TheBloke commited on
Commit
62eefa7
1 Parent(s): 2971a18

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -18
README.md CHANGED
@@ -1,14 +1,19 @@
1
  ---
 
2
  inference: false
3
  language:
4
  - en
5
  library_name: transformers
6
- license: llama2
7
  model_creator: augtoma
8
- model_link: https://huggingface.co/augtoma/qCammel-13
9
  model_name: qCammel 13
10
  model_type: llama
11
  pipeline_tag: text-generation
 
 
 
 
 
12
  quantized_by: TheBloke
13
  tags:
14
  - pytorch
@@ -49,9 +54,9 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
49
  <!-- repositories-available start -->
50
  ## Repositories available
51
 
 
52
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/qCammel-13-GPTQ)
53
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/qCammel-13-GGUF)
54
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/qCammel-13-GGML)
55
  * [augtoma's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/augtoma/qCammel-13)
56
  <!-- repositories-available end -->
57
 
@@ -64,7 +69,15 @@ A chat between a curious user and an artificial intelligence assistant. The assi
64
  ```
65
 
66
  <!-- prompt-template end -->
 
 
 
 
67
 
 
 
 
 
68
  <!-- README_GPTQ.md-provided-files start -->
69
  ## Provided files and GPTQ parameters
70
 
@@ -89,13 +102,13 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
89
 
90
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
91
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
92
- | [main](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
93
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
94
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
95
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
96
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
97
  | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
98
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
99
  | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
100
 
101
  <!-- README_GPTQ.md-provided-files end -->
@@ -103,10 +116,10 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
103
  <!-- README_GPTQ.md-download-from-branches start -->
104
  ## How to download from branches
105
 
106
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/qCammel-13-GPTQ:gptq-4bit-32g-actorder_True`
107
  - With Git, you can clone a branch with:
108
  ```
109
- git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/qCammel-13-GPTQ
110
  ```
111
  - In Python Transformers code, the branch is the `revision` parameter; see below.
112
  <!-- README_GPTQ.md-download-from-branches end -->
@@ -119,7 +132,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
119
 
120
  1. Click the **Model tab**.
121
  2. Under **Download custom model or LoRA**, enter `TheBloke/qCammel-13-GPTQ`.
122
- - To download from a specific branch, enter for example `TheBloke/qCammel-13-GPTQ:gptq-4bit-32g-actorder_True`
123
  - see Provided Files above for the list of branches for each option.
124
  3. Click **Download**.
125
  4. The model will start downloading. Once it's finished it will say "Done".
@@ -167,10 +180,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
167
 
168
  model_name_or_path = "TheBloke/qCammel-13-GPTQ"
169
  # To use a different branch, change revision
170
- # For example: revision="gptq-4bit-32g-actorder_True"
171
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
172
- torch_dtype=torch.float16,
173
  device_map="auto",
 
174
  revision="main")
175
 
176
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
@@ -183,7 +196,7 @@ prompt_template=f'''A chat between a curious user and an artificial intelligence
183
  print("\n\n*** Generate:")
184
 
185
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
186
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
187
  print(tokenizer.decode(output[0]))
188
 
189
  # Inference can also be done using transformers' pipeline
@@ -194,9 +207,11 @@ pipe = pipeline(
194
  model=model,
195
  tokenizer=tokenizer,
196
  max_new_tokens=512,
 
197
  temperature=0.7,
198
  top_p=0.95,
199
- repetition_penalty=1.15
 
200
  )
201
 
202
  print(pipe(prompt_template)[0]['generated_text'])
@@ -221,10 +236,12 @@ For further support, and discussions on these models and AI in general, join us
221
 
222
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
223
 
224
- ## Thanks, and how to contribute.
225
 
226
  Thanks to the [chirper.ai](https://chirper.ai) team!
227
 
 
 
228
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
229
 
230
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -236,7 +253,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
236
 
237
  **Special thanks to**: Aemon Algiz.
238
 
239
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
240
 
241
 
242
  Thank you to all my generous patrons and donaters!
 
1
  ---
2
+ base_model: https://huggingface.co/augtoma/qCammel-13
3
  inference: false
4
  language:
5
  - en
6
  library_name: transformers
7
+ license: other
8
  model_creator: augtoma
 
9
  model_name: qCammel 13
10
  model_type: llama
11
  pipeline_tag: text-generation
12
+ prompt_template: 'A chat between a curious user and an artificial intelligence assistant.
13
+ The assistant gives helpful, detailed, and polite answers to the user''s questions.
14
+ USER: {prompt} ASSISTANT:
15
+
16
+ '
17
  quantized_by: TheBloke
18
  tags:
19
  - pytorch
 
54
  <!-- repositories-available start -->
55
  ## Repositories available
56
 
57
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/qCammel-13-AWQ)
58
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/qCammel-13-GPTQ)
59
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/qCammel-13-GGUF)
 
60
  * [augtoma's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/augtoma/qCammel-13)
61
  <!-- repositories-available end -->
62
 
 
69
  ```
70
 
71
  <!-- prompt-template end -->
72
+ <!-- licensing start -->
73
+ ## Licensing
74
+
75
+ The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license.
76
 
77
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
78
+
79
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [augtoma's qCammel 13](https://huggingface.co/augtoma/qCammel-13).
80
+ <!-- licensing end -->
81
  <!-- README_GPTQ.md-provided-files start -->
82
  ## Provided files and GPTQ parameters
83
 
 
102
 
103
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
104
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
105
+ | [main](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.26 GB | Yes | 4-bit, without Act Order and group size 128g. |
106
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
107
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
108
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
109
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
110
  | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
111
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
112
  | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
113
 
114
  <!-- README_GPTQ.md-provided-files end -->
 
116
  <!-- README_GPTQ.md-download-from-branches start -->
117
  ## How to download from branches
118
 
119
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/qCammel-13-GPTQ:main`
120
  - With Git, you can clone a branch with:
121
  ```
122
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/qCammel-13-GPTQ
123
  ```
124
  - In Python Transformers code, the branch is the `revision` parameter; see below.
125
  <!-- README_GPTQ.md-download-from-branches end -->
 
132
 
133
  1. Click the **Model tab**.
134
  2. Under **Download custom model or LoRA**, enter `TheBloke/qCammel-13-GPTQ`.
135
+ - To download from a specific branch, enter for example `TheBloke/qCammel-13-GPTQ:main`
136
  - see Provided Files above for the list of branches for each option.
137
  3. Click **Download**.
138
  4. The model will start downloading. Once it's finished it will say "Done".
 
180
 
181
  model_name_or_path = "TheBloke/qCammel-13-GPTQ"
182
  # To use a different branch, change revision
183
+ # For example: revision="main"
184
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
 
185
  device_map="auto",
186
+ trust_remote_code=False,
187
  revision="main")
188
 
189
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
 
196
  print("\n\n*** Generate:")
197
 
198
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
199
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
200
  print(tokenizer.decode(output[0]))
201
 
202
  # Inference can also be done using transformers' pipeline
 
207
  model=model,
208
  tokenizer=tokenizer,
209
  max_new_tokens=512,
210
+ do_sample=True,
211
  temperature=0.7,
212
  top_p=0.95,
213
+ top_k=40,
214
+ repetition_penalty=1.1
215
  )
216
 
217
  print(pipe(prompt_template)[0]['generated_text'])
 
236
 
237
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
238
 
239
+ ## Thanks, and how to contribute
240
 
241
  Thanks to the [chirper.ai](https://chirper.ai) team!
242
 
243
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
244
+
245
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
246
 
247
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
253
 
254
  **Special thanks to**: Aemon Algiz.
255
 
256
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
257
 
258
 
259
  Thank you to all my generous patrons and donaters!