Transformers
GGUF
English
mistral
Generated from Trainer
TheBloke commited on
Commit
2cd08be
1 Parent(s): eedb2f0

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +420 -0
README.md ADDED
@@ -0,0 +1,420 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: HuggingFaceH4/zephyr-7b-alpha
3
+ datasets:
4
+ - stingning/ultrachat
5
+ - openbmb/UltraFeedback
6
+ inference: false
7
+ language:
8
+ - en
9
+ license: cc-by-nc-4.0
10
+ model-index:
11
+ - name: zephyr-7b-alpha
12
+ results: []
13
+ model_creator: Hugging Face H4
14
+ model_name: Zephyr 7B Alpha
15
+ model_type: mistral
16
+ prompt_template: '<|system|>
17
+
18
+ </s>
19
+
20
+ <|user|>
21
+
22
+ {prompt}</s>
23
+
24
+ <|assistant|>
25
+
26
+ '
27
+ quantized_by: TheBloke
28
+ tags:
29
+ - generated_from_trainer
30
+ ---
31
+
32
+ <!-- header start -->
33
+ <!-- 200823 -->
34
+ <div style="width: auto; margin-left: auto; margin-right: auto">
35
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
36
+ </div>
37
+ <div style="display: flex; justify-content: space-between; width: 100%;">
38
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
39
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
40
+ </div>
41
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
42
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
43
+ </div>
44
+ </div>
45
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
46
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
47
+ <!-- header end -->
48
+
49
+ # Zephyr 7B Alpha - GGUF
50
+ - Model creator: [Hugging Face H4](https://huggingface.co/HuggingFaceH4)
51
+ - Original model: [Zephyr 7B Alpha](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha)
52
+
53
+ <!-- description start -->
54
+ ## Description
55
+
56
+ This repo contains GGUF format model files for [Hugging Face H4's Zephyr 7B Alpha](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha).
57
+
58
+ <!-- description end -->
59
+ <!-- README_GGUF.md-about-gguf start -->
60
+ ### About GGUF
61
+
62
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
63
+
64
+ Here is an incomplate list of clients and libraries that are known to support GGUF:
65
+
66
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
67
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
68
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
69
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
70
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
71
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
72
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
73
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
74
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
75
+
76
+ <!-- README_GGUF.md-about-gguf end -->
77
+ <!-- repositories-available start -->
78
+ ## Repositories available
79
+
80
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/zephyr-7B-alpha-AWQ)
81
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/zephyr-7B-alpha-GPTQ)
82
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/zephyr-7B-alpha-GGUF)
83
+ * [Hugging Face H4's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha)
84
+ <!-- repositories-available end -->
85
+
86
+ <!-- prompt-template start -->
87
+ ## Prompt template: Zephyr
88
+
89
+ ```
90
+ <|system|>
91
+ </s>
92
+ <|user|>
93
+ {prompt}</s>
94
+ <|assistant|>
95
+
96
+ ```
97
+
98
+ <!-- prompt-template end -->
99
+
100
+
101
+ <!-- compatibility_gguf start -->
102
+ ## Compatibility
103
+
104
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
105
+
106
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
107
+
108
+ ## Explanation of quantisation methods
109
+ <details>
110
+ <summary>Click to see details</summary>
111
+
112
+ The new methods available are:
113
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
114
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
115
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
116
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
117
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
118
+
119
+ Refer to the Provided Files table below to see what files use which methods, and how.
120
+ </details>
121
+ <!-- compatibility_gguf end -->
122
+
123
+ <!-- README_GGUF.md-provided-files start -->
124
+ ## Provided files
125
+
126
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
127
+ | ---- | ---- | ---- | ---- | ---- | ----- |
128
+ | [zephyr-7b-alpha.Q2_K.gguf](https://huggingface.co/TheBloke/zephyr-7B-alpha-GGUF/blob/main/zephyr-7b-alpha.Q2_K.gguf) | Q2_K | 2 | 3.08 GB| 5.58 GB | smallest, significant quality loss - not recommended for most purposes |
129
+ | [zephyr-7b-alpha.Q3_K_S.gguf](https://huggingface.co/TheBloke/zephyr-7B-alpha-GGUF/blob/main/zephyr-7b-alpha.Q3_K_S.gguf) | Q3_K_S | 3 | 3.16 GB| 5.66 GB | very small, high quality loss |
130
+ | [zephyr-7b-alpha.Q3_K_M.gguf](https://huggingface.co/TheBloke/zephyr-7B-alpha-GGUF/blob/main/zephyr-7b-alpha.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss |
131
+ | [zephyr-7b-alpha.Q3_K_L.gguf](https://huggingface.co/TheBloke/zephyr-7B-alpha-GGUF/blob/main/zephyr-7b-alpha.Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| 6.32 GB | small, substantial quality loss |
132
+ | [zephyr-7b-alpha.Q4_0.gguf](https://huggingface.co/TheBloke/zephyr-7B-alpha-GGUF/blob/main/zephyr-7b-alpha.Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| 6.61 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
133
+ | [zephyr-7b-alpha.Q4_K_S.gguf](https://huggingface.co/TheBloke/zephyr-7B-alpha-GGUF/blob/main/zephyr-7b-alpha.Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss |
134
+ | [zephyr-7b-alpha.Q4_K_M.gguf](https://huggingface.co/TheBloke/zephyr-7B-alpha-GGUF/blob/main/zephyr-7b-alpha.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended |
135
+ | [zephyr-7b-alpha.Q5_0.gguf](https://huggingface.co/TheBloke/zephyr-7B-alpha-GGUF/blob/main/zephyr-7b-alpha.Q5_0.gguf) | Q5_0 | 5 | 5.00 GB| 7.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
136
+ | [zephyr-7b-alpha.Q5_K_S.gguf](https://huggingface.co/TheBloke/zephyr-7B-alpha-GGUF/blob/main/zephyr-7b-alpha.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended |
137
+ | [zephyr-7b-alpha.Q5_K_M.gguf](https://huggingface.co/TheBloke/zephyr-7B-alpha-GGUF/blob/main/zephyr-7b-alpha.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended |
138
+ | [zephyr-7b-alpha.Q6_K.gguf](https://huggingface.co/TheBloke/zephyr-7B-alpha-GGUF/blob/main/zephyr-7b-alpha.Q6_K.gguf) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss |
139
+ | [zephyr-7b-alpha.Q8_0.gguf](https://huggingface.co/TheBloke/zephyr-7B-alpha-GGUF/blob/main/zephyr-7b-alpha.Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended |
140
+
141
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
142
+
143
+
144
+
145
+ <!-- README_GGUF.md-provided-files end -->
146
+
147
+ <!-- README_GGUF.md-how-to-download start -->
148
+ ## How to download GGUF files
149
+
150
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
151
+
152
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
153
+ - LM Studio
154
+ - LoLLMS Web UI
155
+ - Faraday.dev
156
+
157
+ ### In `text-generation-webui`
158
+
159
+ Under Download Model, you can enter the model repo: TheBloke/zephyr-7B-alpha-GGUF and below it, a specific filename to download, such as: zephyr-7b-alpha.Q4_K_M.gguf.
160
+
161
+ Then click Download.
162
+
163
+ ### On the command line, including multiple files at once
164
+
165
+ I recommend using the `huggingface-hub` Python library:
166
+
167
+ ```shell
168
+ pip3 install huggingface-hub
169
+ ```
170
+
171
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
172
+
173
+ ```shell
174
+ huggingface-cli download TheBloke/zephyr-7B-alpha-GGUF zephyr-7b-alpha.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
175
+ ```
176
+
177
+ <details>
178
+ <summary>More advanced huggingface-cli download usage</summary>
179
+
180
+ You can also download multiple files at once with a pattern:
181
+
182
+ ```shell
183
+ huggingface-cli download TheBloke/zephyr-7B-alpha-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
184
+ ```
185
+
186
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
187
+
188
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
189
+
190
+ ```shell
191
+ pip3 install hf_transfer
192
+ ```
193
+
194
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
195
+
196
+ ```shell
197
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/zephyr-7B-alpha-GGUF zephyr-7b-alpha.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
198
+ ```
199
+
200
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
201
+ </details>
202
+ <!-- README_GGUF.md-how-to-download end -->
203
+
204
+ <!-- README_GGUF.md-how-to-run start -->
205
+ ## Example `llama.cpp` command
206
+
207
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
208
+
209
+ ```shell
210
+ ./main -ngl 32 -m zephyr-7b-alpha.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|system|>\n</s>\n<|user|>\n{prompt}</s>\n<|assistant|>"
211
+ ```
212
+
213
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
214
+
215
+ Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
216
+
217
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
218
+
219
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
220
+
221
+ ## How to run in `text-generation-webui`
222
+
223
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
224
+
225
+ ## How to run from Python code
226
+
227
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
228
+
229
+ ### How to load this model in Python code, using ctransformers
230
+
231
+ #### First install the package
232
+
233
+ Run one of the following commands, according to your system:
234
+
235
+ ```shell
236
+ # Base ctransformers with no GPU acceleration
237
+ pip install ctransformers
238
+ # Or with CUDA GPU acceleration
239
+ pip install ctransformers[cuda]
240
+ # Or with AMD ROCm GPU acceleration (Linux only)
241
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
242
+ # Or with Metal GPU acceleration for macOS systems only
243
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
244
+ ```
245
+
246
+ #### Simple ctransformers example code
247
+
248
+ ```python
249
+ from ctransformers import AutoModelForCausalLM
250
+
251
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
252
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/zephyr-7B-alpha-GGUF", model_file="zephyr-7b-alpha.Q4_K_M.gguf", model_type="mistral", gpu_layers=50)
253
+
254
+ print(llm("AI is going to"))
255
+ ```
256
+
257
+ ## How to use with LangChain
258
+
259
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
260
+
261
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
262
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
263
+
264
+ <!-- README_GGUF.md-how-to-run end -->
265
+
266
+ <!-- footer start -->
267
+ <!-- 200823 -->
268
+ ## Discord
269
+
270
+ For further support, and discussions on these models and AI in general, join us at:
271
+
272
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
273
+
274
+ ## Thanks, and how to contribute
275
+
276
+ Thanks to the [chirper.ai](https://chirper.ai) team!
277
+
278
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
279
+
280
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
281
+
282
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
283
+
284
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
285
+
286
+ * Patreon: https://patreon.com/TheBlokeAI
287
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
288
+
289
+ **Special thanks to**: Aemon Algiz.
290
+
291
+ **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
292
+
293
+
294
+ Thank you to all my generous patrons and donaters!
295
+
296
+ And thank you again to a16z for their generous grant.
297
+
298
+ <!-- footer end -->
299
+
300
+ <!-- original-model-card start -->
301
+ # Original model card: Hugging Face H4's Zephyr 7B Alpha
302
+
303
+
304
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
305
+ should probably proofread and complete it, then remove this comment. -->
306
+
307
+ <img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
308
+
309
+
310
+ # Model Card for Zephyr 7B Alpha
311
+
312
+ Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr-7B-α is the first model in the series, and is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). We found that removing the in-built alignment of these datasets boosted performance on [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and made the model more helpful. However, this means that model is likely to generate problematic text when prompted to do so and should only be used for educational and research purposes.
313
+
314
+
315
+ ## Model description
316
+
317
+ - **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
318
+ - **Language(s) (NLP):** Primarily English
319
+ - **License:** CC BY-NC 4.0
320
+ - **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
321
+
322
+ ### Model Sources
323
+
324
+ <!-- Provide the basic links for the model. -->
325
+
326
+ - **Repository:** https://github.com/huggingface/alignment-handbook
327
+ - **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat
328
+
329
+ ## Intended uses & limitations
330
+
331
+ The model was initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities.
332
+
333
+ Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
334
+
335
+ ```python
336
+ import torch
337
+ from transformers import pipeline
338
+
339
+ pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-alpha", torch_dtype=torch.bfloat16, device_map="auto")
340
+
341
+ # We use a variant of ChatML to format each message
342
+ prompt_template = "<|system|>\n</s>\n<|user|>\n{query}</s>\n<|assistant|>\n"
343
+ prompt = prompt_template.format(query="How many helicopters can a human eat in one sitting?")
344
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
345
+ # Zero. Humans cannot consume or digest solid objects like helicopters, including their components such as rotor blades and engines. A human's diet is limited to food that they can swallow and break down through the process of digestion. Eating a helicopter would be physically impossible and could potentially cause serious harm if attempted.
346
+ ```
347
+
348
+ ## Bias, Risks, and Limitations
349
+
350
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
351
+
352
+ Zephyr-7B-α has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
353
+ It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this.
354
+
355
+
356
+ ## Training and evaluation data
357
+
358
+ Zephyr 7B Alpha achieves the following results on the evaluation set:
359
+
360
+ - Loss: 0.4605
361
+ - Rewards/chosen: -0.5053
362
+ - Rewards/rejected: -1.8752
363
+ - Rewards/accuracies: 0.7812
364
+ - Rewards/margins: 1.3699
365
+ - Logps/rejected: -327.4286
366
+ - Logps/chosen: -297.1040
367
+ - Logits/rejected: -2.7153
368
+ - Logits/chosen: -2.7447
369
+
370
+ ## Training procedure
371
+
372
+ ### Training hyperparameters
373
+
374
+ The following hyperparameters were used during training:
375
+ - learning_rate: 5e-07
376
+ - train_batch_size: 2
377
+ - eval_batch_size: 4
378
+ - seed: 42
379
+ - distributed_type: multi-GPU
380
+ - num_devices: 16
381
+ - total_train_batch_size: 32
382
+ - total_eval_batch_size: 64
383
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
384
+ - lr_scheduler_type: linear
385
+ - lr_scheduler_warmup_ratio: 0.1
386
+ - num_epochs: 1
387
+
388
+ ### Training results
389
+
390
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
391
+ |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
392
+ | 0.5602 | 0.05 | 100 | 0.5589 | -0.3359 | -0.8168 | 0.7188 | 0.4809 | -306.2607 | -293.7161 | -2.6554 | -2.6797 |
393
+ | 0.4852 | 0.1 | 200 | 0.5136 | -0.5310 | -1.4994 | 0.8125 | 0.9684 | -319.9124 | -297.6181 | -2.5762 | -2.5957 |
394
+ | 0.5212 | 0.15 | 300 | 0.5168 | -0.1686 | -1.1760 | 0.7812 | 1.0074 | -313.4444 | -290.3699 | -2.6865 | -2.7125 |
395
+ | 0.5496 | 0.21 | 400 | 0.4835 | -0.1617 | -1.7170 | 0.8281 | 1.5552 | -324.2635 | -290.2326 | -2.7947 | -2.8218 |
396
+ | 0.5209 | 0.26 | 500 | 0.5054 | -0.4778 | -1.6604 | 0.7344 | 1.1826 | -323.1325 | -296.5546 | -2.8388 | -2.8667 |
397
+ | 0.4617 | 0.31 | 600 | 0.4910 | -0.3738 | -1.5180 | 0.7656 | 1.1442 | -320.2848 | -294.4741 | -2.8234 | -2.8521 |
398
+ | 0.4452 | 0.36 | 700 | 0.4838 | -0.4591 | -1.6576 | 0.7031 | 1.1986 | -323.0770 | -296.1796 | -2.7401 | -2.7653 |
399
+ | 0.4674 | 0.41 | 800 | 0.5077 | -0.5692 | -1.8659 | 0.7656 | 1.2967 | -327.2416 | -298.3818 | -2.6740 | -2.6945 |
400
+ | 0.4656 | 0.46 | 900 | 0.4927 | -0.5279 | -1.6614 | 0.7656 | 1.1335 | -323.1518 | -297.5553 | -2.7817 | -2.8015 |
401
+ | 0.4102 | 0.52 | 1000 | 0.4772 | -0.5767 | -2.0667 | 0.7656 | 1.4900 | -331.2578 | -298.5311 | -2.7160 | -2.7455 |
402
+ | 0.4663 | 0.57 | 1100 | 0.4740 | -0.8038 | -2.1018 | 0.7656 | 1.2980 | -331.9604 | -303.0741 | -2.6994 | -2.7257 |
403
+ | 0.4737 | 0.62 | 1200 | 0.4716 | -0.3783 | -1.7015 | 0.7969 | 1.3232 | -323.9545 | -294.5634 | -2.6842 | -2.7135 |
404
+ | 0.4259 | 0.67 | 1300 | 0.4866 | -0.6239 | -1.9703 | 0.7812 | 1.3464 | -329.3312 | -299.4761 | -2.7046 | -2.7356 |
405
+ | 0.4935 | 0.72 | 1400 | 0.4747 | -0.5626 | -1.7600 | 0.7812 | 1.1974 | -325.1243 | -298.2491 | -2.7153 | -2.7444 |
406
+ | 0.4211 | 0.77 | 1500 | 0.4645 | -0.6099 | -1.9993 | 0.7656 | 1.3894 | -329.9109 | -299.1959 | -2.6944 | -2.7236 |
407
+ | 0.4931 | 0.83 | 1600 | 0.4684 | -0.6798 | -2.1082 | 0.7656 | 1.4285 | -332.0890 | -300.5934 | -2.7006 | -2.7305 |
408
+ | 0.5029 | 0.88 | 1700 | 0.4595 | -0.5063 | -1.8951 | 0.7812 | 1.3889 | -327.8267 | -297.1233 | -2.7108 | -2.7403 |
409
+ | 0.4965 | 0.93 | 1800 | 0.4613 | -0.5561 | -1.9079 | 0.7812 | 1.3518 | -328.0831 | -298.1203 | -2.7226 | -2.7523 |
410
+ | 0.4337 | 0.98 | 1900 | 0.4608 | -0.5066 | -1.8718 | 0.7656 | 1.3652 | -327.3599 | -297.1296 | -2.7175 | -2.7469 |
411
+
412
+
413
+ ### Framework versions
414
+
415
+ - Transformers 4.34.0
416
+ - Pytorch 2.0.1+cu118
417
+ - Datasets 2.12.0
418
+ - Tokenizers 0.14.0
419
+
420
+ <!-- original-model-card end -->