TheBloke commited on
Commit
c538883
·
1 Parent(s): 5738e11

Upload new GPTQs with varied parameters

Browse files
Files changed (1) hide show
  1. README.md +135 -56
README.md CHANGED
@@ -1,6 +1,7 @@
1
  ---
2
  inference: false
3
  license: other
 
4
  ---
5
 
6
  <!-- header start -->
@@ -9,7 +10,7 @@ license: other
9
  </div>
10
  <div style="display: flex; justify-content: space-between; width: 100%;">
11
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
12
- <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
13
  </div>
14
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
15
  <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
@@ -19,87 +20,157 @@ license: other
19
 
20
  # Teknium's LLaMa Deus 7B v3 GPTQ
21
 
22
- These files are GPTQ 4bit model files for [Teknium's LLaMa Deus 7B v3](https://huggingface.co/teknium/llama-deus-7b-v3-lora-merged).
23
 
24
- It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
25
 
26
- ## Other repositories available
27
 
28
- * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/llama-deus-7b-v3-GPTQ)
29
- * [4-bit, 5-bit and 8-bit GGML models for CPU(+GPU) inference](https://huggingface.co/TheBloke/llama-deus-7b-v3-GGML)
 
 
30
  * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/teknium/llama-deus-7b-v3-lora-merged)
31
 
32
- ## Prompt template
33
 
34
  ```
35
- ### Instruction:
36
- <prompt>
37
 
38
- ### Response:
39
 
 
40
  ```
41
 
42
- or
43
 
44
- ```
45
- ### Instruction:
46
- <prompt>
47
 
48
- ### Input:
49
- <input>
50
 
51
- ### Response:
 
 
 
 
 
 
 
 
 
 
 
52
 
 
 
53
  ```
 
 
 
 
 
54
 
55
- ## How to easily download and use this model in text-generation-webui
56
 
57
- ### Downloading the model
58
 
59
  1. Click the **Model tab**.
60
  2. Under **Download custom model or LoRA**, enter `TheBloke/llama-deus-7b-v3-GPTQ`.
 
 
61
  3. Click **Download**.
62
- 4. Wait until it says it's finished downloading.
63
- 5. Untick "Autoload model"
64
- 6. Click the **Refresh** icon next to **Model** in the top left.
 
 
 
 
65
 
66
- ### To use with AutoGPTQ (if installed)
67
 
68
- 1. In the **Model drop-down**: choose the model you just downloaded, `llama-deus-7b-v3-GPTQ`.
69
- 2. Under **GPTQ**, tick **AutoGPTQ**.
70
- 3. Click **Save settings for this model** in the top right.
71
- 4. Click **Reload the Model** in the top right.
72
- 5. Once it says it's loaded, click the **Text Generation tab** and enter a prompt!
73
 
74
- ### To use with GPTQ-for-LLaMa
75
 
76
- 1. In the **Model drop-down**: choose the model you just downloaded, `llama-deus-7b-v3-GPTQ`.
77
- 2. If you see an error in the bottom right, ignore it - it's temporary.
78
- 3. Fill out the `GPTQ parameters` on the right: `Bits = 4`, `Groupsize = 128`, `model_type = Llama`
79
- 4. Click **Save settings for this model** in the top right.
80
- 5. Click **Reload the Model** in the top right.
81
- 6. Once it says it's loaded, click the **Text Generation tab** and enter a prompt!
82
 
83
- ## Provided files
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
 
85
- **llama-deus-7b-v3-GPTQ-4bit-128g.no-act.order.safetensors**
 
86
 
87
- This will work with all versions of GPTQ-for-LLaMa, and with AutoGPTQ.
 
 
 
 
 
 
 
88
 
89
- It was created with
 
90
 
91
- * `llama-deus-7b-v3-GPTQ-4bit-128g.no-act.order.safetensors`
92
- * Works with all versions of GPTQ-for-LLaMa code, both Triton and CUDA branches
93
- * Works with AutoGPTQ
94
- * Works with text-generation-webui one-click-installers
95
- * Parameters: Groupsize = 128. Act Order / desc_act = False.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
  <!-- footer start -->
98
  ## Discord
99
 
100
  For further support, and discussions on these models and AI in general, join us at:
101
 
102
- [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
103
 
104
  ## Thanks, and how to contribute.
105
 
@@ -114,24 +185,31 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
114
  * Patreon: https://patreon.com/TheBlokeAI
115
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
116
 
117
- **Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.
 
 
118
 
119
  Thank you to all my generous patrons and donaters!
 
120
  <!-- footer end -->
121
 
122
  # Original model card: Teknium's LLaMa Deus 7B v3
123
 
 
 
 
 
124
  Base Mode: Llama 7B
125
  LoRA is fully Merged with llama7b, so you do not need to merge it to load the model.
126
 
127
  Llama DEUS v3 is the largest dataset I've trained on yet, including:
128
 
129
- GPTeacher - General Instruct - Code Instruct - Roleplay Instruct
130
- My unreleased Roleplay V2 Instruct
131
- GPT4-LLM Uncensored + Unnatural Instructions
132
- WizardLM Uncensored
133
- CamelAI's 20k Biology, 20k Physics, 20k Chemistry, and 50k Math GPT4 Datasets
134
- CodeAlpaca
135
 
136
  This model was trained for 4 epochs over 1 day of training, it's a rank 128 LORA that targets attention heads, LM_Head, and MLP layers
137
 
@@ -140,9 +218,9 @@ Prompt format:
140
  ```
141
  ### Instruction:
142
  <prompt>
143
-
144
  ### Response:
145
-
146
  ```
147
 
148
  or
@@ -153,7 +231,8 @@ or
153
 
154
  ### Input:
155
  <input>
156
-
157
  ### Response:
 
 
158
 
159
- ```
 
1
  ---
2
  inference: false
3
  license: other
4
+ model_type: llama
5
  ---
6
 
7
  <!-- header start -->
 
10
  </div>
11
  <div style="display: flex; justify-content: space-between; width: 100%;">
12
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
13
+ <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
14
  </div>
15
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
16
  <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
 
20
 
21
  # Teknium's LLaMa Deus 7B v3 GPTQ
22
 
23
+ These files are GPTQ model files for [Teknium's LLaMa Deus 7B v3](https://huggingface.co/teknium/llama-deus-7b-v3-lora-merged).
24
 
25
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
26
 
27
+ These models were quantised using hardware kindly provided by [Latitude.sh](https://www.latitude.sh/accelerate).
28
 
29
+ ## Repositories available
30
+
31
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/llama-deus-7b-v3-GPTQ)
32
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/llama-deus-7b-v3-GGML)
33
  * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/teknium/llama-deus-7b-v3-lora-merged)
34
 
35
+ ## Prompt template: Alpaca
36
 
37
  ```
38
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
 
39
 
40
+ ### Instruction: {prompt}
41
 
42
+ ### Response:
43
  ```
44
 
45
+ ## Provided files
46
 
47
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
 
 
48
 
49
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
 
50
 
51
+ | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
52
+ | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
53
+ | main | 4 | 128 | False | 4.00 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
54
+ | gptq-4bit-32g-actorder_True | 4 | 32 | True | 4.28 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
55
+ | gptq-4bit-64g-actorder_True | 4 | 64 | True | 4.02 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
56
+ | gptq-4bit-128g-actorder_True | 4 | 128 | True | 3.90 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
57
+ | gptq-8bit--1g-actorder_True | 8 | None | True | 7.01 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
58
+ | gptq-8bit-128g-actorder_False | 8 | 128 | False | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
59
+ | gptq-8bit-128g-actorder_True | 8 | 128 | True | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
60
+ | gptq-8bit-64g-actorder_True | 8 | 64 | True | 7.31 GB | False | AutoGPTQ | 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed. |
61
+
62
+ ## How to download from branches
63
 
64
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/llama-deus-7b-v3-GPTQ:gptq-4bit-32g-actorder_True`
65
+ - With Git, you can clone a branch with:
66
  ```
67
+ git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/llama-deus-7b-v3-GPTQ`
68
+ ```
69
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
70
+
71
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
72
 
73
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
74
 
75
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
76
 
77
  1. Click the **Model tab**.
78
  2. Under **Download custom model or LoRA**, enter `TheBloke/llama-deus-7b-v3-GPTQ`.
79
+ - To download from a specific branch, enter for example `TheBloke/llama-deus-7b-v3-GPTQ:gptq-4bit-32g-actorder_True`
80
+ - see Provided Files above for the list of branches for each option.
81
  3. Click **Download**.
82
+ 4. The model will start downloading. Once it's finished it will say "Done"
83
+ 5. In the top left, click the refresh icon next to **Model**.
84
+ 6. In the **Model** dropdown, choose the model you just downloaded: `llama-deus-7b-v3-GPTQ`
85
+ 7. The model will automatically load, and is now ready for use!
86
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
87
+ * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
88
+ 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
89
 
90
+ ## How to use this GPTQ model from Python code
91
 
92
+ First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
 
 
 
 
93
 
94
+ `GITHUB_ACTIONS=true pip install auto-gptq`
95
 
96
+ Then try the following example code:
 
 
 
 
 
97
 
98
+ ```python
99
+ from transformers import AutoTokenizer, pipeline, logging
100
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
101
+
102
+ model_name_or_path = "TheBloke/llama-deus-7b-v3-GPTQ"
103
+ model_basename = "llama-deus-7b-v3-GPTQ-4bit-128g.no-act.order"
104
+
105
+ use_triton = False
106
+
107
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
108
+
109
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
110
+ model_basename=model_basename
111
+ use_safetensors=True,
112
+ trust_remote_code=True,
113
+ device="cuda:0",
114
+ use_triton=use_triton,
115
+ quantize_config=None)
116
 
117
+ """
118
+ To download from a specific branch, use the revision parameter, as in this example:
119
 
120
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
121
+ revision="gptq-4bit-32g-actorder_True",
122
+ model_basename=model_basename,
123
+ use_safetensors=True,
124
+ trust_remote_code=True,
125
+ device="cuda:0",
126
+ quantize_config=None)
127
+ """
128
 
129
+ prompt = "Tell me about AI"
130
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
131
 
132
+ ### Instruction: {prompt}
133
+
134
+ ### Response:
135
+ '''
136
+
137
+ print("\n\n*** Generate:")
138
+
139
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
140
+ output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
141
+ print(tokenizer.decode(output[0]))
142
+
143
+ # Inference can also be done using transformers' pipeline
144
+
145
+ # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
146
+ logging.set_verbosity(logging.CRITICAL)
147
+
148
+ print("*** Pipeline:")
149
+ pipe = pipeline(
150
+ "text-generation",
151
+ model=model,
152
+ tokenizer=tokenizer,
153
+ max_new_tokens=512,
154
+ temperature=0.7,
155
+ top_p=0.95,
156
+ repetition_penalty=1.15
157
+ )
158
+
159
+ print(pipe(prompt_template)[0]['generated_text'])
160
+ ```
161
+
162
+ ## Compatibility
163
+
164
+ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
165
+
166
+ ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
167
 
168
  <!-- footer start -->
169
  ## Discord
170
 
171
  For further support, and discussions on these models and AI in general, join us at:
172
 
173
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
174
 
175
  ## Thanks, and how to contribute.
176
 
 
185
  * Patreon: https://patreon.com/TheBlokeAI
186
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
187
 
188
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
189
+
190
+ **Patreon special mentions**: Space Cruiser, Nikolai Manek, Sam, Chris McCloskey, Rishabh Srivastava, Kalila, Spiking Neurons AB, Khalefa Al-Ahmad, WelcomeToTheClub, Chadd, Lone Striker, Viktor Bowallius, Edmond Seymore, Ai Maven, Chris Smitley, Dave, Alexandros Triantafyllidis, Luke @flexchar, Elle, ya boyyy, Talal Aujan, Alex , Jonathan Leane, Deep Realms, Randy H, subjectnull, Preetika Verma, Joseph William Delisle, Michael Levine, chris gileta, K, Oscar Rangel, LangChain4j, Trenton Dambrowitz, Eugene Pentland, Johann-Peter Hartmann, Femi Adebogun, Illia Dulskyi, senxiiz, Daniel P. Andersen, Sean Connelly, Artur Olbinski, RoA, Mano Prime, Derek Yates, Raven Klaugh, David Flickinger, Willem Michiel, Pieter, Willian Hasse, vamX, Luke Pendergrass, webtim, Ghost , Rainer Wilmers, Nathan LeClaire, Will Dee, Cory Kujawski, John Detwiler, Fred von Graf, biorpg, Iucharbius , Imad Khwaja, Pierre Kircher, terasurfer , Asp the Wyvern, John Villwock, theTransient, zynix , Gabriel Tamborski, Fen Risland, Gabriel Puliatti, Matthew Berman, Pyrater, SuperWojo, Stephen Murray, Karl Bernard, Ajan Kanaga, Greatston Gnanesh, Junyu Yang.
191
 
192
  Thank you to all my generous patrons and donaters!
193
+
194
  <!-- footer end -->
195
 
196
  # Original model card: Teknium's LLaMa Deus 7B v3
197
 
198
+ ---
199
+ license: mit
200
+ ---
201
+
202
  Base Mode: Llama 7B
203
  LoRA is fully Merged with llama7b, so you do not need to merge it to load the model.
204
 
205
  Llama DEUS v3 is the largest dataset I've trained on yet, including:
206
 
207
+ GPTeacher - General Instruct - Code Instruct - Roleplay Instruct
208
+ My unreleased Roleplay V2 Instruct
209
+ GPT4-LLM Uncensored + Unnatural Instructions
210
+ WizardLM Uncensored
211
+ CamelAI's 20k Biology, 20k Physics, 20k Chemistry, and 50k Math GPT4 Datasets
212
+ CodeAlpaca
213
 
214
  This model was trained for 4 epochs over 1 day of training, it's a rank 128 LORA that targets attention heads, LM_Head, and MLP layers
215
 
 
218
  ```
219
  ### Instruction:
220
  <prompt>
221
+
222
  ### Response:
223
+
224
  ```
225
 
226
  or
 
231
 
232
  ### Input:
233
  <input>
234
+
235
  ### Response:
236
+
237
+ ```
238