TheBloke commited on
Commit
0d07b48
1 Parent(s): df7fe20

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -3
README.md CHANGED
@@ -48,6 +48,21 @@ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/gger
48
  * [4-bit, 5-bit, and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/hippogriff-30b-chat-GGML)
49
  * [Unquantised fp16 model in HF format](https://huggingface.co/openaccess-ai-collective/hippogriff-30b-chat)
50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  ## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)!
52
 
53
  llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508
@@ -55,7 +70,7 @@ llama.cpp recently made another breaking change to its quantisation methods - ht
55
  I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 19th or later (commit `2d5db48` or later) to use them.
56
 
57
  ## Provided files
58
- | Name | Quant method | Bits | Size | RAM required | Use case |
59
  | ---- | ---- | ---- | ---- | ---- | ----- |
60
  | hippogriff-30b.ggmlv3.q4_0.bin | q4_0 | 4 | 18.30 GB | 20.80 GB | 4-bit. |
61
  | hippogriff-30b.ggmlv3.q4_1.bin | q4_1 | 4 | 20.33 GB | 22.83 GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
@@ -63,13 +78,14 @@ I have quantised the GGML files in this repo with the latest version. Therefore
63
  | hippogriff-30b.ggmlv3.q5_1.bin | q5_1 | 5 | 24.40 GB | 26.90 GB | 5-bit. Even higher accuracy, resource usage and slower inference. |
64
  | hippogriff-30b.ggmlv3.q8_0.bin | q8_0 | 8 | 34.56 GB | 37.06 GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use. |
65
 
 
66
 
67
  ## How to run in `llama.cpp`
68
 
69
- I use the following command line; adjust for your tastes and needs:
70
 
71
  ```
72
- ./main -t 10 -ngl 32 -m hippogriff-30b.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
73
  ```
74
  Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
75
 
 
48
  * [4-bit, 5-bit, and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/hippogriff-30b-chat-GGML)
49
  * [Unquantised fp16 model in HF format](https://huggingface.co/openaccess-ai-collective/hippogriff-30b-chat)
50
 
51
+ ## Prompt template
52
+
53
+ ```
54
+ You are a helpful assistant
55
+ USER: prompt goes here
56
+ ASSISTANT:
57
+ ```
58
+ or
59
+
60
+ ```
61
+ <|system|> You are a helpful assistant
62
+ <|user|> prompt goes here
63
+ <|model|>
64
+ ```
65
+
66
  ## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)!
67
 
68
  llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508
 
70
  I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 19th or later (commit `2d5db48` or later) to use them.
71
 
72
  ## Provided files
73
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
74
  | ---- | ---- | ---- | ---- | ---- | ----- |
75
  | hippogriff-30b.ggmlv3.q4_0.bin | q4_0 | 4 | 18.30 GB | 20.80 GB | 4-bit. |
76
  | hippogriff-30b.ggmlv3.q4_1.bin | q4_1 | 4 | 20.33 GB | 22.83 GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
 
78
  | hippogriff-30b.ggmlv3.q5_1.bin | q5_1 | 5 | 24.40 GB | 26.90 GB | 5-bit. Even higher accuracy, resource usage and slower inference. |
79
  | hippogriff-30b.ggmlv3.q8_0.bin | q8_0 | 8 | 34.56 GB | 37.06 GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use. |
80
 
81
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
82
 
83
  ## How to run in `llama.cpp`
84
 
85
+ Here is an example command line. Adjust for your tastes and needs:
86
 
87
  ```
88
+ ./main -t 10 -ngl 32 -m hippogriff-30b.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|system|> You are a story writing assistant\n<|user|> prompt\n<|model|>"
89
  ```
90
  Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
91