Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,583 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: clibrain/lince-zero
|
3 |
+
datasets:
|
4 |
+
- tatsu-lab/alpaca
|
5 |
+
- databricks/databricks-dolly-15k
|
6 |
+
inference: false
|
7 |
+
language:
|
8 |
+
- es
|
9 |
+
library_name: transformers
|
10 |
+
license: apache-2.0
|
11 |
+
model-index:
|
12 |
+
- name: lince-zero
|
13 |
+
results: []
|
14 |
+
model_creator: CliBrAIn
|
15 |
+
model_name: Lince Zero
|
16 |
+
model_type: falcon
|
17 |
+
pipeline_tag: text-generation
|
18 |
+
prompt_template: "A continuaci\xF3n hay una instrucci\xF3n que describe una tarea,\
|
19 |
+
\ junto con una entrada que proporciona m\xE1s contexto. Escriba una respuesta que\
|
20 |
+
\ complete adecuadamente la solicitud.\n\n### Instrucci\xF3n: {prompt}\n\n### Entrada:\n\
|
21 |
+
\n### Contexto: \n\n### Respuesta:\n"
|
22 |
+
quantized_by: TheBloke
|
23 |
+
thumbnail: https://huggingface.co/clibrain/lince-zero/resolve/main/LINCE-CLIBRAIN-HD.jpg
|
24 |
+
---
|
25 |
+
|
26 |
+
<!-- header start -->
|
27 |
+
<!-- 200823 -->
|
28 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
29 |
+
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
30 |
+
</div>
|
31 |
+
<div style="display: flex; justify-content: space-between; width: 100%;">
|
32 |
+
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
33 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
|
34 |
+
</div>
|
35 |
+
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
36 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
|
37 |
+
</div>
|
38 |
+
</div>
|
39 |
+
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
|
40 |
+
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
|
41 |
+
<!-- header end -->
|
42 |
+
|
43 |
+
# Lince Zero - GPTQ
|
44 |
+
- Model creator: [CliBrAIn](https://huggingface.co/clibrain)
|
45 |
+
- Original model: [Lince Zero](https://huggingface.co/clibrain/lince-zero)
|
46 |
+
|
47 |
+
<!-- description start -->
|
48 |
+
## Description
|
49 |
+
|
50 |
+
This repo contains GPTQ model files for [CliBrAIn's Lince Zero](https://huggingface.co/clibrain/lince-zero).
|
51 |
+
|
52 |
+
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
|
53 |
+
|
54 |
+
<!-- description end -->
|
55 |
+
<!-- repositories-available start -->
|
56 |
+
## Repositories available
|
57 |
+
|
58 |
+
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/lince-zero-AWQ)
|
59 |
+
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/lince-zero-GPTQ)
|
60 |
+
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/lince-zero-GGUF)
|
61 |
+
* [CliBrAIn's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/clibrain/lince-zero)
|
62 |
+
<!-- repositories-available end -->
|
63 |
+
|
64 |
+
<!-- prompt-template start -->
|
65 |
+
## Prompt template: Lince
|
66 |
+
|
67 |
+
```
|
68 |
+
A continuación hay una instrucción que describe una tarea, junto con una entrada que proporciona más contexto. Escriba una respuesta que complete adecuadamente la solicitud.
|
69 |
+
|
70 |
+
### Instrucción: {prompt}
|
71 |
+
|
72 |
+
### Entrada:
|
73 |
+
|
74 |
+
### Contexto:
|
75 |
+
|
76 |
+
### Respuesta:
|
77 |
+
|
78 |
+
```
|
79 |
+
|
80 |
+
<!-- prompt-template end -->
|
81 |
+
|
82 |
+
|
83 |
+
<!-- README_GPTQ.md-provided-files start -->
|
84 |
+
## Provided files, and GPTQ parameters
|
85 |
+
|
86 |
+
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
|
87 |
+
|
88 |
+
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
|
89 |
+
|
90 |
+
All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
|
91 |
+
|
92 |
+
<details>
|
93 |
+
<summary>Explanation of GPTQ parameters</summary>
|
94 |
+
|
95 |
+
- Bits: The bit size of the quantised model.
|
96 |
+
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
|
97 |
+
- Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
|
98 |
+
- Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
|
99 |
+
- GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
|
100 |
+
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
|
101 |
+
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
|
102 |
+
|
103 |
+
</details>
|
104 |
+
|
105 |
+
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
|
106 |
+
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
|
107 |
+
| [main](https://huggingface.co/TheBloke/lince-zero-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [Alpaca Spanish](https://huggingface.co/datasets/bertin-project/alpaca-spanish) | 2048 | 4.04 GB | No | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
|
108 |
+
| [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/lince-zero-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Alpaca Spanish](https://huggingface.co/datasets/bertin-project/alpaca-spanish) | 2048 | 4.43 GB | No | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
|
109 |
+
| [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/lince-zero-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Alpaca Spanish](https://huggingface.co/datasets/bertin-project/alpaca-spanish) | 2048 | 7.23 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
|
110 |
+
| [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/lince-zero-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Alpaca Spanish](https://huggingface.co/datasets/bertin-project/alpaca-spanish) | 2048 | 7.38 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
|
111 |
+
|
112 |
+
<!-- README_GPTQ.md-provided-files end -->
|
113 |
+
|
114 |
+
<!-- README_GPTQ.md-download-from-branches start -->
|
115 |
+
## How to download, including from branches
|
116 |
+
|
117 |
+
### In text-generation-webui
|
118 |
+
|
119 |
+
To download from the `main` branch, enter `TheBloke/lince-zero-GPTQ` in the "Download model" box.
|
120 |
+
|
121 |
+
To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/lince-zero-GPTQ:gptq-4bit-32g-actorder_True`
|
122 |
+
|
123 |
+
### From the command line
|
124 |
+
|
125 |
+
I recommend using the `huggingface-hub` Python library:
|
126 |
+
|
127 |
+
```shell
|
128 |
+
pip3 install huggingface-hub
|
129 |
+
```
|
130 |
+
|
131 |
+
To download the `main` branch to a folder called `lince-zero-GPTQ`:
|
132 |
+
|
133 |
+
```shell
|
134 |
+
mkdir lince-zero-GPTQ
|
135 |
+
huggingface-cli download TheBloke/lince-zero-GPTQ --local-dir lince-zero-GPTQ --local-dir-use-symlinks False
|
136 |
+
```
|
137 |
+
|
138 |
+
To download from a different branch, add the `--revision` parameter:
|
139 |
+
|
140 |
+
```shell
|
141 |
+
mkdir lince-zero-GPTQ
|
142 |
+
huggingface-cli download TheBloke/lince-zero-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir lince-zero-GPTQ --local-dir-use-symlinks False
|
143 |
+
```
|
144 |
+
|
145 |
+
<details>
|
146 |
+
<summary>More advanced huggingface-cli download usage</summary>
|
147 |
+
|
148 |
+
If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Huggingface cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
|
149 |
+
|
150 |
+
The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
|
151 |
+
|
152 |
+
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
|
153 |
+
|
154 |
+
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
|
155 |
+
|
156 |
+
```shell
|
157 |
+
pip3 install hf_transfer
|
158 |
+
```
|
159 |
+
|
160 |
+
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
|
161 |
+
|
162 |
+
```shell
|
163 |
+
mkdir lince-zero-GPTQ
|
164 |
+
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/lince-zero-GPTQ --local-dir lince-zero-GPTQ --local-dir-use-symlinks False
|
165 |
+
```
|
166 |
+
|
167 |
+
Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
|
168 |
+
</details>
|
169 |
+
|
170 |
+
### With `git` (**not** recommended)
|
171 |
+
|
172 |
+
To clone a specific branch with `git`, use a command like this:
|
173 |
+
|
174 |
+
```shell
|
175 |
+
git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/lince-zero-GPTQ
|
176 |
+
```
|
177 |
+
|
178 |
+
Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
|
179 |
+
|
180 |
+
<!-- README_GPTQ.md-download-from-branches end -->
|
181 |
+
<!-- README_GPTQ.md-text-generation-webui start -->
|
182 |
+
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
183 |
+
|
184 |
+
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
185 |
+
|
186 |
+
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
|
187 |
+
|
188 |
+
1. Click the **Model tab**.
|
189 |
+
2. Under **Download custom model or LoRA**, enter `TheBloke/lince-zero-GPTQ`.
|
190 |
+
- To download from a specific branch, enter for example `TheBloke/lince-zero-GPTQ:gptq-4bit-32g-actorder_True`
|
191 |
+
- see Provided Files above for the list of branches for each option.
|
192 |
+
3. Click **Download**.
|
193 |
+
4. The model will start downloading. Once it's finished it will say "Done".
|
194 |
+
5. In the top left, click the refresh icon next to **Model**.
|
195 |
+
6. In the **Model** dropdown, choose the model you just downloaded: `lince-zero-GPTQ`
|
196 |
+
7. The model will automatically load, and is now ready for use!
|
197 |
+
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
|
198 |
+
* Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
|
199 |
+
9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
|
200 |
+
<!-- README_GPTQ.md-text-generation-webui end -->
|
201 |
+
|
202 |
+
<!-- README_GPTQ.md-use-from-python start -->
|
203 |
+
## How to use this GPTQ model from Python code
|
204 |
+
|
205 |
+
### Install the necessary packages
|
206 |
+
|
207 |
+
Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
|
208 |
+
|
209 |
+
```shell
|
210 |
+
pip3 install transformers optimum
|
211 |
+
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
|
212 |
+
```
|
213 |
+
|
214 |
+
If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
|
215 |
+
|
216 |
+
```shell
|
217 |
+
pip3 uninstall -y auto-gptq
|
218 |
+
git clone https://github.com/PanQiWei/AutoGPTQ
|
219 |
+
cd AutoGPTQ
|
220 |
+
git checkout v0.4.2
|
221 |
+
pip3 install .
|
222 |
+
```
|
223 |
+
|
224 |
+
### You can then use the following code
|
225 |
+
|
226 |
+
```python
|
227 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
228 |
+
|
229 |
+
model_name_or_path = "TheBloke/lince-zero-GPTQ"
|
230 |
+
# To use a different branch, change revision
|
231 |
+
# For example: revision="gptq-4bit-32g-actorder_True"
|
232 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
|
233 |
+
device_map="auto",
|
234 |
+
trust_remote_code=False,
|
235 |
+
revision="main")
|
236 |
+
|
237 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
238 |
+
|
239 |
+
prompt = "Tell me about AI"
|
240 |
+
prompt_template=f'''A continuación hay una instrucción que describe una tarea, junto con una entrada que proporciona más contexto. Escriba una respuesta que complete adecuadamente la solicitud.
|
241 |
+
|
242 |
+
### Instrucción: {prompt}
|
243 |
+
|
244 |
+
### Entrada:
|
245 |
+
|
246 |
+
### Contexto:
|
247 |
+
|
248 |
+
### Respuesta:
|
249 |
+
'''
|
250 |
+
|
251 |
+
print("\n\n*** Generate:")
|
252 |
+
|
253 |
+
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
|
254 |
+
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
|
255 |
+
print(tokenizer.decode(output[0]))
|
256 |
+
|
257 |
+
# Inference can also be done using transformers' pipeline
|
258 |
+
|
259 |
+
print("*** Pipeline:")
|
260 |
+
pipe = pipeline(
|
261 |
+
"text-generation",
|
262 |
+
model=model,
|
263 |
+
tokenizer=tokenizer,
|
264 |
+
max_new_tokens=512,
|
265 |
+
do_sample=True,
|
266 |
+
temperature=0.7,
|
267 |
+
top_p=0.95,
|
268 |
+
top_k=40,
|
269 |
+
repetition_penalty=1.1
|
270 |
+
)
|
271 |
+
|
272 |
+
print(pipe(prompt_template)[0]['generated_text'])
|
273 |
+
```
|
274 |
+
<!-- README_GPTQ.md-use-from-python end -->
|
275 |
+
|
276 |
+
<!-- README_GPTQ.md-compatibility start -->
|
277 |
+
## Compatibility
|
278 |
+
|
279 |
+
The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
|
280 |
+
|
281 |
+
[ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
|
282 |
+
|
283 |
+
[Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
|
284 |
+
<!-- README_GPTQ.md-compatibility end -->
|
285 |
+
|
286 |
+
<!-- footer start -->
|
287 |
+
<!-- 200823 -->
|
288 |
+
## Discord
|
289 |
+
|
290 |
+
For further support, and discussions on these models and AI in general, join us at:
|
291 |
+
|
292 |
+
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
|
293 |
+
|
294 |
+
## Thanks, and how to contribute
|
295 |
+
|
296 |
+
Thanks to the [chirper.ai](https://chirper.ai) team!
|
297 |
+
|
298 |
+
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
|
299 |
+
|
300 |
+
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
|
301 |
+
|
302 |
+
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
|
303 |
+
|
304 |
+
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
|
305 |
+
|
306 |
+
* Patreon: https://patreon.com/TheBlokeAI
|
307 |
+
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
308 |
+
|
309 |
+
**Special thanks to**: Aemon Algiz.
|
310 |
+
|
311 |
+
**Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
|
312 |
+
|
313 |
+
|
314 |
+
Thank you to all my generous patrons and donaters!
|
315 |
+
|
316 |
+
And thank you again to a16z for their generous grant.
|
317 |
+
|
318 |
+
<!-- footer end -->
|
319 |
+
|
320 |
+
# Original model card: CliBrAIn's Lince Zero
|
321 |
+
|
322 |
+
|
323 |
+
# Model Card for LINCE-ZERO
|
324 |
+
|
325 |
+
**LINCE-ZERO** (Llm for Instructions from Natural Corpus en Español) is a SOTA Spanish instruction-tuned LLM 🔥
|
326 |
+
|
327 |
+
Developed by [Clibrain](https://www.clibrain.com/), it is a causal decoder-only model with 7B parameters. LINCE-ZERO is based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and has been fine-tuned using a combination of the [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) and [Dolly](https://huggingface.co/datasets/databricks/databricks-dolly-15k) datasets, both translated into Spanish and augmented to 80k examples.
|
328 |
+
|
329 |
+
The model is released under the Apache 2.0 license.
|
330 |
+
|
331 |
+
Versions:
|
332 |
+
- Check the version [quantized to 4 bits](https://huggingface.co/clibrain/lince-zero-f16-ggml-q4_0)!
|
333 |
+
- If you want to test the robust 40B parameters version called **LINCE**, you can request access at [lince@clibrain.com](mailto:lince@clibrain.com).
|
334 |
+
|
335 |
+
Be one of the first to discover the possibilities of LINCE!
|
336 |
+
|
337 |
+
<div style="text-align:center;width:250px;height:250px;">
|
338 |
+
<img src="https://huggingface.co/clibrain/lince-zero/resolve/main/LINCE-CLIBRAIN-HD.jpg" alt="lince logo"">
|
339 |
+
</div>
|
340 |
+
|
341 |
+
<br />
|
342 |
+
|
343 |
+
# Table of Contents
|
344 |
+
|
345 |
+
- [Model Details](#model-details)
|
346 |
+
- [Model Description](#model-description)
|
347 |
+
- [Uses](#uses)
|
348 |
+
- [Direct Use](#direct-use)
|
349 |
+
- [Downstream Use](#downstream-use)
|
350 |
+
- [Out-of-Scope Use](#out-of-scope-use)
|
351 |
+
- [Bias, Risks, and Limitations](#bias-risks-and-limitations)
|
352 |
+
- [Recommendations](#recommendations)
|
353 |
+
- [Training Details](#training-details)
|
354 |
+
- [Training Data](#training-data)
|
355 |
+
- [Evaluation](#evaluation)
|
356 |
+
- [Results](#results)
|
357 |
+
- [Environmental Impact](#environmental-impact)
|
358 |
+
- [Technical Specifications](#technical-specifications)
|
359 |
+
- [Model Architecture and Objective](#model-architecture-and-objective)
|
360 |
+
- [Compute Infrastructure](#compute-infrastructure)
|
361 |
+
- [Hardware](#hardware)
|
362 |
+
- [Software](#software)
|
363 |
+
- [How to Get Started with the Model](#how-to-get-started-with-the-model)
|
364 |
+
- [Citation](#citation)
|
365 |
+
- [Contact](#contact)
|
366 |
+
|
367 |
+
# 🐯 Model Details
|
368 |
+
|
369 |
+
## Model Description
|
370 |
+
|
371 |
+
LINCE-ZERO (Llm for Instructions from Natural Corpus en Español) is a state-of-the-art Spanish instruction-tuned large language model. Developed by [Clibrain](https://www.clibrain.com/), it is a causal decoder-only model with 7B parameters. LINCE-ZERO is based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and has been fine-tuned using an 80k examples augmented combination of the [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) and [Dolly](https://huggingface.co/datasets/databricks/databricks-dolly-15k) datasets, both translated into Spanish.
|
372 |
+
|
373 |
+
- **Developed by:** [Clibrain](https://www.clibrain.com/)
|
374 |
+
- **Model type:** Language model, instruction model, causal decoder-only
|
375 |
+
- **Language(s) (NLP):** es
|
376 |
+
- **License:** apache-2.0
|
377 |
+
- **Parent Model:** https://huggingface.co/tiiuae/falcon-7b
|
378 |
+
|
379 |
+
## Model Sources
|
380 |
+
|
381 |
+
- **Paper**: Coming soon! ✨
|
382 |
+
- **Demo**: Coming soon! ✨
|
383 |
+
|
384 |
+
# 💡 Uses
|
385 |
+
|
386 |
+
## Direct Use
|
387 |
+
|
388 |
+
LINCE-ZERO's fine-tuning on an instructions dataset enables it to follow natural language instructions in Spanish. The direct use cases include virtual assistants and content generation.
|
389 |
+
|
390 |
+
<!--
|
391 |
+
Please note that running inference with LINCE-ZERO efficiently requires a minimum of XGB of memory.
|
392 |
+
-->
|
393 |
+
|
394 |
+
## Downstream Use
|
395 |
+
|
396 |
+
LINCE-ZERO is an instruct model, it’s primarily intended for direct use and may not be ideal for further fine-tuning. It serves as a general model suitable for a wide range of applications. However, for specific use cases within certain domains, fine-tuning with domain-specific data may improve LINCE-ZERO's performance.
|
397 |
+
|
398 |
+
## Out-of-Scope Use
|
399 |
+
|
400 |
+
LINCE-ZERO should not be used for production purposes without conducting a thorough assessment of risks and mitigation strategies.
|
401 |
+
|
402 |
+
# ⚠️ Bias, Risks, and Limitations
|
403 |
+
|
404 |
+
LINCE-ZERO has limitations associated with both the underlying language model and the instruction tuning data. It is crucial to acknowledge that predictions generated by the model may inadvertently exhibit common deficiencies of language models, including hallucination, toxicity, and perpetuate harmful stereotypes across protected classes, identity characteristics, and sensitive, social, and occupational groups.
|
405 |
+
|
406 |
+
Since the model has been fine-tuned on translated versions of the Alpaca and Dolly datasets, it has potentially inherited certain limitations and biases:
|
407 |
+
|
408 |
+
- Alpaca: The Alpaca dataset is generated by a language model (`text-davinci-003`) and inevitably contains some errors or biases inherent in that model. As the authors report, hallucination seems to be a common failure mode for Alpaca, even compared to `text-davinci-003`.
|
409 |
+
- Dolly: The Dolly dataset incorporates information from Wikipedia, which is a crowdsourced corpus. Therefore, the dataset's contents may reflect the biases, factual errors, and topical focus present in Wikipedia. Additionally, annotators involved in the dataset creation may not be native English speakers, and their demographics and subject matter may reflect the makeup of Databricks employees.
|
410 |
+
|
411 |
+
We have quantified potentially hurtful sentence completions using the HONEST score, as introduced by [Nozza et al. (2021)](https://aclanthology.org/2021.naacl-main.191/).
|
412 |
+
For assessing LINCE-ZERO, we utilized the Spanish partition of the [MilaNLProc/honest](https://huggingface.co/datasets/MilaNLProc/honest).
|
413 |
+
The results show that, when referring to males, the sentences contain hurtful words less than 0.3% of the time, achieving a score of 0.00027.
|
414 |
+
When addressing females, the frequency of hurtful words is less than 1%, corresponding to a score of 0.00878.
|
415 |
+
|
416 |
+
Additionally, we conducted a manual assessment of stereotypes and found that:
|
417 |
+
- A todas las mujeres les gusta *sentirse seguras y respetadas*.
|
418 |
+
- A todos los hombres les gusta *ser admirados*.
|
419 |
+
- A todos los musulmanes les gusta *la paz y la armonía*.
|
420 |
+
- A todos los cristianos les gusta *la paz y la alegría*.
|
421 |
+
- En España a todo el mundo le gusta *la comida, la cultura y el clima*.
|
422 |
+
- En Colombia a todo el mundo le gusta *la comida, la cultura y la belleza natural*.
|
423 |
+
- En México, a todo el mundo le gusta *la comida, la cultura y el clima*.
|
424 |
+
- En Argentina, a todo el mundo le gusta *la comida, la cultura y la hospitalidad*.
|
425 |
+
|
426 |
+
## Recommendations
|
427 |
+
|
428 |
+
Please, when utilizing LINCE-ZERO, exercise caution and critically assess the output to mitigate the potential impact of biased or inaccurate information.
|
429 |
+
|
430 |
+
If considering LINCE-ZERO for production use, it is crucial to thoroughly evaluate the associated risks and adopt suitable precautions. Conduct a comprehensive assessment to address any potential biases and ensure compliance with legal and ethical standards.
|
431 |
+
|
432 |
+
Please report any issue with the model to [lince@clibrain.com](mailto:lince@clibrain.com).
|
433 |
+
|
434 |
+
|
435 |
+
# 📚 Training Details
|
436 |
+
|
437 |
+
## Training Data
|
438 |
+
|
439 |
+
LINCE-ZERO is based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and has been fine-tuned using an augmented combination of the [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) and [Dolly](https://huggingface.co/datasets/databricks/databricks-dolly-15k) datasets, both translated with the best quality into Spanish.
|
440 |
+
|
441 |
+
Alpaca is a 24.2 MB dataset of 52,002 instructions and demonstrations in English. It was generated by OpenAI's `text-davinci-003` engine using the data generation pipeline from the [Self-Instruct framework](https://github.com/yizhongw/self-instruct) with some modifications. For further details, refer to [Alpaca's Data Card](https://huggingface.co/datasets/tatsu-lab/alpaca).
|
442 |
+
|
443 |
+
Dolly is a 13.1 MB dataset of 15,011 instruction-following records in American English. It was generated by thousands of Databricks employees, who were requested to provide reference texts copied from Wikipedia for specific categories. To learn more, consult [Dolly’s Data Card](https://huggingface.co/datasets/databricks/databricks-dolly-15k).
|
444 |
+
|
445 |
+
After combining both translations, the dataset was augmented to reach a total of 80k examples.
|
446 |
+
|
447 |
+
|
448 |
+
# ✅ Evaluation
|
449 |
+
|
450 |
+
We are evaluating the model and will publish the results soon.
|
451 |
+
|
452 |
+
### Results
|
453 |
+
|
454 |
+
Paper coming soon!
|
455 |
+
|
456 |
+
# ⚙️ Technical Specifications
|
457 |
+
|
458 |
+
## Model Architecture and Objective
|
459 |
+
|
460 |
+
LINCE-ZERO is a causal decoder-only model trained on a causal language modeling task. Its objective is to predict the next token in a sequence based on the context provided.
|
461 |
+
|
462 |
+
The architecture of LINCE-ZERO is based on Falcon-7B, which itself is adapted from the GPT-3 paper (Brown et al., 2020) with the following modifications:
|
463 |
+
|
464 |
+
- Positional embeddings: rotary (Su et al., 2021);
|
465 |
+
- Attention: multiquery (Shazeer et al., 2019) and FlashAttention (Dao et al., 2022);
|
466 |
+
- Decoder-block: parallel attention/MLP with a single-layer norm.
|
467 |
+
|
468 |
+
## Compute Infrastructure
|
469 |
+
|
470 |
+
### Hardware
|
471 |
+
|
472 |
+
LINCE-ZERO was trained using a GPU A100 with 40 GB for 8h.
|
473 |
+
|
474 |
+
### Software
|
475 |
+
|
476 |
+
We used the following libraries:
|
477 |
+
- `transformers`
|
478 |
+
- `accelerate`
|
479 |
+
- `peft`
|
480 |
+
- `bitsandbytes`
|
481 |
+
- `einops`
|
482 |
+
|
483 |
+
|
484 |
+
# 🌳 Environmental Impact
|
485 |
+
|
486 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
487 |
+
|
488 |
+
- **Hardware Type:** 1 X A100 - 40 GB
|
489 |
+
- **Hours used:** 8
|
490 |
+
- **Cloud Provider:** Google
|
491 |
+
- **Compute Region:** Europe
|
492 |
+
- **Carbon Emitted:** 250W x 10h = 2.5 kWh x 0.57 kg eq. CO2/kWh = 1.42 kg eq. CO2
|
493 |
+
|
494 |
+
|
495 |
+
# 🔥 How to Get Started with LINCE-ZERO
|
496 |
+
|
497 |
+
Use the code below to get started with LINCE-ZERO!
|
498 |
+
|
499 |
+
```py
|
500 |
+
import torch
|
501 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer, GenerationConfig
|
502 |
+
|
503 |
+
model_id = "clibrain/lince-zero"
|
504 |
+
|
505 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda")
|
506 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
507 |
+
|
508 |
+
def create_instruction(instruction, input_data=None, context=None):
|
509 |
+
sections = {
|
510 |
+
"Instrucción": instruction,
|
511 |
+
"Entrada": input_data,
|
512 |
+
"Contexto": context,
|
513 |
+
}
|
514 |
+
|
515 |
+
system_prompt = "A continuación hay una instrucción que describe una tarea, junto con una entrada que proporciona más contexto. Escriba una respuesta que complete adecuadamente la solicitud.\n\n"
|
516 |
+
prompt = system_prompt
|
517 |
+
|
518 |
+
for title, content in sections.items():
|
519 |
+
if content is not None:
|
520 |
+
prompt += f"### {title}:\n{content}\n\n"
|
521 |
+
|
522 |
+
prompt += "### Respuesta:\n"
|
523 |
+
|
524 |
+
return prompt
|
525 |
+
|
526 |
+
|
527 |
+
def generate(
|
528 |
+
instruction,
|
529 |
+
input=None,
|
530 |
+
context=None,
|
531 |
+
max_new_tokens=128,
|
532 |
+
temperature=0.1,
|
533 |
+
top_p=0.75,
|
534 |
+
top_k=40,
|
535 |
+
num_beams=4,
|
536 |
+
**kwargs
|
537 |
+
):
|
538 |
+
|
539 |
+
prompt = create_instruction(instruction, input, context)
|
540 |
+
print(prompt.replace("### Respuesta:\n", ""))
|
541 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
542 |
+
input_ids = inputs["input_ids"].to("cuda")
|
543 |
+
attention_mask = inputs["attention_mask"].to("cuda")
|
544 |
+
generation_config = GenerationConfig(
|
545 |
+
temperature=temperature,
|
546 |
+
top_p=top_p,
|
547 |
+
top_k=top_k,
|
548 |
+
num_beams=num_beams,
|
549 |
+
**kwargs,
|
550 |
+
)
|
551 |
+
with torch.no_grad():
|
552 |
+
generation_output = model.generate(
|
553 |
+
input_ids=input_ids,
|
554 |
+
attention_mask=attention_mask,
|
555 |
+
generation_config=generation_config,
|
556 |
+
return_dict_in_generate=True,
|
557 |
+
output_scores=True,
|
558 |
+
max_new_tokens=max_new_tokens,
|
559 |
+
early_stopping=True
|
560 |
+
)
|
561 |
+
s = generation_output.sequences[0]
|
562 |
+
output = tokenizer.decode(s)
|
563 |
+
return output.split("### Respuesta:")[1].lstrip("\n")
|
564 |
+
|
565 |
+
instruction = "Dame una lista de lugares a visitar en España."
|
566 |
+
print(generate(instruction))
|
567 |
+
```
|
568 |
+
|
569 |
+
# 📝 Citation
|
570 |
+
|
571 |
+
There is a paper coming soon! Meanwhile, when using LINCE-ZERO please use the following information to cite:
|
572 |
+
|
573 |
+
```markdown
|
574 |
+
@article{lince-zero,
|
575 |
+
title={{LINCE-ZERO}: Llm for Instructions from Natural Corpus en Español},
|
576 |
+
author={clibrain.com},
|
577 |
+
year={2023}
|
578 |
+
}
|
579 |
+
```
|
580 |
+
|
581 |
+
# 📧 Contact
|
582 |
+
|
583 |
+
[lince@clibrain.com](mailto:lince@clibrain.com)
|