--- base_model: google/pegasus-xsum tags: - generated_from_trainer metrics: - rouge model-index: - name: sumarize_model_pegasus_v1 results: [] --- # sumarize_model_pegasus_v1 This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3379 - Rouge1: 0.6034 - Rouge2: 0.4459 - Rougel: 0.5685 - Rougelsum: 0.5681 - Gen Len: 32.8647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.419313942464226e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 239 | 1.4418 | 0.6747 | 0.5033 | 0.6338 | 0.6335 | 43.9549 | | No log | 2.0 | 478 | 1.3434 | 0.6869 | 0.5148 | 0.646 | 0.6459 | 44.938 | | 1.8531 | 3.0 | 717 | 1.2791 | 0.6843 | 0.5141 | 0.6451 | 0.645 | 44.7556 | | 1.8531 | 4.0 | 956 | 1.2358 | 0.6868 | 0.5168 | 0.6473 | 0.647 | 44.4305 | | 1.4419 | 5.0 | 1195 | 1.2654 | 0.6858 | 0.5172 | 0.6467 | 0.6464 | 43.7857 | | 1.4419 | 6.0 | 1434 | 1.2838 | 0.6686 | 0.4999 | 0.6291 | 0.6288 | 39.9549 | | 1.4368 | 7.0 | 1673 | 1.3379 | 0.6034 | 0.4459 | 0.5685 | 0.5681 | 32.8647 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2