TheBloke commited on
Commit
7d56f9d
1 Parent(s): 3e49059

Update for Transformers GPTQ support

Browse files
README.md CHANGED
@@ -18,17 +18,20 @@ tags:
18
  ---
19
 
20
  <!-- header start -->
21
- <div style="width: 100%;">
22
- <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
 
23
  </div>
24
  <div style="display: flex; justify-content: space-between; width: 100%;">
25
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
26
- <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
27
  </div>
28
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
29
- <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
30
  </div>
31
  </div>
 
 
32
  <!-- header end -->
33
 
34
  # qCammel 70 - GPTQ
@@ -79,11 +82,11 @@ All GPTQ files are made with AutoGPTQ.
79
 
80
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
81
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
82
- | [main](https://huggingface.co/TheBloke/qCammel-70-x-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 35.33 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
83
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/qCammel-70-x-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
84
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/qCammel-70-x-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
85
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/qCammel-70-x-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
86
- | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/qCammel-70-x-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 26.78 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
87
  | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/qCammel-70-x-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
88
 
89
  ## How to download from branches
@@ -200,6 +203,7 @@ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLa
200
  ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
201
 
202
  <!-- footer start -->
 
203
  ## Discord
204
 
205
  For further support, and discussions on these models and AI in general, join us at:
@@ -219,13 +223,15 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
219
  * Patreon: https://patreon.com/TheBlokeAI
220
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
221
 
222
- **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
223
 
224
- **Patreon special mentions**: Willem Michiel, Ajan Kanaga, Cory Kujawski, Alps Aficionado, Nikolai Manek, Jonathan Leane, Stanislav Ovsiannikov, Michael Levine, Luke Pendergrass, Sid, K, Gabriel Tamborski, Clay Pascal, Kalila, William Sang, Will Dee, Pieter, Nathan LeClaire, ya boyyy, David Flickinger, vamX, Derek Yates, Fen Risland, Jeffrey Morgan, webtim, Daniel P. Andersen, Chadd, Edmond Seymore, Pyrater, Olusegun Samson, Lone Striker, biorpg, alfie_i, Mano Prime, Chris Smitley, Dave, zynix, Trenton Dambrowitz, Johann-Peter Hartmann, Magnesian, Spencer Kim, John Detwiler, Iucharbius, Gabriel Puliatti, LangChain4j, Luke @flexchar, Vadim, Rishabh Srivastava, Preetika Verma, Ai Maven, Femi Adebogun, WelcomeToTheClub, Leonard Tan, Imad Khwaja, Steven Wood, Stefan Sabev, Sebastain Graf, usrbinkat, Dan Guido, Sam, Eugene Pentland, Mandus, transmissions 11, Slarti, Karl Bernard, Spiking Neurons AB, Artur Olbinski, Joseph William Delisle, ReadyPlayerEmma, Olakabola, Asp the Wyvern, Space Cruiser, Matthew Berman, Randy H, subjectnull, danny, John Villwock, Illia Dulskyi, Rainer Wilmers, theTransient, Pierre Kircher, Alexandros Triantafyllidis, Viktor Bowallius, terasurfer, Deep Realms, SuperWojo, senxiiz, Oscar Rangel, Alex, Stephen Murray, Talal Aujan, Raven Klaugh, Sean Connelly, Raymond Fosdick, Fred von Graf, chris gileta, Junyu Yang, Elle
225
 
226
 
227
  Thank you to all my generous patrons and donaters!
228
 
 
 
229
  <!-- footer end -->
230
 
231
  # Original model card: augtoma's qCammel 70
@@ -236,7 +242,7 @@ qCammel-70 is a fine-tuned version of Llama-2 70B model, trained on a distilled
236
  ## Model Details
237
  *Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept their License before downloading this model .*
238
 
239
- The fine-tuning process applied to qCammel-70 involves a distilled dataset of 15,000 instructions and is trained with QLoRA,
240
 
241
 
242
  **Variations** The original Llama 2 has parameter sizes of 7B, 13B, and 70B. This is the fine-tuned version of the 70B model.
@@ -250,7 +256,7 @@ The fine-tuning process applied to qCammel-70 involves a distilled dataset of 15
250
  **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
251
  Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved
252
 
253
- **Research Papers**
254
  - [Clinical Camel: An Open-Source Expert-Level Medical Language Model with Dialogue-Based Knowledge Encoding](https://arxiv.org/abs/2305.12031)
255
  - [QLoRA: Efficient Finetuning of Quantized LLMs](https://arxiv.org/abs/2305.14314)
256
  - [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.70971)
 
18
  ---
19
 
20
  <!-- header start -->
21
+ <!-- 200823 -->
22
+ <div style="width: auto; margin-left: auto; margin-right: auto">
23
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
24
  </div>
25
  <div style="display: flex; justify-content: space-between; width: 100%;">
26
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
27
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
28
  </div>
29
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
30
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
31
  </div>
32
  </div>
33
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
34
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
35
  <!-- header end -->
36
 
37
  # qCammel 70 - GPTQ
 
82
 
83
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
84
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
85
+ | [main](https://huggingface.co/TheBloke/qCammel-70-x-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 35.33 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
86
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/qCammel-70-x-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
87
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/qCammel-70-x-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
88
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/qCammel-70-x-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
89
+ | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/qCammel-70-x-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 26.78 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
90
  | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/qCammel-70-x-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
91
 
92
  ## How to download from branches
 
203
  ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
204
 
205
  <!-- footer start -->
206
+ <!-- 200823 -->
207
  ## Discord
208
 
209
  For further support, and discussions on these models and AI in general, join us at:
 
223
  * Patreon: https://patreon.com/TheBlokeAI
224
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
225
 
226
+ **Special thanks to**: Aemon Algiz.
227
 
228
+ **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
229
 
230
 
231
  Thank you to all my generous patrons and donaters!
232
 
233
+ And thank you again to a16z for their generous grant.
234
+
235
  <!-- footer end -->
236
 
237
  # Original model card: augtoma's qCammel 70
 
242
  ## Model Details
243
  *Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept their License before downloading this model .*
244
 
245
+ The fine-tuning process applied to qCammel-70 involves a distilled dataset of 15,000 instructions and is trained with QLoRA,
246
 
247
 
248
  **Variations** The original Llama 2 has parameter sizes of 7B, 13B, and 70B. This is the fine-tuned version of the 70B model.
 
256
  **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
257
  Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved
258
 
259
+ **Research Papers**
260
  - [Clinical Camel: An Open-Source Expert-Level Medical Language Model with Dialogue-Based Knowledge Encoding](https://arxiv.org/abs/2305.12031)
261
  - [QLoRA: Efficient Finetuning of Quantized LLMs](https://arxiv.org/abs/2305.14314)
262
  - [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.70971)
config.json CHANGED
@@ -1,26 +1,37 @@
1
  {
2
- "_name_or_path": "qCammel-70",
3
- "architectures": [
4
- "LlamaForCausalLM"
5
- ],
6
- "bos_token_id": 1,
7
- "eos_token_id": 2,
8
- "hidden_act": "silu",
9
- "hidden_size": 8192,
10
- "initializer_range": 0.02,
11
- "intermediate_size": 28672,
12
- "max_position_embeddings": 4096,
13
- "model_type": "llama",
14
- "num_attention_heads": 64,
15
- "num_hidden_layers": 80,
16
- "num_key_value_heads": 8,
17
- "pad_token_id": 0,
18
- "pretraining_tp": 1,
19
- "rms_norm_eps": 1e-05,
20
- "rope_scaling": null,
21
- "tie_word_embeddings": false,
22
- "torch_dtype": "float16",
23
- "transformers_version": "4.32.0.dev0",
24
- "use_cache": true,
25
- "vocab_size": 32000
 
 
 
 
 
 
 
 
 
 
 
26
  }
 
1
  {
2
+ "_name_or_path": "qCammel-70",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 8192,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 28672,
12
+ "max_position_embeddings": 4096,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 64,
15
+ "num_hidden_layers": 80,
16
+ "num_key_value_heads": 8,
17
+ "pad_token_id": 0,
18
+ "pretraining_tp": 1,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_scaling": null,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "float16",
23
+ "transformers_version": "4.32.0.dev0",
24
+ "use_cache": true,
25
+ "vocab_size": 32000,
26
+ "quantization_config": {
27
+ "bits": 4,
28
+ "group_size": -1,
29
+ "damp_percent": 0.1,
30
+ "desc_act": true,
31
+ "sym": true,
32
+ "true_sequential": true,
33
+ "model_name_or_path": null,
34
+ "model_file_base_name": "model",
35
+ "quant_method": "gptq"
36
+ }
37
  }
gptq_model-4bit--1g.safetensors → model.safetensors RENAMED
File without changes
quantize_config.json CHANGED
@@ -6,5 +6,5 @@
6
  "sym": true,
7
  "true_sequential": true,
8
  "model_name_or_path": null,
9
- "model_file_base_name": null
10
  }
 
6
  "sym": true,
7
  "true_sequential": true,
8
  "model_name_or_path": null,
9
+ "model_file_base_name": "model"
10
  }