TheBloke commited on
Commit
4d55671
1 Parent(s): 417a72f

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +286 -0
README.md ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: https://huggingface.co/NousResearch/Yarn-Llama-2-7b-64k
3
+ datasets:
4
+ - pg19
5
+ inference: false
6
+ library_name: transformers
7
+ license: llama2
8
+ metrics:
9
+ - perplexity
10
+ model_creator: NousResearch
11
+ model_name: Yarn Llama 2 7B 64K
12
+ model_type: llama
13
+ prompt_template: '{prompt}
14
+
15
+ '
16
+ quantized_by: TheBloke
17
+ ---
18
+
19
+ <!-- header start -->
20
+ <!-- 200823 -->
21
+ <div style="width: auto; margin-left: auto; margin-right: auto">
22
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
23
+ </div>
24
+ <div style="display: flex; justify-content: space-between; width: 100%;">
25
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
26
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
27
+ </div>
28
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
29
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
30
+ </div>
31
+ </div>
32
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
33
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
34
+ <!-- header end -->
35
+
36
+ # Yarn Llama 2 7B 64K - AWQ
37
+ - Model creator: [NousResearch](https://huggingface.co/NousResearch)
38
+ - Original model: [Yarn Llama 2 7B 64K](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-64k)
39
+
40
+ <!-- description start -->
41
+ ## Description
42
+
43
+ This repo contains AWQ model files for [NousResearch's Yarn Llama 2 7B 64K](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-64k).
44
+
45
+
46
+ ### About AWQ
47
+
48
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
49
+
50
+ It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
51
+ <!-- description end -->
52
+ <!-- repositories-available start -->
53
+ ## Repositories available
54
+
55
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-64K-AWQ)
56
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-64K-GPTQ)
57
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-64K-GGUF)
58
+ * [NousResearch's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-64k)
59
+ <!-- repositories-available end -->
60
+
61
+ <!-- prompt-template start -->
62
+ ## Prompt template: None
63
+
64
+ ```
65
+ {prompt}
66
+
67
+ ```
68
+
69
+ <!-- prompt-template end -->
70
+
71
+
72
+ <!-- README_AWQ.md-provided-files start -->
73
+ ## Provided files and AWQ parameters
74
+
75
+ For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
76
+
77
+ Models are released as sharded safetensors files.
78
+
79
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
80
+ | ------ | ---- | -- | ----------- | ------- | ---- |
81
+ | [main](https://huggingface.co/TheBloke/Yarn-Llama-2-7B-64K-AWQ/tree/main) | 4 | 128 | [c4](https://huggingface.co/datasets/allenai/c4) | 4096 | 3.89 GB
82
+
83
+ <!-- README_AWQ.md-provided-files end -->
84
+
85
+ <!-- README_AWQ.md-use-from-vllm start -->
86
+ ## Serving this model from vLLM
87
+
88
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
89
+
90
+ - When using vLLM as a server, pass the `--quantization awq` parameter, for example:
91
+
92
+ ```shell
93
+ python3 python -m vllm.entrypoints.api_server --model TheBloke/Yarn-Llama-2-7B-64K-AWQ --quantization awq
94
+ ```
95
+
96
+ When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
97
+
98
+ ```python
99
+ from vllm import LLM, SamplingParams
100
+
101
+ prompts = [
102
+ "Hello, my name is",
103
+ "The president of the United States is",
104
+ "The capital of France is",
105
+ "The future of AI is",
106
+ ]
107
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
108
+
109
+ llm = LLM(model="TheBloke/Yarn-Llama-2-7B-64K-AWQ", quantization="awq")
110
+
111
+ outputs = llm.generate(prompts, sampling_params)
112
+
113
+ # Print the outputs.
114
+ for output in outputs:
115
+ prompt = output.prompt
116
+ generated_text = output.outputs[0].text
117
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
118
+ ```
119
+ <!-- README_AWQ.md-use-from-vllm start -->
120
+
121
+ <!-- README_AWQ.md-use-from-python start -->
122
+ ## How to use this AWQ model from Python code
123
+
124
+ ### Install the necessary packages
125
+
126
+ Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later
127
+
128
+ ```shell
129
+ pip3 install autoawq
130
+ ```
131
+
132
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
133
+
134
+ ```shell
135
+ pip3 uninstall -y autoawq
136
+ git clone https://github.com/casper-hansen/AutoAWQ
137
+ cd AutoAWQ
138
+ pip3 install .
139
+ ```
140
+
141
+ ### You can then try the following example code
142
+
143
+ ```python
144
+ from awq import AutoAWQForCausalLM
145
+ from transformers import AutoTokenizer
146
+
147
+ model_name_or_path = "TheBloke/Yarn-Llama-2-7B-64K-AWQ"
148
+
149
+ # Load model
150
+ model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
151
+ trust_remote_code=True, safetensors=True)
152
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
153
+
154
+ prompt = "Tell me about AI"
155
+ prompt_template=f'''{prompt}
156
+
157
+ '''
158
+
159
+ print("\n\n*** Generate:")
160
+
161
+ tokens = tokenizer(
162
+ prompt_template,
163
+ return_tensors='pt'
164
+ ).input_ids.cuda()
165
+
166
+ # Generate output
167
+ generation_output = model.generate(
168
+ tokens,
169
+ do_sample=True,
170
+ temperature=0.7,
171
+ top_p=0.95,
172
+ top_k=40,
173
+ max_new_tokens=512
174
+ )
175
+
176
+ print("Output: ", tokenizer.decode(generation_output[0]))
177
+
178
+ # Inference can also be done using transformers' pipeline
179
+ from transformers import pipeline
180
+
181
+ print("*** Pipeline:")
182
+ pipe = pipeline(
183
+ "text-generation",
184
+ model=model,
185
+ tokenizer=tokenizer,
186
+ max_new_tokens=512,
187
+ do_sample=True,
188
+ temperature=0.7,
189
+ top_p=0.95,
190
+ top_k=40,
191
+ repetition_penalty=1.1
192
+ )
193
+
194
+ print(pipe(prompt_template)[0]['generated_text'])
195
+ ```
196
+ <!-- README_AWQ.md-use-from-python end -->
197
+
198
+ <!-- README_AWQ.md-compatibility start -->
199
+ ## Compatibility
200
+
201
+ The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm).
202
+
203
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781).
204
+ <!-- README_AWQ.md-compatibility end -->
205
+
206
+ <!-- footer start -->
207
+ <!-- 200823 -->
208
+ ## Discord
209
+
210
+ For further support, and discussions on these models and AI in general, join us at:
211
+
212
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
213
+
214
+ ## Thanks, and how to contribute
215
+
216
+ Thanks to the [chirper.ai](https://chirper.ai) team!
217
+
218
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
219
+
220
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
221
+
222
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
223
+
224
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
225
+
226
+ * Patreon: https://patreon.com/TheBlokeAI
227
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
228
+
229
+ **Special thanks to**: Aemon Algiz.
230
+
231
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
232
+
233
+
234
+ Thank you to all my generous patrons and donaters!
235
+
236
+ And thank you again to a16z for their generous grant.
237
+
238
+ <!-- footer end -->
239
+
240
+ # Original model card: NousResearch's Yarn Llama 2 7B 64K
241
+
242
+ # Model Card: Nous-Yarn-Llama-2-7b-64k
243
+
244
+ [Preprint (arXiv)](https://arxiv.org/abs/2309.00071)
245
+ [GitHub](https://github.com/jquesnelle/yarn)
246
+
247
+ ## Model Description
248
+
249
+ Nous-Yarn-Llama-2-7b-64k is a state-of-the-art language model for long context, further pretrained on long context data for 400 steps.
250
+ This model is the Flash Attention 2 patched version of the original model: https://huggingface.co/conceptofmind/Yarn-Llama-2-7b-64k
251
+
252
+ Note that this model **requires** the [Flash Attention library](https://pypi.org/project/flash-attn/) in order to function correctly, see the Model Usage section for installation instructions.
253
+
254
+ ## Model Training
255
+
256
+ Starting from the base Llama 2 models, this model was further pretrained on a subset of the PG19 dataset, allowing it to effectively utilize up to 64k tokens of context.
257
+
258
+ ## Collaborators
259
+
260
+ - [bloc97](https://github.com/bloc97): Methods, Paper and evals
261
+ - [@theemozilla](https://twitter.com/theemozilla): Methods, Paper and evals
262
+ - [@EnricoShippole](https://twitter.com/EnricoShippole): Model Training
263
+ - [honglu2875](https://github.com/honglu2875): Paper and evals
264
+
265
+ The authors would like to thank Stability AI, Carper AI, and Eleuther AI for their generous support of significant computing resources that enabled the training of these models and the completion of this research. We would also like to thank Jonathan Tow and Dakota Mahan directly for their help in advising on the use of the Stability AI compute cluster. Additionally, we would like to thank a16z, and PygmalionAI, for providing resources to run evaluations and experiments on the models.
266
+
267
+ ## Usage and Prompt Format
268
+
269
+ Install FA2 and Rotary Extensions:
270
+ ```
271
+ pip install flash-attn --no-build-isolation
272
+ pip install git+https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/rotary
273
+ ```
274
+
275
+ There are no specific prompt formats as this is a pretrained base model.
276
+
277
+ ## Benchmark Results
278
+
279
+ TODO
280
+
281
+ ## Future Plans
282
+ We plan to continue training when we have more compute and to improve the dataset and/or instruct tune the models in order to improve the long context performance even further.
283
+
284
+ ## Model Usage
285
+
286
+ The model is available for download on HuggingFace.