TheBloke commited on
Commit
2e3505c
·
1 Parent(s): 1b9271c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -0
README.md CHANGED
@@ -1,3 +1,52 @@
1
  ---
2
  license: other
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: other
3
+ language:
4
+ - en
5
+ pipeline_tag: text2text-generation
6
+ tags:
7
+ - alpaca
8
+ - llama
9
+ - chat
10
+ - gpt4
11
  ---
12
+
13
+ This is a 4bit 128g GPTQ of [chansung's gpt4-alpaca-lora-13b](https://huggingface.co/chansung/gpt4-alpaca-lora-13b).
14
+
15
+ More details will be put in this README tomorrow. Until then, please see one of my other GPTQ repos for more instructions.
16
+
17
+ Command to create was:
18
+ ```
19
+ cd gptq-safe && CUDA_VISIBLE_DEVICES=0 python3 llama.py /content/gpt4-alpaca-lora-13B-HF c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save_safetensors /content/gpt4-alpaca-lora-13B-GPTQ-4bit-128g.safetensors
20
+ ```
21
+
22
+ Note that only as `--act-order` was used, this will not work with ooba's fork of GPTQ. You must use the qwopqwop repo as of April 13th.
23
+
24
+ Command to clone the correct GPTQ-for-LLaMa repo for inference using `llama_inference.py`, or in `text-generation-webui`:
25
+ ```
26
+ git clone -n https://github.com/qwopqwop200/GPTQ-for-LLaMa gptq-safe
27
+ cd gptq-safe
28
+ git checkout 58c8ab4c7aaccc50f507fd08cce941976affe5e0
29
+ ```
30
+
31
+ Tomorrow I will also do a `no-act-order.pt` which doesn't use `--act-order` and will therefore work with ooba's GPTQ fork.
32
+
33
+ # Original model card is below
34
+
35
+ This repository comes with LoRA checkpoint to make LLaMA into a chatbot like language model. The checkpoint is the output of instruction following fine-tuning process with the following settings on 8xA100(40G) DGX system.
36
+ - Training script: borrowed from the official [Alpaca-LoRA](https://github.com/tloen/alpaca-lora) implementation
37
+ - Training script:
38
+ ```shell
39
+ python finetune.py \
40
+ --base_model='decapoda-research/llama-30b-hf' \
41
+ --data_path='alpaca_data_gpt4.json' \
42
+ --num_epochs=10 \
43
+ --cutoff_len=512 \
44
+ --group_by_length \
45
+ --output_dir='./gpt4-alpaca-lora-30b' \
46
+ --lora_target_modules='[q_proj,k_proj,v_proj,o_proj]' \
47
+ --lora_r=16 \
48
+ --batch_size=... \
49
+ --micro_batch_size=...
50
+ ```
51
+
52
+ You can find how the training went from W&B report [here](https://wandb.ai/chansung18/gpt4_alpaca_lora/runs/w3syd157?workspace=user-chansung18).