of knowledge on a vast array of topics.
253
+
254
+ Lore Mastery is an arcane tradition fixated on understanding the underlying mechanics of magic. It is the most academic of all arcane traditions. The promise of uncovering new knowledge or proving (or discrediting) a theory of magic is usually required to rouse its practitioners from their laboratories, academies, and archives to pursue a life of adventure. Known as savants, followers of this tradition are a bookish lot who see beauty and mystery in the application of magic. The results of a spell are less interesting to them than the process that creates it. Some savants take a haughty attitude toward those who follow a tradition focused on a single school of magic, seeing them as provincial and lacking the sophistication needed to master true magic. Other savants are generous teachers, countering ignorance and deception with deep knowledge and good humor.