TheBloke commited on
Commit
35c31e8
·
1 Parent(s): 88daaff

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -21
README.md CHANGED
@@ -43,7 +43,7 @@ This repo contains GGUF format model files for [Tim Dettmers' Guanaco 33B](https
43
  <!-- README_GGUF.md-about-gguf start -->
44
  ### About GGUF
45
 
46
- GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
47
 
48
  Here is an incomplate list of clients and libraries that are known to support GGUF:
49
 
@@ -82,7 +82,7 @@ Here is an incomplate list of clients and libraries that are known to support GG
82
  <!-- compatibility_gguf start -->
83
  ## Compatibility
84
 
85
- These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
86
 
87
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
88
 
@@ -137,7 +137,7 @@ The following clients/libraries will automatically download models for you, prov
137
 
138
  ### In `text-generation-webui`
139
 
140
- Under Download Model, you can enter the model repo: TheBloke/guanaco-33B-GGUF and below it, a specific filename to download, such as: guanaco-33b.q4_K_M.gguf.
141
 
142
  Then click Download.
143
 
@@ -146,13 +146,13 @@ Then click Download.
146
  I recommend using the `huggingface-hub` Python library:
147
 
148
  ```shell
149
- pip3 install huggingface-hub>=0.17.1
150
  ```
151
 
152
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
153
 
154
  ```shell
155
- huggingface-cli download TheBloke/guanaco-33B-GGUF guanaco-33b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
156
  ```
157
 
158
  <details>
@@ -175,25 +175,25 @@ pip3 install hf_transfer
175
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
176
 
177
  ```shell
178
- HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/guanaco-33B-GGUF guanaco-33b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
179
  ```
180
 
181
- Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
182
  </details>
183
  <!-- README_GGUF.md-how-to-download end -->
184
 
185
  <!-- README_GGUF.md-how-to-run start -->
186
  ## Example `llama.cpp` command
187
 
188
- Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
189
 
190
  ```shell
191
- ./main -ngl 32 -m guanaco-33b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Human: {prompt}\n### Assistant:"
192
  ```
193
 
194
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
195
 
196
- Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
197
 
198
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
199
 
@@ -207,35 +207,37 @@ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://git
207
 
208
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
209
 
210
- ### How to load this model from Python using ctransformers
211
 
212
  #### First install the package
213
 
214
- ```bash
 
 
215
  # Base ctransformers with no GPU acceleration
216
- pip install ctransformers>=0.2.24
217
  # Or with CUDA GPU acceleration
218
- pip install ctransformers[cuda]>=0.2.24
219
- # Or with ROCm GPU acceleration
220
- CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
221
- # Or with Metal GPU acceleration for macOS systems
222
- CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
223
  ```
224
 
225
- #### Simple example code to load one of these GGUF models
226
 
227
  ```python
228
  from ctransformers import AutoModelForCausalLM
229
 
230
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
231
- llm = AutoModelForCausalLM.from_pretrained("TheBloke/guanaco-33B-GGUF", model_file="guanaco-33b.q4_K_M.gguf", model_type="llama", gpu_layers=50)
232
 
233
  print(llm("AI is going to"))
234
  ```
235
 
236
  ## How to use with LangChain
237
 
238
- Here's guides on using llama-cpp-python or ctransformers with LangChain:
239
 
240
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
241
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
 
43
  <!-- README_GGUF.md-about-gguf start -->
44
  ### About GGUF
45
 
46
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
47
 
48
  Here is an incomplate list of clients and libraries that are known to support GGUF:
49
 
 
82
  <!-- compatibility_gguf start -->
83
  ## Compatibility
84
 
85
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
86
 
87
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
88
 
 
137
 
138
  ### In `text-generation-webui`
139
 
140
+ Under Download Model, you can enter the model repo: TheBloke/guanaco-33B-GGUF and below it, a specific filename to download, such as: guanaco-33b.Q4_K_M.gguf.
141
 
142
  Then click Download.
143
 
 
146
  I recommend using the `huggingface-hub` Python library:
147
 
148
  ```shell
149
+ pip3 install huggingface-hub
150
  ```
151
 
152
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
153
 
154
  ```shell
155
+ huggingface-cli download TheBloke/guanaco-33B-GGUF guanaco-33b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
156
  ```
157
 
158
  <details>
 
175
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
176
 
177
  ```shell
178
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/guanaco-33B-GGUF guanaco-33b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
179
  ```
180
 
181
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
182
  </details>
183
  <!-- README_GGUF.md-how-to-download end -->
184
 
185
  <!-- README_GGUF.md-how-to-run start -->
186
  ## Example `llama.cpp` command
187
 
188
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
189
 
190
  ```shell
191
+ ./main -ngl 32 -m guanaco-33b.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Human: {prompt}\n### Assistant:"
192
  ```
193
 
194
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
195
 
196
+ Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
197
 
198
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
199
 
 
207
 
208
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
209
 
210
+ ### How to load this model in Python code, using ctransformers
211
 
212
  #### First install the package
213
 
214
+ Run one of the following commands, according to your system:
215
+
216
+ ```shell
217
  # Base ctransformers with no GPU acceleration
218
+ pip install ctransformers
219
  # Or with CUDA GPU acceleration
220
+ pip install ctransformers[cuda]
221
+ # Or with AMD ROCm GPU acceleration (Linux only)
222
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
223
+ # Or with Metal GPU acceleration for macOS systems only
224
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
225
  ```
226
 
227
+ #### Simple ctransformers example code
228
 
229
  ```python
230
  from ctransformers import AutoModelForCausalLM
231
 
232
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
233
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/guanaco-33B-GGUF", model_file="guanaco-33b.Q4_K_M.gguf", model_type="llama", gpu_layers=50)
234
 
235
  print(llm("AI is going to"))
236
  ```
237
 
238
  ## How to use with LangChain
239
 
240
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
241
 
242
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
243
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)