TheBloke commited on
Commit
8bac50c
·
1 Parent(s): 60f2511

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +447 -0
README.md ADDED
@@ -0,0 +1,447 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: argilla/notux-8x7b-v1
3
+ datasets:
4
+ - argilla/ultrafeedback-binarized-preferences-cleaned
5
+ inference: false
6
+ language:
7
+ - en
8
+ - de
9
+ - es
10
+ - fr
11
+ - it
12
+ library_name: transformers
13
+ license: apache-2.0
14
+ model-index:
15
+ - name: notux-8x7b-v1
16
+ results: []
17
+ model_creator: Argilla
18
+ model_name: Notux 8X7B v1
19
+ model_type: mixtral
20
+ pipeline_tag: text-generation
21
+ prompt_template: '{prompt}
22
+
23
+ '
24
+ quantized_by: TheBloke
25
+ tags:
26
+ - dpo
27
+ - rlaif
28
+ - preference
29
+ - ultrafeedback
30
+ ---
31
+ <!-- markdownlint-disable MD041 -->
32
+
33
+ <!-- header start -->
34
+ <!-- 200823 -->
35
+ <div style="width: auto; margin-left: auto; margin-right: auto">
36
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
37
+ </div>
38
+ <div style="display: flex; justify-content: space-between; width: 100%;">
39
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
40
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
41
+ </div>
42
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
43
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
44
+ </div>
45
+ </div>
46
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
47
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
48
+ <!-- header end -->
49
+
50
+ # Notux 8X7B v1 - AWQ
51
+ - Model creator: [Argilla](https://huggingface.co/argilla)
52
+ - Original model: [Notux 8X7B v1](https://huggingface.co/argilla/notux-8x7b-v1)
53
+
54
+ <!-- description start -->
55
+ ## Description
56
+
57
+ This repo contains AWQ model files for [Argilla's Notux 8X7B v1](https://huggingface.co/argilla/notux-8x7b-v1).
58
+
59
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
60
+
61
+
62
+ **MIXTRAL AWQ**
63
+
64
+ This is a Mixtral AWQ model.
65
+
66
+ For AutoAWQ inference, please install AutoAWQ 0.1.8 or later.
67
+
68
+ Support via Transformers is coming soon, via this PR: https://github.com/huggingface/transformers/pull/27950 which should be merged to Transformers `main` very soon.
69
+
70
+ vLLM: version 0.2.6 is confirmed to support Mixtral AWQs.
71
+
72
+ TGI: I tested version 1.3.3 and it loaded the model fine, but I was not able to get any output back. Further testing/debug is required. (Let me know if you get it working!)
73
+
74
+ ### About AWQ
75
+
76
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
77
+
78
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
79
+
80
+ AWQ models are supported by (note that not all of these may support Mixtral models yet - see above):
81
+
82
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
83
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
84
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
85
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
86
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
87
+
88
+ <!-- description end -->
89
+ <!-- repositories-available start -->
90
+ ## Repositories available
91
+
92
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/notux-8x7b-v1-AWQ)
93
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/notux-8x7b-v1-GPTQ)
94
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/notux-8x7b-v1-GGUF)
95
+ * [Argilla's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/argilla/notux-8x7b-v1)
96
+ <!-- repositories-available end -->
97
+
98
+ <!-- prompt-template start -->
99
+ ## Prompt template: Unknown
100
+
101
+ ```
102
+ {prompt}
103
+
104
+ ```
105
+
106
+ <!-- prompt-template end -->
107
+
108
+
109
+ <!-- README_AWQ.md-provided-files start -->
110
+ ## Provided files, and AWQ parameters
111
+
112
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
113
+
114
+ Models are released as sharded safetensors files.
115
+
116
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
117
+ | ------ | ---- | -- | ----------- | ------- | ---- |
118
+ | [main](https://huggingface.co/TheBloke/notux-8x7b-v1-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | Processing, coming soon
119
+
120
+ <!-- README_AWQ.md-provided-files end -->
121
+
122
+ <!-- README_AWQ.md-text-generation-webui start -->
123
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
124
+
125
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
126
+
127
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
128
+
129
+ 1. Click the **Model tab**.
130
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/notux-8x7b-v1-AWQ`.
131
+ 3. Click **Download**.
132
+ 4. The model will start downloading. Once it's finished it will say "Done".
133
+ 5. In the top left, click the refresh icon next to **Model**.
134
+ 6. In the **Model** dropdown, choose the model you just downloaded: `notux-8x7b-v1-AWQ`
135
+ 7. Select **Loader: AutoAWQ**.
136
+ 8. Click Load, and the model will load and is now ready for use.
137
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
138
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
139
+ <!-- README_AWQ.md-text-generation-webui end -->
140
+
141
+ <!-- README_AWQ.md-use-from-vllm start -->
142
+ ## Multi-user inference server: vLLM
143
+
144
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
145
+
146
+ - Please ensure you are using vLLM version 0.2 or later.
147
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
148
+
149
+ For example:
150
+
151
+ ```shell
152
+ python3 -m vllm.entrypoints.api_server --model TheBloke/notux-8x7b-v1-AWQ --quantization awq --dtype auto
153
+ ```
154
+
155
+ - When using vLLM from Python code, again set `quantization=awq`.
156
+
157
+ For example:
158
+
159
+ ```python
160
+ from vllm import LLM, SamplingParams
161
+
162
+ prompts = [
163
+ "Tell me about AI",
164
+ "Write a story about llamas",
165
+ "What is 291 - 150?",
166
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
167
+ ]
168
+ prompt_template=f'''{prompt}
169
+ '''
170
+
171
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
172
+
173
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
174
+
175
+ llm = LLM(model="TheBloke/notux-8x7b-v1-AWQ", quantization="awq", dtype="auto")
176
+
177
+ outputs = llm.generate(prompts, sampling_params)
178
+
179
+ # Print the outputs.
180
+ for output in outputs:
181
+ prompt = output.prompt
182
+ generated_text = output.outputs[0].text
183
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
184
+ ```
185
+ <!-- README_AWQ.md-use-from-vllm start -->
186
+
187
+ <!-- README_AWQ.md-use-from-tgi start -->
188
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
189
+
190
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
191
+
192
+ Example Docker parameters:
193
+
194
+ ```shell
195
+ --model-id TheBloke/notux-8x7b-v1-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
196
+ ```
197
+
198
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
199
+
200
+ ```shell
201
+ pip3 install huggingface-hub
202
+ ```
203
+
204
+ ```python
205
+ from huggingface_hub import InferenceClient
206
+
207
+ endpoint_url = "https://your-endpoint-url-here"
208
+
209
+ prompt = "Tell me about AI"
210
+ prompt_template=f'''{prompt}
211
+ '''
212
+
213
+ client = InferenceClient(endpoint_url)
214
+ response = client.text_generation(prompt,
215
+ max_new_tokens=128,
216
+ do_sample=True,
217
+ temperature=0.7,
218
+ top_p=0.95,
219
+ top_k=40,
220
+ repetition_penalty=1.1)
221
+
222
+ print(f"Model output: ", response)
223
+ ```
224
+ <!-- README_AWQ.md-use-from-tgi end -->
225
+
226
+ <!-- README_AWQ.md-use-from-python start -->
227
+ ## Inference from Python code using Transformers
228
+
229
+ ### Install the necessary packages
230
+
231
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
232
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
233
+
234
+ ```shell
235
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
236
+ ```
237
+
238
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
239
+
240
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
241
+
242
+ ```shell
243
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
244
+ ```
245
+
246
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
247
+
248
+ ```shell
249
+ pip3 uninstall -y autoawq
250
+ git clone https://github.com/casper-hansen/AutoAWQ
251
+ cd AutoAWQ
252
+ pip3 install .
253
+ ```
254
+
255
+ ### Transformers example code (requires Transformers 4.35.0 and later)
256
+
257
+ ```python
258
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
259
+
260
+ model_name_or_path = "TheBloke/notux-8x7b-v1-AWQ"
261
+
262
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
263
+ model = AutoModelForCausalLM.from_pretrained(
264
+ model_name_or_path,
265
+ low_cpu_mem_usage=True,
266
+ device_map="cuda:0"
267
+ )
268
+
269
+ # Using the text streamer to stream output one token at a time
270
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
271
+
272
+ prompt = "Tell me about AI"
273
+ prompt_template=f'''{prompt}
274
+ '''
275
+
276
+ # Convert prompt to tokens
277
+ tokens = tokenizer(
278
+ prompt_template,
279
+ return_tensors='pt'
280
+ ).input_ids.cuda()
281
+
282
+ generation_params = {
283
+ "do_sample": True,
284
+ "temperature": 0.7,
285
+ "top_p": 0.95,
286
+ "top_k": 40,
287
+ "max_new_tokens": 512,
288
+ "repetition_penalty": 1.1
289
+ }
290
+
291
+ # Generate streamed output, visible one token at a time
292
+ generation_output = model.generate(
293
+ tokens,
294
+ streamer=streamer,
295
+ **generation_params
296
+ )
297
+
298
+ # Generation without a streamer, which will include the prompt in the output
299
+ generation_output = model.generate(
300
+ tokens,
301
+ **generation_params
302
+ )
303
+
304
+ # Get the tokens from the output, decode them, print them
305
+ token_output = generation_output[0]
306
+ text_output = tokenizer.decode(token_output)
307
+ print("model.generate output: ", text_output)
308
+
309
+ # Inference is also possible via Transformers' pipeline
310
+ from transformers import pipeline
311
+
312
+ pipe = pipeline(
313
+ "text-generation",
314
+ model=model,
315
+ tokenizer=tokenizer,
316
+ **generation_params
317
+ )
318
+
319
+ pipe_output = pipe(prompt_template)[0]['generated_text']
320
+ print("pipeline output: ", pipe_output)
321
+
322
+ ```
323
+ <!-- README_AWQ.md-use-from-python end -->
324
+
325
+ <!-- README_AWQ.md-compatibility start -->
326
+ ## Compatibility
327
+
328
+ The files provided are tested to work with:
329
+
330
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
331
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
332
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
333
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
334
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
335
+
336
+ <!-- README_AWQ.md-compatibility end -->
337
+
338
+ <!-- footer start -->
339
+ <!-- 200823 -->
340
+ ## Discord
341
+
342
+ For further support, and discussions on these models and AI in general, join us at:
343
+
344
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
345
+
346
+ ## Thanks, and how to contribute
347
+
348
+ Thanks to the [chirper.ai](https://chirper.ai) team!
349
+
350
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
351
+
352
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
353
+
354
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
355
+
356
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
357
+
358
+ * Patreon: https://patreon.com/TheBlokeAI
359
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
360
+
361
+ **Special thanks to**: Aemon Algiz.
362
+
363
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
364
+
365
+
366
+ Thank you to all my generous patrons and donaters!
367
+
368
+ And thank you again to a16z for their generous grant.
369
+
370
+ <!-- footer end -->
371
+
372
+ # Original model card: Argilla's Notux 8X7B v1
373
+
374
+
375
+ <div align="center">
376
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/60f0608166e5701b80ed3f02/dj-spsk9eXMMXVGxK6jRz.png" alt="A banner representing Notus, the wind god of the south, in a mythical and artistic style. The banner features a strong, swirling breeze, embodying the warm, wet character of the southern wind. Gracefully flowing across the scene are several paper planes, caught in the gentle yet powerful gusts of Notus. The background is a blend of warm colors, symbolizing the heat of the south, with hints of blue and green to represent the moisture carried by this wind. The overall atmosphere is one of dynamic movement and warmth."/>
377
+ </div>
378
+
379
+
380
+ # Model Card for Notux 8x7B-v1
381
+
382
+ This model is a preference-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on the [argilla/ultrafeedback-binarized-preferences-cleaned](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned) dataset using DPO (Direct Preference Optimization).
383
+
384
+ As of Dec 26th 2023, it outperforms `Mixtral-8x7B-Instruct-v0.1` and is the top ranked MoE (Mixture of Experts) model on the [Hugging Face Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
385
+
386
+ This is part of the Notus family of models and experiments, where the Argilla team investigates data-first and preference tuning methods like dDPO (distilled DPO). This model is the result of our first experiment at tuning a MoE model that has already been fine-tuned with DPO (i.e., Mixtral-8x7B-Instruct-v0.1).
387
+
388
+ ## Model Details
389
+
390
+ ### Model Description
391
+
392
+ - **Developed by:** Argilla (based on MistralAI previous efforts)
393
+ - **Shared by:** Argilla
394
+ - **Model type:** Pretrained generative Sparse Mixture of Experts
395
+ - **Language(s) (NLP):** English, Spanish, Italian, German, and French
396
+ - **License:** MIT
397
+ - **Finetuned from model:** [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
398
+
399
+ ### Model Sources
400
+
401
+ - **Repository:** https://github.com/argilla-io/notus
402
+ - **Paper:** N/A
403
+
404
+ ## Training Details
405
+
406
+ ### Training Hardware
407
+
408
+ We used a VM with 8 x H100 80GB hosted in runpod.io for 1 epoch (~10hr).
409
+
410
+ ### Training Data
411
+
412
+ We used a new iteration of the Argilla UltraFeedback preferences dataset named [argilla/ultrafeedback-binarized-preferences-cleaned](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned).
413
+
414
+ ## Training procedure
415
+
416
+ ### Training hyperparameters
417
+
418
+ The following hyperparameters were used during training:
419
+ - learning_rate: 5e-07
420
+ - train_batch_size: 8
421
+ - eval_batch_size: 4
422
+ - seed: 42
423
+ - distributed_type: multi-GPU
424
+ - num_devices: 8
425
+ - total_train_batch_size: 64
426
+ - total_eval_batch_size: 32
427
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
428
+ - lr_scheduler_type: linear
429
+ - lr_scheduler_warmup_ratio: 0.1
430
+ - num_epochs: 1
431
+
432
+ ### Training results
433
+
434
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
435
+ |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
436
+ | 0.4384 | 0.22 | 200 | 0.4556 | -0.3275 | -1.9448 | 0.7937 | 1.6174 | -405.7994 | -397.8617 | -1.3157 | -1.4511 |
437
+ | 0.4064 | 0.43 | 400 | 0.4286 | -0.2163 | -2.2090 | 0.8254 | 1.9927 | -408.4409 | -396.7496 | -0.7660 | -0.6539 |
438
+ | 0.3952 | 0.65 | 600 | 0.4275 | -0.1311 | -2.1603 | 0.8016 | 2.0291 | -407.9537 | -395.8982 | -0.6783 | -0.7206 |
439
+ | 0.3909 | 0.87 | 800 | 0.4167 | -0.2273 | -2.3146 | 0.8135 | 2.0872 | -409.4968 | -396.8602 | -0.8458 | -0.7738 |
440
+
441
+
442
+ ### Framework versions
443
+
444
+ - Transformers 4.36.0
445
+ - Pytorch 2.1.0+cu118
446
+ - Datasets 2.14.6
447
+ - Tokenizers 0.15.0