TheBloke commited on
Commit
5edc2a5
1 Parent(s): 92888b9

Initial GPTQ model commit

Browse files
Files changed (1) hide show
  1. README.md +259 -0
README.md ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ license: other
7
+ model_creator: augtoma
8
+ model_link: https://huggingface.co/augtoma/qCammel-13
9
+ model_name: qCammel 13
10
+ model_type: llama
11
+ pipeline_tag: text-generation
12
+ quantized_by: TheBloke
13
+ tags:
14
+ - pytorch
15
+ - llama
16
+ - llama-2
17
+ - qCammel-13
18
+ ---
19
+
20
+ <!-- header start -->
21
+ <div style="width: 100%;">
22
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
23
+ </div>
24
+ <div style="display: flex; justify-content: space-between; width: 100%;">
25
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
26
+ <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
27
+ </div>
28
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
29
+ <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
30
+ </div>
31
+ </div>
32
+ <!-- header end -->
33
+
34
+ # qCammel 13 - GPTQ
35
+ - Model creator: [augtoma](https://huggingface.co/augtoma)
36
+ - Original model: [qCammel 13](https://huggingface.co/augtoma/qCammel-13)
37
+
38
+ ## Description
39
+
40
+ This repo contains GPTQ model files for [augtoma's qCammel 13](https://huggingface.co/augtoma/qCammel-13).
41
+
42
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
43
+
44
+ ## Repositories available
45
+
46
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/qCammel-13-GPTQ)
47
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/qCammel-13-GGML)
48
+ * [augtoma's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/augtoma/qCammel-13)
49
+
50
+ ## Prompt template: Vicuna
51
+
52
+ ```
53
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
54
+
55
+ USER: {prompt}
56
+ ASSISTANT:
57
+ ```
58
+
59
+ ## Provided files and GPTQ parameters
60
+
61
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
62
+
63
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
64
+
65
+ All GPTQ files are made with AutoGPTQ.
66
+
67
+ <details>
68
+ <summary>Explanation of GPTQ parameters</summary>
69
+
70
+ - Bits: The bit size of the quantised model.
71
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
72
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
73
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
74
+ - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
75
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
76
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
77
+
78
+ </details>
79
+
80
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
81
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
82
+ | [main](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
83
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
84
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
85
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
86
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
87
+ | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
88
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
89
+ | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed. |
90
+
91
+ ## How to download from branches
92
+
93
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/qCammel-13-GPTQ:gptq-4bit-32g-actorder_True`
94
+ - With Git, you can clone a branch with:
95
+ ```
96
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/qCammel-13-GPTQ
97
+ ```
98
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
99
+
100
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
101
+
102
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
103
+
104
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
105
+
106
+ 1. Click the **Model tab**.
107
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/qCammel-13-GPTQ`.
108
+ - To download from a specific branch, enter for example `TheBloke/qCammel-13-GPTQ:gptq-4bit-32g-actorder_True`
109
+ - see Provided Files above for the list of branches for each option.
110
+ 3. Click **Download**.
111
+ 4. The model will start downloading. Once it's finished it will say "Done"
112
+ 5. In the top left, click the refresh icon next to **Model**.
113
+ 6. In the **Model** dropdown, choose the model you just downloaded: `qCammel-13-GPTQ`
114
+ 7. The model will automatically load, and is now ready for use!
115
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
116
+ * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
117
+ 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
118
+
119
+ ## How to use this GPTQ model from Python code
120
+
121
+ First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
122
+
123
+ ```
124
+ pip3 install auto-gptq
125
+ ```
126
+
127
+ If you have problems installing AutoGPTQ, please build from source instead:
128
+ ```
129
+ pip3 uninstall -y auto-gptq
130
+ git clone https://github.com/PanQiWei/AutoGPTQ
131
+ cd AutoGPTQ
132
+ pip3 install .
133
+ ```
134
+
135
+ Then try the following example code:
136
+
137
+ ```python
138
+ from transformers import AutoTokenizer, pipeline, logging
139
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
140
+
141
+ model_name_or_path = "TheBloke/qCammel-13-GPTQ"
142
+
143
+ use_triton = False
144
+
145
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
146
+
147
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
148
+ use_safetensors=True,
149
+ trust_remote_code=False,
150
+ device="cuda:0",
151
+ use_triton=use_triton,
152
+ quantize_config=None)
153
+
154
+ """
155
+ # To download from a specific branch, use the revision parameter, as in this example:
156
+ # Note that `revision` requires AutoGPTQ 0.3.1 or later!
157
+
158
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
159
+ revision="gptq-4bit-32g-actorder_True",
160
+ use_safetensors=True,
161
+ trust_remote_code=False,
162
+ device="cuda:0",
163
+ quantize_config=None)
164
+ """
165
+
166
+ prompt = "Tell me about AI"
167
+ prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
168
+
169
+ USER: {prompt}
170
+ ASSISTANT:
171
+ '''
172
+
173
+ print("\n\n*** Generate:")
174
+
175
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
176
+ output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
177
+ print(tokenizer.decode(output[0]))
178
+
179
+ # Inference can also be done using transformers' pipeline
180
+
181
+ # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
182
+ logging.set_verbosity(logging.CRITICAL)
183
+
184
+ print("*** Pipeline:")
185
+ pipe = pipeline(
186
+ "text-generation",
187
+ model=model,
188
+ tokenizer=tokenizer,
189
+ max_new_tokens=512,
190
+ temperature=0.7,
191
+ top_p=0.95,
192
+ repetition_penalty=1.15
193
+ )
194
+
195
+ print(pipe(prompt_template)[0]['generated_text'])
196
+ ```
197
+
198
+ ## Compatibility
199
+
200
+ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
201
+
202
+ ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
203
+
204
+ <!-- footer start -->
205
+ ## Discord
206
+
207
+ For further support, and discussions on these models and AI in general, join us at:
208
+
209
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
210
+
211
+ ## Thanks, and how to contribute.
212
+
213
+ Thanks to the [chirper.ai](https://chirper.ai) team!
214
+
215
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
216
+
217
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
218
+
219
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
220
+
221
+ * Patreon: https://patreon.com/TheBlokeAI
222
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
223
+
224
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
225
+
226
+ **Patreon special mentions**: Willem Michiel, Ajan Kanaga, Cory Kujawski, Alps Aficionado, Nikolai Manek, Jonathan Leane, Stanislav Ovsiannikov, Michael Levine, Luke Pendergrass, Sid, K, Gabriel Tamborski, Clay Pascal, Kalila, William Sang, Will Dee, Pieter, Nathan LeClaire, ya boyyy, David Flickinger, vamX, Derek Yates, Fen Risland, Jeffrey Morgan, webtim, Daniel P. Andersen, Chadd, Edmond Seymore, Pyrater, Olusegun Samson, Lone Striker, biorpg, alfie_i, Mano Prime, Chris Smitley, Dave, zynix, Trenton Dambrowitz, Johann-Peter Hartmann, Magnesian, Spencer Kim, John Detwiler, Iucharbius, Gabriel Puliatti, LangChain4j, Luke @flexchar, Vadim, Rishabh Srivastava, Preetika Verma, Ai Maven, Femi Adebogun, WelcomeToTheClub, Leonard Tan, Imad Khwaja, Steven Wood, Stefan Sabev, Sebastain Graf, usrbinkat, Dan Guido, Sam, Eugene Pentland, Mandus, transmissions 11, Slarti, Karl Bernard, Spiking Neurons AB, Artur Olbinski, Joseph William Delisle, ReadyPlayerEmma, Olakabola, Asp the Wyvern, Space Cruiser, Matthew Berman, Randy H, subjectnull, danny, John Villwock, Illia Dulskyi, Rainer Wilmers, theTransient, Pierre Kircher, Alexandros Triantafyllidis, Viktor Bowallius, terasurfer, Deep Realms, SuperWojo, senxiiz, Oscar Rangel, Alex, Stephen Murray, Talal Aujan, Raven Klaugh, Sean Connelly, Raymond Fosdick, Fred von Graf, chris gileta, Junyu Yang, Elle
227
+
228
+
229
+ Thank you to all my generous patrons and donaters!
230
+
231
+ <!-- footer end -->
232
+
233
+ # Original model card: augtoma's qCammel 13
234
+
235
+ # qCammel-13
236
+ qCammel-13 is a fine-tuned version of Llama-2 13B model, trained on a distilled dataset of 15,000 instructions using QLoRA. This model is optimized for academic medical knowledge and instruction-following capabilities.
237
+
238
+ ## Model Details
239
+ *Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept their License before downloading this model .*
240
+
241
+ The fine-tuning process applied to qCammel-13 involves a distilled dataset of 15,000 instructions and is trained with QLoRA,
242
+
243
+
244
+ **Variations** The original Llama 2 has parameter sizes of 7B, 13B, and 70B. This is the fine-tuned version of the 13B model.
245
+
246
+ **Input** Models input text only.
247
+
248
+ **Output** Models generate text only.
249
+
250
+ **Model Architecture** qCammel-13 is based on the Llama 2 architecture, an auto-regressive language model that uses a decoder only transformer architecture.
251
+
252
+ **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
253
+ Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved
254
+
255
+ **Research Papers**
256
+ - [Clinical Camel: An Open-Source Expert-Level Medical Language Model with Dialogue-Based Knowledge Encoding](https://arxiv.org/abs/2305.12031)
257
+ - [QLoRA: Efficient Finetuning of Quantized LLMs](https://arxiv.org/abs/2305.14314)
258
+ - [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)
259
+