Update README.md
Browse files
README.md
CHANGED
@@ -16,4 +16,74 @@ metrics:
|
|
16 |
- wer
|
17 |
base_model: openai/whisper-small
|
18 |
license: apache-2.0
|
19 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
- wer
|
17 |
base_model: openai/whisper-small
|
18 |
license: apache-2.0
|
19 |
+
---
|
20 |
+
|
21 |
+
---
|
22 |
+
language:
|
23 |
+
- xh
|
24 |
+
pipeline_tag: automatic-speech-recognition
|
25 |
+
tags:
|
26 |
+
- audio
|
27 |
+
- automatic-speech-recognition
|
28 |
+
widget:
|
29 |
+
- example_title: Librispeech sample 1
|
30 |
+
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
|
31 |
+
- example_title: Librispeech sample 2
|
32 |
+
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
|
33 |
+
datasets:
|
34 |
+
- Beijuka/xhosa_parakeet_50hr
|
35 |
+
metrics:
|
36 |
+
- wer
|
37 |
+
base_model: openai/whisper-small
|
38 |
+
---
|
39 |
+
|
40 |
+
# Whisper-Small Fine-tuned for isiXhosa ASR
|
41 |
+
|
42 |
+
## Model Description
|
43 |
+
This model is a fine-tuned version of OpenAI's Whisper-small, optimized for isiXhosa Automatic Speech Recognition (ASR). It has been trained on the NCHLT isiXhosa Speech Corpus to improve its performance on isiXhosa speech transcription tasks.
|
44 |
+
|
45 |
+
## Performance
|
46 |
+
- Word Error Rate (WER): 32%
|
47 |
+
|
48 |
+
## Base Model
|
49 |
+
- Name: openai/whisper-small
|
50 |
+
- Type: Automatic Speech Recognition (ASR)
|
51 |
+
- Original language: Multilingual
|
52 |
+
|
53 |
+
## Usage
|
54 |
+
To use this model for inference:
|
55 |
+
|
56 |
+
```python
|
57 |
+
from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
58 |
+
import torch
|
59 |
+
|
60 |
+
# Load model and processor
|
61 |
+
model = WhisperForConditionalGeneration.from_pretrained("TheirStory-Inc/whisper-small-xhosa")
|
62 |
+
processor = WhisperProcessor.from_pretrained("TheirStory-Inc/whisper-small-xhosa")
|
63 |
+
|
64 |
+
# Prepare your audio file (16kHz sampling rate)
|
65 |
+
audio_input = ... # Load your audio file here
|
66 |
+
|
67 |
+
# Process the audio
|
68 |
+
input_features = processor(audio_input, sampling_rate=16000, return_tensors="pt").input_features
|
69 |
+
|
70 |
+
# Generate token ids
|
71 |
+
predicted_ids = model.generate(input_features)
|
72 |
+
|
73 |
+
# Decode the token ids to text
|
74 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
75 |
+
|
76 |
+
print(transcription)
|
77 |
+
```
|
78 |
+
|
79 |
+
## Fine-tuning Dataset
|
80 |
+
- Name: NCHLT isiXhosa Speech Corpus
|
81 |
+
- Size: Approximately 56 hours of transcribed speech
|
82 |
+
- Speakers: 209 (106 female, 103 male)
|
83 |
+
- Content: Prompted speech (3-5 word utterances read from a smartphone screen)
|
84 |
+
- Source: Audio recordings smartphone-collected in non-studio environment
|
85 |
+
- License: Creative Commons Attribution 3.0 Unported License (CC BY 3.0)
|
86 |
+
-
|
87 |
+
```bibtext
|
88 |
+
De Vries, N.J., Davel, M.H., Badenhorst, J., Basson, W.D., de Wet, F., Barnard, E. and de Waal, A. (2014). A smartphone-based ASR data collection tool for under-resourced languages. Speech Communication, 56, 119-131. https://hdl.handle.net/20.500.12185/279
|
89 |
+
```
|