TheBloke commited on
Commit
1de181a
1 Parent(s): ee8b0ec

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -60
README.md CHANGED
@@ -3,7 +3,7 @@ inference: false
3
  language:
4
  - en
5
  library_name: transformers
6
- license: other
7
  model_creator: augtoma
8
  model_link: https://huggingface.co/augtoma/qCammel-13
9
  model_name: qCammel 13
@@ -38,41 +38,48 @@ tags:
38
  - Model creator: [augtoma](https://huggingface.co/augtoma)
39
  - Original model: [qCammel 13](https://huggingface.co/augtoma/qCammel-13)
40
 
 
41
  ## Description
42
 
43
  This repo contains GPTQ model files for [augtoma's qCammel 13](https://huggingface.co/augtoma/qCammel-13).
44
 
45
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
46
 
 
 
47
  ## Repositories available
48
 
49
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/qCammel-13-GPTQ)
50
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/qCammel-13-GGML)
 
51
  * [augtoma's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/augtoma/qCammel-13)
 
52
 
 
53
  ## Prompt template: Vicuna
54
 
55
  ```
56
- A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
57
 
58
- USER: {prompt}
59
- ASSISTANT:
60
  ```
61
 
 
 
 
62
  ## Provided files and GPTQ parameters
63
 
64
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
65
 
66
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
67
 
68
- All GPTQ files are made with AutoGPTQ.
69
 
70
  <details>
71
  <summary>Explanation of GPTQ parameters</summary>
72
 
73
  - Bits: The bit size of the quantised model.
74
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
75
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
76
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
77
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
78
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
@@ -82,15 +89,18 @@ All GPTQ files are made with AutoGPTQ.
82
 
83
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
84
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
85
- | [main](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
86
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
87
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
88
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
89
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
90
- | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
91
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
92
- | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed. |
93
-
 
 
 
94
  ## How to download from branches
95
 
96
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/qCammel-13-GPTQ:gptq-4bit-32g-actorder_True`
@@ -99,78 +109,75 @@ All GPTQ files are made with AutoGPTQ.
99
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/qCammel-13-GPTQ
100
  ```
101
  - In Python Transformers code, the branch is the `revision` parameter; see below.
102
-
 
103
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
104
 
105
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
106
 
107
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
108
 
109
  1. Click the **Model tab**.
110
  2. Under **Download custom model or LoRA**, enter `TheBloke/qCammel-13-GPTQ`.
111
  - To download from a specific branch, enter for example `TheBloke/qCammel-13-GPTQ:gptq-4bit-32g-actorder_True`
112
  - see Provided Files above for the list of branches for each option.
113
  3. Click **Download**.
114
- 4. The model will start downloading. Once it's finished it will say "Done"
115
  5. In the top left, click the refresh icon next to **Model**.
116
  6. In the **Model** dropdown, choose the model you just downloaded: `qCammel-13-GPTQ`
117
  7. The model will automatically load, and is now ready for use!
118
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
119
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
120
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
121
 
 
122
  ## How to use this GPTQ model from Python code
123
 
124
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
125
 
126
- ```
127
- pip3 install auto-gptq
128
- ```
129
 
130
- If you have problems installing AutoGPTQ, please build from source instead:
 
 
131
  ```
 
 
 
 
132
  pip3 uninstall -y auto-gptq
133
  git clone https://github.com/PanQiWei/AutoGPTQ
134
  cd AutoGPTQ
135
  pip3 install .
136
  ```
137
 
138
- Then try the following example code:
 
 
 
 
 
 
 
 
139
 
140
  ```python
141
- from transformers import AutoTokenizer, pipeline, logging
142
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
143
 
144
  model_name_or_path = "TheBloke/qCammel-13-GPTQ"
145
-
146
- use_triton = False
 
 
 
 
147
 
148
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
149
 
150
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
151
- use_safetensors=True,
152
- trust_remote_code=False,
153
- device="cuda:0",
154
- use_triton=use_triton,
155
- quantize_config=None)
156
-
157
- """
158
- # To download from a specific branch, use the revision parameter, as in this example:
159
- # Note that `revision` requires AutoGPTQ 0.3.1 or later!
160
-
161
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
162
- revision="gptq-4bit-32g-actorder_True",
163
- use_safetensors=True,
164
- trust_remote_code=False,
165
- device="cuda:0",
166
- quantize_config=None)
167
- """
168
-
169
  prompt = "Tell me about AI"
170
- prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
171
 
172
- USER: {prompt}
173
- ASSISTANT:
174
  '''
175
 
176
  print("\n\n*** Generate:")
@@ -181,9 +188,6 @@ print(tokenizer.decode(output[0]))
181
 
182
  # Inference can also be done using transformers' pipeline
183
 
184
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
185
- logging.set_verbosity(logging.CRITICAL)
186
-
187
  print("*** Pipeline:")
188
  pipe = pipeline(
189
  "text-generation",
@@ -197,12 +201,17 @@ pipe = pipeline(
197
 
198
  print(pipe(prompt_template)[0]['generated_text'])
199
  ```
 
200
 
 
201
  ## Compatibility
202
 
203
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
 
 
204
 
205
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
206
 
207
  <!-- footer start -->
208
  <!-- 200823 -->
@@ -227,7 +236,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
227
 
228
  **Special thanks to**: Aemon Algiz.
229
 
230
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
231
 
232
 
233
  Thank you to all my generous patrons and donaters!
@@ -244,7 +253,7 @@ qCammel-13 is a fine-tuned version of Llama-2 13B model, trained on a distilled
244
  ## Model Details
245
  *Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept their License before downloading this model .*
246
 
247
- The fine-tuning process applied to qCammel-13 involves a distilled dataset of 15,000 instructions and is trained with QLoRA,
248
 
249
 
250
  **Variations** The original Llama 2 has parameter sizes of 7B, 13B, and 70B. This is the fine-tuned version of the 13B model.
@@ -258,7 +267,7 @@ The fine-tuning process applied to qCammel-13 involves a distilled dataset of 15
258
  **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
259
  Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved
260
 
261
- **Research Papers**
262
  - [Clinical Camel: An Open-Source Expert-Level Medical Language Model with Dialogue-Based Knowledge Encoding](https://arxiv.org/abs/2305.12031)
263
  - [QLoRA: Efficient Finetuning of Quantized LLMs](https://arxiv.org/abs/2305.14314)
264
  - [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)
 
3
  language:
4
  - en
5
  library_name: transformers
6
+ license: llama2
7
  model_creator: augtoma
8
  model_link: https://huggingface.co/augtoma/qCammel-13
9
  model_name: qCammel 13
 
38
  - Model creator: [augtoma](https://huggingface.co/augtoma)
39
  - Original model: [qCammel 13](https://huggingface.co/augtoma/qCammel-13)
40
 
41
+ <!-- description start -->
42
  ## Description
43
 
44
  This repo contains GPTQ model files for [augtoma's qCammel 13](https://huggingface.co/augtoma/qCammel-13).
45
 
46
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
47
 
48
+ <!-- description end -->
49
+ <!-- repositories-available start -->
50
  ## Repositories available
51
 
52
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/qCammel-13-GPTQ)
53
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/qCammel-13-GGUF)
54
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/qCammel-13-GGML)
55
  * [augtoma's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/augtoma/qCammel-13)
56
+ <!-- repositories-available end -->
57
 
58
+ <!-- prompt-template start -->
59
  ## Prompt template: Vicuna
60
 
61
  ```
62
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
63
 
 
 
64
  ```
65
 
66
+ <!-- prompt-template end -->
67
+
68
+ <!-- README_GPTQ.md-provided-files start -->
69
  ## Provided files and GPTQ parameters
70
 
71
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
72
 
73
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
74
 
75
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
76
 
77
  <details>
78
  <summary>Explanation of GPTQ parameters</summary>
79
 
80
  - Bits: The bit size of the quantised model.
81
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
82
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
83
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
84
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
85
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
 
89
 
90
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
91
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
92
+ | [main](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
93
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
94
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
95
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
96
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
97
+ | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
98
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
99
+ | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
100
+
101
+ <!-- README_GPTQ.md-provided-files end -->
102
+
103
+ <!-- README_GPTQ.md-download-from-branches start -->
104
  ## How to download from branches
105
 
106
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/qCammel-13-GPTQ:gptq-4bit-32g-actorder_True`
 
109
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/qCammel-13-GPTQ
110
  ```
111
  - In Python Transformers code, the branch is the `revision` parameter; see below.
112
+ <!-- README_GPTQ.md-download-from-branches end -->
113
+ <!-- README_GPTQ.md-text-generation-webui start -->
114
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
115
 
116
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
117
 
118
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
119
 
120
  1. Click the **Model tab**.
121
  2. Under **Download custom model or LoRA**, enter `TheBloke/qCammel-13-GPTQ`.
122
  - To download from a specific branch, enter for example `TheBloke/qCammel-13-GPTQ:gptq-4bit-32g-actorder_True`
123
  - see Provided Files above for the list of branches for each option.
124
  3. Click **Download**.
125
+ 4. The model will start downloading. Once it's finished it will say "Done".
126
  5. In the top left, click the refresh icon next to **Model**.
127
  6. In the **Model** dropdown, choose the model you just downloaded: `qCammel-13-GPTQ`
128
  7. The model will automatically load, and is now ready for use!
129
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
130
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
131
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
132
+ <!-- README_GPTQ.md-text-generation-webui end -->
133
 
134
+ <!-- README_GPTQ.md-use-from-python start -->
135
  ## How to use this GPTQ model from Python code
136
 
137
+ ### Install the necessary packages
138
 
139
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
 
 
140
 
141
+ ```shell
142
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
143
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
144
  ```
145
+
146
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
147
+
148
+ ```shell
149
  pip3 uninstall -y auto-gptq
150
  git clone https://github.com/PanQiWei/AutoGPTQ
151
  cd AutoGPTQ
152
  pip3 install .
153
  ```
154
 
155
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
156
+
157
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
158
+ ```shell
159
+ pip3 uninstall -y transformers
160
+ pip3 install git+https://github.com/huggingface/transformers.git
161
+ ```
162
+
163
+ ### You can then use the following code
164
 
165
  ```python
166
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
167
 
168
  model_name_or_path = "TheBloke/qCammel-13-GPTQ"
169
+ # To use a different branch, change revision
170
+ # For example: revision="gptq-4bit-32g-actorder_True"
171
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
172
+ torch_dtype=torch.float16,
173
+ device_map="auto",
174
+ revision="main")
175
 
176
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
  prompt = "Tell me about AI"
179
+ prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
180
 
 
 
181
  '''
182
 
183
  print("\n\n*** Generate:")
 
188
 
189
  # Inference can also be done using transformers' pipeline
190
 
 
 
 
191
  print("*** Pipeline:")
192
  pipe = pipeline(
193
  "text-generation",
 
201
 
202
  print(pipe(prompt_template)[0]['generated_text'])
203
  ```
204
+ <!-- README_GPTQ.md-use-from-python end -->
205
 
206
+ <!-- README_GPTQ.md-compatibility start -->
207
  ## Compatibility
208
 
209
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
210
+
211
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
212
 
213
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
214
+ <!-- README_GPTQ.md-compatibility end -->
215
 
216
  <!-- footer start -->
217
  <!-- 200823 -->
 
236
 
237
  **Special thanks to**: Aemon Algiz.
238
 
239
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
240
 
241
 
242
  Thank you to all my generous patrons and donaters!
 
253
  ## Model Details
254
  *Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept their License before downloading this model .*
255
 
256
+ The fine-tuning process applied to qCammel-13 involves a distilled dataset of 15,000 instructions and is trained with QLoRA,
257
 
258
 
259
  **Variations** The original Llama 2 has parameter sizes of 7B, 13B, and 70B. This is the fine-tuned version of the 13B model.
 
267
  **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
268
  Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved
269
 
270
+ **Research Papers**
271
  - [Clinical Camel: An Open-Source Expert-Level Medical Language Model with Dialogue-Based Knowledge Encoding](https://arxiv.org/abs/2305.12031)
272
  - [QLoRA: Efficient Finetuning of Quantized LLMs](https://arxiv.org/abs/2305.14314)
273
  - [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)