TheBloke commited on
Commit
8677dd3
·
1 Parent(s): e58da17

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +835 -0
README.md ADDED
@@ -0,0 +1,835 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: 01-ai/Yi-34B-Chat
3
+ inference: false
4
+ license: other
5
+ license_link: LICENSE
6
+ license_name: yi-license
7
+ model_creator: 01-ai
8
+ model_name: Yi 34B Chat
9
+ model_type: yi
10
+ pipeline_tag: text-generation
11
+ prompt_template: '<|im_start|>system
12
+
13
+ {system_message}<|im_end|>
14
+
15
+ <|im_start|>user
16
+
17
+ {prompt}<|im_end|>
18
+
19
+ <|im_start|>assistant
20
+
21
+ '
22
+ quantized_by: TheBloke
23
+ widget:
24
+ - example_title: Yi-34B-Chat
25
+ output:
26
+ text: ' Hello! How can I assist you today?'
27
+ text: hi
28
+ - example_title: Yi-34B
29
+ output:
30
+ text: " an eerie sense that something is just not right\u2026\nBetween the two\
31
+ \ worlds lies The Forgotten Kingdom - home to creatures long since thought extinct\
32
+ \ and ancient magic so strong it defies belief! Only here can you find what\
33
+ \ has been lost for centuries: An Elixir Of Life which will restore youth and\
34
+ \ vitality if only those who seek its power are brave enough to face up against\
35
+ \ all manner of dangers lurking in this mysterious land! But beware; some say\
36
+ \ there may even exist powerful entities beyond our comprehension whose intentions\
37
+ \ towards humanity remain unclear at best ---- they might want nothing more\
38
+ \ than destruction itself rather then anything else from their quest after immortality\
39
+ \ (and maybe someone should tell them about modern medicine)? In any event though\
40
+ \ \u2013 one thing remains true regardless : whether or not success comes easy\
41
+ \ depends entirely upon how much effort we put into conquering whatever challenges\
42
+ \ lie ahead along with having faith deep down inside ourselves too ;) So let\u2019\
43
+ s get started now shall We?"
44
+ text: There's a place where time stands still. A place of breath taking wonder,
45
+ but also
46
+ ---
47
+ <!-- markdownlint-disable MD041 -->
48
+
49
+ <!-- header start -->
50
+ <!-- 200823 -->
51
+ <div style="width: auto; margin-left: auto; margin-right: auto">
52
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
53
+ </div>
54
+ <div style="display: flex; justify-content: space-between; width: 100%;">
55
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
56
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
57
+ </div>
58
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
59
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
60
+ </div>
61
+ </div>
62
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
63
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
64
+ <!-- header end -->
65
+
66
+ # Yi 34B Chat - GPTQ
67
+ - Model creator: [01-ai](https://huggingface.co/01-ai)
68
+ - Original model: [Yi 34B Chat](https://huggingface.co/01-ai/Yi-34B-Chat)
69
+
70
+ <!-- description start -->
71
+ # Description
72
+
73
+ This repo contains GPTQ model files for [01-ai's Yi 34B Chat](https://huggingface.co/01-ai/Yi-34B-Chat).
74
+
75
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
76
+
77
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
78
+
79
+ <!-- description end -->
80
+ <!-- repositories-available start -->
81
+ ## Repositories available
82
+
83
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Yi-34B-Chat-AWQ)
84
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ)
85
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Yi-34B-Chat-GGUF)
86
+ * [01-ai's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/01-ai/Yi-34B-Chat)
87
+ <!-- repositories-available end -->
88
+
89
+ <!-- prompt-template start -->
90
+ ## Prompt template: ChatML
91
+
92
+ ```
93
+ <|im_start|>system
94
+ {system_message}<|im_end|>
95
+ <|im_start|>user
96
+ {prompt}<|im_end|>
97
+ <|im_start|>assistant
98
+
99
+ ```
100
+
101
+ <!-- prompt-template end -->
102
+
103
+
104
+
105
+ <!-- README_GPTQ.md-compatible clients start -->
106
+ ## Known compatible clients / servers
107
+
108
+ These GPTQ models are known to work in the following inference servers/webuis.
109
+
110
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
111
+ - [KoboldAI United](https://github.com/henk717/koboldai)
112
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
113
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
114
+
115
+ This may not be a complete list; if you know of others, please let me know!
116
+ <!-- README_GPTQ.md-compatible clients end -->
117
+
118
+ <!-- README_GPTQ.md-provided-files start -->
119
+ ## Provided files, and GPTQ parameters
120
+
121
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
122
+
123
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
124
+
125
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
126
+
127
+ <details>
128
+ <summary>Explanation of GPTQ parameters</summary>
129
+
130
+ - Bits: The bit size of the quantised model.
131
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
132
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
133
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
134
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
135
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
136
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
137
+
138
+ </details>
139
+
140
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
141
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
142
+ | [main](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [open-instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 18.60 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
143
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [open-instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 19.25 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
144
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [open-instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 21.21 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
145
+ | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [open-instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 15.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
146
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [open-instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 35.34 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
147
+ | [gptq-3bit-32g-actorder_True](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ/tree/gptq-3bit-32g-actorder_True) | 3 | 32 | Yes | 0.1 | [open-instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 16.90 GB | No | 3-bit, with group size 64g and act-order. Highest quality 3-bit option. |
148
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [open-instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 36.11 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
149
+
150
+ <!-- README_GPTQ.md-provided-files end -->
151
+
152
+ <!-- README_GPTQ.md-download-from-branches start -->
153
+ ## How to download, including from branches
154
+
155
+ ### In text-generation-webui
156
+
157
+ To download from the `main` branch, enter `TheBloke/Yi-34B-Chat-GPTQ` in the "Download model" box.
158
+
159
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/Yi-34B-Chat-GPTQ:gptq-4bit-128g-actorder_True`
160
+
161
+ ### From the command line
162
+
163
+ I recommend using the `huggingface-hub` Python library:
164
+
165
+ ```shell
166
+ pip3 install huggingface-hub
167
+ ```
168
+
169
+ To download the `main` branch to a folder called `Yi-34B-Chat-GPTQ`:
170
+
171
+ ```shell
172
+ mkdir Yi-34B-Chat-GPTQ
173
+ huggingface-cli download TheBloke/Yi-34B-Chat-GPTQ --local-dir Yi-34B-Chat-GPTQ --local-dir-use-symlinks False
174
+ ```
175
+
176
+ To download from a different branch, add the `--revision` parameter:
177
+
178
+ ```shell
179
+ mkdir Yi-34B-Chat-GPTQ
180
+ huggingface-cli download TheBloke/Yi-34B-Chat-GPTQ --revision gptq-4bit-128g-actorder_True --local-dir Yi-34B-Chat-GPTQ --local-dir-use-symlinks False
181
+ ```
182
+
183
+ <details>
184
+ <summary>More advanced huggingface-cli download usage</summary>
185
+
186
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
187
+
188
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
189
+
190
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
191
+
192
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
193
+
194
+ ```shell
195
+ pip3 install hf_transfer
196
+ ```
197
+
198
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
199
+
200
+ ```shell
201
+ mkdir Yi-34B-Chat-GPTQ
202
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Yi-34B-Chat-GPTQ --local-dir Yi-34B-Chat-GPTQ --local-dir-use-symlinks False
203
+ ```
204
+
205
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
206
+ </details>
207
+
208
+ ### With `git` (**not** recommended)
209
+
210
+ To clone a specific branch with `git`, use a command like this:
211
+
212
+ ```shell
213
+ git clone --single-branch --branch gptq-4bit-128g-actorder_True https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ
214
+ ```
215
+
216
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
217
+
218
+ <!-- README_GPTQ.md-download-from-branches end -->
219
+ <!-- README_GPTQ.md-text-generation-webui start -->
220
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
221
+
222
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
223
+
224
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
225
+
226
+ 1. Click the **Model tab**.
227
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Yi-34B-Chat-GPTQ`.
228
+
229
+ - To download from a specific branch, enter for example `TheBloke/Yi-34B-Chat-GPTQ:gptq-4bit-128g-actorder_True`
230
+ - see Provided Files above for the list of branches for each option.
231
+
232
+ 3. Click **Download**.
233
+ 4. The model will start downloading. Once it's finished it will say "Done".
234
+ 5. In the top left, click the refresh icon next to **Model**.
235
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Yi-34B-Chat-GPTQ`
236
+ 7. The model will automatically load, and is now ready for use!
237
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
238
+
239
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
240
+
241
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
242
+
243
+ <!-- README_GPTQ.md-text-generation-webui end -->
244
+
245
+ <!-- README_GPTQ.md-use-from-tgi start -->
246
+ ## Serving this model from Text Generation Inference (TGI)
247
+
248
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
249
+
250
+ Example Docker parameters:
251
+
252
+ ```shell
253
+ --model-id TheBloke/Yi-34B-Chat-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
254
+ ```
255
+
256
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
257
+
258
+ ```shell
259
+ pip3 install huggingface-hub
260
+ ```
261
+
262
+ ```python
263
+ from huggingface_hub import InferenceClient
264
+
265
+ endpoint_url = "https://your-endpoint-url-here"
266
+
267
+ prompt = "Tell me about AI"
268
+ prompt_template=f'''<|im_start|>system
269
+ {system_message}<|im_end|>
270
+ <|im_start|>user
271
+ {prompt}<|im_end|>
272
+ <|im_start|>assistant
273
+ '''
274
+
275
+ client = InferenceClient(endpoint_url)
276
+ response = client.text_generation(prompt,
277
+ max_new_tokens=128,
278
+ do_sample=True,
279
+ temperature=0.7,
280
+ top_p=0.95,
281
+ top_k=40,
282
+ repetition_penalty=1.1)
283
+
284
+ print(f"Model output: {response}")
285
+ ```
286
+ <!-- README_GPTQ.md-use-from-tgi end -->
287
+ <!-- README_GPTQ.md-use-from-python start -->
288
+ ## Python code example: inference from this GPTQ model
289
+
290
+ ### Install the necessary packages
291
+
292
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
293
+
294
+ ```shell
295
+ pip3 install --upgrade transformers optimum
296
+ # If using PyTorch 2.1 + CUDA 12.x:
297
+ pip3 install --upgrade auto-gptq
298
+ # or, if using PyTorch 2.1 + CUDA 11.x:
299
+ pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
300
+ ```
301
+
302
+ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
303
+
304
+ ```shell
305
+ pip3 uninstall -y auto-gptq
306
+ git clone https://github.com/PanQiWei/AutoGPTQ
307
+ cd AutoGPTQ
308
+ git checkout v0.5.1
309
+ pip3 install .
310
+ ```
311
+
312
+ ### Example Python code
313
+
314
+ ```python
315
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
316
+
317
+ model_name_or_path = "TheBloke/Yi-34B-Chat-GPTQ"
318
+ # To use a different branch, change revision
319
+ # For example: revision="gptq-4bit-128g-actorder_True"
320
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
321
+ device_map="auto",
322
+ trust_remote_code=False,
323
+ revision="main")
324
+
325
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
326
+
327
+ prompt = "Tell me about AI"
328
+ prompt_template=f'''<|im_start|>system
329
+ {system_message}<|im_end|>
330
+ <|im_start|>user
331
+ {prompt}<|im_end|>
332
+ <|im_start|>assistant
333
+ '''
334
+
335
+ print("\n\n*** Generate:")
336
+
337
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
338
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
339
+ print(tokenizer.decode(output[0]))
340
+
341
+ # Inference can also be done using transformers' pipeline
342
+
343
+ print("*** Pipeline:")
344
+ pipe = pipeline(
345
+ "text-generation",
346
+ model=model,
347
+ tokenizer=tokenizer,
348
+ max_new_tokens=512,
349
+ do_sample=True,
350
+ temperature=0.7,
351
+ top_p=0.95,
352
+ top_k=40,
353
+ repetition_penalty=1.1
354
+ )
355
+
356
+ print(pipe(prompt_template)[0]['generated_text'])
357
+ ```
358
+ <!-- README_GPTQ.md-use-from-python end -->
359
+
360
+ <!-- README_GPTQ.md-compatibility start -->
361
+ ## Compatibility
362
+
363
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
364
+
365
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
366
+
367
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
368
+ <!-- README_GPTQ.md-compatibility end -->
369
+
370
+ <!-- footer start -->
371
+ <!-- 200823 -->
372
+ ## Discord
373
+
374
+ For further support, and discussions on these models and AI in general, join us at:
375
+
376
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
377
+
378
+ ## Thanks, and how to contribute
379
+
380
+ Thanks to the [chirper.ai](https://chirper.ai) team!
381
+
382
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
383
+
384
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
385
+
386
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
387
+
388
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
389
+
390
+ * Patreon: https://patreon.com/TheBlokeAI
391
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
392
+
393
+ **Special thanks to**: Aemon Algiz.
394
+
395
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
396
+
397
+
398
+ Thank you to all my generous patrons and donaters!
399
+
400
+ And thank you again to a16z for their generous grant.
401
+
402
+ <!-- footer end -->
403
+
404
+ # Original model card: 01-ai's Yi 34B Chat
405
+
406
+
407
+
408
+ <div align="center">
409
+
410
+ <p align="center">
411
+ <img width="200px" src="https://github.com/01-ai/Yi/raw/main/assets/img/Yi.svg?sanitize=true">
412
+ </p>
413
+
414
+ <div style="display: inline-block;">
415
+ <a rel="noopener nofollow" href="https://github.com/01-ai/Yi/issues">
416
+ <img src="https://img.shields.io/github/issues/01-ai/Yi?logo=github" style="margin: 0 0;">
417
+ </a>
418
+ </div>
419
+
420
+ <div style="display: inline-block;">
421
+ <a rel="noopener nofollow" href="https://github.com/01-ai/Yi/actions/workflows/build_docker_image.yml">
422
+ <img src="https://github.com/01-ai/Yi/actions/workflows/build_docker_image.yml/badge.svg" style="margin: 0 0;">
423
+ </a>
424
+ </div>
425
+
426
+ <div style="display: inline-block;">
427
+ <a href="https://huggingface.co/01-ai">
428
+ <img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-01--ai-blue" style="margin: 0 0;">
429
+ </a>
430
+ </div>
431
+
432
+ <div style="display: inline-block;">
433
+ <a rel="noopener nofollow" href="https://www.modelscope.cn/organization/01ai/">
434
+ <img src="https://img.shields.io/badge/ModelScope-01--ai-blue" style="margin: 0 0;">
435
+ </a>
436
+ </div>
437
+
438
+ <div style="display: inline-block;">
439
+ <a rel="noopener nofollow" href="https://wisemodel.cn/organization/01.AI">
440
+ <img src="https://img.shields.io/badge/WiseModel-01--ai-blue" style="margin: 0 0;">
441
+ </a>
442
+ </div>
443
+
444
+ <div style="display: inline-block;">
445
+ <a rel="noopener nofollow" href="https://replicate.com/01-ai">
446
+ <img src="https://img.shields.io/badge/Replicate-01--ai-blue?logo=" style="margin: 0 0;">
447
+ </a>
448
+ </div>
449
+
450
+ <div style="display: inline-block;">
451
+ <a rel="noopener nofollow" href="https://github.com/01-ai/Yi/blob/main/LICENSE">
452
+ <img src="https://img.shields.io/badge/Code_License-Apache_2.0-lightblue" style="margin: 0 0;">
453
+ </a>
454
+ </div>
455
+
456
+ <div style="display: inline-block;">
457
+ <a rel="noopener nofollow" href="https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt">
458
+ <img src="https://img.shields.io/badge/Model_License-Model_Agreement-lightblue" style="margin: 0 0;">
459
+ </a>
460
+ </div>
461
+
462
+ <div style="display: inline-block;">
463
+ <a rel="noopener nofollow" href="mailto:oss@01.ai">
464
+ <img src="https://img.shields.io/badge/✉️-yi@01.ai-FFE01B" style="margin: 0 0;">
465
+ </a>
466
+ </div>
467
+
468
+ </div>
469
+
470
+ ## Introduction
471
+
472
+ The **Yi** series models are large language models trained from scratch by
473
+ developers at [01.AI](https://01.ai/).
474
+
475
+ ## News
476
+
477
+ <details open>
478
+ <summary>🎯 <b>2023/11/23</b>: The chat models are open to public.</summary>
479
+
480
+ This release contains two chat models based on previous released base models, two 8-bits models quntinized by GPTQ, two 4-bits models quantinized by AWQ.
481
+
482
+ - `Yi-34B-Chat`
483
+ - `Yi-34B-Chat-4bits`
484
+ - `Yi-34B-Chat-8bits`
485
+ - `Yi-6B-Chat`
486
+ - `Yi-6B-Chat-4bits`
487
+ - `Yi-6B-Chat-8bits`
488
+
489
+ You can try some of them interactively at:
490
+
491
+ - [HuggingFace](https://huggingface.co/spaces/01-ai/Yi-34B-Chat)
492
+ - [Replicate](https://replicate.com/01-ai)
493
+ </details>
494
+
495
+ <details open>
496
+ <summary>🔔 <b>2023/11/23</b>: The Yi Series Models Community License Agreement is updated to v2.1.</summary>
497
+ </details>
498
+
499
+ <details>
500
+ <summary>🔥 <b>2023/11/08</b>: Invited test of Yi-34B chat model.</summary>
501
+
502
+ Application form:
503
+
504
+ - [English](https://cn.mikecrm.com/l91ODJf)
505
+ - [Chinese](https://cn.mikecrm.com/gnEZjiQ)
506
+
507
+ </details>
508
+
509
+ <details>
510
+ <summary>🎯 <b>2023/11/05</b>: The base model of <code>Yi-6B-200K</code> and <code>Yi-34B-200K</code>.</summary>
511
+
512
+ This release contains two base models with the same parameter sizes of previous
513
+ release, except that the context window is extended to 200K.
514
+
515
+ </details>
516
+
517
+ <details>
518
+ <summary>🎯 <b>2023/11/02</b>: The base model of <code>Yi-6B</code> and <code>Yi-34B</code>.</summary>
519
+
520
+ The first public release contains two bilingual (English/Chinese) base models
521
+ with the parameter sizes of 6B and 34B. Both of them are trained with 4K
522
+ sequence length and can be extended to 32K during inference time.
523
+
524
+ </details>
525
+
526
+ ## Model Performance
527
+
528
+ ### Base Model Performance
529
+
530
+ | Model | MMLU | CMMLU | C-Eval | GAOKAO | BBH | Common-sense Reasoning | Reading Comprehension | Math & Code |
531
+ | :------------ | :------: | :------: | :------: | :------: | :------: | :--------------------: | :-------------------: | :---------: |
532
+ | | 5-shot | 5-shot | 5-shot | 0-shot | 3-shot@1 | - | - | - |
533
+ | LLaMA2-34B | 62.6 | - | - | - | 44.1 | 69.9 | 68.0 | 26.0 |
534
+ | LLaMA2-70B | 68.9 | 53.3 | - | 49.8 | 51.2 | 71.9 | 69.4 | 36.8 |
535
+ | Baichuan2-13B | 59.2 | 62.0 | 58.1 | 54.3 | 48.8 | 64.3 | 62.4 | 23.0 |
536
+ | Qwen-14B | 66.3 | 71.0 | 72.1 | 62.5 | 53.4 | 73.3 | 72.5 | **39.8** |
537
+ | Skywork-13B | 62.1 | 61.8 | 60.6 | 68.1 | 41.7 | 72.4 | 61.4 | 24.9 |
538
+ | InternLM-20B | 62.1 | 59.0 | 58.8 | 45.5 | 52.5 | 78.3 | - | 30.4 |
539
+ | Aquila-34B | 67.8 | 71.4 | 63.1 | - | - | - | - | - |
540
+ | Falcon-180B | 70.4 | 58.0 | 57.8 | 59.0 | 54.0 | 77.3 | 68.8 | 34.0 |
541
+ | Yi-6B | 63.2 | 75.5 | 72.0 | 72.2 | 42.8 | 72.3 | 68.7 | 19.8 |
542
+ | Yi-6B-200K | 64.0 | 75.3 | 73.5 | 73.9 | 42.0 | 72.0 | 69.1 | 19.0 |
543
+ | **Yi-34B** | **76.3** | **83.7** | 81.4 | 82.8 | **54.3** | **80.1** | 76.4 | 37.1 |
544
+ | Yi-34B-200K | 76.1 | 83.6 | **81.9** | **83.4** | 52.7 | 79.7 | **76.6** | 36.3 |
545
+
546
+ While benchmarking open-source models, we have observed a disparity between the
547
+ results generated by our pipeline and those reported in public sources (e.g.
548
+ OpenCompass). Upon conducting a more in-depth investigation of this difference,
549
+ we have discovered that various models may employ different prompts,
550
+ post-processing strategies, and sampling techniques, potentially resulting in
551
+ significant variations in the outcomes. Our prompt and post-processing strategy
552
+ remains consistent with the original benchmark, and greedy decoding is employed
553
+ during evaluation without any post-processing for the generated content. For
554
+ scores that were not reported by the original authors (including scores reported
555
+ with different settings), we try to get results with our pipeline.
556
+
557
+ To evaluate the model's capability extensively, we adopted the methodology
558
+ outlined in Llama2. Specifically, we included PIQA, SIQA, HellaSwag, WinoGrande,
559
+ ARC, OBQA, and CSQA to assess common sense reasoning. SquAD, QuAC, and BoolQ
560
+ were incorporated to evaluate reading comprehension. CSQA was exclusively tested
561
+ using a 7-shot setup, while all other tests were conducted with a 0-shot
562
+ configuration. Additionally, we introduced GSM8K (8-shot@1), MATH (4-shot@1),
563
+ HumanEval (0-shot@1), and MBPP (3-shot@1) under the category "Math & Code". Due
564
+ to technical constraints, we did not test Falcon-180 on QuAC and OBQA; the score
565
+ is derived by averaging the scores on the remaining tasks. Since the scores for
566
+ these two tasks are generally lower than the average, we believe that
567
+ Falcon-180B's performance was not underestimated.
568
+
569
+ ### Chat Model Performance
570
+
571
+ | Model | MMLU | MMLU | CMMLU | CMMLU | C-Eval(val)<sup>*</sup> | C-Eval(val)<sup>*</sup> | Truthful QA | BBH | BBH | GSM8k | GSM8k |
572
+ | ----------------------- | --------- | --------- | --------- | --------- | ----------------------- | ----------------------- | ----------- | --------- | --------- | --------- | --------- |
573
+ | | 0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 0-shot | 3-shot | 0-shot | 4-shot |
574
+ | LLaMA2-13B-Chat | 50.88 | 47.33 | 27.47 | 35.08 | 27.93 | 35.88 | 36.84 | 32.90 | 58.22 | 36.85 | 2.73 |
575
+ | LLaMA2-70B-Chat | 59.42 | 59.86 | 36.10 | 40.99 | 34.99 | 41.31 | 53.95 | 42.36 | 58.53 | 47.08 | 58.68 |
576
+ | Baichuan2-13B-Chat | 55.09 | 50.14 | 58.64 | 59.47 | 56.02 | 54.75 | 48.98 | 38.81 | 47.15 | 45.72 | 23.28 |
577
+ | Qwen-14B-Chat | 63.99 | 64.98 | 67.73 | 70.57 | 66.12 | 70.06 | 52.49 | 49.65 | 54.98 | 59.51 | 61.18 |
578
+ | InternLM-Chat-20B | 55.55 | 57.42 | 53.55 | 53.75 | 51.19 | 53.57 | 51.75 | 42.41 | 36.68 | 15.69 | 43.44 |
579
+ | AquilaChat2-34B v1.2 | 65.15 | 66.70 | 67.51 | 70.02 | **82.99** | **89.38** | **64.33** | 20.12 | 34.28 | 11.52 | 48.45 |
580
+ | Yi-6B-Chat | 58.24 | 60.99 | 69.44 | 74.71 | 68.80 | 74.22 | 50.58 | 39.70 | 47.15 | 38.44 | 44.88 |
581
+ | Yi-6B-Chat-8bits(GPTQ) | 58.29 | 60.96 | 69.21 | 74.69 | 69.17 | 73.85 | 49.85 | 40.35 | 47.26 | 39.42 | 44.88 |
582
+ | Yi-6B-Chat-4bits(AWQ) | 56.78 | 59.89 | 67.70 | 73.29 | 67.53 | 72.29 | 50.29 | 37.74 | 43.62 | 35.71 | 38.36 |
583
+ | Yi-34B-Chat | **67.62** | 73.46 | **79.11** | **81.34** | 77.04 | 78.53 | 62.43 | 51.41 | **71.74** | **71.65** | **75.97** |
584
+ | Yi-34B-Chat-8bits(GPTQ) | 66.24 | **73.69** | 79.05 | 81.23 | 76.82 | 78.97 | 61.84 | **52.08** | 70.97 | 70.74 | 75.74 |
585
+ | Yi-34B-Chat-4bits(AWQ) | 65.77 | 72.42 | 78.21 | 80.50 | 75.71 | 77.27 | 61.84 | 48.30 | 69.39 | 70.51 | 74.00 |
586
+
587
+ We evaluated various benchmarks using both zero-shot and few-shot methods, except for TruthfulQA. Generally, the zero-shot approach is more common in chat models. Our evaluation strategy involves generating responses while following instructions explicitly or implicitly (such as using few-shot examples). We then isolate relevant answers from the generated text. Some models are not well-suited to produce output in the specific format required by instructions in few datasets, which leads to suboptimal results.
588
+
589
+ <strong>*</strong>: C-Eval results are evaluated on the validation datasets
590
+
591
+ ### Quantized Chat Model Performance
592
+
593
+ We also provide both 4-bit (AWQ) and 8-bit (GPTQ) quantized Yi chat models. Evaluation results on various benchmarks have shown that the quantized models have negligible losses. Additionally, they reduce the memory footprint size. After testing different configurations of prompts and generation lengths, we highly recommend following the guidelines in the memory footprint table below when selecting a device to run our models.
594
+
595
+ | | batch=1 | batch=4 | batch=16 | batch=32 |
596
+ | ----------------------- | ------- | ------- | -------- | -------- |
597
+ | Yi-34B-Chat | 65GiB | 68GiB | 76GiB | >80GiB |
598
+ | Yi-34B-Chat-8bits(GPTQ) | 35GiB | 37GiB | 46GiB | 58GiB |
599
+ | Yi-34B-Chat-4bits(AWQ) | 19GiB | 20GiB | 30GiB | 40GiB |
600
+ | Yi-6B-Chat | 12GiB | 13GiB | 15GiB | 18GiB |
601
+ | Yi-6B-Chat-8bits(GPTQ) | 7GiB | 8GiB | 10GiB | 14GiB |
602
+ | Yi-6B-Chat-4bits(AWQ) | 4GiB | 5GiB | 7GiB | 10GiB |
603
+
604
+ Note: All the numbers in the table represent the minimum recommended memory for running models of the corresponding size.
605
+
606
+ ### Limitations of Chat Model
607
+
608
+ The released chat model has undergone exclusive training using Supervised Fine-Tuning (SFT). Compared to other standard chat models, our model produces more diverse responses, making it suitable for various downstream tasks, such as creative scenarios. Furthermore, this diversity is expected to enhance the likelihood of generating higher quality responses, which will be advantageous for subsequent Reinforcement Learning (RL) training.
609
+
610
+ However, this higher diversity might amplify certain existing issues, including:
611
+
612
+ - **Hallucination**: This refers to the model generating factually incorrect or nonsensical information. With the model's responses being more varied, there's a higher chance of hallucination that are not based on accurate data or logical reasoning.
613
+ - **Non-determinism in re-generation**: When attempting to regenerate or sample responses, inconsistencies in the outcomes may occur. The increased diversity can lead to varying results even under similar input conditions.
614
+ - **Cumulative Error**: This occurs when errors in the model's responses compound over time. As the model generates more diverse responses, the likelihood of small inaccuracies building up into larger errors increases, especially in complex tasks like extended reasoning, mathematical problem-solving, etc.
615
+
616
+ To achieve more coherent and consistent responses, it is advisable to adjust generation configuration parameters such as`temperature`,`top_p`, or`top_k`. These adjustments can help in the balance between creativity and coherence in the model's outputs.
617
+
618
+
619
+
620
+ ## Usage
621
+
622
+ Feel free to [create an issue](https://github.com/01-ai/Yi/issues/new) if you
623
+ encounter any problem when using the **Yi** series models.
624
+
625
+ ### 1. Prepare development environment
626
+
627
+ #### 1.1 Docker
628
+ The best approach to try the **Yi** series models is through Docker with GPUs. We
629
+ provide the following docker images to help you get started.
630
+
631
+ - `registry.lingyiwanwu.com/ci/01-ai/yi:latest`
632
+ - `ghcr.io/01-ai/yi:latest`
633
+
634
+ Note that the `latest` tag always points to the latest code in the `main`
635
+ branch. To test a stable version, please replace it with a specific
636
+ [tag](https://github.com/01-ai/Yi/tags).
637
+
638
+ #### 1.2 Local development environment
639
+ We use [`conda-lock`](https://github.com/conda/conda-lock) to generate fully reproducible lock files for conda environments. You can refer to [conda-lock.yml](./conda-lock.yml) for the exact versions of the dependencies. Additionally, we utilize [`micromamba`](https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html) for installing these dependencies.
640
+
641
+ To install the dependencies, please follow these steps:
642
+ 1. Install `micromamba` by following the instructions available [here](https://mamba.readthedocs.io/en/latest/installation/micromamba-installation.html).
643
+ 2. Execute `micromamba install -y -n yi -f conda-lock.yml` to create a conda environment named `yi` and install the necessary dependencies.
644
+
645
+ ### 2. Download the model (optional)
646
+
647
+ By default, the model weights and tokenizer will be downloaded from
648
+ [HuggingFace](https://huggingface.co/01-ai) automatically in the next step. You
649
+ can also download them manually from the following places:
650
+
651
+ - [ModelScope](https://www.modelscope.cn/organization/01ai/)
652
+ - [WiseModel](https://wisemodel.cn/organization/01.AI)
653
+
654
+ ### 3. Examples
655
+
656
+ #### 3.1 Use the chat model
657
+
658
+ ```python
659
+ from transformers import AutoModelForCausalLM, AutoTokenizer
660
+
661
+ model_path = '01-ai/Yi-34b-Chat'
662
+
663
+ tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
664
+
665
+ # Since transformers 4.35.0, the GPT-Q/AWQ model can be loaded using AutoModelForCausalLM.
666
+ model = AutoModelForCausalLM.from_pretrained(
667
+ model_path,
668
+ device_map="auto",
669
+ torch_dtype='auto'
670
+ ).eval()
671
+
672
+ # Prompt content: "hi"
673
+ messages = [
674
+ {"role": "user", "content": "hi"}
675
+ ]
676
+
677
+ input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
678
+ output_ids = model.generate(input_ids.to('cuda'))
679
+ response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
680
+
681
+ # Model response: "Hello! How can I assist you today?"
682
+ print(response)
683
+ ```
684
+
685
+ #### 3.2 Use the base model
686
+
687
+ ```bash
688
+ python demo/text_generation.py
689
+ ```
690
+
691
+ To reuse the downloaded models in the previous step, you can provide the extra
692
+ `--model` argument:
693
+
694
+ ```bash
695
+ python demo/text_generation.py --model /path/to/model
696
+ ```
697
+
698
+ Or if you'd like to get your hands dirty:
699
+
700
+ ```python
701
+ from transformers import AutoModelForCausalLM, AutoTokenizer
702
+
703
+ model = AutoModelForCausalLM.from_pretrained("01-ai/Yi-34B", device_map="auto", torch_dtype="auto", trust_remote_code=True)
704
+ tokenizer = AutoTokenizer.from_pretrained("01-ai/Yi-34B", trust_remote_code=True)
705
+ inputs = tokenizer("There's a place where time stands still. A place of breath taking wonder, but also", return_tensors="pt")
706
+ max_length = 256
707
+
708
+ outputs = model.generate(
709
+ inputs.input_ids.cuda(),
710
+ max_length=max_length,
711
+ eos_token_id=tokenizer.eos_token_id,
712
+ do_sample=True,
713
+ repetition_penalty=1.3,
714
+ no_repeat_ngram_size=5,
715
+ temperature=0.7,
716
+ top_k=40,
717
+ top_p=0.8,
718
+ )
719
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
720
+ ```
721
+
722
+ <details>
723
+
724
+ <summary>Output</summary>
725
+
726
+ **Prompt**: There's a place where time stands still. A place of breath taking wonder, but also
727
+
728
+ **Generation**: There's a place where time stands still. A place of breath taking wonder, but also of great danger. A place where the very air you breathe could kill you. A place where the only way to survive is to be prepared.
729
+ The place is called the Arctic.
730
+ The Arctic is a vast, frozen wilderness. It is a place of extremes. The temperatures can drop to -40 degrees Celsius. The winds can reach speeds of 100 kilometers per hour. The sun can shine for 24 hours a day, or not at all for weeks on end.
731
+ The Arctic is also a place of great beauty. The ice and snow are a pristine white. The sky is a deep blue. The sunsets are spectacular.
732
+ But the Arctic is also a place of great danger. The ice can be treacherous. The winds can be deadly. The sun can be blinding.
733
+ The Arctic is a place where the only way to survive is to be prepared.
734
+ The Arctic is a place of extremes. The temperatures can drop to -40 degrees Celsius. The winds can reach speeds of 100 kilometers per hour. The sun can shine for 24 hours a day, or not at all for weeks on end.
735
+ The Arctic is a place of great beauty. The ice and snow are a
736
+
737
+ </details>
738
+
739
+ For more advanced usage, please refer to the
740
+ [doc](https://github.com/01-ai/Yi/tree/main/demo).
741
+
742
+ #### 3.3 Finetuning from the base model:
743
+
744
+ ```bash
745
+ bash finetune/scripts/run_sft_Yi_6b.sh
746
+ ```
747
+
748
+ Once finished, you can compare the finetuned model and the base model with the following command:
749
+
750
+ ```bash
751
+ bash finetune/scripts/run_eval.sh
752
+ ```
753
+
754
+ For more advanced usage like fine-tuning based on your custom data, please refer
755
+ the [doc](https://github.com/01-ai/Yi/tree/main/finetune).
756
+
757
+ #### 3.4 Quantization
758
+
759
+ ##### GPT-Q
760
+ ```bash
761
+ python quantization/gptq/quant_autogptq.py \
762
+ --model /base_model \
763
+ --output_dir /quantized_model \
764
+ --trust_remote_code
765
+ ```
766
+
767
+ Once finished, you can then evaluate the resulting model as follows:
768
+
769
+ ```bash
770
+ python quantization/gptq/eval_quantized_model.py \
771
+ --model /quantized_model \
772
+ --trust_remote_code
773
+ ```
774
+
775
+ For a more detailed explanation, please read the [doc](https://github.com/01-ai/Yi/tree/main/quantization/gptq)
776
+
777
+ ##### AWQ
778
+ ```bash
779
+ python quantization/awq/quant_autoawq.py \
780
+ --model /base_model \
781
+ --output_dir /quantized_model \
782
+ --trust_remote_code
783
+ ```
784
+
785
+ Once finished, you can then evaluate the resulted model as follows:
786
+
787
+ ```bash
788
+ python quantization/awq/eval_quantized_model.py \
789
+ --model /quantized_model \
790
+ --trust_remote_code
791
+ ```
792
+
793
+ For more detailed explanation, please read the [doc](https://github.com/01-ai/Yi/tree/main/quantization/awq)
794
+
795
+ ## Ecosystem
796
+
797
+ 🤗 You are encouraged to create a PR and share your awesome work built on top of
798
+ the Yi series models.
799
+
800
+ - Serving
801
+ - [ScaleLLM](https://github.com/vectorch-ai/ScaleLLM#supported-models): Efficiently run Yi models locally.
802
+ - Quantization
803
+ - [TheBloke/Yi-34B-GGUF](https://huggingface.co/TheBloke/Yi-34B-GGUF)
804
+ - [TheBloke/Yi-34B-GPTQ](https://huggingface.co/TheBloke/Yi-34B-GPTQ)
805
+ - Finetuning
806
+ - [NousResearch/Nous-Capybara-34B](https://huggingface.co/NousResearch/Nous-Capybara-34B)
807
+
808
+ ## FAQ
809
+
810
+ 1. **What dataset was this trained with?**
811
+
812
+ The dataset we use contains Chinese & English only. We used approximately 3T
813
+ tokens. The detailed number and its construction will be described in the
814
+ upcoming technical report.
815
+
816
+ ## Disclaimer
817
+
818
+ We use data compliance checking algorithms during the training process, to
819
+ ensure the compliance of the trained model to the best of our ability. Due to
820
+ complex data and the diversity of language model usage scenarios, we cannot
821
+ guarantee that the model will generate correct, and reasonable output in all
822
+ scenarios. Please be aware that there is still a risk of the model producing
823
+ problematic outputs. We will not be responsible for any risks and issues
824
+ resulting from misuse, misguidance, illegal usage, and related misinformation,
825
+ as well as any associated data security concerns.
826
+
827
+ ## License
828
+
829
+ The source code in this repo is licensed under the [Apache 2.0
830
+ license](https://github.com/01-ai/Yi/blob/main/LICENSE). The Yi series models
831
+ are fully open for academic research and free commercial usage with permission
832
+ via applications. All usage must adhere to the [Model License
833
+ Agreement 2.0](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt).
834
+ To apply for the official commercial license, please contact us
835
+ ([yi@01.ai](mailto:yi@01.ai)).