--- base_model: 01-ai/Yi-34B-Chat inference: false license: other license_link: LICENSE license_name: yi-license model_creator: 01-ai model_name: Yi 34B Chat model_type: yi pipeline_tag: text-generation prompt_template: '<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ' quantized_by: TheBloke widget: - example_title: Yi-34B-Chat output: text: ' Hello! How can I assist you today?' text: hi - example_title: Yi-34B output: text: " an eerie sense that something is just not right\u2026\nBetween the two\ \ worlds lies The Forgotten Kingdom - home to creatures long since thought extinct\ \ and ancient magic so strong it defies belief! Only here can you find what\ \ has been lost for centuries: An Elixir Of Life which will restore youth and\ \ vitality if only those who seek its power are brave enough to face up against\ \ all manner of dangers lurking in this mysterious land! But beware; some say\ \ there may even exist powerful entities beyond our comprehension whose intentions\ \ towards humanity remain unclear at best ---- they might want nothing more\ \ than destruction itself rather then anything else from their quest after immortality\ \ (and maybe someone should tell them about modern medicine)? In any event though\ \ \u2013 one thing remains true regardless : whether or not success comes easy\ \ depends entirely upon how much effort we put into conquering whatever challenges\ \ lie ahead along with having faith deep down inside ourselves too ;) So let\u2019\ s get started now shall We?" text: There's a place where time stands still. A place of breath taking wonder, but also ---
TheBlokeAI

Chat & support: TheBloke's Discord server

Want to contribute? TheBloke's Patreon page

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


# Yi 34B Chat - GPTQ - Model creator: [01-ai](https://huggingface.co/01-ai) - Original model: [Yi 34B Chat](https://huggingface.co/01-ai/Yi-34B-Chat) # Description This repo contains GPTQ model files for [01-ai's Yi 34B Chat](https://huggingface.co/01-ai/Yi-34B-Chat). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Yi-34B-Chat-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Yi-34B-Chat-GGUF) * [01-ai's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/01-ai/Yi-34B-Chat) ## Prompt template: ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Known compatible clients / servers These GPTQ models are known to work in the following inference servers/webuis. - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) - [KoboldAI United](https://github.com/henk717/koboldai) - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) This may not be a complete list; if you know of others, please let me know! ## Provided files, and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
Explanation of GPTQ parameters - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [VMWare Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 18.60 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [VMWare Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 19.25 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMWare Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 21.21 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [VMWare Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 15.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. | | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMWare Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 35.34 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-3bit-32g-actorder_True](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ/tree/gptq-3bit-32g-actorder_True) | 3 | 32 | Yes | 0.1 | [VMWare Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 16.90 GB | No | 3-bit, with group size 64g and act-order. Highest quality 3-bit option. | | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMWare Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 36.11 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | ## How to download, including from branches ### In text-generation-webui To download from the `main` branch, enter `TheBloke/Yi-34B-Chat-GPTQ` in the "Download model" box. To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/Yi-34B-Chat-GPTQ:gptq-4bit-128g-actorder_True` ### From the command line I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` To download the `main` branch to a folder called `Yi-34B-Chat-GPTQ`: ```shell mkdir Yi-34B-Chat-GPTQ huggingface-cli download TheBloke/Yi-34B-Chat-GPTQ --local-dir Yi-34B-Chat-GPTQ --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir Yi-34B-Chat-GPTQ huggingface-cli download TheBloke/Yi-34B-Chat-GPTQ --revision gptq-4bit-128g-actorder_True --local-dir Yi-34B-Chat-GPTQ --local-dir-use-symlinks False ```
More advanced huggingface-cli download usage If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model. The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`. For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell mkdir Yi-34B-Chat-GPTQ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Yi-34B-Chat-GPTQ --local-dir Yi-34B-Chat-GPTQ --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
### With `git` (**not** recommended) To clone a specific branch with `git`, use a command like this: ```shell git clone --single-branch --branch gptq-4bit-128g-actorder_True https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ ``` Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.) ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/Yi-34B-Chat-GPTQ`. - To download from a specific branch, enter for example `TheBloke/Yi-34B-Chat-GPTQ:gptq-4bit-128g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `Yi-34B-Chat-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! ## Serving this model from Text Generation Inference (TGI) It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/Yi-34B-Chat-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: {response}") ``` ## Python code example: inference from this GPTQ model ### Install the necessary packages Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. ```shell pip3 install --upgrade transformers optimum # If using PyTorch 2.1 + CUDA 12.x: pip3 install --upgrade auto-gptq # or, if using PyTorch 2.1 + CUDA 11.x: pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ ``` If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ git checkout v0.5.1 pip3 install . ``` ### Example Python code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name_or_path = "TheBloke/Yi-34B-Chat-GPTQ" # To use a different branch, change revision # For example: revision="gptq-4bit-128g-actorder_True" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=False, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) prompt = "Tell me about AI" prompt_template=f'''<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Compatibility The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly. [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility. For a list of clients/servers, please see "Known compatible clients / servers", above. ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. # Original model card: 01-ai's Yi 34B Chat

## Introduction The **Yi** series models are large language models trained from scratch by developers at [01.AI](https://01.ai/). ## News
🎯 2023/11/23: The chat models are open to public. This release contains two chat models based on previous released base models, two 8-bits models quntinized by GPTQ, two 4-bits models quantinized by AWQ. - `Yi-34B-Chat` - `Yi-34B-Chat-4bits` - `Yi-34B-Chat-8bits` - `Yi-6B-Chat` - `Yi-6B-Chat-4bits` - `Yi-6B-Chat-8bits` You can try some of them interactively at: - [HuggingFace](https://huggingface.co/spaces/01-ai/Yi-34B-Chat) - [Replicate](https://replicate.com/01-ai)
🔔 2023/11/23: The Yi Series Models Community License Agreement is updated to v2.1.
🔥 2023/11/08: Invited test of Yi-34B chat model. Application form: - [English](https://cn.mikecrm.com/l91ODJf) - [Chinese](https://cn.mikecrm.com/gnEZjiQ)
🎯 2023/11/05: The base model of Yi-6B-200K and Yi-34B-200K. This release contains two base models with the same parameter sizes of previous release, except that the context window is extended to 200K.
🎯 2023/11/02: The base model of Yi-6B and Yi-34B. The first public release contains two bilingual (English/Chinese) base models with the parameter sizes of 6B and 34B. Both of them are trained with 4K sequence length and can be extended to 32K during inference time.
## Model Performance ### Base Model Performance | Model | MMLU | CMMLU | C-Eval | GAOKAO | BBH | Common-sense Reasoning | Reading Comprehension | Math & Code | | :------------ | :------: | :------: | :------: | :------: | :------: | :--------------------: | :-------------------: | :---------: | | | 5-shot | 5-shot | 5-shot | 0-shot | 3-shot@1 | - | - | - | | LLaMA2-34B | 62.6 | - | - | - | 44.1 | 69.9 | 68.0 | 26.0 | | LLaMA2-70B | 68.9 | 53.3 | - | 49.8 | 51.2 | 71.9 | 69.4 | 36.8 | | Baichuan2-13B | 59.2 | 62.0 | 58.1 | 54.3 | 48.8 | 64.3 | 62.4 | 23.0 | | Qwen-14B | 66.3 | 71.0 | 72.1 | 62.5 | 53.4 | 73.3 | 72.5 | **39.8** | | Skywork-13B | 62.1 | 61.8 | 60.6 | 68.1 | 41.7 | 72.4 | 61.4 | 24.9 | | InternLM-20B | 62.1 | 59.0 | 58.8 | 45.5 | 52.5 | 78.3 | - | 30.4 | | Aquila-34B | 67.8 | 71.4 | 63.1 | - | - | - | - | - | | Falcon-180B | 70.4 | 58.0 | 57.8 | 59.0 | 54.0 | 77.3 | 68.8 | 34.0 | | Yi-6B | 63.2 | 75.5 | 72.0 | 72.2 | 42.8 | 72.3 | 68.7 | 19.8 | | Yi-6B-200K | 64.0 | 75.3 | 73.5 | 73.9 | 42.0 | 72.0 | 69.1 | 19.0 | | **Yi-34B** | **76.3** | **83.7** | 81.4 | 82.8 | **54.3** | **80.1** | 76.4 | 37.1 | | Yi-34B-200K | 76.1 | 83.6 | **81.9** | **83.4** | 52.7 | 79.7 | **76.6** | 36.3 | While benchmarking open-source models, we have observed a disparity between the results generated by our pipeline and those reported in public sources (e.g. OpenCompass). Upon conducting a more in-depth investigation of this difference, we have discovered that various models may employ different prompts, post-processing strategies, and sampling techniques, potentially resulting in significant variations in the outcomes. Our prompt and post-processing strategy remains consistent with the original benchmark, and greedy decoding is employed during evaluation without any post-processing for the generated content. For scores that were not reported by the original authors (including scores reported with different settings), we try to get results with our pipeline. To evaluate the model's capability extensively, we adopted the methodology outlined in Llama2. Specifically, we included PIQA, SIQA, HellaSwag, WinoGrande, ARC, OBQA, and CSQA to assess common sense reasoning. SquAD, QuAC, and BoolQ were incorporated to evaluate reading comprehension. CSQA was exclusively tested using a 7-shot setup, while all other tests were conducted with a 0-shot configuration. Additionally, we introduced GSM8K (8-shot@1), MATH (4-shot@1), HumanEval (0-shot@1), and MBPP (3-shot@1) under the category "Math & Code". Due to technical constraints, we did not test Falcon-180 on QuAC and OBQA; the score is derived by averaging the scores on the remaining tasks. Since the scores for these two tasks are generally lower than the average, we believe that Falcon-180B's performance was not underestimated. ### Chat Model Performance | Model | MMLU | MMLU | CMMLU | CMMLU | C-Eval(val)* | C-Eval(val)* | Truthful QA | BBH | BBH | GSM8k | GSM8k | | ----------------------- | --------- | --------- | --------- | --------- | ----------------------- | ----------------------- | ----------- | --------- | --------- | --------- | --------- | | | 0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 0-shot | 3-shot | 0-shot | 4-shot | | LLaMA2-13B-Chat | 50.88 | 47.33 | 27.47 | 35.08 | 27.93 | 35.88 | 36.84 | 32.90 | 58.22 | 36.85 | 2.73 | | LLaMA2-70B-Chat | 59.42 | 59.86 | 36.10 | 40.99 | 34.99 | 41.31 | 53.95 | 42.36 | 58.53 | 47.08 | 58.68 | | Baichuan2-13B-Chat | 55.09 | 50.14 | 58.64 | 59.47 | 56.02 | 54.75 | 48.98 | 38.81 | 47.15 | 45.72 | 23.28 | | Qwen-14B-Chat | 63.99 | 64.98 | 67.73 | 70.57 | 66.12 | 70.06 | 52.49 | 49.65 | 54.98 | 59.51 | 61.18 | | InternLM-Chat-20B | 55.55 | 57.42 | 53.55 | 53.75 | 51.19 | 53.57 | 51.75 | 42.41 | 36.68 | 15.69 | 43.44 | | AquilaChat2-34B v1.2 | 65.15 | 66.70 | 67.51 | 70.02 | **82.99** | **89.38** | **64.33** | 20.12 | 34.28 | 11.52 | 48.45 | | Yi-6B-Chat | 58.24 | 60.99 | 69.44 | 74.71 | 68.80 | 74.22 | 50.58 | 39.70 | 47.15 | 38.44 | 44.88 | | Yi-6B-Chat-8bits(GPTQ) | 58.29 | 60.96 | 69.21 | 74.69 | 69.17 | 73.85 | 49.85 | 40.35 | 47.26 | 39.42 | 44.88 | | Yi-6B-Chat-4bits(AWQ) | 56.78 | 59.89 | 67.70 | 73.29 | 67.53 | 72.29 | 50.29 | 37.74 | 43.62 | 35.71 | 38.36 | | Yi-34B-Chat | **67.62** | 73.46 | **79.11** | **81.34** | 77.04 | 78.53 | 62.43 | 51.41 | **71.74** | **71.65** | **75.97** | | Yi-34B-Chat-8bits(GPTQ) | 66.24 | **73.69** | 79.05 | 81.23 | 76.82 | 78.97 | 61.84 | **52.08** | 70.97 | 70.74 | 75.74 | | Yi-34B-Chat-4bits(AWQ) | 65.77 | 72.42 | 78.21 | 80.50 | 75.71 | 77.27 | 61.84 | 48.30 | 69.39 | 70.51 | 74.00 | We evaluated various benchmarks using both zero-shot and few-shot methods, except for TruthfulQA. Generally, the zero-shot approach is more common in chat models. Our evaluation strategy involves generating responses while following instructions explicitly or implicitly (such as using few-shot examples). We then isolate relevant answers from the generated text. Some models are not well-suited to produce output in the specific format required by instructions in few datasets, which leads to suboptimal results. *: C-Eval results are evaluated on the validation datasets ### Quantized Chat Model Performance We also provide both 4-bit (AWQ) and 8-bit (GPTQ) quantized Yi chat models. Evaluation results on various benchmarks have shown that the quantized models have negligible losses. Additionally, they reduce the memory footprint size. After testing different configurations of prompts and generation lengths, we highly recommend following the guidelines in the memory footprint table below when selecting a device to run our models. | | batch=1 | batch=4 | batch=16 | batch=32 | | ----------------------- | ------- | ------- | -------- | -------- | | Yi-34B-Chat | 65GiB | 68GiB | 76GiB | >80GiB | | Yi-34B-Chat-8bits(GPTQ) | 35GiB | 37GiB | 46GiB | 58GiB | | Yi-34B-Chat-4bits(AWQ) | 19GiB | 20GiB | 30GiB | 40GiB | | Yi-6B-Chat | 12GiB | 13GiB | 15GiB | 18GiB | | Yi-6B-Chat-8bits(GPTQ) | 7GiB | 8GiB | 10GiB | 14GiB | | Yi-6B-Chat-4bits(AWQ) | 4GiB | 5GiB | 7GiB | 10GiB | Note: All the numbers in the table represent the minimum recommended memory for running models of the corresponding size. ### Limitations of Chat Model The released chat model has undergone exclusive training using Supervised Fine-Tuning (SFT). Compared to other standard chat models, our model produces more diverse responses, making it suitable for various downstream tasks, such as creative scenarios. Furthermore, this diversity is expected to enhance the likelihood of generating higher quality responses, which will be advantageous for subsequent Reinforcement Learning (RL) training. However, this higher diversity might amplify certain existing issues, including: - **Hallucination**: This refers to the model generating factually incorrect or nonsensical information. With the model's responses being more varied, there's a higher chance of hallucination that are not based on accurate data or logical reasoning. - **Non-determinism in re-generation**: When attempting to regenerate or sample responses, inconsistencies in the outcomes may occur. The increased diversity can lead to varying results even under similar input conditions. - **Cumulative Error**: This occurs when errors in the model's responses compound over time. As the model generates more diverse responses, the likelihood of small inaccuracies building up into larger errors increases, especially in complex tasks like extended reasoning, mathematical problem-solving, etc. To achieve more coherent and consistent responses, it is advisable to adjust generation configuration parameters such as`temperature`,`top_p`, or`top_k`. These adjustments can help in the balance between creativity and coherence in the model's outputs. ## Usage Feel free to [create an issue](https://github.com/01-ai/Yi/issues/new) if you encounter any problem when using the **Yi** series models. ### 1. Prepare development environment #### 1.1 Docker The best approach to try the **Yi** series models is through Docker with GPUs. We provide the following docker images to help you get started. - `registry.lingyiwanwu.com/ci/01-ai/yi:latest` - `ghcr.io/01-ai/yi:latest` Note that the `latest` tag always points to the latest code in the `main` branch. To test a stable version, please replace it with a specific [tag](https://github.com/01-ai/Yi/tags). #### 1.2 Local development environment We use [`conda-lock`](https://github.com/conda/conda-lock) to generate fully reproducible lock files for conda environments. You can refer to [conda-lock.yml](./conda-lock.yml) for the exact versions of the dependencies. Additionally, we utilize [`micromamba`](https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html) for installing these dependencies. To install the dependencies, please follow these steps: 1. Install `micromamba` by following the instructions available [here](https://mamba.readthedocs.io/en/latest/installation/micromamba-installation.html). 2. Execute `micromamba install -y -n yi -f conda-lock.yml` to create a conda environment named `yi` and install the necessary dependencies. ### 2. Download the model (optional) By default, the model weights and tokenizer will be downloaded from [HuggingFace](https://huggingface.co/01-ai) automatically in the next step. You can also download them manually from the following places: - [ModelScope](https://www.modelscope.cn/organization/01ai/) - [WiseModel](https://wisemodel.cn/organization/01.AI) ### 3. Examples #### 3.1 Use the chat model ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = '01-ai/Yi-34b-Chat' tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) # Since transformers 4.35.0, the GPT-Q/AWQ model can be loaded using AutoModelForCausalLM. model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ``` #### 3.2 Use the base model ```bash python demo/text_generation.py ``` To reuse the downloaded models in the previous step, you can provide the extra `--model` argument: ```bash python demo/text_generation.py --model /path/to/model ``` Or if you'd like to get your hands dirty: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("01-ai/Yi-34B", device_map="auto", torch_dtype="auto", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("01-ai/Yi-34B", trust_remote_code=True) inputs = tokenizer("There's a place where time stands still. A place of breath taking wonder, but also", return_tensors="pt") max_length = 256 outputs = model.generate( inputs.input_ids.cuda(), max_length=max_length, eos_token_id=tokenizer.eos_token_id, do_sample=True, repetition_penalty=1.3, no_repeat_ngram_size=5, temperature=0.7, top_k=40, top_p=0.8, ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
Output **Prompt**: There's a place where time stands still. A place of breath taking wonder, but also **Generation**: There's a place where time stands still. A place of breath taking wonder, but also of great danger. A place where the very air you breathe could kill you. A place where the only way to survive is to be prepared. The place is called the Arctic. The Arctic is a vast, frozen wilderness. It is a place of extremes. The temperatures can drop to -40 degrees Celsius. The winds can reach speeds of 100 kilometers per hour. The sun can shine for 24 hours a day, or not at all for weeks on end. The Arctic is also a place of great beauty. The ice and snow are a pristine white. The sky is a deep blue. The sunsets are spectacular. But the Arctic is also a place of great danger. The ice can be treacherous. The winds can be deadly. The sun can be blinding. The Arctic is a place where the only way to survive is to be prepared. The Arctic is a place of extremes. The temperatures can drop to -40 degrees Celsius. The winds can reach speeds of 100 kilometers per hour. The sun can shine for 24 hours a day, or not at all for weeks on end. The Arctic is a place of great beauty. The ice and snow are a
For more advanced usage, please refer to the [doc](https://github.com/01-ai/Yi/tree/main/demo). #### 3.3 Finetuning from the base model: ```bash bash finetune/scripts/run_sft_Yi_6b.sh ``` Once finished, you can compare the finetuned model and the base model with the following command: ```bash bash finetune/scripts/run_eval.sh ``` For more advanced usage like fine-tuning based on your custom data, please refer the [doc](https://github.com/01-ai/Yi/tree/main/finetune). #### 3.4 Quantization ##### GPT-Q ```bash python quantization/gptq/quant_autogptq.py \ --model /base_model \ --output_dir /quantized_model \ --trust_remote_code ``` Once finished, you can then evaluate the resulting model as follows: ```bash python quantization/gptq/eval_quantized_model.py \ --model /quantized_model \ --trust_remote_code ``` For a more detailed explanation, please read the [doc](https://github.com/01-ai/Yi/tree/main/quantization/gptq) ##### AWQ ```bash python quantization/awq/quant_autoawq.py \ --model /base_model \ --output_dir /quantized_model \ --trust_remote_code ``` Once finished, you can then evaluate the resulted model as follows: ```bash python quantization/awq/eval_quantized_model.py \ --model /quantized_model \ --trust_remote_code ``` For more detailed explanation, please read the [doc](https://github.com/01-ai/Yi/tree/main/quantization/awq) ## Ecosystem 🤗 You are encouraged to create a PR and share your awesome work built on top of the Yi series models. - Serving - [ScaleLLM](https://github.com/vectorch-ai/ScaleLLM#supported-models): Efficiently run Yi models locally. - Quantization - [TheBloke/Yi-34B-GGUF](https://huggingface.co/TheBloke/Yi-34B-GGUF) - [TheBloke/Yi-34B-GPTQ](https://huggingface.co/TheBloke/Yi-34B-GPTQ) - Finetuning - [NousResearch/Nous-Capybara-34B](https://huggingface.co/NousResearch/Nous-Capybara-34B) ## FAQ 1. **What dataset was this trained with?** The dataset we use contains Chinese & English only. We used approximately 3T tokens. The detailed number and its construction will be described in the upcoming technical report. ## Disclaimer We use data compliance checking algorithms during the training process, to ensure the compliance of the trained model to the best of our ability. Due to complex data and the diversity of language model usage scenarios, we cannot guarantee that the model will generate correct, and reasonable output in all scenarios. Please be aware that there is still a risk of the model producing problematic outputs. We will not be responsible for any risks and issues resulting from misuse, misguidance, illegal usage, and related misinformation, as well as any associated data security concerns. ## License The source code in this repo is licensed under the [Apache 2.0 license](https://github.com/01-ai/Yi/blob/main/LICENSE). The Yi series models are fully open for academic research and free commercial usage with permission via applications. All usage must adhere to the [Model License Agreement 2.0](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt). To apply for the official commercial license, please contact us ([yi@01.ai](mailto:yi@01.ai)).