Text Generation
Transformers
starcoder
code
TheBloke commited on
Commit
d3d0a4d
1 Parent(s): 192634c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +180 -48
README.md CHANGED
@@ -1,6 +1,81 @@
1
  ---
 
2
  inference: false
3
- license: other
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  <!-- header start -->
@@ -21,12 +96,7 @@ license: other
21
 
22
  These files are GGML format model files for [Bigcode's StarcoderPlus](https://huggingface.co/bigcode/starcoderplus).
23
 
24
- GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
25
- * [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
26
- * [KoboldCpp](https://github.com/LostRuins/koboldcpp)
27
- * [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui)
28
- * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
29
- * [ctransformers](https://github.com/marella/ctransformers)
30
 
31
  ## Repositories available
32
 
@@ -35,31 +105,23 @@ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/gger
35
  * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/bigcode/starcoderplus)
36
 
37
  <!-- compatibility_ggml start -->
38
- ## Compatibility
39
 
40
- ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
41
 
42
- I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`.
 
 
 
 
 
43
 
44
- They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README.
45
 
46
- ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
47
 
48
- These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`.
49
-
50
- They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days.
51
-
52
- ## Explanation of the new k-quant methods
53
-
54
- The new methods available are:
55
- * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
56
- * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
57
- * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
58
- * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
59
- * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
60
- * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
61
-
62
- Refer to the Provided Files table below to see what files use which methods, and how.
63
  <!-- compatibility_ggml end -->
64
 
65
  ## Provided files
@@ -71,26 +133,6 @@ Refer to the Provided Files table below to see what files use which methods, and
71
  | starcoderplus.ggmlv3.q5_1.bin | q5_1 | 5 | 14.26 GB | 16.76 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
72
  | starcoderplus.ggmlv3.q8_0.bin | q8_0 | 8 | 20.11 GB | 22.61 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
73
 
74
-
75
- **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
76
-
77
- ## How to run in `llama.cpp`
78
-
79
- I use the following command line; adjust for your tastes and needs:
80
-
81
- ```
82
- ./main -t 10 -ngl 32 -m starcoder-plus.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
83
- ```
84
- Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
85
-
86
- Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
87
-
88
- If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
89
-
90
- ## How to run in `text-generation-webui`
91
-
92
- Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
93
-
94
  <!-- footer start -->
95
  ## Discord
96
 
@@ -121,4 +163,94 @@ Thank you to all my generous patrons and donaters!
121
 
122
  # Original model card: Bigcode's StarcoderPlus
123
 
124
- No original model card was provided.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pipeline_tag: text-generation
3
  inference: false
4
+ license: bigcode-openrail-m
5
+ datasets:
6
+ - bigcode/the-stack-dedup
7
+ - tiiuae/falcon-refinedweb
8
+ metrics:
9
+ - code_eval
10
+ - mmlu
11
+ - arc
12
+ - hellaswag
13
+ - truthfulqa
14
+ library_name: transformers
15
+ tags:
16
+ - code
17
+ model-index:
18
+ - name: StarCoderPlus
19
+ results:
20
+ - task:
21
+ type: text-generation
22
+ dataset:
23
+ type: openai_humaneval
24
+ name: HumanEval (Prompted)
25
+ metrics:
26
+ - name: pass@1
27
+ type: pass@1
28
+ value: 26.7
29
+ verified: false
30
+ - task:
31
+ type: text-generation
32
+ dataset:
33
+ type: MMLU (5-shot)
34
+ name: MMLU
35
+ metrics:
36
+ - name: Accuracy
37
+ type: Accuracy
38
+ value: 45.1
39
+ verified: false
40
+ - task:
41
+ type: text-generation
42
+ dataset:
43
+ type: HellaSwag (10-shot)
44
+ name: HellaSwag
45
+ metrics:
46
+ - name: Accuracy
47
+ type: Accuracy
48
+ value: 77.3
49
+ verified: false
50
+ - task:
51
+ type: text-generation
52
+ dataset:
53
+ type: ARC (25-shot)
54
+ name: ARC
55
+ metrics:
56
+ - name: Accuracy
57
+ type: Accuracy
58
+ value: 48.9
59
+ verified: false
60
+ - task:
61
+ type: text-generation
62
+ dataset:
63
+ type: ThrutfulQA (0-shot)
64
+ name: ThrutfulQA
65
+ metrics:
66
+ - name: Accuracy
67
+ type: Accuracy
68
+ value: 37.9
69
+ verified: false
70
+ extra_gated_prompt: >-
71
+ ## Model License Agreement
72
+
73
+ Please read the BigCode [OpenRAIL-M
74
+ license](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement)
75
+ agreement before accepting it.
76
+
77
+ extra_gated_fields:
78
+ I accept the above license agreement, and will use the Model complying with the set of use restrictions and sharing requirements: checkbox
79
  ---
80
 
81
  <!-- header start -->
 
96
 
97
  These files are GGML format model files for [Bigcode's StarcoderPlus](https://huggingface.co/bigcode/starcoderplus).
98
 
99
+ Please note that these MPT GGMLs are **not compatible with llama.cpp**. Please see below for a list of tools known to work with these model files.
 
 
 
 
 
100
 
101
  ## Repositories available
102
 
 
105
  * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/bigcode/starcoderplus)
106
 
107
  <!-- compatibility_ggml start -->
108
+ ## Compatibilty
109
 
110
+ These files are **not** compatible with llama.cpp.
111
 
112
+ Currently they can be used with:
113
+ * KoboldCpp, a powerful inference engine based on llama.cpp, with good UI: [KoboldCpp](https://github.com/LostRuins/koboldcpp)
114
+ * The ctransformers Python library, which includes LangChain support: [ctransformers](https://github.com/marella/ctransformers)
115
+ * The GPT4All-UI which uses ctransformers: [GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui)
116
+ * [rustformers' llm](https://github.com/rustformers/llm)
117
+ * The example `mpt` binary provided with [ggml](https://github.com/ggerganov/ggml)
118
 
119
+ As other options become available I will endeavour to update them here (do let me know in the Community tab if I've missed something!)
120
 
121
+ ## Tutorial for using GPT4All-UI
122
 
123
+ * [Text tutorial, written by **Lucas3DCG**](https://huggingface.co/TheBloke/MPT-7B-Storywriter-GGML/discussions/2#6475d914e9b57ce0caa68888)
124
+ * [Video tutorial, by GPT4All-UI's author **ParisNeo**](https://www.youtube.com/watch?v=ds_U0TDzbzI)
 
 
 
 
 
 
 
 
 
 
 
 
 
125
  <!-- compatibility_ggml end -->
126
 
127
  ## Provided files
 
133
  | starcoderplus.ggmlv3.q5_1.bin | q5_1 | 5 | 14.26 GB | 16.76 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
134
  | starcoderplus.ggmlv3.q8_0.bin | q8_0 | 8 | 20.11 GB | 22.61 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
  <!-- footer start -->
137
  ## Discord
138
 
 
163
 
164
  # Original model card: Bigcode's StarcoderPlus
165
 
166
+ # StarCoderPlus
167
+
168
+ Play with the instruction-tuned StarCoderPlus at [StarChat-Beta](https://huggingface.co/spaces/HuggingFaceH4/starchat-playground).
169
+
170
+ ## Table of Contents
171
+
172
+ 1. [Model Summary](##model-summary)
173
+ 2. [Use](##use)
174
+ 3. [Limitations](##limitations)
175
+ 4. [Training](##training)
176
+ 5. [License](##license)
177
+ 6. [Citation](##citation)
178
+
179
+ ## Model Summary
180
+
181
+ StarCoderPlus is a fine-tuned version of [StarCoderBase](https://huggingface.co/bigcode/starcoderbase) on 600B tokens from the English web dataset [RedefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
182
+ combined with [StarCoderData](https://huggingface.co/datasets/bigcode/starcoderdata) from [The Stack (v1.2)](https://huggingface.co/datasets/bigcode/the-stack) and a Wikipedia dataset.
183
+ It's a 15.5B parameter Language Model trained on English and 80+ programming languages. The model uses [Multi Query Attention](https://arxiv.org/abs/1911.02150),
184
+ [a context window of 8192 tokens](https://arxiv.org/abs/2205.14135), and was trained using the [Fill-in-the-Middle objective](https://arxiv.org/abs/2207.14255) on 1.6 trillion tokens.
185
+
186
+ - **Repository:** [bigcode/Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
187
+ - **Project Website:** [bigcode-project.org](https://www.bigcode-project.org)
188
+ - **Point of Contact:** [contact@bigcode-project.org](mailto:contact@bigcode-project.org)
189
+ - **Languages:** English & 80+ Programming languages
190
+
191
+
192
+ ## Use
193
+
194
+ ### Intended use
195
+
196
+ The model was trained on English and GitHub code. As such it is _not_ an instruction model and commands like "Write a function that computes the square root." do not work well. However, the instruction-tuned version in [StarChat](hhttps://huggingface.co/spaces/HuggingFaceH4/starchat-playground) makes a capable assistant.
197
+
198
+ **Feel free to share your generations in the Community tab!**
199
+
200
+ ### Generation
201
+ ```python
202
+ # pip install -q transformers
203
+ from transformers import AutoModelForCausalLM, AutoTokenizer
204
+
205
+ checkpoint = "bigcode/starcoderplus"
206
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
207
+
208
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
209
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
210
+
211
+ inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
212
+ outputs = model.generate(inputs)
213
+ print(tokenizer.decode(outputs[0]))
214
+ ```
215
+
216
+ ### Fill-in-the-middle
217
+ Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output:
218
+
219
+ ```python
220
+ input_text = "<fim_prefix>def print_hello_world():\n <fim_suffix>\n print('Hello world!')<fim_middle>"
221
+ inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
222
+ outputs = model.generate(inputs)
223
+ print(tokenizer.decode(outputs[0]))
224
+ ```
225
+
226
+ ### Attribution & Other Requirements
227
+
228
+ The training code dataset of the model was filtered for permissive licenses only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/starcoder-search) that let's you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code.
229
+
230
+ # Limitations
231
+
232
+ The model has been trained on a mixture of English text from the web and GitHub code. Therefore it might encounter limitations when working with non-English text, and can carry the stereotypes and biases commonly encountered online.
233
+ Additionally, the generated code should be used with caution as it may contain errors, inefficiencies, or potential vulnerabilities. For a more comprehensive understanding of the base model's code limitations, please refer to See [StarCoder paper](hhttps://arxiv.org/abs/2305.06161).
234
+
235
+ # Training
236
+ StarCoderPlus is a fine-tuned version on 600B English and code tokens of StarCoderBase, which was pre-trained on 1T code tokens. Below are the fine-tuning details:
237
+
238
+ ## Model
239
+ - **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
240
+ - **Finetuning steps:** 150k
241
+ - **Finetuning tokens:** 600B
242
+ - **Precision:** bfloat16
243
+
244
+ ## Hardware
245
+
246
+ - **GPUs:** 512 Tesla A100
247
+ - **Training time:** 14 days
248
+
249
+ ## Software
250
+
251
+ - **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
252
+ - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
253
+ - **BP16 if applicable:** [apex](https://github.com/NVIDIA/apex)
254
+
255
+ # License
256
+ The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).