File size: 29,643 Bytes
334626b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
---
base_model: openchat/openchat-3.5-0106
inference: false
library_name: transformers
license: apache-2.0
model_creator: OpenChat
model_name: Openchat 3.5 0106
model_type: mistral
pipeline_tag: text-generation
prompt_template: 'GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant:

  '
quantized_by: TheBloke
tags:
- openchat
- mistral
- C-RLFT
---
<!-- markdownlint-disable MD041 -->

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# Openchat 3.5 0106 - AWQ
- Model creator: [OpenChat](https://huggingface.co/openchat)
- Original model: [Openchat 3.5 0106](https://huggingface.co/openchat/openchat-3.5-0106)

<!-- description start -->
## Description

This repo contains AWQ model files for [OpenChat's Openchat 3.5 0106](https://huggingface.co/openchat/openchat-3.5-0106).

These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).


### About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.

It is supported by:

- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code

<!-- description end -->
<!-- repositories-available start -->
## Repositories available

* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/openchat-3.5-0106-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/openchat-3.5-0106-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/openchat-3.5-0106-GGUF)
* [OpenChat's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/openchat/openchat-3.5-0106)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: OpenChat-Correct

```
GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant:

```

<!-- prompt-template end -->


<!-- README_AWQ.md-provided-files start -->
## Provided files, and AWQ parameters

I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.

Models are released as sharded safetensors files.

| Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
| ------ | ---- | -- | ----------- | ------- | ---- |
| [main](https://huggingface.co/TheBloke/openchat-3.5-0106-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.15 GB

<!-- README_AWQ.md-provided-files end -->

<!-- README_AWQ.md-text-generation-webui start -->
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)

Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/openchat-3.5-0106-AWQ`.
3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done".
5. In the top left, click the refresh icon next to **Model**.
6. In the **Model** dropdown, choose the model you just downloaded: `openchat-3.5-0106-AWQ`
7. Select **Loader: AutoAWQ**.
8. Click Load, and the model will load and is now ready for use.
9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
<!-- README_AWQ.md-text-generation-webui end -->

<!-- README_AWQ.md-use-from-vllm start -->
## Multi-user inference server: vLLM

Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).

- Please ensure you are using vLLM version 0.2 or later.
- When using vLLM as a server, pass the `--quantization awq` parameter.

For example:

```shell
python3 -m vllm.entrypoints.api_server --model TheBloke/openchat-3.5-0106-AWQ --quantization awq --dtype auto
```

- When using vLLM from Python code, again set `quantization=awq`.

For example:

```python
from vllm import LLM, SamplingParams

prompts = [
    "Tell me about AI",
    "Write a story about llamas",
    "What is 291 - 150?",
    "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
]
prompt_template=f'''GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant:
'''

prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]

sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="TheBloke/openchat-3.5-0106-AWQ", quantization="awq", dtype="auto")

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
<!-- README_AWQ.md-use-from-vllm start -->

<!-- README_AWQ.md-use-from-tgi start -->
## Multi-user inference server: Hugging Face Text Generation Inference (TGI)

Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`

Example Docker parameters:

```shell
--model-id TheBloke/openchat-3.5-0106-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
```

Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):

```shell
pip3 install huggingface-hub
```

```python
from huggingface_hub import InferenceClient

endpoint_url = "https://your-endpoint-url-here"

prompt = "Tell me about AI"
prompt_template=f'''GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant:
'''

client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
                                  max_new_tokens=128,
                                  do_sample=True,
                                  temperature=0.7,
                                  top_p=0.95,
                                  top_k=40,
                                  repetition_penalty=1.1)

print(f"Model output: ", response)
```
<!-- README_AWQ.md-use-from-tgi end -->

<!-- README_AWQ.md-use-from-python start -->
## Inference from Python code using Transformers

### Install the necessary packages

- Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
- Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.

```shell
pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
```

Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.

If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:

```shell
pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
```

If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:

```shell
pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .
```

### Transformers example code (requires Transformers 4.35.0 and later)

```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer

model_name_or_path = "TheBloke/openchat-3.5-0106-AWQ"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(
    model_name_or_path,
    low_cpu_mem_usage=True,
    device_map="cuda:0"
)

# Using the text streamer to stream output one token at a time
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

prompt = "Tell me about AI"
prompt_template=f'''GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant:
'''

# Convert prompt to tokens
tokens = tokenizer(
    prompt_template,
    return_tensors='pt'
).input_ids.cuda()

generation_params = {
    "do_sample": True,
    "temperature": 0.7,
    "top_p": 0.95,
    "top_k": 40,
    "max_new_tokens": 512,
    "repetition_penalty": 1.1
}

# Generate streamed output, visible one token at a time
generation_output = model.generate(
    tokens,
    streamer=streamer,
    **generation_params
)

# Generation without a streamer, which will include the prompt in the output
generation_output = model.generate(
    tokens,
    **generation_params
)

# Get the tokens from the output, decode them, print them
token_output = generation_output[0]
text_output = tokenizer.decode(token_output)
print("model.generate output: ", text_output)

# Inference is also possible via Transformers' pipeline
from transformers import pipeline

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    **generation_params
)

pipe_output = pipe(prompt_template)[0]['generated_text']
print("pipeline output: ", pipe_output)

```
<!-- README_AWQ.md-use-from-python end -->

<!-- README_AWQ.md-compatibility start -->
## Compatibility

The files provided are tested to work with:

- [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
- [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.

<!-- README_AWQ.md-compatibility end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute

Thanks to the [chirper.ai](https://chirper.ai) team!

Thanks to Clay from [gpus.llm-utils.org](llm-utils)!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Michael Levine, ้˜ฟๆ˜Ž, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjรคreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

# Original model card: OpenChat's Openchat 3.5 0106

<div align="center">
  <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/logo_new.png" style="width: 65%">
  <h1>Advancing Open-source Language Models with Mixed-Quality Data</h1>
</div>

<p align="center" style="margin-top: 0px;">
  <a href="https://openchat.team">
    <img src="https://github.com/alpayariyak/openchat/blob/master/assets/logo_nobg.png?raw=true" alt="OpenChat Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 10px; margin-top: 0px; margin-bottom: 0px;"/>
    <span class="link-text" style=" margin-right: 5px;">Online Demo</span>
  </a> |
  <a href="https://github.com/imoneoi/openchat">
    <img src="https://github.githubassets.com/assets/GitHub-Mark-ea2971cee799.png" alt="GitHub Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
    <span class="link-text" style=" margin-right: 5px;">GitHub</span>
  </a> |
  <a href="https://arxiv.org/pdf/2309.11235.pdf">
    <img src="https://github.com/alpayariyak/openchat/blob/master/assets/arxiv-logomark-small-square-border.png?raw=true" alt="ArXiv Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
    <span class="link-text" style="margin-right: 5px;">Paper</span>
  </a> |
  <a href="https://discord.gg/pQjnXvNKHY">
    <img src="https://cloud.githubusercontent.com/assets/6291467/26705903/96c2d66e-477c-11e7-9f4e-f3c0efe96c9a.png" alt="Discord Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
    <span class="link-text">Discord</span>
  </a>
</p>

<p align="center" style="margin-top: 0px;">
    <span class="link-text" style=" margin-right: 0px; font-size: 0.8em">Sponsored by RunPod</span>
   <img src="https://styles.redditmedia.com/t5_6075m3/styles/profileIcon_71syco7c5lt81.png?width=256&height=256&frame=1&auto=webp&crop=256:256,smart&s=24bd3c71dc11edc5d4f88d0cbc1da72ed7ae1969" alt="RunPod Logo" style="width:30px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
</p>

<div style="background-color: white; padding: 0.7em; border-radius: 0.5em; color: black; display: flex; flex-direction: column; justify-content: center; text-align: center; ont-size: 0.5em; border: 0.8em solid #864AF9;">
  <a href="https://huggingface.co/openchat/openchat-3.5-0106" style="text-decoration: none; color: black;">
    <span style="font-size: 1.7em; font-family: 'Helvetica'; letter-spacing: 0.1em; font-weight: bold; color: black;">OPENCHAT</span><span style="font-size: 1.8em; font-family: 'Helvetica'; color: #3c72db; ">3.5</span>
        <span style="font-size: 1.0em;  font-family: 'Helvetica'; color:  white; background-color: #864AF9; vertical-align: top; border-radius: 6em; padding: 0.066em 0.4em; letter-spacing: 0.1em; font-weight: bold;">0106</span>
    <span style="font-size: 0.85em; font-family: 'Helvetica'; color: black;">
      <br> ๐Ÿ† The Overall Best Performing Open Source 7B Model ๐Ÿ†
    <br> ๐Ÿค– Outperforms <span style="font-weight: bold;">ChatGPT</span> (March) and <span style="font-weight: bold;">Grok-1</span> ๐Ÿค–
      <br> ๐Ÿš€<span style="font-size: 1em; font-family: 'Helvetica'; color: black; font-weight: bold;">15</span>-point improvement in Coding over <span style="font-size: 0.9em;
      font-family: 'Helvetica'; color: black; font-weight: bold;">OpenChat-3.5๐Ÿš€</span>
      <br><br><span style="font-size: 1em; font-family: 'Helvetica'; color: #3c72db; font-weight: bold;">New Features</span>
      <br> ๐Ÿ’ก 2 Modes: Coding + Generalist, Mathematical Reasoning ๐Ÿ’ก
      <br> ๐Ÿง‘โ€โš–๏ธ Experimental support for Evaluator and Feedback capabilities ๐Ÿง‘โ€โš–๏ธ
    </span>
  </a>
</div>

<div style="display: flex; justify-content: center; align-items: center">
  <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/openchat-bench-0106.png" style="width: 100%; border-radius: 1em">
</div>


<div>
<h3> Table of Contents</h3>
</div>

1. [Usage](#usage)
2. [Benchmarks](#benchmarks)
3. [Limitations](#limitations)
4. [License](#license)
6. [Citation](#citation)
7. [Acknowledgements](#acknowledgements)


<div align="center">
<h2> Usage </h2>
</div>

To use this model, we highly recommend installing the OpenChat package by following the [installation guide](https://github.com/imoneoi/openchat#installation) in our repository and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using [vLLM](https://github.com/vllm-project/vllm) and can run on a consumer GPU with 24GB RAM. To enable tensor parallelism, append `--tensor-parallel-size N` to the serving command.

Once started, the server listens at `localhost:18888` for requests and is compatible with the [OpenAI ChatCompletion API specifications](https://platform.openai.com/docs/api-reference/chat). Please refer to the example request below for reference. Additionally, you can use the [OpenChat Web UI](https://github.com/imoneoi/openchat#web-ui) for a user-friendly experience.

If you want to deploy the server as an online service, you can use `--api-keys sk-KEY1 sk-KEY2 ...` to specify allowed API keys and `--disable-log-requests --disable-log-stats --log-file openchat.log` for logging only to a file. For security purposes, we recommend using an [HTTPS gateway](https://fastapi.tiangolo.com/es/deployment/concepts/#security-https) in front of the server.

| Model             | Size | Context | Weights                                                          | Serving                                                                                                          |
|-------------------|------|---------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| OpenChat-3.5-0106 | 7B   | 8192    | [Huggingface](https://huggingface.co/openchat/openchat-3.5-0106) | `python -m ochat.serving.openai_api_server --model openchat/openchat-3.5-0106 --engine-use-ray --worker-use-ray` |

<details>
  <summary>Example request (click to expand)</summary>

๐Ÿ’ก **Default Mode (GPT4 Correct)**: Best for coding, chat and general tasks

```bash
curl http://localhost:18888/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "openchat_3.5",
    "messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}]
  }'
```

๐Ÿงฎ **Mathematical Reasoning Mode**: Tailored for solving math problems

```bash
curl http://localhost:18888/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "openchat_3.5",
    "condition": "Math Correct",
    "messages": [{"role": "user", "content": "10.3 โˆ’ 7988.8133 = "}]
  }'
```

</details>

### Conversation templates

๐Ÿ’ก **Default Mode (GPT4 Correct)**: Best for coding, chat and general tasks

```
GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:
```

๐Ÿงฎ **Mathematical Reasoning Mode**: Tailored for solving math problems

```
Math Correct User: 10.3 โˆ’ 7988.8133=<|end_of_turn|>Math Correct Assistant:
```

โš ๏ธ **Notice:** Remember to set `<|end_of_turn|>` as end of generation token.

The default (GPT4 Correct) template is also available as the integrated `tokenizer.chat_template`,
which can be used instead of manually specifying the template:

```python
messages = [
    {"role": "user", "content": "Hello"},
    {"role": "assistant", "content": "Hi"},
    {"role": "user", "content": "How are you today?"}
]
tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
```

<div align="center">
<h2> (Experimental) Evaluator / Feedback Capabilities </h2>
</div>

We've included evaluator capabilities in this release to advance open-source models as evaluators. You can use `Default Mode (GPT4 Correct)` with the following prompt (same as [Prometheus](https://huggingface.co/datasets/kaist-ai/Feedback-Collection)) to evaluate a response.

```
###Task Description:
An instruction (might include an Input inside it), a response to evaluate, a reference answer that gets a score of 5, and a score rubric representing a evaluation criteria are given.
1. Write a detailed feedback that assess the quality of the response strictly based on the given score rubric, not evaluating in general.
2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric.
3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)"
4. Please do not generate any other opening, closing, and explanations.

###The instruction to evaluate:
{orig_instruction}

###Response to evaluate:
{orig_response}

###Reference Answer (Score 5):
{orig_reference_answer}

###Score Rubrics:
[{orig_criteria}]
Score 1: {orig_score1_description}
Score 2: {orig_score2_description}
Score 3: {orig_score3_description}
Score 4: {orig_score4_description}
Score 5: {orig_score5_description}

###Feedback: 
```
<div align="center">
<h2> Benchmarks </h2>
</div>

| Model                 | # Params | Average  | MT-Bench | HumanEval | BBH MC   | AGIEval  | TruthfulQA | MMLU     | GSM8K    | BBH CoT  |
|-----------------------|----------|----------|----------|-----------|----------|----------|------------|----------|----------|----------|
| **OpenChat-3.5-0106** | **7B**   | **64.5** | 7.8      | **71.3**  | **51.5** | **49.1** | 61.0       | 65.8     | **77.4** | 62.2     |
| OpenChat-3.5-1210     | **7B**   | 63.8     | 7.76     | 68.9      | 49.5     | 48.0     | **61.8**   | 65.3     | 77.3     | 61.8     |
| OpenChat-3.5          | **7B**   | 61.6     | 7.81     | 55.5      | 47.6     | 47.4     | 59.1       | 64.3     | 77.3     | 63.5     |
| ChatGPT (March)*      | ???B     | 61.5     | **7.94** | 48.1      | 47.6     | 47.1     | 57.7       | **67.3** | 74.9     | **70.1** |
|                       |          |          |          |           |          |          |            |          |          |          |
| OpenHermes 2.5        | 7B       | 59.3     | 7.54     | 48.2      | 49.4     | 46.5     | 57.5       | 63.8     | 73.5     | 59.9     |
| OpenOrca Mistral      | 7B       | 52.7     | 6.86     | 38.4      | 49.4     | 42.9     | 45.9       | 59.3     | 59.1     | 58.1     |
| Zephyr-ฮฒ^             | 7B       | 34.6     | 7.34     | 22.0      | 40.6     | 39.0     | 40.8       | 39.8     | 5.1      | 16.0     |
| Mistral               | 7B       | -        | 6.84     | 30.5      | 39.0     | 38.0     | -          | 60.1     | 52.2     | -        |

<details>
  <summary>Evaluation Details(click to expand)</summary>
  
*: ChatGPT (March) results are from [GPT-4 Technical Report](https://arxiv.org/abs/2303.08774), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), and our evaluation. Please note that ChatGPT is not a fixed baseline and evolves rapidly over time.

^: Zephyr-ฮฒ often fails to follow few-shot CoT instructions, likely because it was aligned with only chat data but not trained on few-shot data.

**: Mistral and Open-source SOTA results are taken from reported results in instruction-tuned model papers and official repositories.

All models are evaluated in chat mode (e.g. with the respective conversation template applied). All zero-shot benchmarks follow the same setting as in the AGIEval paper and Orca paper. CoT tasks use the same configuration as Chain-of-Thought Hub, HumanEval is evaluated with EvalPlus, and MT-bench is run using FastChat. To reproduce our results, follow the instructions in [our repository](https://github.com/imoneoi/openchat/#benchmarks).

</details>
<div>
<h3>HumanEval+</h3>
</div>

| Model                       | Size   | HumanEval+ pass@1 |
|-----------------------------|--------|-------------------|
| **OpenChat-3.5-0106**       | **7B** | **65.9**          |
| ChatGPT (December 12, 2023) | ???B   | 64.6              |
| WizardCoder-Python-34B-V1.0 | 34B    | 64.6              |
| OpenChat 3.5 1210           | 7B     | 63.4              |
| OpenHermes 2.5              | 7B     | 41.5              |

<div>
<h3>OpenChat-3.5 vs. Grok</h3>
</div>

๐Ÿ”ฅ OpenChat-3.5-0106 (7B) now outperforms Grok-0 (33B) on **all 4 benchmarks** and Grok-1 (???B) on average and **3/4 benchmarks**.

|                       | License     | # Param | Average  | MMLU   | HumanEval | MATH     | GSM8k    |
|-----------------------|-------------|---------|----------|--------|-----------|----------|----------|
| **OpenChat-3.5-0106** | Apache-2.0  | **7B**  | **61.0** | 65.8   | **71.3**  | **29.3** | **77.4** |
| OpenChat-3.5-1210     | Apache-2.0  | **7B**  | 60.1     | 65.3   | 68.9      | 28.9     | 77.3     |
| OpenChat-3.5          | Apache-2.0  | **7B**  | 56.4     | 64.3   | 55.5      | 28.6     | 77.3     |
| Grok-0                | Proprietary | 33B     | 44.5     | 65.7   | 39.7      | 15.7     | 56.8     |
| Grok-1                | Proprietary | ???B    | 55.8     | **73** | 63.2      | 23.9     | 62.9     |

*: Grok results are reported by [X.AI](https://x.ai/).

<div align="center">
<h2> Limitations </h2>
</div>

**Foundation Model Limitations**
Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as:

- Complex reasoning
- Mathematical and arithmetic tasks
- Programming and coding challenges

**Hallucination of Non-existent Information**
OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model.

**Safety**
OpenChat may sometimes generate harmful, hate speech, biased responses, or answer unsafe questions. It's crucial to apply additional AI safety measures in use cases that require safe and moderated responses.

<div align="center">
<h2> License </h2>
</div>

Our OpenChat 3.5 code and models are distributed under the Apache License 2.0.

<div align="center">
<h2> Citation </h2>
</div>

```
@article{wang2023openchat,
  title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data},
  author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang},
  journal={arXiv preprint arXiv:2309.11235},
  year={2023}
}
```

<div align="center">
<h2> ๐Ÿ’Œ Main Contributor </h2>
</div>

* Wang Guan [imonenext@gmail.com], Cheng Sijie [csj23@mails.tsinghua.edu.cn], Alpay Ariyak [aariyak@wpi.edu]
* We look forward to hearing you and collaborating on this exciting project!