File size: 19,712 Bytes
a634671
c46a050
 
4b5ce65
461a1b6
 
 
0b9bfd1
461a1b6
 
 
0b9bfd1
c46a050
0b9bfd1
 
 
 
 
 
 
 
 
 
 
 
 
e3ee313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a634671
0b9bfd1
7721f01
12190f7
 
 
bc22dca
 
 
12190f7
bc22dca
 
12190f7
bc22dca
 
12190f7
 
7721f01
c46a050
0b9bfd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c46a050
0b9bfd1
 
 
 
 
 
 
c46a050
0b9bfd1
c46a050
0b9bfd1
 
 
c46a050
0b9bfd1
bf16319
0b9bfd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf16319
 
0b9bfd1
 
 
bf16319
0b9bfd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c46a050
0b9bfd1
 
 
 
 
 
 
 
c46a050
 
0b9bfd1
 
 
 
 
 
c46a050
0b9bfd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c46a050
0b9bfd1
 
 
 
 
 
c46a050
0b9bfd1
c46a050
0b9bfd1
 
c46a050
7721f01
12190f7
7721f01
bc22dca
7721f01
bc22dca
12190f7
bc22dca
0b9bfd1
bc22dca
7721f01
 
0b9bfd1
 
7721f01
 
 
 
 
 
 
bc22dca
7721f01
12190f7
 
0b9bfd1
12190f7
7721f01
 
12190f7
 
 
7721f01
0b9bfd1
 
 
 
c46a050
 
 
 
0b9bfd1
 
 
 
 
c46a050
 
 
0b9bfd1
 
c46a050
 
 
0b9bfd1
 
 
 
 
 
 
 
 
 
 
c46a050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b9bfd1
c46a050
 
0b9bfd1
c46a050
 
 
 
 
0b9bfd1
c46a050
0b9bfd1
bc22dca
e3ee313
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
---
language:
- en
license: other
library_name: transformers
tags:
- medical
model_name: Medalpaca 13B
base_model: medalpaca/medalpaca-13b
inference: false
model_creator: medalpaca
model_type: llama
pipeline_tag: text-generation
prompt_template: 'Below is an instruction that describes a task. Write a response
  that appropriately completes the request.


  ### Instruction:

  {prompt}


  ### Response:

  '
quantized_by: TheBloke
model-index:
- name: medalpaca-13B-GPTQ-4bit
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 29.35
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheBloke/medalpaca-13B-GPTQ-4bit
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 26.32
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheBloke/medalpaca-13B-GPTQ-4bit
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 25.44
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheBloke/medalpaca-13B-GPTQ-4bit
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 49.51
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheBloke/medalpaca-13B-GPTQ-4bit
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 53.12
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheBloke/medalpaca-13B-GPTQ-4bit
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.0
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheBloke/medalpaca-13B-GPTQ-4bit
      name: Open LLM Leaderboard
---

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# Medalpaca 13B - GPTQ
- Model creator: [medalpaca](https://huggingface.co/medalpaca)
- Original model: [Medalpaca 13B](https://huggingface.co/medalpaca/medalpaca-13b)

<!-- description start -->
## Description

This repo contains GPTQ model files for [medalpaca's Medalpaca 13B](https://huggingface.co/medalpaca/medalpaca-13b).

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

<!-- description end -->
<!-- repositories-available start -->
## Repositories available

* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/medalpaca-13B-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/medalpaca-13B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/medalpaca-13B-GGUF)
* [medalpaca's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/medalpaca/medalpaca-13b)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: Alpaca

```
Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{prompt}

### Response:

```

<!-- prompt-template end -->


<!-- README_GPTQ.md-provided-files start -->
## Provided files and GPTQ parameters

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch.  See below for instructions on fetching from different branches.

All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.

<details>
  <summary>Explanation of GPTQ parameters</summary>

- Bits: The bit size of the quantised model.
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
- Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
- Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
- GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used.  Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.

</details>

| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
| [main](https://huggingface.co/TheBloke/medalpaca-13B-GPTQ/tree/main) | 4 | 128 | No | 0.01 | [c4](https://huggingface.co/datasets/allenai/c4) | 2048 | 7.26 GB | Yes | 4-bit, without Act Order and group size 128g. |

<!-- README_GPTQ.md-provided-files end -->

<!-- README_GPTQ.md-download-from-branches start -->
## How to download from branches

- In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/medalpaca-13B-GPTQ:main`
- With Git, you can clone a branch with:
```
git clone --single-branch --branch main https://huggingface.co/TheBloke/medalpaca-13B-GPTQ
```
- In Python Transformers code, the branch is the `revision` parameter; see below.
<!-- README_GPTQ.md-download-from-branches end -->
<!-- README_GPTQ.md-text-generation-webui start -->
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).

Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/medalpaca-13B-GPTQ`.
  - To download from a specific branch, enter for example `TheBloke/medalpaca-13B-GPTQ:main`
  - see Provided Files above for the list of branches for each option.
3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done".
5. In the top left, click the refresh icon next to **Model**.
6. In the **Model** dropdown, choose the model you just downloaded: `medalpaca-13B-GPTQ`
7. The model will automatically load, and is now ready for use!
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
  * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
<!-- README_GPTQ.md-text-generation-webui end -->

<!-- README_GPTQ.md-use-from-python start -->
## How to use this GPTQ model from Python code

### Install the necessary packages

Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.

```shell
pip3 install transformers>=4.32.0 optimum>=1.12.0
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/  # Use cu117 if on CUDA 11.7
```

If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:

```shell
pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
pip3 install .
```

### For CodeLlama models only: you must use Transformers 4.33.0 or later.

If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
```shell
pip3 uninstall -y transformers
pip3 install git+https://github.com/huggingface/transformers.git
```

### You can then use the following code

```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_name_or_path = "TheBloke/medalpaca-13B-GPTQ"
# To use a different branch, change revision
# For example: revision="main"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                                             device_map="auto",
                                             trust_remote_code=False,
                                             revision="main")

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

prompt = "Tell me about AI"
prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{prompt}

### Response:

'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])
```
<!-- README_GPTQ.md-use-from-python end -->

<!-- README_GPTQ.md-compatibility start -->
## Compatibility

The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).

[ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.

[Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
<!-- README_GPTQ.md-compatibility end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute

Thanks to the [chirper.ai](https://chirper.ai) team!

Thanks to Clay from [gpus.llm-utils.org](llm-utils)!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

# Original model card: medalpaca's Medalpaca 13B

# MedAlpaca 13b


## Table of Contents

[Model Description](#model-description)  
- [Architecture](#architecture)    
- [Training Data](#trainig-data)  
[Model Usage](#model-usage)  
[Limitations](#limitations)  

## Model Description
### Architecture
`medalpaca-13b` is a large language model specifically fine-tuned for medical domain tasks. 
It is based on LLaMA (Large Language Model Meta AI) and contains 13 billion parameters. 
The primary goal of this model is to improve question-answering and medical dialogue tasks.

### Training Data
The training data for this project was sourced from various resources. 
Firstly, we used Anki flashcards to automatically generate questions, 
from the front of the cards and anwers from the back of the card. 
Secondly, we generated medical question-answer pairs from [Wikidoc](https://www.wikidoc.org/index.php/Main_Page). 
We extracted paragraphs with relevant headings, and used Chat-GPT 3.5 
to generate questions from the headings and using the corresponding paragraphs 
as answers. This dataset is still under development and we believe 
that approximately 70% of these question answer pairs are factual correct. 
Thirdly, we used StackExchange to extract question-answer pairs, taking the 
top-rated question from five categories: Academia, Bioinformatics, Biology, 
Fitness, and Health. Additionally, we used a dataset from [ChatDoctor](https://arxiv.org/abs/2303.14070) 
consisting of 200,000 question-answer pairs, available at https://github.com/Kent0n-Li/ChatDoctor.

| Source                      | n items |
|------------------------------|--------|
| ChatDoc large                | 200000 |
| wikidoc                      | 67704  |
| Stackexchange academia       | 40865  |
| Anki flashcards              | 33955  |
| Stackexchange biology        | 27887  |
| Stackexchange fitness        | 9833   |
| Stackexchange health         | 7721   |
| Wikidoc patient information  | 5942   |
| Stackexchange bioinformatics | 5407   |

## Model Usage
To evaluate the performance of the model on a specific dataset, you can use the Hugging Face Transformers library's built-in evaluation scripts. Please refer to the evaluation guide for more information.
Inference

You can use the model for inference tasks like question-answering and medical dialogues using the Hugging Face Transformers library. Here's an example of how to use the model for a question-answering task:

```python

from transformers import pipeline

pl = pipeline("text-generation", model="medalpaca/medalpaca-13b", tokenizer="medalpaca/medalpaca-13b")
question = "What are the symptoms of diabetes?"
context = "Diabetes is a metabolic disease that causes high blood sugar. The symptoms include increased thirst, frequent urination, and unexplained weight loss."
answer = pl(f"Context: {context}\n\nQuestion: {question}\n\nAnswer: ")
print(answer)
```

## Limitations
The model may not perform effectively outside the scope of the medical domain.
The training data primarily targets the knowledge level of medical students, 
which may result in limitations when addressing the needs of board-certified physicians.
The model has not been tested in real-world applications, so its efficacy and accuracy are currently unknown. 
It should never be used as a substitute for a doctor's opinion and must be treated as a research tool only.

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TheBloke__medalpaca-13B-GPTQ-4bit)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |30.62|
|AI2 Reasoning Challenge (25-Shot)|29.35|
|HellaSwag (10-Shot)              |26.32|
|MMLU (5-Shot)                    |25.44|
|TruthfulQA (0-shot)              |49.51|
|Winogrande (5-shot)              |53.12|
|GSM8k (5-shot)                   | 0.00|